Relative Suffix Trees

ANDREA FARRUGGIA¹, TRAVIS GAGIE²,³, GONZALO NAVARRO²,⁴, SIMON J. PUGLISI⁵ AND JOUNI SIRÉN⁶

¹Department of Computer Science, University of Pisa.
²CeBiB – Center for Biotechnology and Bioengineering, Chile.
³EIT, Diego Portales University, Chile.
⁴Department of Computer Science, University of Chile, Chile.
⁵Department of Computer Science, University of Helsinki, Finland.
⁶Wellcome Trust Sanger Institute, United Kingdom.
Email: jouni.siren@iki.fi

Suffix trees are one of the most versatile data structures in stringology, with many applications in bioinformatics. Their main drawback is their size, which can be tens of times larger than the input sequence. Much effort has been put into reducing the space usage, leading ultimately to compressed suffix trees. These compressed data structures can efficiently simulate the suffix tree, while using space proportional to a compressed representation of the sequence. In this work, we take a new approach to compressed suffix trees for repetitive sequence collections, such as collections of individual genomes. We compress the suffix trees of individual sequences relative to the suffix tree of a reference sequence. These relative data structures provide competitive time/space trade-offs, being almost as small as the smallest compressed suffix trees for repetitive collections, and competitive in time with the largest and fastest compressed suffix trees.

1. INTRODUCTION

The suffix tree [1] is one of the most powerful bioinformatic tools to answer complex queries on DNA and protein sequences [2, 3, 4]. A serious problem that hampers its wider use on large genome sequences is its size, which may be 10–20 bytes per character. In addition, the non-local access patterns required by most interesting problems solved with suffix trees complicate secondary-memory deployments. This problem has led to numerous efforts to reduce the size of suffix trees by representing them using compressed data structures [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17], leading to compressed suffix trees (CST). Currently, the smallest CST is the so-called fully-compressed suffix tree (FCST) [10, 14], which uses 5 bits per character (bpc) for DNA sequences, but takes milliseconds to simulate suffix tree navigation operations. In the other extreme, Sadakane’s CST [5, 11] uses about 12 bpc and operates in microseconds, and even nanoseconds for the simplest operations.

A space usage of 12 bpc may seem reasonable to handle, for example, one human genome, which has about 3.1 billion bases: it can be operated within a RAM of 4.5 GB (the representation contains the sequence as well). However, as the price of sequencing has fallen, sequencing the genomes of a large number of individuals is becoming a routine activity. The 1000 Genomes Project [18] sequenced the genomes of several thousand humans, while newer projects can be orders of magnitude larger. This has made the development of techniques for storing and analyzing huge amounts of sequence data flourish.

Just storing 1000 human genomes using a 12 bpc CST requires almost 4.5 TB, which is much more than the amount of memory available in a commodity server. Assuming that a single server has 256 GB of memory, we would need a cluster of 18 servers to handle such a collection of CSTs (compared to over 100 with classical suffix tree implementations!). With the smaller (and much slower) FCST, this would drop to 7–8 servers. It is clear that further space reductions in the representation of compressed suffix trees would lead to reductions in hardware, communication, and energy costs when implementing complex searches over large genomic databases.

An important characteristic of those large genome databases is that they usually consist of the genomes of individuals of the same or closely related species. This implies that the collections are highly repetitive, that is, each genome can be obtained by concatenating a relatively small number of substrings of other genomes and adding a few new characters. When repetitiveness is considered, much higher compression rates can be obtained in compressed suffix trees. For example, it is possible to reduce the space to 1–2 bpc (albeit with operation times in the milliseconds) [13], or to 2–3 bpc with operation times in the microseconds [15]. Using 2 bpc, our 1000 genomes could be handled with just 3 servers with 256 GB of memory.

Compression algorithms best capture repetitiveness by using grammar-based compression or Lempel-Ziv
compression.\(^7\) In the first case [19, 20] one finds a context-free grammar that generates (only) the text collection. Rather than compressing the text directly, the current CSTs for repetitive collections [13, 15] apply grammar-based compression on the data structures that simulate the suffix tree. Grammar-based compression yields relatively easy direct access to the compressed sequence [21], which makes it attractive compared to Lempel-Ziv compression [22], despite the latter generally using less space.

Lempel-Ziv compression cuts the collection into phrases, each of which has already appeared earlier in the collection. To extract the content of a phrase, one may have to recursively extract the content at that earlier position, following a possibly long chain of indirections. So far, the indexes built on Lempel-Ziv compression [23] or on combinations of Lempel-Ziv and grammar-based compression [24, 25, 26] support only pattern matching, which is just one of the wide range of functionalities offered by suffix trees. The high cost to access the data at random positions lies at the heart of the research on indexes built on Lempel-Ziv compression.

A simple way out of this limitation is the so-called relative Lempel-Ziv (RLZ) compression [27], where one of the sequences is represented in plain form and the others can only take phrases from that reference sequence. This enables immediate access for the symbols inside any copied phrase (as no transitive referencing exists) and, at least if a good reference sequence has been found, offers compression competitive with the classical Lempel-Ziv. In our case, taking any random genome per species as the reference is good enough; more sophisticated techniques have been studied [28, 29, 30]. Structures for direct access [31, 32] and even for pattern matching [33] have been developed on top of RLZ.

Another approach to compressing a repetitive collection while supporting interesting queries is to build an automaton that accepts the sequences in the collection, and then index the state diagram as an directed acyclic graph (DAG); see, for example, [34, 35, 36] for recent discussions. The first data structure to take this approach was the Generalized Compressed Suffix Array (GCSA) [37, 36], which was designed for pangenomics so queries can return information about sequences not in the collection but that can be obtained from those in the collection by recombination.

The FM-index of an alignment (FMA) [38, 39] is similar to the GCSA but indexes only the sequences in the collection: whereas the GCSA conceptually embeds the automaton in a de Bruijn graph, the FMA embeds it in a coloured de Bruijn graph [40], preserving its specificity. Both the GCSA and FMA are practical but neither support the full functionality of a suffix tree. The precursor to the FMA, the suffix tree of an alignment (STA) [41, 42], allows certain disjunctions in the suffix tree’s edge labels in order to reduce the size of the tree while maintaining its functionality. Unlike the FMA, however, the STA has not been implemented. Both the STA and FMA divide the sequences in the collection into regions of variation and conserved regions, and depend on the conserved regions being long enough that they can be distinguished from each other and the variations. This dependency makes these structures vulnerable to even a small change in even one sequence to an otherwise-conserved region, which could hamper their scalability.

1.1. One general CST or many individual CSTs

It is important to note that the existing techniques to reduce the space of a collection of suffix trees on similar texts build a structure that indexes the collection as a whole, which is similar to concatenating all the texts of the collection and building a single suffix tree on the concatenation. As such, these structures do not provide the same functionality of having an individual CST of each sequence.

Exploiting the repetitiveness of a collection while retaining separate index structures for each text has only been achieved for a simpler pattern-matching index, the suffix array [50], by means of the so-called relative FM-indexes [46]. The suffix array is a component of the suffix tree.

Depending on the application, we may actually need a single CST for the whole collection, or one for each sequence. In bioinformatics, a single CST is more appropriate for search and discovery of motifs across a whole population, for example by looking for approximate occurrences of a certain sequence in the genomes of the population or by discovering significant sequences that appear in many individuals. Other bioinformatic problems, for example related to the study of diseases, inheritance patterns, or forensics, boil down to searching or discovering patterns in the genomes of individuals, by finding common approximate subsequences between two genomes, or looking for specific motifs or discovering certain patterns in a single genome.

An example of recent research making use of the relative storage of individual genomic datasets is how Muggli et al. [43] (see also [44, 45]) adapted relative FM-indexes to an FM-index variant that Bowe et al. [47] had described for de Bruijn graphs, thus obtaining a space-efficient implementation of Iqbal et al.’s [48] coloured de Bruijn graphs. These overlay de Bruijn graphs for many individuals to represent genetic variation in a population.

1.2. Our contribution

In this paper, we develop a CST for repetitive collections by augmenting the relative FM-index with

\(^7\)We refer to “long-range” repetitiveness, where similar texts may be found far away in the text collection.
structures based on RLZ. This turns out to be the first CST representation that takes advantage of the repetitiveness of the texts in a collection while at the same time offering an individual CST for each such text. Besides retaining the original functionality, such an approach greatly simplifies inserting and deleting texts in the collection and implementing the index in distributed form.

Our compressed suffix tree, called Relative Suffix Tree (RST), follows a trend of CSTs [6, 7, 9, 8, 11, 13] that use only a suffix array and an array with the length of the longest common prefix between each suffix and the previous one in lexicographic order (called LCP). We use the relative FM-index as our suffix array, and compress LCP using RLZ. On top of the RLZ phrases we build a tree of range minima that enables fast range minimum queries, as well as next- and previous-smaller-value queries, on LCP [13]. All the CST functionality is built on those queries [6]. Our main algorithmic contribution is this RLZ-based representation of the LCP array with the required extra functionality.

On a collection of human genomes, our RST achieves less than 3 bpc and operates within microseconds. This performance is comparable to that of a previous CST [15] (as explained, however, the RST provides a different functionality because it retains the individual CSTs).

2. BACKGROUND

A string \(S[1,n] = s_1 \ldots s_n \) is a sequence of characters over an alphabet \(\Sigma = \{1, \ldots , \sigma \} \). For indexing purposes, we often consider text strings \(T[1,n] \) that are terminated by an endmarker \(T[n] = \$ \) not occurring elsewhere in the text. Binary sequences are sequences over the alphabet \(\{0,1\} \). If \(B[1,n] \) is a binary sequence, its complement is binary sequence \(\overline{B}[1,n] \), with \(\overline{B}[i] = 1 - B[i] \).

For any binary sequence \(B[1,n] \), we define the subsequence \(S[B] \) of string \(S[1,n] \) as the concatenation of the characters \(s_i \) with \(B[i] = 1 \). The complement \(\overline{S}[B] \) of subsequence \(S[B] \) is the subsequence \(S[\overline{B}] \). Contiguous subsequences \(S[i,j] \) are called substrings. Substrings of the form \(S[1,j] \) and \(S[i,n] \), \(i,j \in [1,n] \), are called prefixes and suffixes, respectively. We define the lexicographic order among strings in the usual way.

2.1. Full-text indexes

The suffix tree (ST) [1] of text \(T \) is a trie containing the suffixes of \(T \), with unary paths compacted into single edges. Because the degree of every internal node is at least two, there can be at most \(2n - 1 \) nodes, and the suffix tree can be stored in \(O(n \log n) \) bits. In practice, this is at least \(10n \) bytes for small texts [49], and more for large texts as the pointers grow larger. If \(v \) is a node of a suffix tree, we write \(\pi(v) \) to denote the concatenation of the labels of the path from the root to \(v \).

Suffix arrays (SA) [50] were introduced as a space-efficient alternative to suffix trees. The suffix array \(SA[T,1,n] \) of text \(T \) is an array of pointers to the suffixes of the text in lexicographic order. In its basic form, the suffix array requires \(n \log n \) bits in addition to the text, but its functionality is more limited than that of the suffix tree. In addition to the suffix array, many algorithms also use the inverse suffix array \(ISA[1,n] \), with \(SA[ISA[i]] = i \) for all \(i \).

Let \(lcp(S_1,S_2) \) be the length of the longest common prefix (LCP) of strings \(S_1 \) and \(S_2 \). The LCP array [50] \(LCP[1,n] \) of text \(T \) stores the LCP lengths for lexicographically adjacent suffixes of \(T \) as \(LCP[i] = lcp(T[SA[i-1,n], T[SA[i,n]]) \) (with \(LCP[1] = 0 \)). Let \(v \) be an internal node of the suffix tree, \(l = |\pi(v)| \) the string depth of node \(v \), and \(SA[sp,ep] \) the corresponding suffix array interval. The following properties hold for the lcp-interval \(LCP[sp,ep] \): i) \(LCP[sp] < \ell \); ii) \(LCP[i] \geq \ell \) for all \(sp < i \leq ep \); iii) \(LCP[i] = \ell \) for at least one \(sp < i \leq ep \); and iv) \(LCP[ep + 1] < \ell \) [51].

Abouelhoda et al. [51] showed how traversals on the suffix tree could be simulated using the suffix array, the LCP array, and a representation of the suffix tree topology based on lcp-intervals, paving the way for more space-efficient suffix tree representations.

2.2. Compressed text indexes

Data structures supporting rank and select queries over sequences are the main building blocks of compressed text indexes. If \(S \) is a sequence, we define \(\text{rank}_c(S,i) \) as the number of occurrences of character \(c \) in the prefix \(S[1,i] \), while \(\text{select}_c(S,j) \) is the position of the occurrence of rank \(j \) in sequence \(S \). A bitvector is a representation of a binary sequence supporting fast rank and select queries. Wavelet trees (WT) [52] use bitvectors to support rank and select on general sequences.

The Burrows-Wheeler transform (BWT) [53] is a reversible permutation \(\text{BWT}[1,n] \) of text \(T \). It is defined as \(\text{BWT}[i] = T[SA[i]-1] \) (with \(\text{BWT}[i] = T[n] \) if \(SA[i] = 1 \)). Originally intended for data compression, the Burrows-Wheeler transform has been widely used in space-efficient text indexes, because it shares the combinatorial structure of the suffix tree and the suffix array.

Let \(\text{LF} \) be a function such that \(SA[\text{LF}(i)] = SA[i] - 1 \) (with \(SA[\text{LF}(i)] = n \) if \(SA[i] = 1 \)). We can compute it as \(\text{LF}(i) = C[\text{BWT}[i]] + \text{rank}_{\text{BWT}[i]}(\text{BWT},i) \), where \(C[c] \) is the number of occurrences of characters with lexicographical values smaller than \(c \) in BWT. The inverse function of LF is \(\Psi \), with \(\Psi(i) = \text{select}_{C}[\text{BWT},i - C[c]] \), where \(c \) is the largest character value with \(C[c] < i \). With functions \(\Psi \) and LF, we can move forward and backward in the text, while maintaining the lexicographic rank of the current suffix.
If the sequence \(S \) is not evident from the context, we write \(\text{LF}_S \) and \(\Psi_S \).

Compressed suffix arrays (CSA) [54, 55, 56] are text indexes supporting a functionality similar to the suffix array. This includes the following queries: i) \(\text{find}(P) = [sp, ep] \) determines the lexicographic range of suffixes starting with pattern \(P[i:j] \); ii) \(\text{locate}(sp, ep) = \text{SA}[sp, ep] \) returns the starting positions of these suffixes; and iii) \(\text{extract}(i, j) = T[i:j] \) extracts substrings of the text. In practice, the find performance of CSAs can be competitive with suffix arrays, while \text{locate} queries are orders of magnitude slower [57]. Typical index sizes are less than the size of the uncompressed text.

The **FM-index (FMI)** [55] is a common type of compressed suffix array. A typical implementation [58] stores the BWT in a wavelet tree [52]. The index implements find queries via backward searching. Let \([sp, ep]\) be the lexicographic range of the suffixes of the text starting with suffix \(P[i+1:j] \) of the pattern. We can find the range matching suffix \(P[i:j] \) with a generalization of function LF as

\[
\text{LF}([sp, ep], P[i]) = \lfloor C[P[i]] + \text{rank}_{P[0]}(\text{BWT}, sp-1) + 1, C[P[i]] + \text{rank}_{P[0]}(\text{BWT}, ep) \rfloor.
\]

We support \text{locate} queries by sampling some suffix array pointers. If we want to determine a value \(\text{SA}[i] \) that has not been sampled, we can compute it as \(\text{SA}[i] = \text{SA}[j] + k \), where \(\text{SA}[j] \) is a sampled pointer found by iterating \(LF \) \(k \) times, starting from position \(i \). Given sample interval \(d \), the samples can be chosen in \text{suffix order}, sampling \(\text{SA}[i] \) at positions divisible by \(d \), or in \text{text order}, sampling \(T[i] \) at positions divisible by \(d \) and marking the sampled \(\text{SA} \) positions in a bitvector. Suffix-order sampling requires less space, often resulting in better time/space trade-offs in practice, while text-order sampling guarantees better worst-case performance. We also sample the \text{ISA} pointers for \text{extract} queries. To extract \(T[i:j] \), we find the nearest sampled pointer after \(T[j] \), and traverse backwards to \(T[i] \) with function LF.

Compressed suffix trees (CST) [5] are compressed text indexes supporting the full functionality of a suffix tree (see Table 1). They combine a compressed suffix array, a compressed representation of the LCP array, and a compressed representation of suffix tree topology. For the LCP array, there are several common representations:

- **LCP-byte** [51] stores the LCP array as a byte array. If \(\text{LCP}[i] < 255 \), the LCP value is stored in the byte array. Larger values are marked with a 255 in the byte array and stored separately. As many texts produce small LCP values, LCP-byte usually requires \(n \) to 1.5\(n \) bytes of space.
- **We can store the LCP array by using variable-length codes**. LCP-dac uses directly addressable codes [59] for the purpose, resulting in a structure that is typically somewhat smaller and somewhat slower than LCP-byte.
- The **permuted LCP (PLCP) array** [5] \(\text{PLCP}[i:j] \) is the LCP array stored in text order and used as \(\text{LCP}[i] = \text{PLCP}[^{\lfloor \text{SA}[i] \rfloor}] \). Because \(\text{PLCP}[i] + 1 \geq \text{PLCP}[i+1] - 1 \), the array can be stored as a bitvector of length \(2n \) in \(2n + o(n) \) bits. If the text is repetitive, run-length encoding can be used to compress the bitvector to take even less space [6]. Because accessing PLCP uses \text{locate}, it is much slower than the above two encodings.

Suffix tree topology representations are the main difference between the various CST proposals. While the compressed suffix arrays and the LCP arrays are interchangeable, the tree representation determines how various suffix tree operations are implemented. There are three main families of compressed suffix trees:

- **Sadakane’s compressed suffix tree (CST-Sada)** [5] uses a balanced parentheses representation for the tree. Each node is encoded as an opening parenthesis, followed by the encodings of its children and a closing parenthesis. This can be encoded as a bitvector of length \(2n' \), where \(n' \) is the number of nodes, requiring up to \(4n + o(n) \) bits. CST-Sada tends to be larger and faster than the other compressed suffix trees [11, 13].
- **The fully compressed suffix tree (FCST)** of Russo et al. [10, 14] aims to use as little space as possible. It does not require an LCP array at all, and stores a balanced parentheses representation for a sampled subset of suffix tree nodes in \(o(n) \) bits. Unsampled nodes are retrieved by following suffix links. FCST is smaller and much slower than the other compressed suffix trees [10, 13].
- **Fischer et al.** [6] proposed an intermediate representation, CST-NPR, based on LCP-intervals. Tree navigation is handled by searching for the values defining the lcp-intervals. Range minimum queries \(\text{rmq}(sp, ep) \) find the leftmost minimal value in \(\text{LCP}[sp, ep] \), while next/previous smaller value queries \(\text{nsv}(i)/\text{psv}(i) \) find the next/previous LCP value smaller than \(\text{LCP}[i] \). After the improvements by various authors [7, 9, 8, 11, 13], the CST-NPR is perhaps the most practical compressed suffix tree.

For typical texts and component choices, the size of compressed suffix trees ranges from the 1.5\(n \) to \(3n \) bytes of CST-Sada to the 0.5\(n \) to \(n \) bytes of FCST [11, 13]. There are also some CST variants for repetitive texts, such as versioned document collections and collections of individual genomes. Abeliuk et al. [13] developed a variant of CST-NPR that can sometimes be smaller than \(n \) bits, while achieving performance similar to the FCST. Navarro and Ordóñez [15] used grammar-based compression for the tree representation of CST-Sada. The resulting compressed suffix tree (GCT) requires slightly more space than the CST-NPR of Abeliuk et
al., while being closer to the non-repetitive CST-Sada and CST-NPR in performance.

2.3. Relative Lempel-Ziv

Relative Lempel-Ziv (RLZ) parsing [27] compresses target sequence S relative to reference sequence R. The target sequence is represented as a concatenation of z phrases $w_i = (p_i, \ell_i, c_i)$, where p_i is the starting position of the phrase in the reference, ℓ_i is the length of the copied substring, and c_i is the mismatch character. If phrase w_i starts from position p' in the target, then $S[p', p' + \ell_i - 1] = R[p_i, p_i + \ell_i - 1]$ and $S[p', p' + \ell_i] = c_i$.

The shortest RLZ parsing of the target sequence can be found in (essentially) linear time. The algorithm builds a CSA for the reverse of the reference sequence, and then parses the target sequence greedily by using backward searching. If the edit distance between the reference and the target is s, we need at most s phrases to represent the target sequence. On the other hand, because the relative order of the phrases can be different in sequences R and S, the edit distance can be much larger than the number of phrases in the shortest RLZ parsing.

In a straightforward implementation, the phrase pointers p_i and the mismatch characters c_i can be stored in arrays W_p and W_c. These arrays take $z \log |R|$ and $z \log \sigma$ bits, respectively. To support random access to the target sequence, we can encode phrase lengths as a bitvector W_ℓ of length $|S|$, [27]: we set $W_\ell[j] = 1$ if $S[j]$ is the first character of a phrase. The bitvector requires $z \log \frac{n}{z} + O(z)$ bits if we use the sdarray representation [60]. To extract $S[j]$, we first determine the phrase w_i, with $i = \text{rank}_1(W_\ell, j)$. If $W_\ell[j+1] = 1$, we return the mismatch character $W_c[i]$. Otherwise we determine the phrase offset with a select query, and return the character $R[W_p[i] + j - \text{select}_1(W_\ell, i)]$.

Ferrada et al. [32] showed how, by using relative pointers instead of absolute pointers, we can avoid the use of select queries. They also achieved better compression of DNA collections, in which most of the differences between the target sequences and the reference sequence are single-character substitutions. By setting $W_r[i] = p_i - \text{select}_1(W_\ell, i)$, the general case simplifies to $S[j] = R[W_r[i] + j]$. If most of the differences are single-character substitutions, p_{i+1} will often be $p_i + \ell_i + 1$. This corresponds to $W_r[i+1] = W_r[i]$ with relative pointers, making run-length encoding of the pointer array worthwhile.

When we sort the suffixes in lexicographic order, substitutions in the text move suffixes around, creating insertions and deletions in the suffix array and related structures. In the LCP array, an insertion or deletion affecting LCP[i] can also change the value of LCP[i] + 1. Hence RLZ with relative pointers is not enough to compress the LCP array.

Cox et al. [61] modified Ferrada et al.’s version of RLZ to handle other small variations in addition to single-character substitutions. After adding a phrase to the parse, we look ahead a bounded number of positions to find potential phrases with a relative pointer $W_r[i]$ close to the previous explicit relative pointer $W_r[j]$. If we can find a sufficiently long phrase this way, we encode the pointer differentially as $W_r[i] - W_r[j]$. Otherwise we store $W_r[i]$ explicitly. We can then save space by storing the differential pointers separately using less bits per pointer. Because there can be multiple mismatch characters between phrases i and $i + 1$, we also need a prefix-sum data structure L for finding the range $W_r[a, b]$ containing the mismatches. Cox et al. showed that their approach compresses both DNA sequences.
and LCP arrays better than Ferrada et al.’s version, albeit with slightly slower random access. We refer the reader to their paper for more details of their implementation.

3. RELATIVE FM-INDEX

The relative FM-index (RFM) [46] is a compressed suffix array of a sequence relative to the CSA of another sequence. The index is based on approximating the longest common subsequence (LCS) of BWT_R and BWT_S, where R is the reference sequence and S is the target sequence, and storing several structures based on the common subsequence. Given a representation of BWT_R supporting rank and select, we can use the relative index $RFM_{S|R}$ to simulate rank and select on BWT_S.

In this section, we describe the relative FM-index using the notation and the terminology of this paper. We also give an explicit description of the locate and extract functionality, which was not included in the original paper. Finally, we describe a more space-efficient variant of the algorithm for building a relative FM-index with full functionality.

3.1. Basic index

Assume that we have found a long common subsequence of sequences X and Y. We call positions $[X[i]$ and $Y[j]$ lcs-positions, if they are in the common subsequence. If B_X and B_Y are the binary sequences marking the common subsequence ($X[\text{select}_1(B_X, i)] = Y[\text{select}_1(B_X, i)]$), we can move between lcs-positions in the two sequences with rank and select operations.

If $X[i]$ is an lcs-position, the corresponding position in sequence Y is $Y[\text{select}_1(B_Y, \text{rank}_1(B_X, i))]$. We denote this pair of lcs-bivectors $\text{Align}(X, Y) = (B_X, B_Y)$.

In its most basic form, the relative FM-index $RFM_{S|R}$ only supports find queries by simulating rank queries on BWT_S. It does this by storing $\text{Align}(BWT_R, BWT_S)$ and the complements (subsequences of non-aligned characters) $\text{Align}(BWT_R)$ and $\text{Align}(BWT_S)$. The lcs-bivectors are compressed using entropy-based compression [62], while the complements are stored in structures similar to the reference BWT_R.

To compute $\text{rank}_c(BWT_S, i)$, we first determine the number of lcs-positions in BWT_S up to position $S[i]$ with $k = \text{rank}_1(BWT_S, i)$. Then we find the lcs-position k in BWT_R with $j = \text{select}_1(BWT_R, k)$. With these positions, we can compute

$$\text{rank}_c(BWT_S, i) = \text{rank}_c(BWT_R, j) - \text{rank}_c(\text{Align}(BWT_R), j - k) + \text{rank}_c(\text{Align}(BWT_S), i - k).$$

3.2. Relative select

We can implement the entire functionality of a compressed suffix array with rank queries on the BWT. However, if we use the CSA in a compressed suffix tree, we also need select queries to support forward searching with Ψ and Child queries. We can always implement select queries by binary searching with rank queries, but the result will be much slower than the rank queries.

A faster alternative to support select queries in the relative FM-index is to build a relative select structure select_r [63]. Let F_X be a sequence consisting of the characters of sequence X in sorted order. Alternatively, F_X is a sequence such that $F_X[i] = BWT_X[\Psi_X(i)]$.

The relative select structure consists of bitvectors $\text{Align}(F_R, F_S)$, where $B_{F_R}[i] = B_{BWT_R}(\Psi_R(i))$ and $B_{F_S}[i] = B_{BWT_S}(\Psi_S(i))$, as well as the C array C_{LCS} for the common subsequence.

To compute $\text{select}_r(BWT_S, i)$, we first determine how many of the first i occurrences of character c are lcs-positions with $k = \text{rank}_1(B_{F_R}, C_{LCS}[c]) + i - C_{LCS}[c]$. Then we check from bit $B_{F_S}[C_{LCS}[c] + i]$ whether the occurrence we are looking for is an lcs-position or not. If it is, we find the position in BWT_R as $j = \text{select}_1(BWT_R, \text{select}_1(B_{F_R}, C_{LCS}[c] + k) - C_{LCS}[c])$, and then map j to $\text{select}_1(BWT_S, i)$ by using $\text{Align}(BWT_R, BWT_S)$. Otherwise we find the occurrence in $\text{Align}(BWT_S)$ with $j = \text{select}_1(\text{Align}(BWT_S), i - k)$, and return $\text{select}_1(BWT_S, i) = \text{select}_0(BWT_S, j)$.

3.3. Full functionality

If we want the relative FM-index to support locate and extract queries, we cannot build it from any common subsequence of BWT_R and BWT_S. We need a but-invariant subsequence [46], where the alignment of the BWTs is also an alignment of the original sequences.

Definition 3.1. Let X be a common subsequence of BWT_R and BWT_S, and let $BWT_R[i|R]$ and $BWT_S[i|S]$ be the lcs-positions corresponding to $X[i]$. Subsequence X is but-invariant if

$$SA_R[i|R] < SA_R[i|J] \iff SA_S[i|S] < SA_S[j|S]$$

for all positions $i, j \in \{1, \ldots, |X|\}$.

In addition to the structures already mentioned, the full relative FM-index has another pair of lcs-bivectors, $\text{Align}(R, S)$, which marks the but-invariant subsequence in the original sequences. If $BWT_R[i|R]$ and $BWT_S[i|S]$ are lcs-positions, we set $B_R[SA_R[i|R] - 1] = 1$ and $B_S[SA_S[i|S] - 1] = 1$.

To compute the answer to a locate(i) query, we start by iterating BWT_S backwards with LF queries, until we find an lcs-position $\text{BWT}_S[i']$ after k steps. Then we map position i' to the corresponding position j' in BWT_R by using $\text{Align}(BWT_R, BWT_S)$. Finally we determine $SA_R[j']$ with a locate query in the reference index, and map the result to $SA_S[i']$ by using

\[\text{For simplicity, we assume that the endmarker is not a part of the but-invariant subsequence. Hence } SA[i] > 1 \text{ for all lcs-positions } BWT[i].\]
Align(R, S).10 The result of the locate(i) query is SA_{S}[i] + k.

The ISA_{S}[i] access required for extract queries is supported in a similar way. We find the lcs-position \(S[i + k] \) for the smallest \(k \geq 0 \), and map it to the corresponding position \(R[i] \) by using Align(R, S). Then we determine ISA_{R}[j + 1] by using the reference index, and map it back to ISA_{S}[i + k + 1] with Align(BWT_{R}, BWT_{S}). Finally, we iterate BWT_{S} k + 1 steps backward with LF queries to find ISA_{S}[i].

If the target sequence contains long insertions not present in the reference, we may also want to include some SA and ISA samples for querying those regions.

3.4. Finding a bwt-invariant subsequence

With the basic relative FM-index, we approximate the longest common subsequence of BWT_{R} and BWT_{S} by partitioning the BWTs according to lexicographic contexts, finding the longest common subsequence for each pair of substrings in the partitioning, and concatenating the results. The algorithm is fast, easy to parallelize, and quite space-efficient. As such, RFM construction is practical, having been tested with datasets of hundreds of gigabytes in size.

In the following, we describe a more space-efficient variant of the original algorithm [46] for finding a bwt-invariant subsequence. We

- save space by simulating the mutual suffix array SA_{RS} with CSA_{R} and CSA_{S};
- match suffixes of R and S only if they are adjacent in SA_{RS}; and
- run-length encode the match arrays to save space.

Definition 3.2. Let \(R \) and \(S \) be two sequences, and let \(SA = SA_{RS} \) and \(ISA = ISA_{RS}. \) The left match of suffix \(R[i], |R| \) is the suffix \(S[SA[ISA[i] - 1] - |R|, |S|] \), if \(ISA[i] > 1 \) and \(SA[ISA[i] - 1] > |R| \). The right match array \(R[i], |R| \) is the suffix \(S[ISA[ISA[i] + 1] - |R|, |S|] \), if \(ISA[i] < |RS| \) and \(SA[ISA[i] + 1] \) points to a suffix of \(S \).

We simulate the mutual suffix array \(SA_{RS} \) with CSA_{R}, CSA_{S}, and the merging bitvector \(B_{RS} \) of length \(|RS|\). We set \(B_{RS}[i] = 1 \), if \(SA_{RS}[i] \) points to a suffix of \(S \). The merging bitvector can be built in \(O(|S| \cdot t_{LF}) \) time, where \(t_{LF} \) is the time required for an LF query, by extracting \(S \) from CSA_{S} and backward searching for it in CSA_{R} [64]. Suffix \(R[i], |R| \) has a left (right) match, if \(B_{RS}[select_{0}(B_{RS}, ISA_{R}[i] - 1) = 1 \) \((B_{RS}[select_{1}(B_{RS}, ISA_{R}[i] + 1) = 1) \).

Our next step is building the match arrays left and right, which correspond to the arrays \(A[i][2] \) and \(A[i][1] \) in the original algorithm. This is done by traversing CSA_{R} backwards from \(ISA_{R}[i] = 1 \) with LF queries and following the left and the right matches of the current suffix. During the traversal, we maintain the invariant \(j = ISA_{R}[i] \), \((i, j) \leftarrow (LF(i), j - 1) \). If suffix \(R[j], |R| \) has a left (right) match, we use the shorthand \(l(j) = rank_{1}(B_{RS}, select_{0}(B_{RS}, i) - 1) \) \((r(j) = rank_{1}(B_{RS}, select_{1}(B_{RS}, i) + 1)) \) to refer to its position in CSA_{S}.

We say that suffixes \(R[j], |R| \) and \(R[j + 1], |R| \) have the same left match if \((j) = LF_{S}(l(j) + 1) \). Let \(R[j], |R| \) and \(R[j + \ell, |R|] \) be a maximal run of suffixes having the same left match, with suffixes \(R[j], |R| \) to \(R[j + \ell - 1, |R|] \) starting with the same characters as their left matches.11 We find the left match of suffix \(R[j], |R| \) as \(j' = ISA_{S}[l(j)] \) by using CSA_{S}, and set \(\text{left}[j, j + \ell - 1] = [j', j + \ell - 1] \). The right match array right is built in a similar way.

The match arrays require \(2|R| \log|S| \) bits of space. If sequences \(R \) and \(S \) are similar, the runs in the arrays tend to be long. Hence we can run-length encode the match arrays to save space. The traversal takes \(O(|R| \cdot (t_{LF} + t_{rank} + t_{select}) + rd \cdot t_{LF}) \) time, where \(t_{rank} \) and \(t_{select} \) denote the time required by rank and select operations, \(r \) is the number of runs in the two arrays, and \(d \) is the suffix array sample interval in CSA_{S}.12

The final step is determining the bwt-invariant subsequence. We find a binary sequence \(B_{S}[1, |R|] \), which marks the common subsequence in \(R \), and a strictly increasing integer sequence \(Y \), which contains the positions of the common subsequence in \(S \). This can be done by finding the longest increasing subsequence over \(R \), where we consider both \(left[i] \) and \(right[i] \) as candidates for the value at position \(i \), and using the found subsequence as \(Y \). If \(Y[j] \) comes from \(left[i] \) (\(right[i] \)), we set \(B_{R}[i] = 1 \), and align suffix \(R[\ell, |R|] \) with its left (right) match \(S[Y[j], |S|] \) in the bwt-invariant subsequence. We can find \(B_{R} \) and \(Y \) in \(O(|R| \log|R|) \) time with \(O(|R| \log|R|) \) bits of additional working space with a straightforward modification of the dynamic programming algorithm for finding the longest increasing subsequence. The dynamic programming tables can be run-length encoded, but we found that this did not yield good time/space trade-offs.

As sequence \(Y \) is strictly increasing, we can convert it into binary sequence \(B_{S}[1, |S|] \), marking \(B_{S}[Y[j]] = 1 \) for all \(j \). Afterwards, we consider the binary sequences \(B_{R} \) and \(B_{S} \) as the bivectors Align(R, S). Because every suffix of \(R \) starts with the same character as its matches stored in the left and right arrays, subsequences \(R[B_{R}] \) and \(S[B_{S}] \) are identical.

For any \(i \), let \(i_{R} = select_{1}(B_{R}, i) \) and \(i_{S} = select_{0}(B_{S}, i) \) be the bivectors of rank \(i \). As suffixes \(R[i_{R}, |R|] \) and \(S[i_{S}, |S|] \) are aligned in the bwt-invariant subsequence, they are also identical in the mutual suffix

10If \(BWT_{R}[i'] \) and \(BWT_{R}[j'] \) are lcs-positions, the corresponding lcs-positions in the original sequences are \(S[SA_{S}[i'] - 1] \) and \(R[SA_{R}[j'] - 1] \).

11The first character of a suffix can be determined by using the C array.

12The time bound assumes text-order sampling.
array SA_{RS}. Hence

$$ISA_R[i] < ISA_R[j] \iff ISA_S[i] < ISA_S[j]$$

for $1 \leq i, j \leq |Y|$, which is equivalent to the condition in Definition 3.1. We can convert $Align(R, S)$ to $Align(BWT_R, BWT_S)$ in $O(|R| + |S| \cdot \ell_{LF})$ time by traversing CSA_R and CSA_S backwards. The resulting subsequence of BWT_R and BWT_S is BWT-invariant.

Note that the full relative FM-index is more limited than the basic index, because it does not handle substring moves very well. Let $R = xy$ and $S = yx$, for two random sequences x and y of length $n/2$ each. Because BWT_R and BWT_S are very similar, we can expect to find a common subsequence of length almost n. On the other hand, the length of the longest BWT-invariant subsequence is around $n/2$, because we can either match the suffixes of x or the suffixes of y in R and S, but not both.

4. RELATIVE SUFFIX TREE

The relative suffix tree (RST) is a CST-NPR of the target sequence relative to a CST of the reference sequence. It consists of two major components: the relative FM-index with full functionality and the relative LCP (RLCP) array. The optional relative select structure can be generated or loaded from disk to speed up algorithms based on forward searching. The RLCP array is based on RLZ parsing, while the support for nsv/psv/rmq queries is based on a minima tree over the phrases.

4.1. Relative LCP array

Given LCP array $LCP[1, n]$, we define the differential LCP array $DLCP[1, n]$ as $DLCP[1] = LCP[1]$ and $DLCP[i] = LCP[i] - LCP[i - 1]$ for $i > 1$. If $BWT[i, j] = c^{j-i+1}$ for some $c \in \Sigma$, then $LCP[LF(i) + 1, LF(j)]$ is the same as $LCP[i + 1, j]$, with each value incremented by 1 [6]. This means $DLCP[LF(i) + 2, LF(j)] = DLCP[i + 2, j]$, making the DLCP array of a repetitive text compressible with grammar-based compression [13].

We make a similar observation in the relative setting. If target sequence S is similar to the reference sequence R, then their LCP arrays should also be similar. If there are long identical ranges $LCP_R[i, i + k] = LCP_S[j, j + k]$, the corresponding DLCP ranges $DLCP_R[i + 1, i + k]$ and $DLCP_S[j + 1, j + k]$ are also identical. Hence we can use RLZ parsing to compress either the original LCP array or the DLCP array.

While the identical ranges are a bit longer in the LCP array, we opt to compress the DLCP array, because it behaves better when there are long repetitions in the sequences. In particular, assembled genomes often have long runs of character N, which correspond to regions of very large LCP values. If the runs are longer in the target sequence than in the reference sequence, the RLZ parsing of the LCP array will have many mismatch characters. The corresponding ranges in the DLCP array typically consist of values $\{-1, 0, 1\}$, making them much easier to compress.

We consider DLCP arrays as strings over an integer alphabet and create an RLZ parsing of DLCP$_S$ relative to DLCP$_R$. After parsing, we switch to using LCP$_R$ as the reference. The reference is stored in a structure we call slarray, which is a variant of LCP-byte. [51]. Small values $LCP_R[i] < 255$ are stored in a byte array, while large LCP$_R[i] \geq 255$ are marked with a 255 in the byte array and stored separately. To quickly find the large values, we also build a rangeΣ55 structure over the byte array. The slarray provides reasonably fast random access and fast sequential access to the underlying array.

The RLZ parsing produces a sequence of phrases $w_i = (p_i, \ell_i, c_i)$ (see Section 2.3; since we are using Cox et al.'s version, c_i is now a string). Because some queries involve decompressing an entire phrase, we limit the maximum phrase length to 1024. We also require that $|c_i| > 0$ for all i, using the last character of the copied substring as a mismatch if necessary.

Phrase lengths are encoded in the W_i bitvector in the usual way. We convert the strings of mismatching LCP values c_i into strings of absolute LCP values, append them into the mismatch array W_c, and store the array as a slarray. The mismatch values are used as absolute samples for the differential encoding.

To access $LCP_S[j]$, we determine the phrase w_i as usual, and check whether we should return a mismatch character. If so, we compute which one using a prefix sum query on L_c and return it. If not, we determine the starting positions p_i and s_i of the phrase w_i in the reference and the target, respectively. We can then compute the solution as

$$LCP_S[j] = LCP_S[s_i - 1] + \sum_{k=p_i}^{j} DLCP_S[k]$$

$$= LCP_S[s_i - 1] + \sum_{k=p_i}^{j'} DLCP_R[k]$$

$$= LCP_S[s_i - 1] + LCP_R[j'] - LCP_R[p_i - 1],$$

where $j' = p_i + j - s_i$. Each RLZ phrase ends with at least one mismatch character, so $LCP_S[s_i - 1]$ is readily available. After finding $LCP_S[j]$, accessing $LCP_S[j - 1]$ and $LCP_S[j + 1]$ is fast, as long as we do not cross phrase boundaries.

Example. Figure 1 shows an example reference sequence R and target sequence S, with their corresponding arrays SA, LCP, and DLCP. The single edit at $S[4]$ with respect to $R[4]$ may affect the positions of suffixes 4 and previous ones in SA, although in general only a limited number of preceding suffixes are affected. In our example, suffix 4 moves from position 7 in SA_R to position 4 in SA_S, and suffix 3 moves from position 11 in SA_R to position 10 in SA_S. Each suffix that is moved from $SA_R[i]$ to $SA_S[j]$ may alter the values at positions

**The Computer Journal, Vol. ??, No. ??, ???”
i or i + 1 (depending on whether j > i or j < i), as well as j and j + 1, of LCP$_S$. We have surrounded in rectangles the conserved regions in LCP$_S$ (some are conserved by chance). Even some suffixes that are not moved may change their LCP values. In turn, each change in LCP$_S$[k] may change values DLCP$_S$[k] and DLCP$_S$[$k+1$].

After the change, we can parse DLCP$_S$ into three phrases (with the copied symbols surrounded by rectangles): (1, 4, 0), (5, 3, −2), (6, 2, −2), where the latter is formed by chance. We represent this parsing as $w_c = ⟨1, 0, 0⟩$ (since we store the absolute LCP$_S$ values for the mismatches), $W_r = 10001001000$, and $W_r = ⟨1, 5, 6⟩$ (or rather $W_r = ⟨0, −1, −4⟩$).

Let us compute LCP$_S$[j] for $j = 8$. This corresponds to phrase number $i = \text{rank}(W_r, j) = 2$, which starts at position $s_i = \text{select}(W_r, i) = 6$ in LCP$_S$. The corresponding position in LCP$_R$ is $p_i = W_p[i] = 5$ (or rather $p_i = s_i + W_r[i] = 5$), and the mapped position j is $j' = p_i + j - s_i = 7$. Finally, LCP$_S$[$s_i - 1$] = $W_c[i - 1]$ = 1.

According to our formula, then, we have LCP$_S$[8] = LCP$_S$[$s_i - 1$] + LCP$_R$[j'] − LCP$_R$[$p_i - 1$] = 1 + 2 − 1 = 2.

4.2. Supporting nsv/psv/rmq queries

Suffix tree topology can be inferred from the LCP array with range minimum queries (rmq) and next/previous smaller value (nsv/psv) queries [6]. Some suffix tree operations are more efficient if we also support next/previous smaller or equal value (nsv/psv) queries [13]. Query nsv(i) (psv(i)) finds the next (previous) value smaller than or equal to LCP[i].

In order to support the queries, we build a 64-ary minima tree over the phrases of the RLZ parsing. Each leaf node stores the smallest LCP value in the corresponding phrase, while each internal node stores the smallest value in the subtree. Internal nodes are created and stored in a levelwise fashion, so that each internal node, except perhaps the rightmost one of each level, has 64 children.

We encode the minima tree as two arrays. The smallest LCP values are stored in M$_{LCP}$, which we encode as an sarray. Plain array M$_L$ stores the starting offset of each level in M$_{LCP}$, with the leaves stored starting from offset M$_{L}[1] = 1$. If i is a minima tree node located at level j, the corresponding minimum value is M$_{LCP}$[i], the parent of the node is M$_{L}[j + 1] + [(i - M_{L}[j])/64]$, and its first child is M$_{L}[j - 1] + 64 \cdot (i - M_{L}[j])$.

A range minimum query rmq(sp, ep) starts by finding the minimal range of phrases $w_1, ..., w_r$ covering the query and the maximal range of phrases $w_l, ..., w_r$, contained in the query (note that $l \leq l' \leq l + 1$ and $r - 1 \leq r' \leq r$). We then use the minima tree to find the leftmost minimum value $j = M_{LCP}[k]$ in M$_{LCP}[l', r']$, and find the leftmost occurrence LCP[i] = j in phrase w_j. If $l < l'$ and M$_{L}[l] \leq j$, we decompress phrase w_l and find the leftmost minimum value LCP[i'] = j' (with $i' \geq sp$) in the phrase. If $j' \leq j$, we update $(i, j) \leftarrow (i', j')$. Finally we check phrase w_r in a similar way, if $r > r'$ and M$_{L}[r] < j$. The answer to the range minimum query is LCP[i] = j, so we return (i, j).

Finally, the particular case where no phrase is contained in [sp, ep] is handled by sequentially scanning one or two phrases in LCP.

The remaining queries are all similar to each other. In order to answer query nsv(i), we start by finding the phrase w_k containing position i, and then determining LCP[i]. Next we scan the rest of the phrase to see whether there is a smaller value LCP[j] < LCP[i] later in the phrase. If so, we return $(j, LCP[j])$. Otherwise we traverse the minima tree to find the smallest $k' > k$ with M$_{LCP}[k'] < LCP[i]$. We decompress phrase $w_{k'}$, find the leftmost position j with LCP[j] < LCP[i], and return $(j, LCP[j])$.

5. EXPERIMENTS

We have implemented the relative suffix tree in C++, extending the old relative FM-index implementation. The implementation is based on the Succinct Data Structure Library (SDSL) 2.0 [65]. Some parts of the implementation have been parallelized using OpenMP and the libstdc++ parallel mode.

As our reference CSA, we used the succinct suffix array (SSA) [58, 66] implemented using SDSL components. Our implementation is very similar to csa_vrt in SDSL, but we needed better access to the internals than what the SDSL interface provides. SSA encodes the Burrows-Wheeler transform as a Huffman-shaped wavelet tree, combining fast queries with size close to the order-0 empirical entropy. This makes it the index of choice for DNA sequences [57]. In addition to the plain SSA with uncompressed bitvectors, we also used SSA-RRR with entropy-compressed bitvectors [62].
to highlight the the time-space trade-offs achieved with better compression.

We sampled SA in suffix order and ISA in text order. In SSA, the sample intervals were 17 for SA and 64 for ISA. In RFM, we used sample interval 257 for SA and 512 for ISA to handle the regions that do not exist in the reference. The sample intervals for suffix order sampling were primes due to the long runs of character N in the assembled genomes. If the number of long runs of character N in the indexed sequence is even, the lexicographic ranks of almost all suffixes in half of the runs are odd, and those runs are almost completely unsampled. This can be avoided by making the sample interval and the number of runs relatively prime.

The experiments were done on a system with two 16-core AMD Opteron 6378 processors and 256 GB of memory. The system was running Ubuntu 12.04 with Linux kernel 3.2.0. We compiled all code with g++ version 4.9.2. We allowed index construction to use multiple threads, while confining the query benchmarks to a single thread. As AMD Opteron uses a non-uniform memory access architecture, accessing local memory controlled by the same physical CPU is faster than accessing remote memory controlled by another CPU. In order to ensure that all data structures are in local memory, we set the CPU affinity of the query benchmarks with the taskset utility.

As our target sequence, we used the maternal haplotypes of the 1000 Genomes Project individual NA12878 [67]. As the reference sequence, we used the 1000 Genomes Project version of the GRCh37 assembly of the human reference genome. Because NA12878 is female, we also created a reference sequence without chromosome Y.

In the following, a basic FM-index is an index supporting only find queries, while a full index also supports locate and extract queries.

5.1. Indexes and their sizes

Table 2 lists the resource requirements for building the relative indexes, assuming that we have already built the corresponding non-relative structures for the sequences. As a comparison, building an FM-index for a human genome typically takes 16–17 minutes and 25–26 GB of memory. While the construction of the basic RFM index is highly optimized, the other construction algorithms are just the first implementations. Building the optional rselect structures takes 4 minutes using two threads and around 730 megabytes ($|R| + |S|$ bits) of working space in addition to RFM and rselect.

The sizes of the final indexes are listed in Table 3. The full RFM is over twice the size of the basic index, but still 3.3–3.7 times smaller than the full SSA-RRR and 4.6–5.3 times smaller than the full SSA. The RLCP array is 2.7 times larger than the RFM index with the full human reference and 1.5 times larger with the female reference. Hence having a separate female reference is worthwhile, if there are more than a few female genomes among the target sequences. The optional rselect structure is almost as large as the basic RFM index.

Table 4 lists the sizes of the individual components of the relative FM-index. Including the chromosome Y in the reference increases the sizes of almost all relative components, with the exception of $\text{Align}(BWT_5)$ and $\text{Align}(R, S)$. In the first case, the common subsequence still covers approximately the same positions in BWT_5 as before. In the second case, chromosome Y appears in bitvector B_R as a long run of 0-bits, which compresses well. The components of a full RFM index are larger than the corresponding components of a basic RFM index, because the bwt-invariant subsequence is shorter than the approximate longest common subsequence (see Table 2).

The size breakdown of the RLCP array can be seen in Table 5. Phrase pointers and phrase lengths take space proportional to the number of phrases. As there are more mismatches between the copied substrings with the full human reference than with the female reference, the absolute LCP values take a larger proportion of the total space with the full reference. Shorter phrase length increases the likelihood that the minimal LCP value in a phrase is a large value, increasing the size of the minima tree.

In order to use relative data structures, we also need to have the reference data structures in memory. The basic SSA used by the basic RFM takes 1283 MB with chromosome Y and 1248 MB without, while the full SSA used by the full RFM takes 2162 MB and 2110 MB, respectively. The reference LCP array used by the RLCP array requires 3862 MB and 3690 MB with and without chromosome Y.

5.2. Query times

Average query times for the basic operations can be seen in Tables 6 and 7. The results for LF and Ψ queries in the full FM-indexes are similar to the earlier ones with basic indexes [63]. Random access to the RLCP array is about 30 times slower than to the LCP array, while sequential access is 10 times slower. The nsv, psv, and rmq queries are comparable to 1–2 random accesses to the RLCP array.

We also tested the locate performance of the full RFM index, and compared it to SSA and SSA-RRR. We built the indexes with SA sample intervals 7, 17, 31, 61, and 127, using the reference without chromosome Y for RFM. The ISA sample interval was the maximum of 64 and the SA sample interval. We extracted 2 million random patterns of length 32, consisting of characters $ACGT$, from the target sequence, and measured the total time taken by find and locate queries. The results with RFM, the sample intervals apply to the reference SSA.

15ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/

16With RFM, the sample intervals apply to the reference SSA.
TABLE 2. Sequence lengths and resources used by index construction for NA12878 relative to the human reference genome with and without chromosome Y. Approx and Inv denote the approximate LCS and the bwt-invariant subsequence. Sequence lengths are in millions of base pairs, while construction resources are in minutes of wall clock time and gigabytes of memory.

<table>
<thead>
<tr>
<th>ChrY</th>
<th>Sequence length</th>
<th>RFM (basic)</th>
<th>RFM (full)</th>
<th>RST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reference</td>
<td>Target</td>
<td>Approx</td>
<td>Inv</td>
</tr>
<tr>
<td>yes</td>
<td>3096M</td>
<td>3036M</td>
<td>2992M</td>
<td>2980M</td>
</tr>
<tr>
<td>no</td>
<td>3036M</td>
<td>3036M</td>
<td>2991M</td>
<td>2980M</td>
</tr>
</tbody>
</table>

TABLE 3. Various indexes for NA12878 relative to the human reference genome with and without chromosome Y. The total for RST includes the full RFM. Index sizes are in megabytes and in bits per character.

<table>
<thead>
<tr>
<th>ChrY</th>
<th>SSA</th>
<th>SSA-RRR</th>
<th>RFM</th>
<th>RST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Basic</td>
<td>Full</td>
<td>Basic</td>
<td>Full</td>
</tr>
<tr>
<td>yes</td>
<td>1248 MB</td>
<td>2110 MB</td>
<td>636 MB</td>
<td>1498 MB</td>
</tr>
<tr>
<td></td>
<td>3.45 bpc</td>
<td>5.83 bpc</td>
<td>1.76 bpc</td>
<td>4.14 bpc</td>
</tr>
<tr>
<td>no</td>
<td>1248 MB</td>
<td>2110 MB</td>
<td>636 MB</td>
<td>1498 MB</td>
</tr>
<tr>
<td></td>
<td>3.45 bpc</td>
<td>5.83 bpc</td>
<td>1.76 bpc</td>
<td>4.14 bpc</td>
</tr>
</tbody>
</table>

can be seen in Figure 2. While SSA and SSA-RRR query times were proportional to the sample interval, RFM used 5.4–7.6 microseconds per occurrence more than SSA, resulting in slower growth in query times. In particular, RFM with sample interval 31 was faster than SSA with sample interval 61. As the locate performance of the RFM index is based on the sample interval in the reference, it is generally best to use dense sampling (e.g. 7 or 17), unless there are only a few target sequences.

5.3. Synthetic collections

In order to determine how the differences between the reference sequence and the target sequence affect the size of relative structures, we built RST for various synthetic datasets. We took a 20 MB prefix of the human reference genome as the reference sequence, and generated 25 target sequences with every mutation rate \(p \in \{0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1\} \). A total of 90% of the mutations were single-character substitutions, while 5% were insertions and another 5% deletions. The length of an insertion or deletion was \(k \geq 1 \) with probability \(0.2 \cdot 0.8^{k-1} \).

The results can be seen in Figure 3 (left). The size of the RLCP array grew quickly with increasing mutation rates, peaking at \(p = 0.001 \). At that point, the average length of an RLZ phrase was comparable to what could be found in the DLCP arrays of unrelated DNA sequences. With even higher mutation rates, the phrases became slightly longer due to the smaller average LCP values. The RFM index, on the other hand, remained small until \(p = 0.003 \). Afterwards, the index started growing quickly, eventually overtaking the RLCP array.

We also compared the size of the relative suffix tree to GCT [15], which is essentially a CST-Sada for repetitive collections. While the structures are intended for different purposes, the comparison shows how much additional space is used for providing access to the suffix trees of individual datasets. We chose to skip the CST-NPR for repetitive collections [13], as its implementation was not stable enough.

Figure 3 (right) shows the sizes of the compressed suffix trees. The numbers for RST include individual indexes for each of the 25 target sequences as well as the reference data, while the numbers for GCT are for a single index containing the 25 sequences. With low mutation rates, RST was not much larger than GCT. The size of RST starts growing quickly at around \(p = 0.001 \), while the size of GCT stabilizes at 3–4 bpc.

5.4. Suffix tree operations

In the final set of experiments, we compared the performance of RST to the SDSL implementations of various compressed suffix trees. We used the maternal haplotypes of NA12878 as the target sequence and the human reference genome without chromosome Y as the reference sequence. We built RST, CST-Sada, CST-NPR, and FCST for the target sequence. CST-Sada uses Sadakane’s compressed suffix array (CSA-Sada) [54] as its CSA, while the other SDSL implementations use SSA. We used PLCP as the LCP encoding with both CST-Sada and CST-NPR, and also built CST-NPR with LCP-dac.

We used three algorithms for the performance comparison. The first algorithm is preorder traversal of the suffix tree using SDSL iterators (cst_dfs_const_forward_iterator). The iterators use operations Root, Leaf, Parent, FChild, and NSibling, though Parent queries are rare, as the iterators cache
TABLE 4. Breakdown of component sizes in the RFM index for NA12878 relative to the human reference genome with and without chromosome Y in bits per character.

<table>
<thead>
<tr>
<th>ChrY</th>
<th>Basic RFM</th>
<th>Full RFM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>RFM</td>
<td>0.62 bpc</td>
<td>0.51 bpc</td>
</tr>
<tr>
<td>Align(BWT)</td>
<td>0.12 bpc</td>
<td>0.05 bpc</td>
</tr>
<tr>
<td>Align(BWT)</td>
<td>0.05 bpc</td>
<td>0.05 bpc</td>
</tr>
<tr>
<td>Align(BWT)</td>
<td>0.45 bpc</td>
<td>0.42 bpc</td>
</tr>
<tr>
<td>Align(R, S)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>SA samples</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>ISA samples</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

TABLE 5. Breakdown of component sizes in the RLCP array for NA12878 relative to the human reference genome with and without chromosome Y. The number of phrases, average phrase length, and the component sizes in bits per character. “Parse” contains W_r and W_l, “Literals” contains W_w and L, and “Tree” contains M_L and M_r.

<table>
<thead>
<tr>
<th>ChrY</th>
<th>Phrases</th>
<th>Length</th>
<th>Parse</th>
<th>Literals</th>
<th>Tree</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>yes</td>
<td>128 million</td>
<td>23.6</td>
<td>1.35 bpc</td>
<td>1.54 bpc</td>
<td>0.52 bpc</td>
<td>3.41 bpc</td>
</tr>
<tr>
<td>no</td>
<td>94 million</td>
<td>32.3</td>
<td>0.97 bpc</td>
<td>0.41 bpc</td>
<td>0.27 bpc</td>
<td>1.65 bpc</td>
</tr>
</tbody>
</table>

the most recent parent nodes.

The other two algorithms find the maximal substrings of the query string occurring in the indexed text, and report the lexicographic range for each such substring. This is a key task in common problems such as computing matching statistics [68] or finding maximal exact matches. The forward algorithm uses Root, SDepth, SLink, Child, and Letter, while the backward algorithm [69] uses LF, Parent, and SDepth.

We used the paternal haplotypes of chromosome 1 of NA12878 as the query string in the maximal substrings algorithms. Because some tree operations in the SDSL compressed suffix trees take time proportional to the depth of the current node, we truncated the runs of character N in the query string into a single character. Otherwise searching in the deep subtrees would have made some SDSL suffix trees much slower than RST.

The results can be seen in Table 8. RST was 1.8 times smaller than FCST and several times smaller than the other compressed suffix trees. In depth-first traversal, RST was 4 times slower than CST-NPR and about 15 times slower than CST-Sada. FCST was orders of magnitude slower, managing to traverse only 5.3% of the tree before the run was terminated after 24 hours.

It should be noted that the memory access patterns of traversing CST-Sada, CST-NPR, and RST are highly local. Traversal times are mostly based on the amount of computation done, while memory latency is less important than in the individual query benchmarks. In RST, the algorithm is essentially the following: 1) compute rmq in the current range; 2) proceed recursively to the left subinterval; and 3) proceed to the right subinterval. This involves plenty of redundant work, as can be seen by comparing the traversal time (0.90 μs per node) to sequential RLCP access (0.017 μs per position). A faster algorithm would decompress large parts of the LCP array at once, build the corresponding subtrees in postorder [51], and traverse the resulting trees.

RST with rselect is as fast as CST-Sada in the forward algorithm, 1.8–2.7 times slower than CST-NPR, and 4.1 times faster than FCST. Without the additional structure, RST becomes 2.6 times slower. As expected [69], the backward algorithm is much faster than the forward algorithm. CST-Sada and RST, which combine slow backward searching with a fast tree, have similar performance to FCST, which combines fast searching with a slow tree. CST-NPR is about an order of magnitude faster than the others in the backward algorithm.

6. DISCUSSION

We have introduced relative suffix trees (RST), a new kind of compressed suffix tree for repetitive sequence collections. Our RST compresses the suffix tree of an individual sequence relative to the suffix tree of a reference sequence. It combines an already known relative suffix array with a novel relative-compressed longest common prefix representation (RLCP). When the sequences are similar enough (e.g., two human genomes), the RST requires about 3 bits per symbol on each target sequence. This is close to the space used by the most space-efficient compressed suffix trees designed to store repetitive collections in a single tree, but the RST provides a different functionality as it indexes each sequence individually. The RST supports query and
navigation operations within a few microseconds, which is competitive with the largest and fastest compressed suffix trees.

The size of RST is proportional to the amount of sequence that is present either in the reference or in the target, but not both. This is unusual for relative compression, where any additional material in the reference is generally harmless. Sorting the suffixes in lexicographic tends to distribute the additional suffixes all over the suffix array, creating many mismatches between the suffix-based structures of the reference and the target. For example, the 60 million suffixes from chromosome Y created 34 million new phrases in the RLZ parse of the DLCP array of a female genome, doubling the size of the RLCP array. Having multiple references (e.g. male and female) can hence be worthwhile when building relative data structures for many target sequences.

While our RST implementation provides competitive time/space trade-offs, there is still much room for improvement. Most importantly, some of the construction algorithms require significant amounts of time and memory. In many places, we have chosen simple and fast implementation options, even though there could be alternatives that require significantly less space without being too much slower.

Our RST is a relative version of the CST-NPR. Another alternative for future work is a relative CST-Sada, using RLZ compressed bitvectors for suffix tree topology and PLCP.

FUNDING

This work was supported by Basal Funds FB0001, Conicyt, Chile; Fondecyt Grant [1-170048], Chile; Academy of Finland grants [258308] and [250345] (CoECSR); the Jenny and Antti Wihuri Foundation, Finland; and the Wellcome Trust grant [098051].

REFERENCES

FIGURE 2. Average find and locate times in microseconds per occurrence for 2 million patterns of length 32 with a total of 255 million occurrences on NA12878 relative to the human reference genome without chromosome Y. Left: Query time vs. suffix array sample interval. Right: Query time vs. index size in bits per character.

FIGURE 3. Index size in bits per character vs. mutation rate for 25 synthetic sequences relative to a 20 MB reference.

TABLE 8. Compressed suffix trees for the maternal haplotypes of NA12878 relative to the human reference genome without chromosome Y. Component choices; index size in bits per character; average time in microseconds per node for preorder traversal; and average time in microseconds per character for finding maximal substrings shared with the paternal haplotypes of chromosome 1 of NA12878 using forward and backward algorithms. The figures in parentheses are estimates based on the progress made in the first 24 hours.

<table>
<thead>
<tr>
<th>CST</th>
<th>CSA</th>
<th>LCP</th>
<th>Size</th>
<th>Traversal</th>
<th>Maximal substrings</th>
</tr>
</thead>
<tbody>
<tr>
<td>CST-Sada</td>
<td>CSA-Sada</td>
<td>PLCP</td>
<td>12.33 bpc</td>
<td>0.06 µs</td>
<td>79.97 µs, 5.14 µs</td>
</tr>
<tr>
<td>CST-NPR</td>
<td>SSA</td>
<td>PLCP</td>
<td>10.79 bpc</td>
<td>0.23 µs</td>
<td>44.55 µs, 0.46 µs</td>
</tr>
<tr>
<td>CST-NPR</td>
<td>SSA</td>
<td>LCP-dac</td>
<td>18.08 bpc</td>
<td>0.23 µs</td>
<td>29.70 µs, 0.40 µs</td>
</tr>
<tr>
<td>FCST</td>
<td>SSA</td>
<td>–</td>
<td>4.98 bpc</td>
<td>(317.30 µs)</td>
<td>332.80 µs, 3.13 µs</td>
</tr>
<tr>
<td>RST</td>
<td>RFM</td>
<td>RLCP</td>
<td>2.75 bpc</td>
<td>0.90 µs</td>
<td>208.62 µs, 3.72 µs</td>
</tr>
<tr>
<td>RST + rselect</td>
<td>RFM</td>
<td>RLCP</td>
<td>3.21 bpc</td>
<td>0.90 µs</td>
<td>80.20 µs, 3.71 µs</td>
</tr>
</tbody>
</table>

754.

