Algorithm 13.4 shows how we can do the LZ76 parsing when sources and targets can overlap. It serves to illustrate the key ideas; various improvements can be found in the references we have given.

The algorithm needs the suffix array A of T and its inverse A^{-1}. We also need the structures to find previous and next smaller values on A, psv_{A} and nsv $_{A}$, which require $2 n+o(n)$ bits (see Section 13.1.4). The idea is to scan the text left to right, and for each new phrase starting at i, find the suffix array position j pointing to it, $A[j]=i$. Then the positions of A nearest to j (to the left and to the right) with values smaller than $A[j]$ are the suffixes starting in $T[1, i-1]$ that are lexicographically closest to $T[i, n]$, and thus the ones sharing the longest prefix with it. Those positions, prev and next, are found with $\operatorname{psv}_{A}(j)$ and $\operatorname{nsv}_{A}(j)$, respectively. The values $\operatorname{lcp}(T[i, n], T[A[p r e v], n])$ and $\operatorname{Icp}(T[i, n], T[A[n e x t], n])$ are found directly by scanning T. Then we choose the longest of the two to form the next phrase. If we perform ℓ steps along the scanning process, then the length of the phrase is also ℓ, so the total number of scanning steps is $\mathcal{O}(n)$.

If we use plain representations of A and A^{-1}, then the total space required is $\mathcal{O}(n \log n)$ bits, and the total LZ76 parsing time is $\mathcal{O}(n)$. To reduce space, we can first build a compressed suffix array of T that computes A and A^{-1} in time $t_{A}=\mathcal{O}\left(\log _{\sigma} n\right)$, for example the one based on bitvectors seen in Section 11.1.2. It can be built in $\mathcal{O}(n)$ time and $\mathcal{O}(n \log \sigma)$ bits (Belazzougui, 2015) (see also Section 11.4). Then we can build the structures psv_{A} and nsv_{A} in $\mathcal{O}\left(n t_{A}\right)$ time, by accessing each cell of A in time $\mathcal{O}(\log n)$. The parsing itself takes time $\mathcal{O}\left(z t_{A}+n\right)=\mathcal{O}(n)$. In total, we perform the LZ76 parsing in $\mathcal{O}\left(n \log _{\sigma} n\right)$ time and $\mathcal{O}(n \log \sigma)$ bits of space.

```
Algorithm 13.4: Performing the LZ76 parsing of \(T[1, n]\) allowing
source/target overlaps. We assume that \(\mathrm{psv}_{A}\) and \(\mathrm{nsv}_{A}\) return 0 and
\(n+1\), respectively, when there is no answer.
    Input : A text \(T[1, n]\).
    Output: Outputs the \(z\) triples of the LZ76 parsing of \(T\).
    1 Build the suffix array \(A\) of \(T\), as well as \(A^{-1}\)
    Build the structures to compute \(\mathrm{psv}_{A}\) and \(\mathrm{nsv}_{A}\)
    \(i \leftarrow 1\)
    while \(i \leq n\) do
        \(j \leftarrow A^{-1}[i]\)
        prev \(\leftarrow \operatorname{psv}_{A}(j)\)
        if prev \(=0\) then \(l p \leftarrow 0\)
        else \(l p \leftarrow \operatorname{Icp}(T[i, n], T[A[p r e v], n]\) ) (computed by brute force)
        next \(\leftarrow \operatorname{nsv}_{A}(j)\)
        if next \(=n+1\) then \(\ln \leftarrow 0\)
        else \(l n \leftarrow \operatorname{lcp}(T[i, n], T[A[n e x t], n])\) (computed by brute force)
        len \(\leftarrow \max (l p, l n)\)
        if len \(=0\) then pos \(\leftarrow 0\)
        else if \(l e n=l p\) then \(p o s \leftarrow A[p r e v]\)
        else pos \(\leftarrow A[\) next \(]\)
        output (pos,len, \(T[i+l e n]\) )
        \(i \leftarrow i+l e n+1\)
    Free \(A, A^{-1}\), and the structures of \(\mathrm{psv}_{A}\) and \(\mathrm{nsv}_{A}\)
```

