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Abstract. Emulating coroutines with first-class continuations imposes an
unacceptable overhead in managing function frames when there is an in-
tensive exchange of control. This paper presents a high-performance imple-
mentation for a restricted class of continuations. These continuations are
exploited in a simple coroutine mechanism, reaching a rate of 430,000 con-
trol exchanges per second on a modern RISC processor. As an extra feature,
first-class continuations are recovered from the restricted class.
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1 Introduction

A coroutine is a kind of concurrent process, getting and passing control explicitly.
The simplest way to implement them is to use multiple stacks, one for each coroutine.
The problem with this approach is that whenever memory resources are limited,
the deepest function recursion must be traded off against the maximal number of
simultaneous coroutines. Yet, predicting the deepest function recursion is generally
impossible.

On the other hand, Scheme [Rees & Clinger 86] has abstracted a wide variety of
control structures —including coroutines and escapes— into just one general control
operator named call-with-current-continuation (or, in its abbreviated form,
call/cc). This operator reifies its continuation into a first-class function, which can
then be treated just as any other function in Scheme. The continuation of call/cc
is the rest of the computation from its application point. In Scheme, coroutines can
be obtained by reifying the continuation of a computation to emulate the exchange
of control [Haynes et al 86].

Scheme continuations can be implemented by allocating function frames in the
general heap, where they are managed by a normal garbage collector. In this way,
there is no trade off to be solved because all frames share the same heap and deep
function recursion is treated by normal heap exhaustion. With some optimizations
[Clinger et al 88], this memory organization has a small overhead for normal proce-
dural applications.

However, we state in Sect. 2 that Scheme continuations could not be an effective
way to emulate coroutines, because once a continuation has been reified, the only
way to recycle the captured frames is by triggering an expensive general garbage
collection, in which all the objects are involved.
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The goal of this paper is to introduce a fast implementation technique for a re-
stricted class of continuations. These continuations are used in a simple coroutine
mechanism, solving effectively those problems having a natural solution with corou-
tines, i.e. the performances are competitive with alternative procedural solutions. If
concurrency were to be added among the features of Scheme, to have a fast corou-
tine mechanism (i.e. context switch facility) is also of paramount importance and is
solved by our model.

The basic idea is to allocate frames in a dedicated heap, managed by a genera-
tional Stop and Copy garbage collector. We add a new object class, the hooks, which
are used to store the continuation of suspended coroutines. Thus continuations can
be only held in hooks. When the frame memory is exhausted, an inexpensive garbage
collection recycles unreachable frames. This collection is cheap since it is only ap-
plied to the frame heap compared, as in the Scheme case, to the whole general heap.
This is possible, since the roots are found in the hooks, which are bounded by the
number of coroutines.

In Sect. 3 we present the set of coroutine primitives and we show that they
recover the Scheme notion of first class continuations. Also, we apply them to solve
the same-fringe problem in an elegant way. In sections 4 and 5 we implement them.

In Sect. 7 we compare the performances of our heap organization to several stack
organizations, showing that the main overhead comes from the locality loss in mem-
ory access. So in Sect. 8 we introduce an optimization for normal applications which
reduces most of this overhead. With this optimization and others, the execution time
overhead for normal applications is around 11%, compared to a stack based imple-
mentation providing no coroutine facility. In Sect. 9 we compare the performances of
a coroutine based solution of the same-fringe problem against the trivial procedural
solution. Some possible extensions are discussed in Sect. 10.

2 First-class continuations and the same-fringe problem

The same-fringe problem determines whether the sequence of leaves —the fringe— of
two trees are the same. This problem is easily solved with three coroutines as shown
in the next section. The first compares the leaf sequences returned sequentially
by the other two coroutines, each of them traversing one of the trees recursively.
When arriving at a leaf, a coroutine traversing a tree passes the control to the
comparing coroutine. Later, the coroutine is resumed at the same point where it
had been suspended, to continue traversing that tree. In this section we examine
the performances of a garbage collector when first-class continuations are used to
emulate suspension and resumption of the coroutines in the same-fringe problem.

As stated in the introduction, a trivial implementation of Scheme continuations is
achieved by allocating frames in the general heap. Unfortunately, memory allocated
for frames is much more important that memory allocated for normal objects so
garbage collection activity increases, thus degrading performance. This heavy frame
allocation is not visible in a stack organization, because frame lifetime is very short,
thus frames are popped as soon as they are pushed.

For applications not using the Scheme continuations intensively, several imple-
mentation strategies are discussed in [Clinger et al 88] and [Hieb et al 90]. These



strategies reduce the associated overhead by using a stack cache to execute normal
call/return behavior, but transferring frames from the stack to the general heap
when a continuation is reified. In some strategies frames are also transferred from
the heap to the stack when a continuation is invoked.

Now, let us consider using first-class continuations to emulate the coroutines in
the same-fringe problem. The suspension of a tree traversal is achieved by reifying
its continuation, and the resumption by invoking it. To traverse a tree recursively,
a function is called at every internal node. This function allocates a frame in the
stack cache. However, sooner or later that frame will be transferred to the heap
by a continuation capture at a leaf. Therefore any optimization introduced to treat
normal call/return behavior will be useless, because all frames will be captured by
a continuation.

Considering that the size of each transferred frame is at least the size of a cons
cell, and there is an additional space overhead in creating a callable continuation,
we become aware that the garbage collection activity will be much more important
than in a trivial solution which flattens the trees into lists prior to comparison. Thus
performances will be unacceptably slow for the first-class continuation solution.

3 Coroutines as second class continuations

In fact, the aim of using coroutines to solve the same-fringe problem is firstly, to
decrease the additional memory requirements to allocate a new list in the tree flat-
tening solution, and secondly, to reduce the execution time overhead incurred in
managing that memory. When emulating coroutines with first-class continuations,
we can see that the former is successful, because the surviving frames at memory ex-
haustion are just those present in the branch of the current node in the tree traversal,
and not the whole. Yet, for the latter, it is just the opposite that has been obtained.

Therefore, beginning with this section, we will be concerned with reducing the
memory management overhead incurred to treat coroutines when frames are allo-
cated in a heap. To achieve this goal we will introduce a coroutine definition based
on continuations. Although these continuations are not first-class functions as in
Scheme, we will show that call/cc can still be obtained from our coroutines.

We start by defining the new type hook. A hook is a continuation holder encap-
sulating a limited set of legal operations. Hooks are first-class objects, i.e. they have
an unlimited extent and they can be passed as arguments to functions, returned
from functions, and stored in data structures. They are created and manipulated
with the following operations (an accurate semantics is presented in the appendix) :

e (coroutine f) with f= (lambda (hook) ...)
This primitive is used to create a coroutine. It allocates a new hook filled with
the continuation of the coroutine form. Then the £ function is applied on the
hook. When £ returns, the continuation currently held in the hook is invoked on
the returned value.

e (escape hook val)
This primitive allows a coroutine to exit, passing control to another coroutine. It
invokes the continuation held in hook on val. This means that val is returned



as the value of the coroutine or suspend/resume! form that was the last to fill
the hook.

e (suspend/resume! hook val)
This primitive allows the suspension of the current coroutine, resuming another
previously suspended coroutine. Therefore this is a kind of explicit context switch
mechanism between coroutines. It exchanges the current continuation with the
continuation held in hook, and invokes this latter on val.

The primitives coroutine and suspend/resume! are used to capture contin-
uations just as call/cc in Scheme. However, continuations can’t be obtained as
first-class objects, because there is no legal operation reading the hook contents
directly. Yet, the original first class continuations are recovered by defining :

(define (call/cc fun)

(coroutine
(lambda (hook)
(fun
(lambda (value)
(escape hook value))))))

The inner lambda that is passed to fun emulates the Scheme continuations. It is
actually a first-class function because closures are first-class in Scheme. Note that the
continuation held in a hook is not lost when escape is used, so it can be reinvoked.
In this way, multiple returns from function applications are also recovered.

Nevertheless, just using this newly defined call/cc gives no performance ad-
vantages over the Scheme first-class continuations. We will see that an efficient
implementation can be conceived for applications creating a moderate number of
coroutines but heavily exchanging control, as in the following solution for the same-
fringe problem :

i35 a leaf reader
(define (make-walker tree)
(coroutine
(lambda (hook)
;3 a recursive traversal
(define (walk tree)
(cond
((not (pair? tree))
(suspend/resume!
hook tree))
(else
(walk (car tree))
(walk (cdr tree)))))
; s returns the hook
; s to the client
(suspend/resume! hook hook)
; 3 starts the traversal
(walk tree)
; 3 signals the end
’end )))

;33 The comparator
(define (same-fringe tree-a tree-b)
; s starts the two leaf readers
(define hook-a
(make-walker tree-a))
(define hook-b
(make-walker tree-b))
; s loops on the leaves
(let loop O
(let ((leaf-a (suspend/resume!
hook-a ’void))
(leaf-b (suspend/resume!
hook-b ’void)))
(cond
((not (eq? leaf-a leaf-b))
#£)
((eq? leaf-a ’end)
#t)
(else

(loop))N)))



4 Implementing second class continuations

Let us consider a Scheme implementation passing arguments in registers and al-
locating a fixed size frame at function entry. This frame is allocated in a special
heap controlled by the frame memory manager presented in next section. A frame
contains the following fields :

e tag: A frame identifier used by the frame memory manager. This tag can be a
pointer to a structure containing the frame layout.

retaddr: The caller return address.

0ldfp: The caller frame address. The fields retaddr and oldfp represent the
implicit continuation passed to every function.

e Some optional static frame pointers: Present only when the function accesses
variables located in lexically enclosing functions.

Some variables: The programmer defined variables, the function arguments and
some intermediate values, which are held in registers initially, but need to be
saved when a function call uses some of those registers and also at register
exhaustion.

Upon function entry, a frame is allocated and initialized with the caller infor-
mation. The frame address is placed in a dedicated register named current frame
pointer or simply fp. At return, fp is restored with the caller frame address and a
jump to the caller return address is done. Since a frame can still be useful even after
function return, it can’t be freed as easily as in a stack implementation. When there
is no more memory for allocating frames, the frame memory manager reorganizes
the heap by pruning frames that are no longer reachable from the current frame
pointer or a continuation held in a hook.

A hook is a structure allocated in the general heap. It contains a tag identifier
used by the memory manager and a field named cfp which is a pointer to a capture
frame structure. A capture frame is a special frame created at a continuation capture
for storing the information needed to invoke that continuation. Excepting a hook,
there is no other first-class object pointing to a capture frame. A capture frame is
allocated in the special frame heap and contains the following fields:

tag: A capture frame identifier.

retaddr: The return address to jump to when invoking the continuation.
0ldfp: The frame address of the function being suspended.

hook: The address of the hook involved in the continuation capture and which
will be linked to this capture frame.

e nextcfp: This pointer is used by the frame memory manager.

Figure 1 shows the linking between a hook, a normal frame and a capture frame.
Using these hook and capture frame structures, the coroutine primitives are
implemented as follows:

e (coroutine f): A capture frame cfp is allocated with tag, retaddr and oldfp
filled as upon normal function entry. Next, hook is allocated to hold the contin-
uation of the coroutine form. Then the following code is executed :
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Fig. 1. Hook and frame linking.

cfp—hook= hook
hook—cfp= cfp
cfp—nextcfp= listcfp
listcfp= cfp

fp= cfp

escape(hook, f(hook))

; 7
; 7
; J
; J

)

)

; The capture frame and the hook

: are made to point at each other.

: The capture frame is chained in a list,
: for reasons which we will explain later.
: The capture frame becomes the current

frame and £ is invoked.

Note that upon normal return of £, this form does an escape through the current

hook contents.

o (escape hook val): A normal return is done as if the current frame was the
capture frame referenced by hook.

fp= hook—cfp
return val

e (suspend/resume! hook val): A capture frame cfp is allocated with tag,
retaddr and oldfp filled as upon normal function entry. Then the following

code is executed :

fp= hook—cfp

;7
)
hook—cfp= cfp
cfp—nextcfp= listcfp
listcfp= cfp

return val

;/'
;/'
7’7
)

)

: The capture frame in hook

:; becomes the current frame.

; Then hook s linked to cfp.

: The capture frame is chained
:in a list, as in coroutine.
A normal return is made from
; the new current frame.

Figure 2 shows the frame and hook chaining for an example of function call tree.
Frames have been enumerated according to allocation order. While working with
frame 1, a coroutine is created, so the hook H and the capture frame 2 are allocated.
Then the frame 3 is allocated for the function starting that coroutine. Next, using
suspend/resume! through the hook H, that coroutine is suspended and the work
with frame 1 resumed, so the capture frame 4 is allocated. A function call allocates
frame 5 where a suspend/resume! through hook H creates the capture frame 6 and
resumes the work with frame 3. Another function call allocates the frame 7 from
where an escape through hook H is done, resuming the work with frame 5. Finally



a normal return resumes the work with frame 1 from where a last function is called
allocating frame 8.

A capture frame
A normal frame
A hook

A continuation

by O O

A pointer to afirst
class object

Fig. 2. An example of function call tree.

Initially, the hook H has been linked to frame 2, but the two successive
suspend/resume! operations link it to frame 4 and then frame 6. Note that frame
7 hasn’t been captured, so its memory is available for new allocation. In the same
way, the capture frames 2 and 4 aren’t reachable from any hook, so the memory
taken by frames 2 and 4 and then frame 3 is also available.

5 An efficient memory manager for frames

We split memory management into two almost independent garbage collectors. The
first is the general garbage collector managing first class objects such as cons cells,
symbols, vectors, etc. and especially hooks. The second is the frame only memory
manager —including capture frames— which is presented in this section. This frame
memory manager is a simplification of the generational Stop and Copy garbage
collector described in [Nakajima 88] and [Appel 89].

Frame allocation is implemented as follows. At the beginning of a cycle, there is
an empty buffer which we will name the primary buffer. Two registers hp_limit and
hp point at the start and the end of this buffer. A frame is allocated by subtracting
its size from hp and comparing the new hp against the hp_1imit register to test the
buffer overflow. It is important to note that there is no need to initialize frames,
instead the primary buffer is cleaned of dangling references by initializing it to zero
or nil after a general garbage collection.

When the primary buffer overflows, it holds the frames for the complete function
call tree from the beginning of the cycle. As stated in the previous section, some
branches of this tree are unreachable, so the reachable ones are appended to another
buffer which we will name the secondary buffer. Then a new cycle begins with an
empty primary buffer.

The reachable frames are firstly, those captured by the current frame which sig-
naled the overflow, and secondly, frames that have been captured by a continuation
held in a hook. However, for the latter, it has been necessary to create a capture



frame in the primary buffer from where they are reachable. Therefore coroutine
and suspend/resume! chain the capture frames that they create in a list which we
will name the primary capture frame list or simply listcfp. In addition, some of
these capture frames are no longer referenced by a hook, because their initial hook
has been used to capture another continuation, so they are considered unreachable
unless another continuation captures them.

We outline a simple copying collector to transfer frames to the secondary buffer.
We say that this collector prunes frame trees.

1. For each capture frame C in 1listcfp:

(a) If C points to a hook no longer linked to C, continue with the next capture
frame in listcfp.

(b) Reverse the dynamic chain obtained from C by following the oldfp field
as far as a frame located in the secondary buffer or a frame that has been
marked as already transferred.

(c) For each frame F in this new chain:

i. Make a copy of F in the secondary buffer. This copy will be named F’.
The size of F is determined from the tag field.

ii. Link oldfp in F’ to the copy of the caller frame which is just the previ-
ously transferred frame.

iii. Set a mark in the tag field in F indicating that F has been transferred.

iv. Link oldfp in F to the address of F’.

v. If F has some static pointers, since the referenced frames are in the
dynamic chain, they have already been transferred, so relink any static
pointer to its new address. This address is found in the oldfp field of
the referenced frame.

(d) Let C’ be the copy of C. C’ points to a hook having the cfp field linked to C.
Link cfp to C’. Then chain C’ into a list which we will name the secondary
capture frame list.

2. Transfer in a similar way the dynamic chain obtained from the current frame
pointer.
3. Set listcfp to the empty list.

Afterwards, the execution must be resumed with a primary buffer reduced to
the size of the remaining memory in the secondary buffer. Thus, when the primary
buffer overflows again, all new frames are guaranteed to find room in the secondary
buffer, even when all of them are reachable. When this frame pruning is triggered
after a primary buffer overflow, we call it a minor pruning.

If the primary buffer becomes too small —assume a quarter of its initial size—
make a major pruning. A major pruning exchanges the primary and secondary
buffers and the primary and secondary capture frame lists, and then does a nor-
mal pruning. Most old frames transferred to the secondary buffer aren’t reachable,
so they won’t be recopied and the secondary buffer will regain a reasonable size.

Figure 3 shows the primary and secondary buffers before pruning the tree of Fig.
2. Frame 1 is the only frame already located in the secondary buffer. Figure 4 shows
the buffers once the frames reachable through hook H have been transferred. Finally,
Fig. 5 shows the buffers once the pruning has finished.
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Fig. 5. Final pruned frame tree.



Having an unlimited extent, a hook might become garbage for the rest of the
execution. Its captured frames will therefore appear to be reachable forever to the
frame memory manager. These useless frames will fill the secondary buffer increas-
ing the pruning frequency and so degrading performance. Hence, if after a major
pruning the secondary buffer is filled up to a given percentage, a general garbage
collection must be triggered to discard the unreferenced hooks. However, this situa-
tion should occur rarely because it is the normal heap exhaustion which will trigger
the collection.

6 Synchronization between first-class object and frame
memory management

During a general garbage collection, a subtle synchronization with the frame memory
manager must be done to recover the frame space captured by garbage hooks. To
achieve this goal, while doing the general garbage collection, a special major pruning
is carried out simultaneously as follows:

. Make a minor pruning to free the primary buffer.

. Exchange primary and secondary buffers.

. Set the secondary capture frame list to empty.

. Transfer the frames reachable from the current frame to the secondary buffer.
The pointers held in those frames are roots for the general garbage collector.

. Start the general garbage collector.

6. For each hook proved reachable by the general garbage collector :

=W N =

(a8

(a) Transfer the frames captured by the hook to the secondary buffer.

(b) Chain the copy of the associated capture frame in the secondary capture
frame list.

(c) The pointers held in the transferred frames are roots for the general garbage
collector.

Note that the method used by the general garbage collector doesn’t matter. It
could be a Stop and Copy or a Mark and Sweep collector with or without generations,
etc.

Our frame memory manager and the general memory manager, as a whole, can be
seen as a generational garbage collector [Lieberman & Hewitt 83], with the first two
generations reserved for frames only. The complexity associated with generational
memory management comes from the need to trace pointers from older generations
to newer generations. These pointers are the result of object mutating operations
such as set-car!, vector-set!, etc. However, frame chaining can’t be altered in
the frame heap, so pointers from secondary buffer to primary buffer can’t exist and
therefore no tracing is needed. Yet, coroutine suspension can link a hook —in an old
generation— with a newer frame, hence the necessity to introduce capture frames
which just serve to trace hook mutations.



7 Performance analysis for applications lacking coroutines

In this section we evaluate the overhead that the memory organization described
in previous sections carries to applications not using coroutines. To measure this
overhead we have implemented it in F1 [Seniak 91]. F1 is a compiler for a small
lisp, generating assembler code for Sparcs. It uses the 31 Sparc registers as much
as possible, but without calling on window registers. F1 doesn’t treat floating point
numbers, so no test is needed in integer arithmetic operations.

We show in table 1 the timings for the Gabriel benchmarks [Gabriel 85]. Timings
include our heap organization as well as various stack implementations which test
or don’t test overflow and chain or don’t chain frames. We include also the perfor-
mances of a mixed stack/heap strategy which we explain in the next section. The
measurements have been done on a SUN/670MP, having a 64 Kb cache.

To measure the overhead associated with tagging, we added the tags to the frame
chaining stack organization, then this overhead was the additional execution time.
To measure the overhead associated with frame pruning, we doubled the work by
transferring surviving frames to a third intermediate buffer while pruning, then an-
other pruning transferred the same frames to the secondary buffer. The pruning
overhead was the difference with respect to our heap organization. Having the over-
head of frame chaining, tagging and pruning, the remaining unexplained overhead
was due to the locality loss in memory access.

Therefore the proposed organization has an overhead of 18% when compared
with a stack implementation testing the overflow. However with the optimizations
described in the next section, we reduce that overhead to a 11%.

The surprisingly small overhead of frame pruning is explained because the mean
lifetime of frames is very short in conventional applications. The frames surviving
to a minor pruning are those that are reachable from the current frame, excepting
those that are already in the secondary buffer. Therefore, the number of transferred
frames is the depth of the call tree at primary buffer overflow, less the minimal
depth reached during the cycle. However, considering the locality of function call
depth from which Sparc register windows are inspired, this number is very small. In
fact, we have measured a 1 to 2% of frames surviving to a minor pruning, and a 2
to 5% surviving to a major pruning.

The locality loss is the main penalty for this heap organization. A normal stack
organization presents a high degree of locality, explained also by the locality of
function call depth. However, our organization allocates frames sequentially, flushing
cache lines at almost every function call. In fact the 5.2% was obtained solely when
the primary buffer was limited to a size by 16 or 32 Kb, to give an opportunity to
the 64 kb cache to hold it completely, otherwise the overhead was greater.

8 Optimizing performances of frame allocation

The following minor variation is inspired from the stack/heap strategy described in
[Clinger et al 88].

Upon normal function entry, after frame allocation, the fp and hp registers have
the same value. If this still holds at return, no capture frame could be allocated,



so the frame memory can be reused safely. Therefore, at return, the fp and hp are
compared and when they are equal, the allocated frame is freed by adding its size
to the hp register. Moreover, when there is no captured continuations, a function
calling another function will get the hp register with the same value that it had
before the call, so it will also free its frame at return. Thus, frames will be pushed
and popped in the primary buffer, just as in a stack, and the application will exhibit
the locality of a stack organization.

During a continuation capture, the hp register is adjusted to allocate a capture
frame. When that continuation is invoked, the hp register is not restored, so its fur-
ther comparison against fp will fail, and all frames allocated before the continuation
capture will not be freed. In this way, the frames captured by a continuation are
guaranteed not to be reused for new allocation. Frames allocated after the capture
frame will continue with the normal push and pop discipline.

Therefore, in normal applications, there is a gain in the locality of memory access,
but there is also a loss in performing the test at function return. Although this test
is useless when coroutines are exploited intensively, we have adopted it, because we
desired a minimal penalty for normal applications and the measurements had shown
that the gains were greater than the losses.

Another optimization adopted is the suppressing of frame tagging. In fact, the
tags can be placed at primary buffer overflow for the reachable frames only. The
tags can be deduced from the return address by using a binary tree, a hash table
or, in some architectures, just including it in the code around the return address.
The performance of an implementation with the stack/heap optimization and tag
suppression is shown in table 1.

Finally, other optimizations are possible, even though we didn’t adopt them.
First, the overflow test at function entry can be suppressed by placing the frame
heap in the stack space of a Unix process and organizing it as in Fig. 6. In this
way, the test is done at continuation captures only, while at deep recursion the
primary buffer grows automatically. Second, the return test can also be suppressed
in functions which are known not to capture continuations by inspecting the static
function call tree. In addition, those functions don’t need the frame chaining. Third
and last, established optimizations such as function integration and inlining can be
applied to further reduce the call/return overhead.

9 Performance analysis for the same-fringe problem

Tables 2, 3 and 4 show the performances obtained by three solutions for the same-
fringe problem. Each version compares 10 times two trees containing 100,000 cons
cells.

The first solution is based on coroutines, so it does no allocation in the general
heap, instead it captures a continuation at every leaf. Although the stack/heap
optimization is present, it is useless, and therefore there is a low locality in memory
access. Table 2 shows performances when varying the primary buffer size and the
total frame heap size.

The second solution uses call/cc to emulate the coroutine context switch. For
implementing call/cc we used a variation of the stack/heap strategy where a general
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Fig. 6. A buffer organization allowing the suppression of the overflow test and simplifying
the first ancestor search when implementing shallow binding. At a major pruning, frames
are transferred from the secondary buffer to the alternative secondary buffer or vice versa.

garbage collection is triggered immediately after a frame heap overflow. We are
constrained to do so because the first-class status of Scheme continuations exclude
any frame pruning without proving that the continuation which captured a frame is
not referenced by another first-class object.

The third solution flattens the trees, i.e. it chains the leaves of each tree into two
lists before comparing them, resulting in a high general garbage collection activity.
We used a Stop and Copy collector with no generations.

The measurements show that the version using call/cc is far the slowest. They
show also that there is a performance crosspoint between the coroutine and the
tree flattening solutions when objects survive in average one collection cycle in the
tree flattening version. Therefore the latter will win especially when coupled to a
generational garbage collector where objects rarely survive to one generation.

However, we think that coroutines must not be seen as a means to speed up
applications. Instead, they are a powerful abstraction tool which can greatly sim-
plify programming. The aim of presenting these measurements is to show that our
coroutines aren’t expensive even when used intensively as in same-fringe. In fact, in
the coroutine version, same-fringe reaches a rate of 430,000 suspend/resume! per
second. Yet, if same-fringe is considered as a subpart of a more complex system, the
coroutines solution could win when a generational approach is not desired, because
the programming paradigm involves too much object mutations, such as in object
oriented systems.

10 Extensions

In this section we discuss some possible extensions to the memory organization
described previously. We start by introducing a hint to implement shallow binding
for dynamic variables; next, we discuss a way to treat dynamic escapes efficiently;
and finally, we consider allocating dynamic objects in the frame heap.



Dynamic variables have been traditionally implemented in high-performance
Lisps by using shallow binding, because the time needed to create, access and delete
a dynamic variable is constant. However, combining shallow binding with coroutines
or first-class continuations introduces a subtle complication. When transferring con-
trol between coroutines, the dynamic environment must first be unwound from the
current frame up to a common ancestor with the target frame, and then, rewound
down to the target frame.

This overhead in restoring dynamic environments can discourage language de-
signers to add dynamic variables, because even when these variables are not used,
coroutine users must pay at least the cost of finding the common ancestor to discover
that there is no dynamic environment to restore. This search can be accelerated by
chaining the frames containing dynamic variables in a special list. Yet, adding a
single dynamic variable to the program, introduces an additional overhead in any
control exchange between coroutines.

Therefore we point out an interesting property for the buffer organization of Fig.
6 when using the frame pruning of Sect. 5. For every frame f; pointing to a frame
f2, the following holds:

address(f1) < address(f2)

Hence, finding the common ancestor between two frames is as easy as unwinding
the two dynamic chains up step by step, alternating in such a way that the chain
containing the lower address frame is unwound first. The unwinding stops when the
same frame is found. Thus, when there is no dynamic environment to be restored,
the overhead associated with the search of the common ancestor is reduced to a
single test.

Another desirable extension is a way to treat dynamic extent continuations effi-
ciently. These continuations are useful to implement fast escapes such as longjmp in
C. A dynamic extent continuation can only be invoked by a function that is a child
of the function which captured that continuation. The capture of a dynamic extent
continuation is implemented by allocating a hook and a dynamic capture frame,
much as coroutine is implemented. A dynamic capture frame is a capture frame,
but the fact that the former is referenced by a hook isn’t enough to consider that
frame reachable as is the case for the latter : the former must also be referenced by
a reachable frame. Thus, there is no need to trigger an expensive general garbage
collector to recover frames captured by a dynamic extent continuation. Detecting
the illegal use of a dynamic continuation is achieved as follows: at a frame pruning,
when a hook is linked to a dynamic capture frame considered no longer reachable,
that hook is redirected to a special capture frame containing an error handler in its
return address.

Finally, in a stack based organization, dynamic extent objects can be allocated
efficiently in the stack. In our heap organization, such objects can also be treated
efficiently, because the compiler can be modified to include layout information to
be used at frame pruning. This information must describe where to find pointers
to dynamic objects in the frames of functions allocating, or receiving in arguments,
such objects.



11 Conclusions

In conceiving our memory organization for frames, we were inspired from [Appel 87]
which states that garbage collection can be faster than stack allocation if very large
heaps are coupled with a Stop and Copy collector. Although the original idea is
not practical with current memory configurations, we found that it was reasonable
when applied to Spaghetti stacks [Bobrow & Wegbreit 73], because stack memory
requirements are much smaller than heap memory requirements. Then, we realized
that adding generations to frame pruning was easy, because pointers from older
frames to newer frames can’t exist. Finally, experimentation established that frames
have a very short life time, reaching to a point where frame pruning is almost costless.
Therefore, large frame heaps are not recommended because the smaller ones are more
efficient in presence of memory caches.

In this paper we concentrated on proving that this memory organization can be
used effectively to implement a simple class of coroutines. However, we are conscious
that the primitives we have introduced don’t have all the desired power required
from coroutines. Yet, they don’t extract the full power of the memory organization.
For example, additional power can be obtained by including two new primitives to
capture a continuation in a previously existing hook and to displace a continuation
from one hook to a second hook. Such additions would not affect the performances
of the frame pruner.
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Appendix: Defining coroutines from Scheme continuations

In this appendix we give a semantics for the primitives presented in Sect. 3. The
formal behavior is obtained by defining each primitive from Scheme continuations.

;33 Coroutine creation ;33 The hook abstraction
(define (coroutine fun) (define (make-hook k)
(call/cc (vector k))
(lambda (k)
(fun (make-hook k))))) (define (hook-ref hook)
(vector-ref hook 0))
553 Bscaping
(define (escape hook val) (define (hook-set! hook k)
((hook-ref hook) val)) (vector-set! hook 0 k))

5 33 Suspension and resumption
(define (suspend/resume! hook val)
(call/cc
(lambda (k)
(let ((old-k (hook-ref hook)))
(hook-set! hook k)
(old-k val)))))




Table 1. Performances of different implementations for frame allocation. The first three
columns correspond to the execution time of three stack implementations. The first one
does no stack overflow test nor frame chaining, the second adds stack overflow test and the
third adds both. We consider the second implementation as the “normal” stack implemen-
tation. The following four columns show the execution time of our heap implementation and
the relative overhead associated with tagging, frame pruning and locality loss, compared
to the normal stack implementation. Finally, the last column shows the performances of
our organization with the stack/heap optimization and tag elimination. All execution times
are expressed in seconds and the percentage appearing under each of them is the relative
overhead of the corresponding implementation, compared with the normal stack implemen-
tation. Note that the sum of the relative overheads associated with frame chaining, tagging,
pruning and locality loss is the relative overhead of the heap implementation.

Gabriel benchmark timings (in seconds)

Benchmark Stack Heap Stack/
name -ovf [normal| +frame || total | tag |pruning| loc. || Heap

test chaining loss
Puzzle |[0.822| 0.823 | 0.836 || 0.890 0.883
-0.1% 1.6% || 8.1% |1.0%| 0.1% |5.5%| 7.3%
Boyer ||0.885| 0.930 | 1.058 || 1.210 1.102
-4.8% 13.7% || 30.1% |5.6%| 4.3% |6.5%||18.5%
Destru ||1.700| 1.730 | 1.770 || 1.835 1.790
-1.7% 2.3% || 6.1% |1.4%| 0.3% [2.0%|| 3.5%
Browse ||1.590| 1.625 | 1.700 || 1.840 1.765
-2.2% 4.6% | 13.2% |3.4%| 2.5% |2.8%|| 8.6%
Div-rec ||0.145| 0.155 | 0.170 || 0.202 0.180
-6.5% 9.7% || 30.6% |6.5%| 6.5% [8.1%||16.1%
Div-iter (|0.140| 0.140 | 0.140 || 0.142 0.140
0.0% 0.0% || 1.8% [0.0%| 0.0% [1.8%|| 0.0%
Deriv  ||0.290| 0.298 | 0.315 || 0.345 0.320
-2.5% 5.9% || 16.0% |3.4%| 0.0% [6.7%|| 7.6%
Dderiv |/0.338| 0.345 | 0.372 || 0.415 0.388
-2.2% 8.0% |/20.3%15.1%| 2.9% |4.3%||12.3%
Triangle |/8.895| 9.190 | 9.935 |/10.810 10.420
-3.2% 8.1% ||17.6% |4.8%| 1.1% |3.5%|| 13.4%
Traverse |[|5.730] 5.875 | 6.355 || 7.200 6.495
-2.5% 8.2% |/22.6% (5.2%| 0.3% |8.9%|| 10.6%
Tak 0.043| 0.046 | 0.053 || 0.061 0.055
-5.2% 15.8% |[33.3% |7.8%| 2.8% |6.9%||21.0%

[ Average [-2.8%] | 71% [[18.2%[4.0%] 1.9% [5.2%][[10.8%




Table 2. Performances of a same-fringe solution based on coroutines. The columns show the
total size of the frame heap, the primary buffer size, the total amount of memory allocated
for frames, the percentage of frames surviving to a minor pruning, the number of minor
and major prunings, and finally, the execution time using the stack/heap implementation.

Same-fringe with coroutines
frame | primary | frames |[copied| minor | major |execution
heap buffer |allocated|frames|prunings|prunings| time
size (KB)|size (KB)| (KB) (secs.)
128 8 97735 [1.77%| 12997 49 9.4
128 16 97735 |1.57%| 6300 32 9.3
128 32 97735 |0.87%| 3101 26 9.4
256 64 97735 [0.47%| 1538 7 9.6
512 128 97735 |0.25%| 766 1 10.9

Table 3. Performances of a same-fringe solution with call/cc. The columns show the
total heap size, the total amount of memory allocated (mainly formed of frames and con-
tinuations), the memory copied during garbage collection (including the trees), the number
of garbage collections and the execution time using the stack/heap variation where the
general garbage collector is triggered immediately after a frame heap overflow.

Same-fringe with call/cc

heap |allocated| copied |[number|execution
size | objects |objects|of GCs| time
(KB)| (KB) | (KB) (secs.)
7000 | 96117 |189916| 81 81.6
10000| 96117 | 82063 35 43.4
12000{ 96117 | 58616 25 35.1
15000{ 96117 | 42204 18 29.3
20000{ 96117 | 28135 12 24.3

Table 4. Performances of a same-fringe solution with tree flattening. The columns show
the total heap size for a Stop and Copy collector, the memory allocation in cons cells, the
total memory copied during garbage collection (including the two trees), the execution time
with a stack implementation and the execution time with our stack/heap implementation.

Same-fringe with tree flattening
heap |allocated| copied [number execution
size | objects |objects|of GCs| time (secs.)

(KB)| (KB) | (KB) stack|stack/heap
10000 25781 | 23905 9 13.6 14.0
12000 25781 | 32905 9 16.8 17.1
15000 25781 | 11249 4 8.9 9.3
20000 25781 | 8759 3 8.2 8.4




