Run-Length FM-index (Extended Abstract)

Veli Mäkinen1 and Gonzalo Navarro2

1 Dept. of Computer Science, Univ. of Helsinki, Finland.
2 Dept. of Computer Science, Univ. of Chile, Chile.

Abstract. The FM-index is a succinct text index needing only $O(H_n n)$ bits of space, where n is the text size and H_n is the nth order entropy of the text. Hidden in the sublinear factor lies an exponential dependence on the alphabet size, σ. In this paper we show how the same ideas can be used to obtain an index needing $O(H_n n)$ bits of space, with the constant factor depending only logarithmically on σ. Our space complexity becomes better as soon as $\sigma \log \sigma > \log n$, which means in practice for all but very small alphabets, even with huge texts. We retain the same search complexity of the FM-index.

1 FM-index

The FM-index [3] is based on the Burrows-Wheeler transform (BWT) [1], which produces a permutation of the original text, denoted by $T^{\text{but}} = \text{bwt}(T)$. String T^{but} is a result of the following forward transformation: (1) Append to the end of T a special end marker $\$$, which is lexicographically smaller than any other character; (2) form a conceptual matrix M whose rows are the cyclic shifts of the string $T\$$, sorted in lexicographic order; (3) construct the transformed text L by taking the last column of M. The first column is denoted by F.

The suffix array A of text $T\$$ is essentially the matrix M: $A[i] = j$ iff the ith row of M contains string $t_{j}t_{j+1}\cdots t_{n}\$$t_{1}\cdots t_{j-1}$. Given the suffix array, the search for the occurrences of the pattern $P = p_{1}p_{2}\cdots p_{m}$ is trivial. The occurrences form an interval $[s_{p}, e_{p}]$ in A such that suffixes $t_{A[i]}t_{A[i]+1}\cdots t_{n}$, $s_{p} \leq i \leq e_{p}$, contain the pattern as a prefix. This interval can be searched for using two binary searches in time $O(m \log n)$ [5].

The suffix array of text T is represented implicitly by T^{but}. The novel idea of the FM-index is to store T^{but} in compressed form, and to simulate a backward search in the suffix array as follows:

```
Algorithm FM_Search(P[1,m],T^{\text{but}}[1,n])
(1) c = P[m]; i = m;
(2) s_p = C_T[c] + 1; e_p = C_T[c + 1];
(3) while (s_p \leq e_p) and (i \geq 2) do
  (4) c = P[i-1];
  (5) s_p = C_T[c] + Occ(T^{\text{but}}, c, s_p - 1) + 1;
  (6) e_p = C_T[c] + Occ(T^{\text{but}}, c, e_p);
  (7) i = i - 1;
(8) if (e_p < s_p) then return "not found" else return "found (e_p - s_p + 1) occs".
```

The above algorithm finds the interval $[s_{p}, e_{p}]$ of A containing the occurrences of the pattern P. It uses the array C_T and function $Occ(X, c, i)$, where $C_T[c]$ equals the number of occurrences of characters $\{1, \ldots, c - 1\}$ in the text T and $Occ(X, c, i)$ equals the number of occurrences of character c in the prefix $X[1,i]$.

Ferragina and Manzini [3] go on to describe an implementation of $Occ(T^{\text{but}}, c, i)$ that uses a compressed form of T^{but}; they show how to compute $Occ(T^{\text{but}}, c, i)$ for any c and i in constant time. However, to achieve this they need exponential space (in the size of the alphabet).

2 Run-Length FM-Index

Our idea is to exploit run-length compression to represent T^{but}. An array S contains one character per run in T^{but}, while an array B contains n bits and marks the beginnings of the runs.
Definition 1. Let string $T^\text{but} = c_1^i c_2^i \cdots c_n^i$ consist of n' runs, so that the i-th run consists of l_i repetitions of character c_i. Our representation of T^but consists of string $S = c_1 c_2 \cdots c_{n'}$ of length n', and bit array $B = 10^{i_1} 10^{i_2} \cdots 10^{i_{n'}}$.

It is clear that S and B contain enough information to reconstruct T^but: $T^\text{but}[i] = S[\text{rank}(B,i)]$, where $\text{rank}(B,i)$ is the number of 1’s in $B[1 \ldots i]$ (so $\text{rank}(B,0) = 0$). Function rank can be computed in constant time using $o(n)$ extra bits [4,6,2]. Hence, S and B give us a representation of T^but that permits us accessing any character in constant time and requires at most $n' \log \sigma + n + o(n)$ bits. The problem, however, is not only how to access T^but, but also how to compute $C_T[c] + \text{Occ}(T^\text{but}, c,i)$ for any c and i.

In the following we show that the above can be computed by means of a bit array B', obtained by reordering the runs of B in lexicographic order of the characters of each run. Runs of the same character are left in their original order. The use of B' will add $n + o(n)$ bits to our scheme. We also use C_S, which plays the same role of C_T, but it refers to string S.

Definition 2. Let $S = c_1 c_2 \cdots c_{n'}$ of length n', and $B = 10^{i_1} 10^{i_2} \cdots 10^{i_{n'}}$. Let $p_1 p_2 \ldots p_{n'}$ be a permutation of $1 \ldots n'$ such that, for all $1 \leq i < n'$, either $c_{p_i} < c_{p_{i+1}}$ or $c_{p_i} = c_{p_{i+1}}$ and $p_i < p_{i+1}$. Then, bit array B' is defined as $B' = 10^{i_1 n'} 10^{i_2 n'} \cdots 10^{i_{n'} n'}$.

We now give the theorems that cover different cases in the computation of $C_T[c] + \text{Occ}(T^\text{but}, c,i)$ (see [7] for proofs). They make use of select, which is the inverse of rank: $\text{select}(B',j)$ is the position of the jth 1 in B' (and $\text{select}(B',0) = 0$). Function select can be computed in constant time using $o(n)$ extra bits [4,6,2].

Theorem 1. For any $c \in \Sigma$ and $1 \leq i \leq n$, such that $T^\text{but}[i] \neq c$, it holds

$$C_T[c] + \text{Occ}(T^\text{but}, c,i) = \text{select}(B', C_S[c] + 1 + \text{Occ}(S,c,\text{rank}(B,i))) - 1$$

Theorem 2. For any $c \in \Sigma$ and $1 \leq i \leq n$, such that $T^\text{but}[i] = c$, it holds

$$C_T[c] + \text{Occ}(T^\text{but}, c,i) = \text{select}(B', C_S[c] + \text{Occ}(S,c,\text{rank}(B,i))) + i - \text{select}(B', \text{rank}(B,i)).$$

Since functions rank and select can be computed in constant time, the only obstacle to use the theorems is the computation of Occ over string S.

Instead of representing S explicitly, we will store one bitmap S_c per text character c, so that $S_c[i] = 1$ iff $S[i] = c$. Hence $\text{Occ}(S,c,i) = \text{rank}(S_c,i)$. It is still possible to determine in constant time whether $T^\text{but}[i] = c$ or not: an equivalent condition is $S_c[\text{rank}(B,i)] = 1$.

According to [8], a bit array of length n' where there are f 1’s can be represented using $\log (\binom{n'}{f}) + o(f) + O(\log \log n')$ bits, while still supporting constant time access and constant time rank function for the positions with value 1. It can be shown (see [7]) that the overall size of these structures is at most $n' (\log \sigma + 1.44 + o(1)) + O(\sigma \log n')$.

We have shown in [7] that the number of runs in T^but is limited by $2H_k n + \sigma^k$. By adding up all our space complexities we obtain $2n (H_k (\log \sigma + 1.44) + 1 + o(1)) + O(\sigma \log n) = 2n H_k \log \sigma (1 + o(1))$ bits of space if $\sigma = O(n/\log n)$.

References