Fast Approximate String Matching in a Dictionary

Ricardo Baeza-Yates Gonzalo Navarro

Dept. of Computer Science, University of Chile
Blanco Encalada 2120 - Santiago - Chile
{rbaeza,gnavarro}@dcc.uchile.cl

Abstract

A successful technique to search large textual data-
bases allowing errors relies on an online search in the
vocabulary of the text. To reduce the time of that on-
line search, we index the vocabulary as a metric space.
We show that with reasonable space overhead we can
improve by a factor of two over the fastest online algo-
rithms, when the tolerated error level is low (which is
reasonable in text searching).

1 Introduction

Approximate string matching is a recurrent problem
in many branches of computer science, with applica-
tions to text searching, computational biology, pattern
recognition, signal processing, etc.

The problem can be stated as follows: given a long
text of length n, and a (comparatively short) pattern of
length m, retrieve all the segments (or “occurrences”)
of the text whose edit distance to the pattern is at most
k. The edit distance ed() between two strings is defined
as the minimum number of character insertions, dele-
tions and replacements needed to make them equal.

In the online version of the problem, the pattern can
be preprocessed but the text cannot. The classical so-
lution uses dynamic programming and is O(mn) time
[16]. Nowadays, the best practical results are O(kn)
time in the worst case and O(knlog,(m)/m) on av-
erage (where o is the alphabet size), e.g. [13, 20, 9,
4, 15, 18, 6]. The average case mentioned is “sublin-
ear” in the sense that not all the text characters are
inspected, but the online problem is £2(n) if m is taken
as constant.

We are interested in large textual databases in this
work, where the main motivations for approximate
string matching come from the low quality of the text
(e.g. because of optical character recognition (OCR)

or typing errors), heterogeneousness of the databases
(different languages which the users may not spell
correctly), spelling errors in the pattern or the text,
searching for foreign names and searching with uncer-
tainty. Those texts take gigabytes and are relatively
static. Even the fastest online algorithms are not prac-
tical for this case, since they process a few megabytes
per second. Preprocessing the text and building an
index to speed up the search becomes necessary.

However, only a few years ago indexing text for ap-
proximate string matching was considered one of the
main open problems in this area [22, 2]. The practical
indices which are in use today rely on an online search
in the vocabulary of the text, which is quite small
compared to the text itself. This takes a few seconds
at most. While this may be adequate for single-user
environments, it is interesting to improve the search
time for multi-user environments. For instance, a Web
search engine which receives many requests per second
cannot spend a few seconds to traverse the vocabulary.

In this paper we propose to organize the vocabu-
lary as a metric space using the distance function ed(),
and use a known data structure to index such spaces.
We show experimentally that this imposes a reasonable
space overhead over the vocabulary, and that the re-
ward is an important reduction in search times (close
to half of the best online algorithms). This algorithm
may also have other applications where a dictionary of
words is searched allowing errors, such as in spelling
problems.

This paper is organized as follows. In Section 2 we
explain the basic concepts used. In Section 3 we present
our metric space technique. In Section 4 we experimen-
tally evaluate our technique. In Section 5 we give our
conclusions.

2 Basic Concepts
2.1 Indicesfor Approximate String Matching

The first indices for approximate string match-
ing appeared in 1992, in two different flavors: word-
oriented and sequence-oriented indices. In the first
type, more oriented to natural language text and in-
formation retrieval, the index can retrieve every word
whose edit distance to the pattern is at most k. In
the second one, useful also when the text is not nat-
ural language, the index will retrieve every sequence,
without notion of word separation.

We focus on word-oriented indices in this work,
where the problem is simpler and hence has been solved
quite well. Sequence-retrieving indices are still very im-
mature to be useful for huge text databases (i.e. the
indices are very large, are not well-behaved on disk,
are very costly to build and update, etc.). It must be
clear, however, that word-oriented indices are only ca-
pable of retrieving an occurrence that is a sequence of
words. For instance, they cannot retrieve "flower"
with one error from "flo wer'" or "many flowers"
from "manyflowers'. In many cases the restriction
is acceptable, however.

Current word-oriented indices are basically inverted
indices: they store the vocabulary of the text (i.e. the
set of all distinct words in the text) and a list of occur-
rences for each word (i.e. the set of positions where the
word appears in the text). Approximate string match-
ing is solved by first running a classical online algorithm
on the vocabulary (as if it was a text), thus obtaining
the set of words to retrieve. The rest depends on the
particular index. Full inverted indices such as Igrep
[1] simply make the union of the lists of occurrences of
all matching words to obtain the final answer. Block-
oriented indices such as Glimpse and variations on it
[14, 5] reduce space requirements by making the occur-
rences point to blocks of text instead of exact positions,
and must traverse the candidate text blocks to find the
actual answers. In some cases the blocks need not be
traversed (e.g. if each block is a Web page and we do
not need to mark the occurrences inside the page) and
therefore the main cost corresponds to the search in
the vocabulary. See Figure 1.

This scheme works well because the vocabulary is
very small compared to the text. For instance, in the 1
Gb TREC collection [11] the vocabulary takes no more
than 5 Mb. An empirical law known as Heaps Law
[12] states that the vocabulary for a text of n words
grows as O(nf), where 0 < 3 < 1. In practice, § is
between 0.4 and 0.6 [1]. An online algorithm can search
such vocabulary in a few seconds. While improving this

Online
Search

Online
Approz.
Search
B I e D~ [e—
e \ p— \L
vocabulary \l
occurrences
INDEX TEXT

Figure 1. Approximate searching on an in-
verted index. The online search on the text
may or may not be necessary.

may not be necessary in a single-user environment, it
is always of interest in a multi-user environment like a
Web search engine.

2.2 Online Searching

The classical algorithm for approximate string
matching [16] is based on dynamic programming and
takes O(mn) time. It is a minor modification of an al-
gorithm to compute the edit distance between to words
a and b, which costs O(|a||b|). This algorithm is un-
beaten in flexibility, since it can be adapted to a num-
ber of variations in the distance function (e.g. to allow
transpositions, or to give different costs to the opera-
tions). There exists no significatively better algorithm
to compute the exact edit distance among two random
strings, but there are many improvements to the search
algorithm allowing % errors. They are orders of mag-
nitude faster than the classical algorihtm, but they are
not so flexible and rely on specific properties of the edit
distance.

The technique that we study in this paper needs
to compute the exact edit distance among strings, and
therefore it relies on the classical algorithm. The result
is that, although it may perform a few evaluations of
the edit distance (say, 5% of the whole vocabulary), it
may be slower than an online traversal with a fast algo-
rihtm. It is very important to understand this when an
indexing scheme is evaluated, since traversing a small
percentage of the vocabulary does not guarantee use-
fulness in practice. On the other hand, many of the

fastest algorithm could not be usable if some extension
over the edit distance was desired, while the classical
algorithm (and hence our technique) can accomodate
many extensions at no extra cost.

On our machine (described later), the fastest on-
line approximate search algorithms run at a maxi-
mum speed of 25 megabytes per second when searching
words (for £ = 1), and at a minimum of 1 megabyte per
second (the dynamic programming algorithm, which is
general).

2.3 Searchingin General Metric Spaces

The concept of “approximate” searching has appli-
cations in a vast number of fields. Some examples are
images, fingerprints or audio databases; machine learn-
ing; image quantization and compression; text retrieval
(for approximate string matching or for document sim-
ilarity); genetic databases; etc.

All those applications have some common charac-
teristics. There is a universe U of objects, and a non-
negative distance function d : U x U — R* defined
among them. This distance satisfies the three axioms
that makes the set a metric space

d(CC, y) = 0 <
d(:c, y) = d(yv :c)
d(z,z) < d(z,y)+d(y,2)

where the last one is called the “triangular inequality”
and is valid for many reasonable distance functions.
The smaller the distance between two objects, the more
“similar” they are. This distance is considered expen-
sive to compute (e.g. comparing two fingerprints). We
have a finite database S C U, which is a subset of the
universe of objects and can be preprocessed (to build
an index, for instance). Later, given a new object from
the universe (a query ¢), we must retrieve all similar
elements found in the database. There are different
queries depending on the application, but the simplest
one is: given a new element ¢ and a maximum dis-
tance k, retrieve all the elements in the set which are
at distance at most k from gq.

This is applicable to our problem because we have
a set of elements (the vocabulary) and the distance
ed() satisfies the stated axioms. A number of data
structures exist to index the vocabulary so that the
queries can be answered without inspecting all the el-
ements. Our distance is discrete (i.e. gives integer
answers), which determines the data structures which
can be used. We briefly survey the main applicable
structures now.

The first proposed structure is the Burkhard-Keller
Tree (or BK-tree) [8], which is defined as follows: an

T =Y

arbitrary element a € S is selected as the root, whose
subtrees are identified by integer values. In the i-th
children we recursively build the tree for all elements
in S which are at distance ¢ from a. This process can
be repeated until there is only one element to process,
or there are no more than b elements (and we store a
bucket of size b).

To answer queries of the form (g, k), we begin at the
root and enter into all children 7 such that d(a,q) —
k <14 <d(a,q)+ k, and proceed recursively (the other
branches are discarded using the triangular inequality).
If we arrive to a leaf (bucket of size one or more) we
compare sequentially all the elements. We report all
the elements z found that satisfy d(g, z) < k.

Another structure is called “Fixed-Queries Tree” or
FQ-tree [3]. This tree is basically a BK-tree where all
the elements stored in the nodes of the same level are
the same (and of course do not necessarily belong to
the set stored in the subtree), and the real elements are
all in the leaves. The advantage of such construction
is that some comparisons are saved between the query
and the nodes along the backtracking that occurs in
the tree. If we visit many nodes of the same level, we
do not need to perform more than one comparison per
level. This is at the expense of somewhat taller trees.
Another variant is proposed in [3], called “Fixed-Height
FQ-trees”, where all the leaves are at the same depth A,
regardless of the bucket size. This makes some leaves
deeper than necessary, which makes sense because we
may have already performed the comparison between
the query and one intermediate node, therefore elimi-
nating for free the need to compare the leaf. In [17], an
intermediate structure between BK-trees and FQ-trees
is proposed.

An analysis of the performance of FQ-trees is pre-
sented in [3], which disregarding some complications
can be applied to BK-trees as well. We show the re-
sults in the Appendix. We also give an analysis of
fixed-height FQ-trees which is new.

Some approaches designed for continuous distance
functions , e.g. [19, 23, 7, 10], are not covered in this
brief review. The reason is that these structures do not
use all the information obtained from the comparisons,
since this cannot be done in continuous spaces. This
is, however, done in discrete spaces and this fact makes
the reviewed structures superior to those for continuous
spaces, although they would not be directly applicable
to the continuous case. We also do not cover algorithms
which need O(n?) space such as [21] because they are
impractical for our application.

Approximate

Search \

)

... doctor | doctoral | document| documental | extra | ...

Metric Space
Data Structure

Vocabulary

Exact or specialized search
Figure 2. Proposed data structure.

3 The Vocabulary as a Metric Space

Traversing the whole vocabulary online is like com-
paring the query against the whole database in a metric
space. Our proposal is to organize the vocabulary such
as to avoid the complete online traversal. This organi-
zation is based on the fact that we want, from a set of
words, those which are at edit distance at most k& from
a given query. The edit distance ed() used satisfies the
axioms which make it a metric, in particular a discrete
metric.

The proposal is therefore, instead of storing the vo-
cabulary as a sequence of words, organize it as a metric
space using one of the available techniques. The dis-
tance function to use is ed(), which is computed by dy-
namic programming in time O(mym;), where m; and
mgo are the lengths of the two words to compare. Al-
though this comparison takes more than many efficient
algorithms, it will be carried out only a few times to
get the answer. On the other hand, the dynamic pro-
gramming algorithm is very flexible to add new editing
operations or changing their cost, while the most effi-
cient online algorithms are not that flexible.

Figure 2 shows our proposed organization. The vo-
cabulary is stored as a contiguous text (with separators
among words) where the words are sorted. This allows
exact or prefix retrieval by binary search, or another
structure can be built onto it. The search structure
to allow errors goes on top of that array and allows
approximate or exact retrieval.

An important difference between the general as-
sumptions and our case is that the distance function
is not so costly to compute as to make negligible all
other costs. For instance, the space overhead and non-
locality of accesses incurred by the new search struc-

tures could eliminate the advantage of comparing the
query against less words in the vocabulary. Hence, we
do not consider simply the number of comparisons but
the complete CPU times of the algorithms, and com-
pare them against the CPU times of the best sequen-
tial search algorithms run over the complete vocabu-
lary. Moreover, the efficiency in all cases depends on
the number of errors allowed (all the algorithms worsen
if more errors are allowed). We have also to consider
the extra space incurred because the vocabulary is al-
ready large to fit in main memory. Finally, although
the asymptotic analysis of the Appendix shows that
the number of traversed nodes is sublinear, we must
verify how does this behave for the vocabulary sizes
which are used in practice.

It is interesting to notice that any structure to search
in a metric space can be used for exact searching, since
we just search allowing zero errors (i.e. distance zero).
Although not as efficient as data structures designed
specifically for exact retrieval (such as hashing or bi-
nary search), the search times may be so low that the
reduced efficiency is not as important as the fact that
we do not need an additional structure for exact search

(such as a hash table).

4 Experimental Results

We show experimentally the performance obtained
with our metric space techniques against online algo-
rithms. We ran our experiments on a Sun UltraSparc-1
of 167 MHz, with 32 Mb of RAM, running Solares 2.5.1.

We tested three different structures: BK-trees
(BKT), FQ-trees (FQT) and FQ-trees of fixed height
(FQH). For the first two we tested buckets of size 1, 10
and 20; while for the last one we tested fixed heights
of 5, 10 and 15. As explained before, other structures
for metric spaces are not well suited to this case (we
verified experimentally this fact). We used the 500,000
words (5 Mb) vocabulary of the English TREC collec-
tion (1 Gb). The vocabulary was randomly permuted
and separated in 10 incremental subsets of size 50,000
to 500,000.

Our first experiment deals with space and time over-
head of the data structures that implement the search
in a metric space, and its suitability for exact search-
ing. Figure 3 shows the results. Asit can be seen, build
times are linear for FQH (exactly h comparisons per
element) and slightly superlinear (O(nlogn) in fact,
since the height is O(logn)) for BKT and FQT. The
overhead to build them is normally below 2 minutes,
which is a small percentage (10% at most) of the time
normally taken to build an index for a 1 Gb text data-
base.

If we consider extra space, we see that the BKT
poses a fixed space overhead, which reaches a maximum
of 115% for b = 1. This corresponds to the fact that
the BKT stores at most one node per element. The
space of the FQT is slightly superlinear (the internal
nodes are empty) and for this experiment is well above
200% for b = 1. Finally, the space of the FQH tends
to a constant, although in our case is very large except
for h = 5! (the case h = 15 is above 500% and is not
shown).

Finally, we show that the work to do for exact
searching involves a few distance evaluations (20 or
less) with very low growth rate (logarithmic). This
shows that the structure can be also used for exact
searching. The exception is FQH (h = 5), since the
FQH is O(n) time for fixed h, and this is noticed es-
pecially for small h (it grows linearly from 100 to 1000
and is not shown).

We show in Figure 4 the query performance of the
indices to search with one error. As it can be seen, no
more than 5-8% of the dictionary is traversed (the per-
centage is decreasing since the number of comparisons
are sublinear except for FQH). The user times corre-
spond quite well to the number of comparisons. We
show the percentage of user times using the structures
versus the best online algorithm for this case [6] (as im-
plemented in [4]). As it can be seen, for the maximum
dictionary size we reach 40% of the online time for the
best metric structures. From those structures, we be-
lieve that BKT with & = 1 is the best choice, since
it is faster than all the FQT’s (and takes less space)
and it is similar to FQH (h = 15) and takes much
less space. Another alternative which takes less space
(close to 70%) is BKT with & = 10, while it achieves
60% of the times of online searching.

The result for two errors (not shown) is not so good.
This time the metric space algorithms do not improve
the online search, despite that the best ones traverse
only 17%-25% of the vocabulary. The reason is that
the offline algorithms are much more sensitive to the
error level than the online ones. This shows that our
scheme is only useful to search with one error.

Table 1 shows the results of the least squares fit-
ting over the number of comparisons performed by the
different data structures. For & = 0 we obtain a good
logarithmic approximation, while the bucket size seems
to affect the constant rather than the multiplying fac-
tor. The exception is the FQH, which is O(n) (and the
constant is very close to h as expected).

For & = 1, the results confirm the fact that the
structures inspect a sublinear number of nodes. Notice

1Tt is possible to have h as a function of n, but we cover the
reasonable range here by showing three fixed values

that the exponent is smaller for BKT than for FQT,
although the last ones have a better constant. The
constant, on the other hand, seems to keep unchanged
when the bucket size varies (only the exponent is af-
fected). This allows to extrapolate that BKT will con-
tinue to improve over FQT for larger data sets?. The
FQH, on the other hand, shows clearly that it are in
fact linear for fixed A (this can be changed if h is taken
as a function of n, but we have not done this yet).

The results for & = 2 increase the exponent (which
will be close to 1 for & = 3). The exception is FQH,
which increases a lot the constant (its exponent can-
not possibly increase). The percentual error is between
15% and 20% in all cases.

The least squares fitting over the real CPU times
give similar growth rates, for instance it is O(n°°%) for

BKT (b= 1).
5 Conclusions

We proposed a new method to organize the vocab-
ulary of inverted files in order to support approximate
searching on the indexed text collection. Most present
methods rely on a sequential search over the vocabulary
words using a classical online algorithm. We propose
instead to organize the vocabulary as a metric space,
taking advantage of the fact that the edit distance that
models the approximate search is indeed a metric. This
method can also be applied to other problems when a
dictionary is searched allowing errors, such as spelling
applications.

We show in our experiments over a 5 Mb vocabu-
lary of a 1 Gb text, that the best data structure for
this task is the Burkhard-Keller tree with no buckets.
That structure allows, with almost negligible construc-
tion time and reasonable space overhead (100% extra
over the space taken by the plain vocabulary), to search
close to 5%-8% of the dictionary for one error and 17%-
25% for two errors. This cuts down the times of the
best online algorithms to 40%-60% for one error, al-
though for two errors the online algorithms (though
traversing the whole dictionary) are faster. We have
shown experimentally that those trees, as well as the
Fixed-Queries trees, perform a sublinear number of
comparisons, close to O(n%%-%7) for 1 error. We also
present the first analysis for fixed-height Fixed Queries
trees.

Our implementation of the BK-trees is not opti-
mized for space. We estimate that with a careful imple-

2Tt is well known that all the conclusions about metric space
data structures depend strongly on the particular space and dis-
tance function, so this does not allow a generalization to other
cases.

5000000 —

4000000

3000000

2000000

1000000

100

n
0 T T T T T T T T 1 n 6 T T T T T T T T 1
1 2 3 45 6 7 8 9 10 1 2 3 45 6 7 8 9 10
— FQTb=1 —~ FQH h = 15 —~— BKT b=1
—o- FQT b = 10 — FQH h = 10 —o~ BKT b =10
o FQT b = 20 -« FQHh =5 o BKT b =20

Figure 3. Comparison of the data structures. From top to bottom and left to right, number of distance
evaluations and user times to build them, extra space taken over the vocabulary size, and number of
distance evaluations for exact search. The z axis is expressed in multiples of 50,000.

Structure k=0 k=1 k=2
BKT (b=1) 0.87In(n) — 1.52 | 2.25 n9539 [1.91 n0-822
BKT (b=10) | 0.96In(n) +0.39 | 2.21 n0-673 | 1.52 n0-8%9
BKT (b=20) | 0.69In(n) +8.36 | 2.16 n%%°1 | 1.42 n0-871
FQT (b=1) 1.91In(n) — 10.84 | 0.36 nO777 | 0.54 n0-9%¢
FQT (b = 10) 1.17In(n) + 0.26 | 0.50 n%-798 | 0.63 n0-921
FQT (b = 20) 1.73In(n) — 1.58 | 0.49 n%81* | 0.69 n091°
FQH (h=5) | 2.3x 10730 +6.27 | 0.15 n9998 | 0.46 n0-992
FQH (h=10) | 1.7 x 10=%n + 10.61 | 0.04 n1-%6 | 0.30 n!-00¢
FQH (h=15) | 1.1 x 10=%n + 16.02 | 0.02 n0-99%2 | 0.26 n®-99¢

Table 1. Least squares fitting for the number of comparisons made by the different data structures.

20000 —
16000
12000
8000

4000

0.20 - 100 -
0.16 - B ° %
0.12 -
0.08 -

0.04 1 8

0.00 T T T T T T T 1
9 10

—_
(3]
w
=
o
(=2
-3
oo

- FQTb=1 - FQH h =15 — BKTb=1

-~ FQT b= 10 - FQH h =10 -~ BKT b =10

o FQT b =20 - FQHh =35 - BKT b=20
Figure 4. Search allowing one error. The first row shows the number of comparisons (on the left,
absolute number, on the right, percentage over the whole dictionary). The second row shows user

times (on the left, seconds, on the right, percentage over the best online algorithm). The z axis is
expressed in multiples of 50,000.

mentation the overhead can be reduced from 100% to
65%. This overhead is quite reasonable in most cases.
We also leave for future work putting % as a function of
n for fixed-height Fixed-Queries trees, so that they also
show their sublinear behavior that we have analytically
predicted in this paper.

References

[1] M. Aradjo, G. Navarro, and N. Ziviani. Large text
searching allowing errors. In Proc. WSP’97, pages 2—
20. Carleton University Press, 1997.

[2] R. Baeza-Yates. Text retrieval: Theory and practice.
In 12th IFIP World Computer Congress, volume I,
pages 465-476. Elsevier Science, Sep 1992.

[3] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu.
Proximity matching using fixed-queries trees. In Proc.
CPM’94, LNCS 807, pages 198-212, 1994.

[4] R. Baeza-Yates and G. Navarro. A faster algorithm
for approximate string matching. In Proc. CPM’96,
LNCS 1075, pages 1-23, 1996.

[5] R. Baeza-Yates and G. Navarro. Block-addressing in-
dices for approximate text retrieval. In Proc. ACM
CIKM’97, pages 1-8, 1997.

[6] R. Baeza-Yates and C. Perleberg. Fast and practi-
cal approximate pattern matching. In Proc. CPM’92,
pages 185-192, 1992. LNCS 644.

[7] S. Brin. Near neighbor search in large metric spaces.
In Proc. VLDB’95, pages 574-584, 1995.

[8] W. Burkhard and R. Keller. Some approaches to best-
match file searching. CACM, 16(4):230-236, 1973.

[9] W. Chang and J. Lampe. Theoretical and empiri-
cal comparisons of approximate string matching algo-
rithms. In Proc. CPM’92, pages 172-181, 1992. LNCS
644.

[10] C. Faloutsos and K. Lin. Fastmap: a fast algorithm
for indexing, data mining and visualization of tra-
ditional and multimedia datasets. ACM SIGMOD
Record, 24(2):163-174, 1995.

[11] D. Harman. Overview of the Third Text REtrieval
Conference. In Proc. TREC-3, pages 1-19, 1995. NIST
Special Publication 500-207.

[12] J. Heaps. Information Retrieval - Computational and
Theoretical Aspects. Academic Press, 1978.

[13] G.Landau and U. Vishkin. Fast string matching with
k differences. J. of Computer and Systems Science,
37:63-78, 1988.

[14] U. Manber and S. Wu. GLIMPSE: A tool to search
through entire file systems. Technical Report 93-34,
Dept. of CS, Univ. of Arizona, Oct 1993.

[15] G. Myers. A fast bit-vector algorithm for approximate
pattern matching based on dynamic progamming. In
Proc. CPM’98. Springer-Verlag, 1998. To appear.

[16] P. Sellers. The theory and computation of evolution-
ary distances: pattern recognition. J. of Algorithms,
1:359-373, 1980.

[17] M. Shapiro. The choice of reference points in best-
match file searching. CACM, 20(5):339-343, 1977.

[18] E. Sutinen and J. Tarhio. On using g-gram locations in
approximate string matching. In Proc. ESA’95, 1995.
LNCS 979.

[19] J. Uhlmann. Satisfying general proximity/similarity
queries with metric trees. Information Processing Let-
ters, 40:175-179, 1991.

[20] E. Ukkonen. Finding approximate patterns in strings.
J. of Algorithms, 6:132-137, 1985.

[21] E. Vidal. An algorithm for finding nearest neighbours
in (approximately) constant average time. Pattern
Recognition Letters, 4:145-157, 1986.

[22] S. Wu and U. Manber. Fast text searching allowing
errors. CACM, 35(10):83-91, 1992.

[23] P. Yianilos. Data structures and algorithms for near-
est neighbor search in general metric spaces. In Proc.

ACM-SIAM SODA’93, pages 311-321, 1993.

Appendix. Analysis of Fixed-Height FQ-
trees

We call p; the probability that two random elements
from U are at distance 7. Hence, > ..op; = 1, and
p—; — 0 for ¢ > 0. In [3] the FQ-trees are analyzed
under the simplifying assumption that the p; distrib-
ution does not change when we enter into a subtree
(their analysis is later experimentally verified). They
show that the number of distance evaluations done to
search an element with tolerance k (in our application,
allowing k errors) on an FQ-tree of bucket size b is

Py(n) = O(n®)

where 0 < o < 1 is the solution of

> (k)pf =1

i>0
where v; (k) = Z;Z’:_kpj. This Py result is the sum
of the comparisons done per level of the tree (a loga-
rithmic term) plus those done at the leaves of the tree,
which are O(n®).

The CPU cost depends also on the number of tra-
versed nodes Ni(n), which is also shown to be O(n®)
(the constant is different). Finally, the number of dis-
tance evaluations for an exact search is O(b + log n).

Under the same simplifying assumption the analysis
applies to BK-trees too. The main difference is that
the number of comparisons is for this case the same
as the number of nodes traversed plus the number of
leaf elements compared, which also adds up O(n?) (al-
though the constant is higher). The distribution of the
tree is different but this difference is overriden by the
simplifying assumptions anyway.

We analyze now FQ-trees of fixed height. The analy-
sis is simpler than for FQ-trees. Let F)*(n) be the num-
ber of elements not yet filtered by a proximity search of

distance up to k after applying s fixed queries. Then,
the expected number of comparisons for a proximity
query is

P(n) = h+ Ff(n)

Let (r be the probability of not filtering an element
when doing the proximity search at distance k. If an
element is at distance 7 to a query, it is not filtered
with probability Z;Z’:_ & Dj- The element is at distance
1 with probability p;, so

itk

Be=d_p Y. pi

i>0 j=i—k

Note that 8y converges to 1 when k increases. So, the
expected number of elements not filtered between two
consecutive levels are related by F}*(n) = B F,f_l(n).
Clearly, FY = n, so F{(n) = Bin. Because F}(n)
decreases when h grows, the optimal 4 is obtained when
P}(n) < P}*!(n). That is, when

h+pBin<h+1+p8tn

Solving, we obtain the optimal & for a given %

. _ log(n(1 -)
log(1/6)

Replacing this h in Pj*(n) we get

_ log(n(1 — B)) 1
Pu(n) = log(1/8k) * 1— B

That is, P(n) is logarithmic for the optimal h; (and
linear for a fixed k). This is asymptotically better than
the O(n®) results for FQ-trees and BK-trees. Never-
theless, the constant factor in the log term grows ex-
ponentially with &, so this is good for small to medium
k.

To obtain this logarithmic behavior, the fixed height
must increase as the number of elements grows (i.e.
hi = O(logn)). Unfortunately the optimal height is
dependent on the search tolerance k. However, the log-
arithmic cost can be maintained even for non-optimal A
provided we use h = ©(5logn), where § > 1/log1/5s
(i.e. we overestimate the optimal height).

On the other hand, the number of nodes visited is
bigger than in FQ-trees. In fact, using a recurrence
similar to the one for FQ-trees, it is possible to show
that the number of nodes visited is O(hgn®) for a < 1
which could easily be larger than n even for small %.
So, these trees are good when the cost of comparing
two elements is very high, like comparing two genetic
sequences, polygons or graphs.

A related problem is the size of the data structure,
which can be superlinear. In fact, it is possible that the

optimal h cannot be used in many applications because
of space limitations (for instance, we could hardly reach
the limit A = 15 in this work).

Another problem is that the variance of the number
of elements filtered per level is large (increases with
every level), so we may need more queries in practice
to achieve the desired filtering.

To decrease the number of nodes visited, we may
compress paths of degree 1 by using the same idea of
Patricia trees. We can store in every node which fixed
query (or how many we have to skip) we have to use
in that node. Still, we cannot compress all the nodes if
we want to filter that element. Another idea, instead
of fixing the height, is fixing the probability of filtering
in every path recursively.

