
13.2. REPETITIVE TEXT COLLECTIONS 715

Algorithm 13.4 shows how we can do the LZ76 parsing when sources and
targets can overlap. It serves to illustrate the key ideas; various improvements
can be found in the references we have given.

The algorithm needs the suffix array A of T and its inverse A−1. We also
need the structures to find previous and next smaller values on A, psvA and
nsvA, which require 2n+o(n) bits (see Section 13.1.4). The idea is to scan the
text left to right, and for each new phrase starting at i, find the suffix array
position j pointing to it, A[j] = i. Then the positions of A nearest to j (to the
left and to the right) with values smaller than A[j] are the suffixes starting
in T [1, i − 1] that are lexicographically closest to T [i, n], and thus the ones
sharing the longest prefix with it. Those positions, prev and next, are found
with psvA(j) and nsvA(j), respectively. The values lcp(T [i, n], T [A[prev], n])
and lcp(T [i, n], T [A[next], n]) are found directly by scanning T . Then we
choose the longest of the two to form the next phrase. If we perform � steps
along the scanning process, then the length of the phrase is also �, so the
total number of scanning steps is O(n).

If we use plain representations of A and A−1, then the total space required
is O(n log n) bits, and the total LZ76 parsing time is O(n). To reduce space,
we can first build a compressed suffix array of T that computes A and A−1

in time tA = O(logσ n), for example the one based on bitvectors seen in
Section 11.1.2. It can be built in O(n) time and O(n log σ) bits (Belazzougui,
2015) (see also Section 11.4). Then we can build the structures psvA and nsvA
in O(n tA) time, by accessing each cell of A in time O(log n). The parsing
itself takes time O(z tA + n) = O(n). In total, we perform the LZ76 parsing
in O(n logσ n) time and O(n log σ) bits of space.



716 CHAPTER 13. RECENT TRENDS

Algorithm 13.4: Performing the LZ76 parsing of T [1, n] allowing
source/target overlaps. We assume that psvA and nsvA return 0 and
n+ 1, respectively, when there is no answer.
Input : A text T [1, n].
Output: Outputs the z triples of the LZ76 parsing of T .

1 Build the suffix array A of T , as well as A−1

2 Build the structures to compute psvA and nsvA
3 i ← 1
4 while i ≤ n do
5 j ← A−1[i]
6 prev ← psvA(j)
7 if prev = 0 then lp ← 0
8 else lp ← lcp(T [i, n], T [A[prev], n]) (computed by brute force)
9 next ← nsvA(j)

10 if next = n+ 1 then ln ← 0
11 else ln ← lcp(T [i, n], T [A[next], n]) (computed by brute force)
12 len ← max(lp, ln)
13 if len = 0 then pos ← 0
14 else if len = lp then pos ← A[prev]
15 else pos ← A[next]
16 output (pos, len, T [i+ len])
17 i ← i+ len+ 1

18 Free A, A−1, and the structures of psvA and nsvA


