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1 INTRODUCTION

Note. This paper uses colorblind-friendly colors in notation to convey information, and is best
consumed using an electronic device or color printer.

Over the past decade, differential privacy [32] has become the de-facto gold standard in protecting
the privacy of individuals when processing sensitive data. In contrast to traditional approaches like
de-identification, differential privacy provides a formal, composable privacy guarantee. Differen-
tially private algorithms typically protect privacy by selecting from a handful of basic mechanisms
to perturb their outputs. For example, the Laplace mechanism can be used to add noise to the
population count of a city to prevent an adversary from successfully guessing whether or not a
particular individual lives in that city. Most programming-language-based approaches to differential
privacy are applied to verifying either the implementation of a mechanism, such as the Exponential
mechanism, or the composition of multiple uses of mechanisms, such as computing a histogram
using the Laplace mechanism (multiple times) as a primitive.
There are two challenges when writing differentially private programs. First, noise must be

added to the right values in the program in order to achieve some guarantee of privacy; this includes
the final output of the program, as well as many intermediate program values. Second, the correct
amount of noise must be added in those places to achieve the desired amount of privacy. In the
differential privacy framework, privacy is a quantitative feature—more noise gives more privacy.
Adding too little noise is as ineffective as adding no noise at all, and adding too much noise renders
the result of the computation useless. Programmers must therefore ensure they have added enough
noise, in the right places, and that the noise is minimal—a daunting task.

Since differential privacy is a probabilistic, multi-run (hyper [25]) property, it is not straightfor-
ward to develop test cases for differentially private algorithms. Consequently, differentially private
algorithms are usually developed by experts in the field, and these experts produce manual proofs
of privacy for each new algorithm. This reliance on experts is limiting. First, there is a practical
need for developing privacy-preserving applications without access to an expert in differential
privacy. Even still, experts aren’t perfect: for example, several incorrect versions of the Sparse
Vector Technique [31, 32] have appeared in published papers [41], despite being authored and
peer-reviewed by experts in differential privacy.

Due to these challenges, verifying differential privacy in programs via type checking has received
considerable attention. The first such approach, Fuzz [49], uses linear types to verify pure ϵ-
differential privacy. Fuzz and its successor DFuzz [34] have a number of attractive properties,
including support for automation and higher-order programming. Fuzz was the first to use linear
types to bound function sensitivity: how much a function’s output changes given a change to its
input. Sensitivity is then used to determine the (minimal) amount of noise required to achieve
privacy. Fuzz uses the same sensitivity type system to also track privacy, which is advantageous
due to its simplicity, but as a consequence is unable to support advanced variants of differential
privacy, like (ϵ, δ ). A recent approach [29] extends the terminating fragment of Fuzz using graded
comonadic liftings to support advanced variants such as (ϵ, δ )-differential privacy. In the following,
we call this extended language Fuzzϵδ . Another approach, HOARe2, uses relational refinement
types to encode differential privacy [14], and improves on Fuzz-like systems in its ability to support
advanced variants. In general, type-based approaches like Fuzz and HOARe2 are used to verify
programs which compose mechanisms, and not the implementations of mechanisms.

An alternative set of approaches use program logics [15–17, 50] to verify both the implementa-
tions of mechanisms and simple forms of composing mechanisms, while also supporting advanced
variants like (ϵ, δ )-differential privacy [32], zero-concentrated differential privacy [21], and Rényi

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: January 2023.



Contextual Linear Types for Differential Privacy—Extended Version with Proofs 3

differential privacy [44]. However, these benefits come at the expense of automation and support
for higher-order programming.

The Duet language [46] and type system strikes a new balance in this space by building on the
designs of Fuzz and DFuzz. Like Fuzz, Duet supports automation and higher-order programming,
and like Fuzzϵδ , HOARe2 and recently developed program logics, Duet supports advanced variants
of differential privacy. Like all type-based approaches, Duet cannot be used to verify implementa-
tions of mechanisms, however even when verifying programs which compose mechanisms there is
still room to improve: Duet is not expressive enough to support higher-order programming in full
generality—something Fuzz, DFuzz, Fuzzϵδ and HOARe2 are each able to achieve.
This paper presents Jazz, the successor to Duet which significantly improves upon its design.

Jazz is a linear type system with support for latent contextual effects for function sensitivity and
differential privacy; this combination supports advanced privacy variants (like Duet, Fuzzϵδ and
HOARe2), automation (like Duet and DFuzz), and fully general higher-order programming (like
Fuzz/DFuzz, Fuzzϵδ and HOARe2). Like Duet, the Jazz language is built from two mutually-
embedded sublanguages—one for sensitivity, and one for privacy—which allows it to support
advanced variants of differential privacy automatically through typechecking. Also like Duet (and
Fuzz/DFuzz, Fuzzϵδ and HOARe2), Jazz is designed for verifying the composition of mechanisms,
and not their direct implementation.

The key insight of Jazz is the incorporation of latent contextual effects into a linear type system.
A latent effect is one that is deferred or delayed; rather than accounting for the effect immediately, it
is tracked and accounted for later. A contextual effect is one that tracks effect information for each
variable in the context, including closure variables used in higher-order function bodies. Technically,
this is similar to the open closure types introduced by Scherer and Hoffmann [51], specialized to
the tracking of sensitivity and privacy, and generalized to positive type constructors such as sums
and products. In addition to supporting higher-order programming in the presence of advanced
privacy variants, these latent contextual effects also can yield advantages in terms of precision of
the analysis, annotation burden, and modularity.

The challenge of higher-order programming. Consider the n-iteration loop combinator in Fuzz,
loopn , which has type τ → (τ → ⃝τ ) ⊸n ⃝τ . This type describes a two argument function that
takes some value of type τ as the first argument, a function as second argument (which accepts
and returns values of type τ ), and returns a final value of type τ . The modality ⃝ in the return type
for the function argument and final return type indicates that the function is probabilistic (due to
the use of differential privacy mechanisms), and when appearing in the codomain of a linear arrow
⊸ indicates that the function satisfies differential privacy.
Both function sensitivity and differential privacy are two-run (hyper)properties of a function

output w.r.t. some particular input. For example, a function of body 2x + 3y is 2-sensitive in x and
3-sensitive in y, meaning that if e.g. input x varies by at most d and y is held constant, then the
function output varies at most by 2d . When a closure is created, the closure captures sensitivities
as well as values, so the sensitivity of the closure λx . 2x + 3y would be “3 in y”. The situation is
analogous when tracking privacy and creating closures which capture privacy costs. Looking back
to the type of loopn in Fuzz, the second argument will be a closure whose captured environment
tracks a privacy cost for each closure variable. The interpretation of the linear function type⊸n is
to scale the privacy effects in the closure environment of the looping function of type τ → ⃝τ by n.
We call this scaling implicit and pervasive in Fuzz because it occurs at every let-binding and function
call. In the original Fuzz language, such scaling is only sound and precise for pure ϵ-differential
privacy, and as a consequence of this pervasive scaling, Fuzz could not be instantiated to advanced
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differential privacy variants, until recently, where Fuzzϵδ now support advanced variants such as
(ϵ, δ )-differential privacy through a path metric construction.

The Duet language prohibits this pervasive scaling in its type system in order to support
advanced differential privacy variants, but as a consequence it cannot initially derive a type for
loopn , and instead it must define a custom typing rule for loopn . The issue is that Duet prohibits
all scaling of privacy quantities. However, scaling is allowable (i.e., sound) in special restricted
instances when using advanced variants. The challenge is then to disallow implicit pervasive scaling
while allowing explicit restricted scaling. Because no type can be written for loopn in Duet, it (and
many other higher-order functions) must be given explicit typing rules. This poses a significant
restriction on higher-order programming, for instance loopn cannot be lambda-abstracted in Duet.
Jazz directly solves the challenge of encoding the explicit, restricted scaling that is required

to support both advanced privacy variants and higher-order programming. In Jazz, the type of

the n-iteration construct is: loopn : τ → (τ
⌉Σ ⌈ϵ , δ

−−−−−→→ τ )
⌉Σ ⌈nϵ , nδ

−−−−−−−→→ τ . In this type, the privacy effect
on the closure is given an explicit representation notated ⌉Σ⌈ϵ , δ , which means “(ϵ ,δ )-privacy for
variables in the closure environment Σ”. This effect is latent because the effect isn’t “paid for” until
(and each time) the function is called, and it is contextual because it includes a privacy effect (which
may be “zero”) for each free variable in the context. This effect is then explicitly scaled by n, the
number of loop iterations, in the final effect of applying the function.1 More powerful looping
combinators such as advanced composition can also be encoded with these latent contextual effects;
such combinators cannot be described in any prior linear type system—including Fuzz and DFuzz.

Contributions. Jazz supports writing higher-order programs, and automatically verifying that
such programs satisfy advanced variants of differential privacy. The novel features of Jazz—linear
types with latent contextual effects—are crucial for practical differentially-private programming.
We illustrate this expressive power by showing how to encode numerous mechanisms and tools for
differential privacy as Jazz primitives, including the Laplace, Gaussian, and Exponential mechanisms,
advanced composition, and privacy amplification by subsampling. We also demonstrate the use
of Jazz to verify larger algorithms in two case studies: the MWEM algorithm [38] and a recently-
proposed differentially-private machine learning algorithm based on gradient descent with adaptive
gradient clipping [53]. Note that these examples are expressible in Duet only by adding new core
typing rules for each primitive used, which strictly speaking requires re-proving the metatheory of
the extended language. In contrast, Jazz subsumes Duet and supports all these examples without
having to add new typing rules, and with a much smaller core language. Finally, Jazz is amenable to
reasonably efficient automated typechecking; we have implemented a typechecker for the language
that can verify privacy costs for our case studies in milliseconds.
We prove the type soundness of Jazz using a step-indexed logical relation over a mixed big-

step/denotational semantics with embedded discrete probability distributions as probability mass
functions (PMFs).2
In summary, the contributions of this paper are:
• Jazz, a practical, higher-order, general purpose programming language for writing differen-
tially private programs, which supports advanced variants of differential privacy.
• A novel linear type system for Jazz which includes latent contextual effects, allowing to delay
the payment of effects of connectives such as product, sums and functions, until actually

1In addition to the color red, we notate the arrow in privacy function types with a double head ↠ to further visually
distinguish them from sensitivity function arrows→. We describe details such as the definition of the ⌉ ⌈ notation later.
2We restrict ourselves to discrete distributions because considering continuous distributions would complicate the language
semantics (continuous distributions interact badly with higher-order functions) and our main focus here is on the type
system.
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eliminated; e.g. if the second element of a pair is never used, it does not contribute to the
effect of the program.
• A formalization and proof of type soundness of λJ, the core language of Jazz, based on a
proof technique with step-indexed logical relations.
• A prototype implementation of the Jazz typechecker, together with a library of primitives for
differential privacy, and case studies that demonstrate the expressive power and practicality
of Jazz.

We first briefly introduce some key concepts of differential privacy (§ 2) and then give an overview
of key design choices and benefits of contextual linear types in Jazz (§ 3). Jazz is a two-language
design, and what follows is a presentation of each sub-language in two multi-section arcs. First, we
present the sensitivity-only language design (§ 4) and metatheory (§ 5). This language does not
include differential privacy operations in the language, or privacy quantities in types. Next, building
on this sensitivity core, we present the full privacy language design and metatheory (§ 6 and 7).
Finally, we discuss implementation details including gaps between the actual implementation of
Jazz and its formal model (§ 8), present a few case studies in Jazz (§ 9), discuss related work (§ 10),
and conclude (§ 11).

2 A DIFFERENTIAL PRIVACY PRIMER

Differential privacy is a mathematical definition of what it means for a computation over sensitive
data to preserve privacy [32]. It interprets privacy as a form of plausible deniability and relies on
the use of randomization to achieve it. Informally, a randomized algorithm is differentially private
if the probability that it outputs a particular value remains almost the same with or without a single
individual’s data used as part of the input. Formally, the definition is parameterized by two privacy
parameters ϵ and δ that specify to what extent two probabilities are “almost the same”, and by a
distance metric over the algorithm’s (sensitive) input whose role we discuss shortly.

Definition 2.1 (Differential privacy). Given a randomized algorithm (or mechanism)M ∈
A→ B and a distance metric DA ∈ A ×A→ R, the algorithmM satisfies (ϵ, δ )-differential privacy
if for all x, x ′ ∈ A such that DA(x, x ′) ≤ 1 and all possible sets S ⊆ B of outcomes, Pr[M(x) ∈ S] ≤
eϵPr[M(x ′) ∈ S] + δ .

The paramenter ϵ quantifies the adversary ability to distinguish two neighbouring inputs upon
observing the corresponding algorithm outputs. It represents the privacy guarantee provided by
the algorithm—the smaller, the less information is leaked about its input. On the other hand, the
parameter δ represents a failure probability: with probability at most δ , the algorithm is allowed to
violate privacy altogether. In combination, ϵ and δ are typically understood as the “privacy cost”
incurred by publicly releasing the algorithm output, associated to a given sensitive input. The
case where δ = 0 is called pure (or pure ϵ-) differential privacy, and the case where δ > 0 is called
approximate differential privacy. Several other recently-proposed variants of the definition build
on the advantages of (ϵ, δ )-differential privacy while eliminating the potential for failure; these
include Rényi differential privacy (RDP) [44], zero-concentrated differential privacy (zCDP) [21],
and truncated concentrated differential privacy (tCDP) [20].

Two algorithm inputs are said to be neighbors if the distance between them is bounded by 1 (i.e.
D(x, x ′) ≤ 1). In order for the formal definition to match our informal statement, the distance metric
DA should ensure that neighboring inputs differ by at most one individual’s data. Formalizing this
notion depends heavily on the domain, so different definitions of D are used in different domains.
When considering a relational database table represented as a bag of tuples, one commonly-used
definition forDDB is symmetric difference [42]:DDB(x, x ′) = |(x−x ′)∪(x ′−x )|. Under this definition,
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DDB(x, x ′) = 1 for tables that differ in one row; if the data contributed by each individual is bounded
to a single row, then this is a good approximation of neighboring inputs.

The definition of differential privacy implies two key properties: post-processing and composition.
Post-processing means that the output of a differentially-private mechanism stays differentially
private, no matter what additional processing is applied. Composition allows bounding the privacy
cost of multiple computations over the same underlaying data: running an (ϵ1, δ1)-differentially
private mechanism followed by an (ϵ2, δ2)-differentially private mechanism satisfies (ϵ1+ϵ2, δ1+δ2)-
differential privacy. The privacy parameters ϵ and δ are often called the privacy cost because of the
additive nature of composition.

Basic Mechanisms, composition, and scaling. Differential privacy mechanisms typically add noise
to the output of a deterministic function scaled to the function’s sensitivity [32]. A function f ∈ A→
B with distance metrics DA and DB is called s-sensitive if DA(x,y) ≤ d =⇒ DB (f (x), f (y)) ≤ sd
for every d ∈ R and every x,y ∈ A. Two commonly-used mechanisms are the Laplace [32] and the
Gaussian [7, 32] mechanisms. Given an s-sensitive function f ∈ A→ R, the Laplace mechanism
releases f (x) + Lap

( s
ϵ

)
, where Lap(b) denotes a random sample from the Laplace distribution

centered at 0 with scale b; it satisfies ϵ-differential privacy. The Gaussian mechanism releases
f (x) + N

Ä 2s2 ln(1.25/δ )
ϵ 2

ä
, where N (σ 2) denotes a random sample from the Gaussian distribution

centered at 0 with variance σ 2 and ϵ, δ ∈ (0, 1); it satisfies (ϵ, δ )-differential privacy. While the
original Gaussian mechanism requires ϵ < 1, Balle andWang [7] introduce a variant—called analytic
Gaussian mechanism—that drops the requirement that ϵ < 1.

For implementation purposes, naive floating-point truncations of the real-valued Laplace distri-
bution lead to fatal privacy breaches [43]. Canonne et al. [22] have shown that the Laplacian and
Gaussian mechanisms can both be discretized, while still providing formal privacy guarantees.

Advanced composition [32] yields tighter bounds on privacy cost for many iterative algorithms,
but requires (ϵ , δ )-differential privacy. For ϵ, δ , δ ′ ≥ 0, the class of (ϵ , δ )-differentially private
mechanisms satisfies (ϵ ′, kδ + δ ′)-differential privacy under k-fold adaptive composition (e.g. a loop
with k iterations) where ϵ ′ = kϵ(eϵ − 1)+ϵ

√
2k ln(1/δ ′). Advanced composition is especially useful

for iterative algorithms that perform many differentially private steps in sequence (e.g. iterative
machine learning algorithms).
Differential privacy is stated in terms of neighboring inputs, i.e. inputs x and x ′ such that

DA(x, x ′) ≤ 1. When DA(x, x ′) > 1, an ϵ-differentially private mechanism provides DA(x, x ′)·ϵ-
differential privacy. Distances larger than one are typically interpreted as groups of individuals, e.g.,
DA(x, x ′) = k represents a change to k individual’s input data. Therefore, an ϵ-differentially private
mechanism provides kϵ-differential group privacy [32] for groups of size k . A similar property holds
for (ϵ , δ )-differential privacy and the more recently developed advanced variants, but the scaling of
privacy cost is nonlinear for all of these variants. For example, on inputs at distance k , an algorithm
satisfying (ϵ, δ )-differential privacy yields outputs that are only (kϵ ,kδe (k−1)ϵ )-close–instead of
(kϵ ,kδ )-close. This nonlinearity makes it difficult to apply techniques based on linear types (which
generally internalize linear scaling of costs [34, 49]) for these variants of differential privacy.

Verification Techniques for Differential Privacy. A number of techniques have been proposed
for verifying that a program satisfies differential privacy, including approaches based on linear
logic [29, 34, 46, 49, 59], couplings and program logics [5, 12, 13, 15–17, 50], and randomness
alignments [54, 58]. Our work is most closely related to Fuzz [49] and its descendants DFuzz [34],
Duet [46], and Fuzzϵδ [29], which are based on linear type systems. In particular, these approaches
focus heavily on fully automated verification of differential privacy properties through typechecking,

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: January 2023.



Contextual Linear Types for Differential Privacy—Extended Version with Proofs 7

and are typically less expressive than program logics, which by contrast support significantly less
(or no) automation. We defer a more complete discussion of related work to Section 10.

3 OVERVIEW OF JAZZ

Jazz builds on the linear type system of Fuzz [49] and the two-language design of Duet [46] by
introducing latent contextual effects. This section introduces and motivates the design of Jazz’s
two languages— one for sensitivity and one for privacy—using simple examples. The design of
each language is described in Sections 4 and 6 respectively, and each metatheory is described in
Sections 5 and 7.

3.1 A Two-Language Design

Jazz follows Duet in being structured as two mutually-embedded sublanguages, one for sensitivity
and one for privacy. In a nutshell, this is because supporting scaling of both sensitivity and privacy
in a uniform and tight fashion is sound only for ϵ-differential privacy, and not for (ϵ , δ )-differential
privacy, which has nonlinear group privacy, as discussed in Section 2.

Let us elaborate on this. Recall that the framework of differential privacy builds on randomization
to achieve privacy, and the randomization is typically calibrated according to the sensitivity of the
function whose output one wants to protect. Therefore, in a language to describe differentially
private computations, we can mostly distinguish two class of functions: On the one hand, random-
ized (effectful) functions that are annotated with privacy information, and on the other hand pure
functions that are annotated with sensitivity information. However, when composing functions,
the way their information is combined highly depends on the class of the composed functions.

For example, when composing two functions from the sensitivity fragment, their information is
naturally combined via scaling. Consider, for instance, a 3-sensitive function f ; it is not hard to see
that the expression

f (x + x )

is (2 · 3)-sensitive in x . The same scaling pattern remains valid when composing a function from
the sensitivity fragment with a function from the privacy fragment, provided the latter satisfies
pure differential privacy: If д is an e.g. ϵ-differentially private function, then the computation

д(x + x )

is (2 · ϵ)-differentially private in x . This uniform scaling behavior, which besides being sound is
also tight, lies at the heart of Fuzz/DFuzz design. In fact, in Fuzz/DFuzz both class of functions
live within the same space, following the same typing rules. To enable this uniform treatment, the
languages rely on the two fundamental ingredients: i) the presence of a monad/modality to encode
randomization, and ii) the association of a metric space to each type, which in the case of monadic
types is tailored to encode differential privacy. Said otherwise, in Fuzz/DFuzz differential privacy is
encoded as a sensitivity claim about functions (with a monadic return type).

Unfortunately, this linear scaling—pervasive in Fuzz/DFuzz—is no longer sound when composing
a function from the sensitivity fragment with a function from the privacy fragment that satisfies
approximate—rather than pure—differential privacy. Returning to the previous example, if д is
instead (ϵ , δ )-differentially private, then д(x + x ) does not satisfy (2ϵ , 2δ )-differential privacy in x ,
but only (2ϵ , 2δeϵ )-differential privacy as dictated by the group privacy property for approximate
differential privacy (see Section 2 and Dwork and Roth [32, §2.3]). In effect, this is why approximate
differential privacy lies out of the scope of Fuzz/DFuzz “uniform” design—although recently,
de Amorim et al. [29] has shown that using different metrics allows approximate differential
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privacy functions to be linear, extending a terminating subset of Fuzz to support (ϵ , δ )-differentially
privacy via a path metric construction.

In view of this, Duet introduced a two-language design, separating a sensitivity sublanguage in
which scaling remains implicit (internalized by the typing rules) and pervasive (modeling function
composition), and a privacy sublanguage in which scaling is explicit and restricted (ad-hoc typing
rules are needed e.g. to model some privacy combinators). Jazz builds upon this approach and
significantly improves both sublanguages thanks to latent contextual effects, as we illustrate next.

Coloring convention. As noted in the introduction, this paper uses colorblind-friendly colors in
notation to convey information, and is best consumed using an electronic device or color printer.
Jazz consists of two mutually embedded sublanguages, and each language is given its own color.
Furthermore, these two languages share the same language of types, so we use a third color
for the shared fragment. Consequently, we use three color schemes throughout the paper: (1)
blue for general math notation and the type system shared between languages; (2) green for the
sensitivity language; and (3) red for the privacy language. We have carefully chosen the schemes to
be distinguishable (as much as possible) for persons with various forms of color blindness.3

3.2 Sensitivity

In the sensitivity sublanguage of Jazz, the identity function is written λ
s
x . x . We write sensitivity

lambdas as λs to more easily distinguish them from privacy lambdas, written λ
p (described later).

The identity function is 1-sensitive in its argument x : if x changes by d , then the function’s output
also changes by d . Similarly to the identity function, the doubling function λ

s
x . x + x is 2-sensitive

in x : if x changes by d , then the function’s output changes by 2d .
Fuzz extends the notion of sensitivity to multi-argument functions by assigning a sensitivity

to each argument. For example, the curried function λ
s
x . λ

s
y. x + x + y is 2-sensitive in x and

1-sensitive in y. If x changes by dx and y changes by dy , then the function’s output changes by
2dx + 1dy .

In general, the sensitivity of a function can be written as a linear combination of the changes in
its inputs. In Jazz, we express function sensitivities as linear formulas over the function’s input
variables, using the variable name itself as a placeholder for the change in that input. Jazz’s type
system gives the following types for the three examples we have seen so far:

(λsx . x ) : (x : R) x
−→ R

(λsx . x + x ) : (x : R) 2x
−−→ R

(λsx . λsy. x + x + y) : (x : R) 0x
−−→ (y : R)

2x+y
−−−−→ R

The linear formulas written above function arrows represent the sensitivity effect of the corre-
sponding function. The general form of sensitivity function types is (x : τ1)

Σ
−→ τ2, where Σ is the

sensitivity effect of the function, expressed as a linear formula. Note that x is in scope for Σ and τ2.
Importantly, occurrences of x in Σ and τ2 represent the sensitivity of the variable x , rather than
its value, so Jazz supports sensitivity-dependent types. Also, we usually drop “null” effects over
function arrows such as 0x

−−→ above, and instead just write→.
As usual, Jazz accommodates higher-order functions by scaling sensitivities. For example, apply-

ing a 2-sensitive function twice yields a 4-sensitive function:

(λs f . λsy. f y + f y) (λsx . x + x ) : (y : R)
4y
−−→ R

3We chose colors following the 24-Color Palette from http://mkweb.bcgsc.ca/colorblind. E.g., to persons with deuteranopia
(the most common form of color blindness), colorschemes ■/■/■ appear as ■/■/■ respectively.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: January 2023.

http://mkweb.bcgsc.ca/colorblind


Contextual Linear Types for Differential Privacy—Extended Version with Proofs 9

In addition to function types, other type connectives in Jazz like sums and products also carry
sensitivity effects, such as τ1 Σ1⊕Σ2 τ2 for sums, τ1 Σ1⊗Σ2 τ2 for multiplicative products, and
τ1

Σ1&Σ2 τ2 for additive products. These connectives are extensions of the linear type connectives
τ1 ⊕ τ2, τ1 ⊗ τ2 and τ1 & τ2 from Fuzz, augmented with latent sensitivity effects.

We say that sensitivity effects in Jazz are latent because they only contribute to the sensitivity of
an expression when the type connective is actually eliminated. For instance, in the third example
above—a curried function—the sensitivity effect on the first argument is delayed until the second
argument is received. If a second argument is never received, then the sensitivity effect on the
first argument can be ignored. Likewise, the annotations Σ1 and Σ2 in the type τ1 Σ1⊗Σ2 τ2 encode
the latent sensitivity cost for each component of the connective: for τ1 (the left) and τ2 (the right)
respectively. In contrast to Fuzz, creating a pair in Jazz can have no immediate sensitivity cost:
only projecting out of a pair has a cost in sensitivity, depending on which component is projected.
Additionally, we say that sensitivity effects are contextual because Σ can refer to variables in scope.

3.3 Privacy

To encode differential privacy, Jazz makes use of privacy functions (notated ↠) rather than of
sensitivity functions (notated →) as in the previous examples. As such, privacy functions are
annotated with privacy—rather than sensitivity—effects. The type of a function from τ1 to τ2 which
is (ϵ ,δ )-differentially private in its argument is as follows:

(x : τ1·d)
(ϵ , δ )x
−−−−−→→ τ2

Semantically, this type describes functions f , where if Dτ1 (x, x ′) ≤ d then f (x) and f (x ′) yield
distributions which are “(ϵ ,δ )-close” according to the definition of (ϵ , δ )-differential privacy.

The annotation d is necessary to support (and unique to) advanced variants of differential privacy
like (ϵ , δ )-differential privacy. In the pure ϵ-differential privacy framework, it is common to first
establish the property for d = 1, that is, if Dτ1 (x, x ′) ≤ 1 then f (x) and f (x ′) are ϵ-close. Once
established, this property then implies that if Dτ1 (x, x ′) ≤ d then f (x) and f (x ′) are dϵ-close, for
any d . However, this linear scaling does not carry over to advanced variants like (ϵ , δ )-differential
privacy. As a consequence, d must be specified directly as a parameter and cannot be recovered by
scaling the property instantiated to d = 1. We refer to this distance—d—as the relational distance
since it pertains to the (two-run) relational property of differential privacy, and specifically, the
distance between inputs x and x ′ for each of the two executions f (x) and f (x ′). We also use this
terminology in the context of sensitivity, e.g., an s-sensitive function is one which upon inputs
within relational distance d returns outputs within relational distance sd .

As explained in Section 2, differential privacy is usually achieved by the use of mechanisms like
the Laplace (for ϵ-differential privacy) or the Gaussian mechanism (for (ϵ , δ )-differential privacy).
In Jazz, the primitive function implementing the Laplace mechanism has the following type:

laplace : ∀(d̂ : R) (ϵ̂ : R). (d : R[d̂])→ (ϵ : R[ϵ̂])→ (x : R·d̂)
∞(d+ϵ )+(ϵ̂ ,0)x
−−−−−−−−−−−→→ R

There are three logical parameters to the laplace function: d is the relational distance (explained
above) used in the statement of privacy satisfied by the function, ϵ is the privacy level we want to
enforce, and x is the value we (want to protect and) are adding noise to. When executing laplace,
the amount of noise added is Lap

(d
ϵ

)
which depends on both d and ϵ , so they must be runtime

values. Also, when typechecking laplace, the amount of privacy obtained depends on ϵ , and the
distance d must also be tracked to enforce that the computation feeding laplace with its argument
x produces values within relational distance no larger than d . Because the values of d and ϵ are
required for both runtime execution and type checking, we require a form of dependent types.
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To support dependent types, we use a singletons approach—a technique initially developed for
dependently typed programming in Haskell [33, 39], and which we borrow directly from DFuzz
in the context of supporting parameterized differentially private functions [34]. In this approach,
each dependent argument has two representations—one for the type and term level respectively. In
the type of laplace, d̂ is the type-level representation of term-level variable d , and likewise for ϵ̂
and ϵ . (We further discuss singletons and their implementation in Section 8.)

The final argument x : R·d̂ will have Laplace noise added to it and then returned as the result of
the laplace function. The annotation “·d̂” in the type of x places a precondition on the computation
used to supply the value to protect: its output must have relational distance no larger than d̂ . After
all, the noise added is only guaranteed to give ϵ-differential privacy for values that result from
computations with relational distance d̂ .

The final privacy effect for the function is∞(d + ϵ) + (ϵ̂, 0)x , indicating that no privacy promises
are made for the values d and ϵ , and that privacy is promised for input x with cost (ϵ̂, 0); we write
∞(d + ϵ) as shorthand for∞d +∞ϵ .

Like Fuzz, DFuzz, and Duet, Jazz extends the notion of differential privacy from single-argument
to multi-argument functions, assigning each argument a privacy cost (e.g. the privacy effect
∞(d + ϵ) + (ϵ̂, 0)x for the laplace function describes privacy costs for d , ϵ , and x ). This approach is
formalized in Section 7.3. By convention, most differentially private programs expect a single input
to contain the sensitive data, and the privacy cost assigned to this argument is most important in
ensuring privacy. The costs associated with the other arguments are typically infinite, indicating
that the program does not preserve privacy for these inputs.
We can give a similar type to the gauss function, which provides (ϵ, δ )-differential privacy by

adding Gaussian noise drawn from N
(
2d2 ln(1.25/δ )

ϵ 2

)
:

gauss : ∀(d̂ : R) (ϵ̂ : R) (δ̂ : R). (d : R[d̂])→ (ϵ : R[ϵ̂])→ (δ : R[δ̂ ])→ (x : R·d̂)
∞(d+ϵ+δ )+(ϵ̂ ,δ̂ )x
−−−−−−−−−−−−−−→→ R

In Jazz, privacy primitives are used in the privacy sublanguage. For example, the following privacy-
sublanguage expression partially applies the Gaussian mechanism to values for d , ϵ and δ , resulting
in a privacy function that satisfies (1.5, 10−5)-differential privacy for any input at relational distance
4:

gauss 4 1.5 10−5 : (x : R·4)
(1.5, 10−5)x
−−−−−−−−→→ R

Note that we omit the instantiation of forall-quantified type variables d̂ , ϵ̂ and δ̂ to type-level
constants 4, 1.5 and 10−5, as they can be inferred from the value-level arguments d , ϵ and δ .
The privacy sublanguage also contains monadic bind (notated ←) and return constructs for

composing differentially private computations. Privacy functions λp (x ·d). e are created in the
sensitivity sublanguage (because function creation is “pure”), although the function body e lives
in the privacy sublanguage. The annotation d is the relational distance explained previously for
privacy function types. For example, the following function computes two differentially private
results and adds them together:

λ
p (x ·1). r1 ← gauss 1 1.5 0.001 x ;

r2 ← gauss 2 0.5 0.001 (x + x );
return (r1 + r2)

: (x : R·1)
(2.0,0.002)x
−−−−−−−−−→→ R

The bind operator encodes the sequential composition property of differential privacy (Section 2),
adding up the ϵ and δ values of subcomputations. The return operator encodes the post-processing
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property of differential privacy. The relational distance parameter of 1 is in general inferrable
during type checking; we include it as a visible term-level parameter for presentation purposes.

Beyond Duet. The privacy sublanguage of Jazz briefly introduced here lifts a number of important
limitations of the privacy sublanguage of Duet. We sketch two of these here, and postpone further
comparison to later sections.
First, to avoid scaling in the privacy sublanguage, Duet requires the arguments to privacy

functions to have a maximum sensitivity or relational distance of 1. This limitation makes it
impossible to give general types to the gauss and laplace functions as we just shown in Jazz. As a
result, Duet includes a dedicated type rule for each basic differential privacy mechanism, where
each rule is parametric in the sensitivity or relational distance of the argument. Jazz’s addition
of relational distance annotation “·d” in the types of function arguments eliminates the need for
special type rules, and mechanisms can instead be encoded as primitives with an axiomatized
type. The primary benefit of this is that the metatheory need not be extended each time a new
mechanism is considered.

Second, while pervasive scaling is generally undesirable for privacy costs, some constructs such
as advanced composition rely on the ability to scale privacy costs in controlled ways that are
supported by theorems specific to that privacy model. Because Duet’s privacy language disallows
scaling entirely, these constructs are impossible to encode as functions and must also be given
special typing rules. The latent privacy effects in Jazz allow constructs like advanced composition
to be given regular function types. Overall, the Jazz design makes differential privacy by typing
in the presence of higher-order programming possible for advanced differential privacy variants.
The following sections dive into these benefits, by focusing first on the sensitivity sublanguage
(Section 4), and then the privacy sublanguage (Section 6). Sections 5 and 7 develop the metatheory
of each respective sublanguage.

4 DESIGN OF JAZZ’S SENSITIVITY TYPE SYSTEM

Jazz builds upon prior approaches to encoding differential privacy using linear types. In this section,
we first overview some limitations of these approaches related to the tracking of sensitivities, and then
discuss how they can be addressed by Jazz. In this section we color expressions and metavariables
green as they pertain to the sensitivity fragment of Jazz.

4.1 Linear Products and Sums

Existing approaches based on linear types [34, 46, 49] provide elementary datatype abstractions to
programmers such as pairs (products) and tagged unions (sums). However, some of the sensitivity
analysis they implement for these datatypes can lead to overly imprecise—or even unsound—
approximations in some circumstances.

We now briefly overview these datatype abstractions; a summary is provided in Table 1.

Linear products. Because existing systems are based on intuitionistic linear logic, two product
types emerge: multiplicative products ⊗ and additive products &. Multiplicative pairs encode two
resources, both of which can be used. Additive pairs encode two resources, but in contrast to
multiplicative pairs, only one of them can be used at a time—a computation may use either their
left or right component, but not both. This constraint is reflected on the management of type
environments in their typing rules. Consider, for instance, the multiplicative product ⟨x, x⟩ and the
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Datatype Intro. Elimination Distance

Multiplicative
product (⊗)

⟨e1, e2⟩ let x1, x2 = e
in e ′

Dτ1⊗τ2 (⟨e11, e12⟩, ⟨e21, e22⟩) ≜ Dτ1 (e11, e21) +Dτ2 (e12, e22)

Additive
product (&)

(e1, e2) (1) fst e
(2) snd e

Dτ1&τ2 ((e11, e12), (e21, e22)) ≜ max(Dτ1 (e11, e21),Dτ2 (e12, e22))

Sum (⊕) (1) inl e
(2) inr e

case e of
{x1 ⇒ e1}
{x2 ⇒ e2}

Dτ1⊕τ2 (inl e11, inl e21) ≜ Dτ1 (e11, e21)
Dτ1⊕τ2 (inr e12, inr e22) ≜ Dτ2 (e12, e22)
Dτ1⊕τ2 (inl e11, inr e22) ≜ Dτ1⊕τ2 (inr e12, inl e21) ≜ ∞

Table 1. Datatype abstractions provided by systems based on linear types [49].

For defining the distance associated to the datatypes (table last column), we assume that e11, e21 : τ1 and e12, e22 : τ2.

additive product (x, x ). Fuzz generates the following type derivations for the pairs:

⊗I
x :1 R ⊢ x : R x :1 R ⊢ x : R

x :2 R ⊢ ⟨x, x⟩ : R ⊗ R

&I
x :1 R ⊢ x : R x :1 R ⊢ x : R

x :1 R ⊢ (x, x ) : R & R

where judgment x :s τ ⊢ e : τ ′ denotes that expression e is an s-sensitive computation on x
(and has type τ ′ assuming that x has type τ ). The type derivation on the left (for multiplicative
products) adds (variablewise) the environments of both components (x :2 R = x :1 R + x :1 R),
reporting a sensitivity of 2 in x . On the other hand, the type derivation on the right (for additive
products) calculates the maximum (variablewise) between the environments of both components
(x :1 R = max(x :1 R, x :1 R)), reporting a sensitivity of 1 in x . The elimination rules also follow
these principles: while a multiplicative pair is destructed via pattern matching giving access to
both its components, an additive product is destructed via projection operators that give access to
a single component.
When applied to sensitivity analysis, these type connectives no longer encode accessibility of

a pair of resources, rather they encode an abstraction of the sensitivities of each component of
the pair. The sensitivity for the whole pair is coarse and either tracks the sum of sensitivities of
each component (in the case of multiplicative products) or their maximum (in the case of additive
products), as reflected in the last column of Table 1.

Linear sums. Rather than a simultaneous occurrence of resources, sums encode an alternative
occurrence of resources. Sums are introduced via inl and inr constructors, and destructed via a
case expression with one branch for each of the constructors.

In the context of sensitivity analysis, the sensitivity of a sum in(l/r) e encodes both the sensi-
tivities of the contained expression e , as well as the sensitivities for the direction of the injection (left
or right). For example, inl (x + x ) is 2-sensitive in x , however if y ≤ 10 then inl x else inr x
is∞-sensitive in y because a change in y could change the direction of the injection.

As usual, these systems leverage sums to encode boolean values, e.g., the boolean type is encoded
as B ≜ unit ⊕ unit, where unit represents the unit type, inhabited by unit value tt. Under this
encoding, an if−then−else expression becomes syntactic sugar for a case expression. Also note
that boolean values true ≜ inl tt and false ≜ inr tt are at distance ∞ from each other in this
encoding. This observation will be particularly relevant in some of the forthcoming examples.
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4.2 Limitations of Prior Sensitivity Linear Type Systems

Fuzz [49] is the first work to leverage linear (or affine) types for reasoning about program sensitivity.
Since its introduction, other systems based on linear types were developed to address different lim-
itations of Fuzz. These primarily comprise DFuzz [34], which allows value-dependent sensitivities
and privacy costs, and Duet [46], which allows advanced variants of differential privacy.

Being based on the same underlying sensitivity analysis, all these systems suffer from common
limitations related to the sensitivity tracking for products and sums. Through a series of minimal—
yet instructive—examples, we now discuss the limitations we have identified.

Limitations related to linear products. In Fuzz-like systems, each product and sum type introduces an
approximation for the sensitivity analysis they underpin. When using pair types, this approximation
forces the programmer to predict how each pair will be used in later parts of the program, and
select the right one to achieve precision: if only one component of the pair is used, then the additive
product will give perfect precision; conversely, if both components of the pair are used with the
same sensitivity, then the multiplicative product will give perfect precision. This is limiting for
abstraction, e.g., a library author must commit to one product type, and clients of the library may
turn out to require the other.
Imprecision issues remain even if functions can be inlined: (1) the optimal product choice may

be influenced by the dynamic control flow of the program, which cannot be predicted statically in
general; and (2) for multiplicative products in particular, if both components of the pair are used
with different sensitivities in the body of the pattern match, the sensitivity estimation may give
imprecise results. To illustrate these limitations, consider the following examples as seen by Fuzz.

Example 4.1 (dynamic control). The program below contains a branch on a boolean variable,
which determines the usage pattern of an additive pair: while one branch uses one component of
the pair, the other branch uses both.

// variant using an additive pair (·, ·)
let p = (2 ∗ x, x ) in
if b then 3 ∗ fst p

else 2 ∗ (fst p + snd p)

First, observe that the program is semantically equivalent to 6 ∗ x , which is 6-sensitive in x . For
the sensitivity analysis à la Fuzz, the pair p is assigned 2-sensitivity in x (the max of each side).
The if rule pessimistically takes the maximum between the sensitivities of each branch. This
maximum sensitivity is attained by the else-branch and gives 8 = 2 · (2 + 2), where the underlined
2 corresponds to the sensitivity of pair p in variable x .

Now assume that we rewrite the program using a multiplicative—rather than additive—pair:

// variant using a multiplicative pair ⟨·, ·⟩
let x1, x2 = ⟨2 ∗ x, x⟩ in
if b then 3 ∗ x1

else 2 ∗ (x1 + x2)

In this case, the pair is considered 3-sensitive (rather than 2-sensitive) in x , an estimate that is
obtained by adding the sensitivities of its two components, instead of taking their maximum. To
obtain the overall program sensitivity, the pair sensitivity is scaled by the maximum sensitivity of
the two branches in either component of the pair; this maximum is attained by the then-branch
and gives 3 (since the else-branch has sensitivity 2 in both pair components). Overall, this gives
an even worse sensitivity in variable x of 9 = 3 · 3.
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In summary, following Fuzz-like analysis, there is no choice of product connective that yields
the precise sensitivity bound in x of 6. □

Example 4.2 (imprecise scaling). This example shows how imprecision can arise when components
of a pair are scaled before introduction, and then in an asymmetric way after elimination. We only
show the multiplicative pair variant.

let x1, x2 = ⟨2 ∗ x,y⟩ in
x1 + 2 ∗ x2

The above program is semantically equivalent to 2∗x+2∗y, which is 2-sensitive in x and 2-sensitive
in y. However, the type-based analysis yields a sensitivity bound of 4 in x , doubling its actual value.
The analysis proceeds roughly as follows. The left component of the pair is 2-sensitive in x , and
the right component is 1-sensitive in y. As hinted in the previous example, for multiplicative pairs
Fuzz-like systems sum the sensitivities of each component to yield the sensitivity of the whole, so
the resulting pair is 2-sensitive in x and 1-sensitive in y; note that ⟨2 ∗ x + y, 0⟩, ⟨0, 2 ∗ x + y⟩ or
even ⟨x, x +y⟩ would also result in the exact same sensitivity analysis. The effect of eliminating the
pair via pattern matching is to scale the pair sensitivity by the maximum sensitivity of the body
(x1 + 2 ∗ x2) in the pattern variables (x1 and x2), 2 in this case. The result is a final sensitivity of
4 = 2 · 2 in x and 2 = 2 · 1 in y, which is precise for y, but imprecise for x .

If the program is converted to instead use additive pairs, the sensitivity of the pair construction is
2 in x and 1 in y (the pointwise max from of each side), and the sensitivity of the whole expression
is 6 in x and 3 in y—strictly worse than the analysis when using multiplicative pairs.

We could fix this program in Fuzz, just like in the previous example, by rewriting the program to
use the scaling operator: either let x1, x2 = ⟨!2∗x,y⟩ in let x ′2 = x2 in x1+ 2∗x2 or let x1, x2 =
⟨2 ∗ x, !y⟩ in let x ′2 = x2 in x1 + 2 ∗ x2. This may be considered as an annotation burden for
programmers because (1) the programmer must know beforehand that the analysis is imprecise
(which might be hard for long and complex programs), and (2) the programmer must manually know
where to apply scaling to achieve better precision. Also, this process relies in an algorithmic version
of the type system of Fuzz, which is not trivial to achieve [27]. Finally, note that scaling in Fuzz is
restricted to non-zero sensitivities. This means that a program such as let x1, x2 = ⟨2 ∗x, !y⟩ in x1
would be pessimistically considered to be 2-sensitive in x and 2-sensitive iny, although the program
is really 2-sensitive in x and 0-sensitive in y. □

Limitations related to linear sums. In addition to imprecision with the product types, Fuzz-like
systems also exhibit imprecision with sum types. In these systems, the sensitivity analysis for a
sum introduction is straightforward: the sensitivity of in(l/r) e is simply the sensitivity of e .
The sensitivity analysis for a sum elimination via expression case e of {x1 ⇒ e1}{x2 ⇒ e2} is,
however, more involved. First, it computes the sensitivity of ei in binder xi for i = 1, 2 and retains
the greatest, say r . The sensitivity of the overall case expression in some variable, say x , is then
computed as the sum between (1) the max sensitivity of ei in x for i = 1, 2, and (2) the sensitivity
of e in x , scaled by r . This brings both unsound and imprecise estimations.

Example 4.3 (discontinuous predicate). An unsound corner case of the above sensitivity analysis
arises, for example, for the program:

if (x ≤ 10) then true else false
The program, which desugars to case (x ≤ 10) {x1 ⇒ true}{x2 ⇒ false}, is semantically ∞-
sensitive in x because changing x by, say 1, could change the result from true to false, which are
infinitely far apart values. Intuitively, we can attribute this to the discontinuity of the program at
x = 10. As for DFuzz and derivative systems like Duet (which support null sensitivities), they
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derive a sensitivity of 0 in x . To illustrate this, let us consider the corresponding type derivation in
Duet:

⊎-E
x :∞ R ⊢ x ≤ 10 : B x :0 R, x1 :0 R ⊢ true : B x :0 R, x2 :0 R ⊢ false : B

x :0 R ⊢ case (x ≤ 10) {x1 ⇒ true}{x2 ⇒ false} : B

The reported sensitivity environment is 0·x :∞ R + x :0 R = x :(0·∞+0) R = x :0 R: the left summand
0·∞ originates from the fact that branches are 0-sensitive in their binders, and expression x ≤ 10 is
∞-sensitive in x , and the right summand 0 originates from the fact that both branches are 0-sensitive
in x . Since the product operation (for sensitivities) adopted by DFuzz regards 0·∞ = 0, the analysis
wrongly infers an overall sensitivity of 0 in x . □

Although DFuzz and derivative systems do not account for this corner case and are, therefore,
unsound, this soundness problem is not present in Fuzz as its type system is constrained to non-null
sensitivities (therefore, leaving the program out of its scope). Follow-up work such as [26] and
Fuzzϵδ introduces rules that recover the analysis soundness by interpreting∞·0 = 0·∞ = ∞ rather
than∞·0 = 0, but this leads to imprecision elsewhere in the system. For example, with this fix the
program let y = x ≤ 10 in 1 reports sensitivity∞ in x despite the term being equivalent to the
constant 1:

x :∞ R ⊢ x ≤ 10 : B x :0 R,y :0 B ⊢ 1 : R
x :0·∞ R ⊢ let y = x ≤ 10 in 1 : R

A more recent work [28] defines a non-commutative multiplication operator where 0·∞ = ∞
but ∞·0 = 0. In doing so, it addresses the soundness problem for case expressions, and even
though not supporting let-like operations, it could be extended to do so in a precise manner (e.g.
x :∞·0 R ⊢ let y = x ≤ 10 in 1 : R). This multiplication operator is, however, awkward to
manipulate and not amenable to automation due to lack of support for non-commutative ring
theories in SMT solvers. Even still, imprecisions continue to arise in this design, as we will see in
the forthcoming Example 4.4.
Besides the corner case described above leading to unsound estimates, imprecise estimates

can also arise when eliminating sums. Imprecision arises because, loosely speaking, the analysis
approximates the sensitivity of a sum elimination via a case expression as the maximum sensitivity
of its branches. As illustrated by the following example, this analysis can dismiss significant
information.

Example 4.4 (conflated branches). Consider the following program:

let a = if b then inl (x ∗ x ) else inr x in
case a of {x1 ⇒ 0}{x2 ⇒ x2}

A sum is created as either the left injection of an expression that is∞-sensitive in x (since x ∗ x
is so), or the right injection of an expression 1-sensitive in x . In Fuzz-like systems, such a sum is
conservatively deemed∞-sensitive in x . The sum is then eliminated with a constant left branch,
and a right branch that is 1-sensitive in its binder. The ground truth for the program is that it is
1-sensitive in x , as the left injection∞-sensitive in x is eliminated to a constant. However, the usual
linear typing discipline does not match the sensitivities of each injection with the case-branch
that each injection would see, reporting an imprecise final sensitivity of∞ in x . □
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4.3 Latent Contextual Effects for Precise Sensitivity Tracking in Jazz

Jazz adopts a novel approach to sensitivity tracking for product and sum types, which can address
the previous limitations without the need to rely on scaling of types. The key insight is to delay
the tracking of sensitivities whenever possible, and to split it into two separate analyses: one for
each side of the product or sum. Technically, the main idea is to encode latent sensitivity effects at
the type-connective level. For instance, for multiplicative pairs Jazz has type τ1 Σ1⊗Σ2 τ2, where Σ1
and Σ2 denote the latent sensitivity effects of each of the pair components. This is in contrast to
the Fuzz type τ1 ⊗ τ2, which pays for all of its sensitivity effects upfront, when the pair is created.

Precise products. Consider the three related multiplicative pair constructions:

e1 ≜ ⟨2 ∗ x + y, 0⟩ e2 ≜ ⟨0, 2 ∗ x + y⟩ e3 ≜ ⟨x, x + y⟩

For the purpose of sensitivity analysis, Fuzz is unable to distinguish them, as it derives the very
same type judgment for all three, namely

x :2 R,y :1 R ⊢ e : R ⊗ R for e ∈ {e1, e2, e3}

The type judgment says that the pairs are 2-sensitive in x and 1-sensitive in y (the subscript
annotations in the type environment), but does not say how this sensitivity effect is distributed
between the pair components. In other words, Fuzz treats pairs as a whole. In contrast, Jazz can
derive three different type judgments, precisely capturing the sensitivity of each pair component:

x : R,y : R ⊢ e1 : R 2x+y⊗ R x : R,y : R ⊢ e2 : R ⊗2x+y R x : R,y : R ⊢ e3 : R x⊗x+y R

Recall from Section 3.2 that in Jazz we use linear formulas to denote sensitivity effects and therefore,
in e.g. the first type judgment above, 2x + y refers to the sensitivity effect Σ ≜ {x 7→ 2,y 7→ 1},
meaning 2-sensitive in x , and 1-sensitive iny. Moreover, we elide null sensitivity effects likes 0x+0y.
This fine-grained tracking of the sensitivity of each pair component allows, in turn, deferring the
payment of the pair sensitivity effect to the precise point where the pair is used, i.e. eliminated,
and therefore paying only for what (and how it) is used. For example, if pair e3 is used in a context
where only its first component is referred, we pay for sensitivity effect x . Fuzz, in contrast, would
always pay 2x + y.

Let us discuss the benefits that this fine-grained tracking brings to Examples 4.1 and 4.2. Consider
first the program from Example 4.1, more concretely, the variant with additive pairs. The sensitivity
of the then-branch is calculated as 6x from scaling by 3 the (latent) sensitivity effect 2x of the
left component of pair p. Likewise, the sensitivity of the else-branch is calculated also as 6x
from scaling by 2 the sum of (latent) sensitivity effects 2x and x of the respective left and right
component of the pair. As a result, Jazz reports the precise sensitivity of 6x for the whole program.
An analogous fine-grained tracking for the program from Example 4.2 gives also precise sensitivity
2x + 2y.

Precise sums. The use of latent sensitivity effects yields tighter sensitivity bounds also for sums.
However, the handling of sums impose an additional technical challenge related to the impossibility
of delaying sensitivity effects. To illustrate this phenomenon, consider expressions:

e4 ≜ inl (x ∗ x ) e5 ≜ inr (x ∗ x ) e6 ≜ if (x ≤ 10) then inl 1 else inr 1

All three expressions are∞-sensitive in x . Fuzz sensitivity analysis conflates the three expressions
to the same type, and some Fuzz derivative systems with support for 0-sensitivities such as DFuzz,
derive an unsound type (w.r.t. the embodied sensitivity analysis) for e6: x :0 R ⊢ e6 : R ⊕ R.

x :∞ R ⊢ e4 : R ⊕ R x :∞ R ⊢ e5 : R ⊕ R x :∞ R ⊢ e6 : R ⊕ R
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Jazz derives instead:

x : R ⊢ e4 : R ∞x⊕ R x : R ⊢ e5 : R ⊕∞x R x : R ⊢ e6 : R ⊕ R

The types of e4 and e5 encode a latent sensitivity effect for each side of the sum. In contrast, the
type of e6 is not able to represent its ∞-sensitivity in x as a latent effect because x influences
which injection is used to create the sum itself, not the value inside the injection. Instead, the effect
must be paid for eagerly in the so-called ambient sensitivity effect (which was elided in previous
examples). Therefore type judgments in Jazz have shape Γ ⊢ e : τ ; Σ, where Σ represents the
ambient sensitivity effect and Γ is a “traditional” environment, mapping variables to types. Thus,
expression e6 is formally typed as:

x : R ⊢ e6 : R ⊕ R ; ∞x

with ambient sensitivity effect ∞x . e4 is typed as x : R ⊢ e4 : R ∞x⊕ R ; �, i.e., with an empty
ambient sensitivity effect, and analogously for e5.

To showcase the benefits of this design, let us re-examine Example 4.4. In Jazz, the type for a is
R ∞x⊕x R with ambient effect b.4 To compute the sensitivity of the case-expression over a, we
join—by taking the variable-wise maximum—the ambient effect of a, namely b, with the “global”
sensitivity effect of the second branch, namely [b + x/x2]x2—the first branch is dismissed because
it has no ambient effect. To compute the purported sensitivity effect of the second branch, we take
its ambient effect x2 and replace every occurrence of the branch binder, also x2, with the effect
b + x of the right component of a, computed as the sum between its ambient effect b and its latent
effect x . This yields an overall sensitivity of b + x = b ⊔ [b + x/x2]x2 for the case-expression.

Consider now Example 4.3. The guard x ≤ 10 of the conditional expression has type unit⊕ unit
with ambient effect∞x . Since the branches are constant and have no ambient effect, they do not
contribute to the sensitivity of the conditional. Jazz analysis then concludes that the sensitivity of
the conditional reduces to the ambient sensitivity of the guard, namely∞x , recovering soundness
(and precision).

Jazz recovers soundness and precision for all four examples discussed in Section 4.2, as sum-
marized in Table 2. With this observation, we conclude our motivation for the design of the Jazz
sensitivity type system, based on latent contextual effects.

Example 4.5 (Prepayment of effects). We remark that the use of latent contextual effects does not
always yield better precision than eager (Fuzz-like) systems. Consider the following program:

let y1,y2 = (let x1, x2 = p in ⟨x1, x2⟩) in y1 + y2

Using latent effects, the subexpression ⟨x1, x2⟩ has type R x1⊗x2 R;�. Thus the subexpression
let x1, x2 = p in ⟨x1, x2⟩ has type R p⊗p R;�, i.e. it represents a pure expression where the cost
of accessing either of its component is p. The ambient effect of the whole expression is the sum
of the cost of accessing the pair (�), plus the cost of accessing y1 (p), plus the cost of accessing y2
(p), yielding effect 2p. In Fuzz, the same program reports sensitivity p, yielding better precision
than Jazz. To recover Fuzz’s precision, Jazz allows effects of products, sums, and functions to be
paid for eagerly, by combining contextual and linear effects: parts of the sensitivity effect of each
component of the product can contribute to the ambient effect of the product. For instance, consider

4At first sight, one might think that a is ∞-sensitive in b because a change in b may flip the direction of the returned
injection. However, any change on the value of b necessarily results in an infinite variation since true and false are∞ far
apart. Therefore, the induced variation on the value of a is trivially bounded by∞, scaled by 1, turning a 1-sensitive in b .
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Fuzz(*) DFuzz-like TS(**) Jazz

Reported

Sensitivity

Bound

Quality

Reported

Sensitivity

Bound

Quality

Reported

Sensitivity

Bound Qual-

ity

Example 4.1 (additive)

8x loose 8x loose 6x tight

Example 4.2 (multiplicative)

2x + 2y tight 4x + 2y loose (in x ) 2x + 2y tight

Example 4.3

∞x tight 0x unsound ∞x tight

Example 4.4

∞x + b loose (in x ) ∞x + 0b loose (in x ) x + b tight
unsound in b

Example 4.5

p tight p tight 2p loose (latent)
p tight (prepay)

(*): sensitivities strictly greater than 0, programs transformed using scaling.
(**): sensitivities can be greater or equal to 0, no scaling allowed.

Table 2. Comparison of sensitivity type-system: Fuzz and DFuzz-like type systems vs Jazz.

environment Γ = x : R,y : R. Jazz can produce the following type derivations for expression
e = ⟨x,y⟩:

Γ ⊢ e : R x⊗y R;� Γ ⊢ e2 : R ⊗y R;x Γ ⊢ e3 : R x⊗ R;y Γ ⊢ e3 : R ⊗ R;x + y
In the first type derivation, the effect of both components are latent, and thus the ambient effect is
empty. In the second (resp. third) type derivation, the latent effect of the type is the ambient effect
of the right (resp. left) component, and the ambient effect of the product is the ambient effect of
the left (resp.right) component. In the last type derivation, the latent effect of the type is empty,
everything is paid upfront, coinciding with Fuzz-like type systems. Going back to the example, if
we prepay the effects of the subexpression ⟨x1, x2⟩ then the product has type R �⊗� R;x1+x2. Now
the subexpression let x1, x2 = p in ⟨x1, x2⟩ has type R �⊗� R;p, because using multiplicative
products we only pay for p proportional to the maximum sensitivity between x1 and x2, i.e. (1⊔ 1)p.
The ambient effect of the whole expression is the sum of the cost of accessing the pair (p), plus the
cost of accessing y1 and y2 (�), yielding the tight ambient effect p.

As a final remark, note that contrary to Fuzz, Jazz does not currently support recursive types;
such functions are required to be primitives, as illustrated in § 8.

The following section presents the formal development of latent contextual effects for sensitivity
typing, and includes a step-by-step type derivation for all four examples.

5 SAX: JAZZ’S SENSITIVITY TYPE SYSTEM, FORMALLY

In this section, we present a core sensitivity sublanguage of Jazz, called Sax, for which we develop
the sensitivity metatheory. In particular, we prove the type soundness property known as sensitivity
metric preservation [49]. The core subset of Jazz that extends Sax with privacy is presented in later
sections.
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r ∈ R
b ∈ B
x ∈ var
e ∈ sexprF r | e + e | e ∗ e | e ≤ e real numbers

| x | λ
s (x : τ ). e | e e variables, functions, applications

| tt unit
| inlτ2 e | inrτ1 e | case e of {x ⇒ e} {x ⇒ e} sums
| (e, e) | fst e | snd e add. products
| ⟨e, e⟩ | let x, x = e in e mult. products
| e :: τ ascription

s ∈ sens ≜ R∞
≥0 sensitivities

Σ ∈ senv ≜ var⇀ sens F sx + . . . + sx sensitivity environments
τ ∈ type F R | unit | (x : τ ) Σ

−→ τ
| τ Σ⊕Σ τ | τ Σ&Σ τ | τ Σ⊗Σ τ types

Γ ∈ tenv ≜ var⇀ typeF {x : τ , . . . , x : τ } type environments

Fig. 1. Sax: Syntax

5.1 Syntax and Type System

The Sax type system is technically a type-and-effect system [36]. It supports real numbers, functions,
sums and products. As Sax only deals with ambient effects, all metavariables and keywords are
typeset in green.

Syntax. Figure 9 presents the syntax of Sax. Expressions e are mostly standard and include: real
number r , addition e + e , multiplication e ∗ e , comparison e ≤ e , variable x , sensitivity lambda
λ
s (x : τ ). e , application e e , unit value tt, sum constructors inlτ2 e and inrτ1 e , and the sum
destructor case e of {x ⇒ e} {x ⇒ e}.
Sax also supports two linear products types: additive and multiplicative. With additive products,

the sensitivity of a pair may be approximated as the max of the sensitivities of each side; this
sensitivity is paid for every projection. With multiplicative products, the sensitivity of a pair may
be approximated as the sum of the sensitivities of each side; this sensitivity is paid for every tuple
pattern match, scaled by the sensitivities of pattern variables in the body. We write additive product
constructions (e, e) and destructions fst e and snd e , and multiplicative product constructions
⟨e, e⟩ and destructions let x, x = e in e .
Finally, an expression e can be an ascription e :: τ , or a derived expressions such as a boolean

b, a conditional if e then e else e , or a let expression let x = e in e . Booleans are encoded as
true ≜ inl tt, false ≜ inr tt, and B as unit� ⊕� unit, conditionals as if e1 then e2 else e3 ≜
case e1 of {x ⇒ e2} {y ⇒ e3}, and let expressions as let x = e1 in e2 ≜ (λs (x : τ1).e2) e1.
A sensitivity s is either a non-negative real number or the symbol ∞, which represents an

unbounded sensitivity; we notate this set R∞≥0 ≜ R≥0 ⊎ {∞}. A sensitivity environment Σ is a
mapping from variables to their sensitivities. For convenience, we write sensitivity environments
as first-order polynomials, e.g. Σ = 1x + 2y corresponds to an environment Σ such that Σ(x) = 1
and Σ(y) = 2. A type τ is either the real number type R, the boolean type B, the unit type unit, a
function type (x : τ ) Σ

−→ τ , a sum type τ Σ⊕Σ τ , an additive product type τ Σ&Σ τ , or a multiplicative
product type τ Σ⊗Σ τ . The sensitivity environment annotation Σ is called the latent contextual
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sensitivity effect (also called latent effect when clear from the context) and represents a delayed
effect that emerges when a term of said type is eliminated. The latent effect Σ of a function of type
(x : τ ) Σ

−→ τ corresponds to the effects of applying the function, i.e., a static approximation of the
sensitivity of each variable used in its body. The sensitivity environment Σ1 (resp. Σ2) in τ1 Σ1⊕Σ2 τ2
corresponds to the latent effect of the injected value using inl (resp. inr). And similarly, Σ1 and
Σ2 in τ1

Σ1&Σ2 τ2 or τ1 Σ1⊗Σ2 τ2 correspond to the latent effect of accessing the first and second
components of the pair, respectively. Finally, a type environment Γ is, as usual, a mapping from
variables to types.

Type system. The Sax type system is presented in Figure 2. The judgment Γ ⊢ e : τ ; Σ says that
the term e has type τ and ambient sensitivity effect Σ (or ambient effect when clear from the
context) under type environment Γ. The ambient effect Σ represents an upper bound (conservative
approximation) of the real sensitivity of e after executing the program. The use of a sensitivity
environment Σ is different from Duet, where sensitivities are tracked in Γ and presented as
a necessary condition to type check the expression. In other words, in SaxΣ is used to infer
sensitivities, whereas in Duet Γ is used to check sensitivities.
- Rules rlit and unit are standard and report no effect, as no variable is accessed. These two rules
present no novelty with respect to Duet.

- Rule var is mostly standard; it reports an ambient effect 1x .
For example,

var
(x : R)(x ) = R
x : R ⊢ x : R ; x

- Rule plus computes the resulting ambient effect as the addition of the ambient effects of both
subterms. To add sensitivity environments we use the + operator, which is simply defined as the
addition of polynomials, e.g. (1x + 2y) + (3x ) = 4x + 2y.
For example, in the following type derivation

plus
x : R ⊢ x : R ; x x : R ⊢ x : R ; x

x : R ⊢ x + x : R ; 2x

we write 2x instead of x + x .
- Rules times and leq are similar to plus, but the resulting sensitivity effect is scaled by infinity
because (1) the sensitivity of a multiplication when neither side is a constant is unbounded, and (2)
the distance between distinct boolean values is deemed infinite, as explained in Section 4.2. Scaling
a sensitivity environment Σ by sensitivity s , written sΣ, produces a new sensitivity environment
in which each sensitivity in Σ is multiplied by s . For multiplication we assume that 0s = s0 = 0
for all s ∈ R∞≥0 and we deem∞s = s∞ = ∞ for s , 0.
Rules l-scale and r-scale address the overapproximation yielded by rule times when one of
the factors is a real number. For instance, for program 0.5 ∗ x rule l-scale reports a (precise)
sensitivity of 0.5x , whereas rules times would report∞x .

- Rule lam typechecks sensitivity functions and is novel with respect to Duet. The type of the
function is annotated with a latent effect Σ, computed as a subset of the effect of its body. On
a fully-latent discipline, the whole body effect is left as latent and the ambient effect Σ′ of the
function is empty. On the other hand, full eagerness of effects, as in Duet, is achieved when the
latent effect Σ is empty and the full effect of the body is paid upon construction.
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rlit

Γ ⊢ r : R ; �

var
Γ (x ) = τ

Γ ⊢ x : τ ; x

plus
Γ ⊢ e1 : R ; Σ1 Γ ⊢ e2 : R ; Σ2

Γ ⊢ e1 + e2 : R ; Σ1 + Σ2

times
Γ ⊢ e1 : R ; Σ1 Γ ⊢ e2 : R ; Σ2 e1 , r e2 , r

Γ ⊢ e1 ∗ e2 : R ; ∞(Σ1 + Σ2)

l-scale
Γ ⊢ e : R ; Σ

Γ ⊢ r ∗ e : R ; rΣ

r-scale
Γ ⊢ e : R ; Σ

Γ ⊢ e ∗ r : R ; rΣ

leq
Γ ⊢ e1 : R ; Σ1 Γ ⊢ e2 : R ; Σ2

Γ ⊢ e1≤e2 : B ; ∞(Σ1 + Σ2)

lam
Γ, x : τ1⊢ e : τ2 ; Σ + Σ′

Γ ⊢ λ
s (x : τ1). e : (x : τ1)

Σ
−→ τ2 ; Σ′

app
Γ ⊢ e1 : (x : τ1)

Σ
−→ τ2 ; Σ1 Γ ⊢ e2 : τ1 ; Σ2

Γ ⊢ e1 e2 : [Σ2/x]τ2 ; Σ1 + [Σ2/x]Σ

unit

Γ ⊢ tt : unit ; �

inl
Γ ⊢ e : τ1 ; Σ + Σ′

Γ ⊢ inlτ2 e : τ1 Σ⊕� τ2 ; Σ′

inr
Γ ⊢ e : τ2 ; Σ + Σ′

Γ ⊢ inrτ1 e : τ1 �⊕Σ τ2 ; Σ′

case
Γ ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1 Γ , x : τ11 ⊢ e2 : τ2 ; Σ2 Γ ,y : τ12 ⊢ e3 : τ3 ; Σ3

Γ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} :
[Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3 ; Σ1 ⊔ ([Σ1 + Σ11/x]Σ2 ⊔ ([Σ1 + Σ12/y]Σ3))

pair
Γ ⊢ e1 : τ1 ; Σ1 + Σ′1 Γ ⊢ e2 : τ2 ; Σ2 + Σ′2

Γ ⊢ (e1, e2) : τ1 Σ1&Σ2 τ2 ; Σ′1 ⊔ Σ′2

proj1
Γ ⊢ e : τ1 Σ1&Σ2 τ2 ; Σ
Γ ⊢ fst e : τ1 ; Σ + Σ1

proj2
Γ ⊢ e : τ1 Σ1&Σ2 τ2 ; Σ
Γ ⊢ snd e : τ2 ; Σ + Σ2

tup
Γ ⊢ e1 : τ1 ; Σ1 + Σ′1 Γ ⊢ e2 : τ2 ; Σ2 + Σ′2

Γ ⊢ ⟨e1, e2⟩ : τ1 Σ1⊗Σ2 τ2 ; Σ′1 + Σ′2

untup
Γ ⊢ e1 : τ11 Σ11⊗Σ12 τ12 ; Σ1 Γ , x1 : τ11, x2 : τ12 ⊢ e2 : τ2 ; s1x1 + s2x2 + Σ2

Γ ⊢ let x1, x2 = e1 in e2 : [Σ1 + Σ11/x1][Σ1 + Σ12/x2]τ2 ; (s1 ⊔ s2)Σ1 + s1Σ11 + s2Σ12 + Σ2

ascr
Γ ⊢ e : τ ; Σ τ <: τ ′

Γ ⊢ (e :: τ ′) : τ ′ ; Σ

Fig. 2. Sax: Type system

Since the splitting of Σ + Σ′ is non-deterministic, a lambda expression can be given many types,
ranging from fully-latent to fully-eager disciplines. We show this behavior later when explaining
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[Σ/x]τ
[Σ/x]R = R
[Σ/x]B = B

[Σ/x]unit = unit

[Σ/x]((y : τ1)
Σ′
−−→ τ2) = (y : [Σ/x]τ1)

[Σ/x ]Σ′
−−−−−−→ [Σ/x]τ2

[Σ/x](τ1 Σ1⊕Σ2 τ2) = [Σ/x]τ1 [Σ/x ]Σ1⊕[Σ/x ]Σ2 [Σ/x]τ2
[Σ/x](τ1 Σ1&Σ2 τ2) = [Σ/x]τ1 [Σ/x ]Σ1&[Σ/x ]Σ2 [Σ/x]τ2
[Σ/x](τ1 Σ1⊗Σ2 τ2) = [Σ/x]τ1 [Σ/x ]Σ1⊗[Σ/x ]Σ2 [Σ/x]τ2

[Σ/x]Σ
[Σ/x]� = �

[Σ/x](Σ′ + sx ) = [Σ/x]Σ′ + sΣ
[Σ/x](Σ′ + sy) = [Σ/x]Σ′ + sy

Fig. 3. Sax: Auxiliary definitions of the static semantics (selected rules)

rules pair and tup. The implementation addresses this issue through the use of additional type
annotations. Without loss of generality, in this paper, we assume the fully-latent derivation for
all lambdas unless stated otherwise. The same applies to other language constructs that exhibit
this kind of non-deterministic prepayment of latent effects.
For example, consider program λ

s (x : R). x + x and its type derivation:
lam

x : R ⊢ x + x : R ; 2x

� ⊢ λ
s (x : R). x + x : (x : R) 2x

−−→ R ; �

The ambient effect of the program is empty (values are pure) but its latent effect is 2x , the ambient
effect of its body.

- Rule app deals with function application. Unlike Duet, as variable x may be free in τ2 (e.g. τ2 can be
a function type whose latent effect includes x ), the resulting type replaces x with the ambient effect
Σ2 of its argument using the sensitivity environment substitution operator defined in Figure 3. For
instance, consider type (x : R) �−→ (z : R)

2x+y+z
−−−−−−→ R. After application, if Σ2 = 3y, the resulting

type would be [3y/x]((z : R)
2x+y+z
−−−−−−→ R) = ((z : R)

6y+y+z
−−−−−−→ R) = ((z : R)

7y+y
−−−−→ R). The ambient

effect of an application is computed as the ambient effect of the function Σ1, plus its latent effect;
but as x is free we substitute it by Σ2, e.g. if Σ = Σ′+sx , then [Σ2/x](Σ1+Σ

′+sx ) = Σ1+ (Σ′+sΣ2).
This is different from Duet as, where the latent effect of the function Σ is paid when the function
is created.
For instance, consider the open program (λs (x : R). 2 ∗ x + y) (3 ∗ y) and the following type
derivation:

app
y : R ⊢ λs (x : R). 2 ∗ x + y : (x : R)

2x+y
−−−−→ R ; � y : R ⊢ 3 ∗ y : R; 3y

y : R ⊢ (λs (x : R). 2 ∗ x + y) (3 ∗ y) : R ; 7y

The resulting ambient effect cannot depend on x (otherwise it would be free), therefore it is
computed as the substitution of x by the ambient effect of the argument [3y/x](2x + y) = 7y.
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- Contrary to previous work [34, 49] , and in particular Duet, Rule inl does not necessarily report
the effect of its body. The payment of effects for the subexpression (or a subset of it) can be
delayed, and eventually payed only if the sum is accessed or used. The term is tagged with type τ2
to aid type inference. The resulting type is just a sum type where the latent effect of the left type
is Σ, a subset of the ambient effect of its subterm, and the latent effect of the right type is empty
(as it will never be used/accessed so we choose the tighter ambient effect). Non-determinism is
addressed similarly to rule lam. Rule inr is defined similarly.
For instance, consider the type derivations of expressions e4 = inl (x ∗ x ) and e5 = inr (x ∗ x ) of
Section 4.3:

inl
x : R ⊢ (x ∗ x ) : R ; ∞x

� ⊢ inlR (x ∗ x ) : R ∞x⊕� R ; �

inr
x : R ⊢ x ∗ x : R ; ∞x

� ⊢ inrR (x ∗ x ) : R �⊕∞x R ; �

For expression e4, the latent effect of the left type is∞x , and of the right type is empty (it is the
tighter upper bound as the right component cannot be accessed). An analogous argument is used
for e5.

- Rule case is more involved. The resulting type of the case is just the least upper bound (join) of
the branch types τ2 and τ3. The join operator is defined in Figure 4. Note that similarly to rule app,
τ2 and τ3 may have x and y as free variables respectively, thus we replace those variables with
the ambient effects of using the sum term e1: Σ1 + Σ11 and Σ1 + Σ12 respectively. The resulting
ambient effect is computed as follows: we join the cost of reducing e1: Σ1, with the join of the
cost of taking each branch. This is different from Duet, where Σ1 is added to the cost of taking
each branch, leading to a looser bound. Similarly to types τ2 and τ3, ambient effects Σ2 and Σ3
may have x and y free, so we substitute them away from the effects. Note that we use the join
between Σ1 and the cost of the branches (instead of the addition for instance), otherwise the
result would be less precise when the branches use x or y.
For instance, the type derivation of Example 4.4 is described below:

case
Γ ⊢ e : R ∞x⊕x R;b Γ, x1 : R ⊢ 0 : R;� Γ, x2 : R ⊢ x2 : R;x2
Γ ⊢ case e of {x1 ⇒ 0}{x2 ⇒ x2} : R;b ⊔ (0b + 0(∞x )) ⊔ (1b + 1(x ))

where Γ = b : B, x : R, and e = if b then {inl (x ∗ x )} else {inr x}. As 0∞ = 0, the resulting
ambient effect is b ⊔ (0b + 0(∞x )) ⊔ (1b + 1(x )) = b ⊔ (0b + 0x ) ⊔ (b + x ) = b + x , where previous
work reported∞ on x .
Notice that if we change the program to case e of {x1 ⇒ 0}{x2 ⇒ 1}, then the resulting ambient
effect is b ⊔ (0b + 0(∞x )) ⊔ (0b + 0(x )) = b, i.e. the payment is not zero but b, the cost of reducing
expression e to a value.
Example 4.3 is desugared and type checked as follows:

case
Γ ⊢ x ≤ 10 : B;∞x Γ, x1 : R ⊢ true : R;� Γ, x2 : R ⊢ false : R;�

Γ ⊢ case x ≤ 10 of {x1 ⇒ true}{x2 ⇒ false} : B;∞x ⊔ (0(∞x ) + 0(�)) ⊔ (0(∞x ) + 0(�))

where B = unit �⊕� unit. As ∞x ⊔ (0(∞x) + 0(�)) ⊔ (0(∞x) + 0(�)) = ∞x ⊔ 0x = ∞x , the
expression is∞-sensitive in x .

- Rules pair and tup are novel and non-deterministic: the ambient effects are computed using
subsets of the ambient effect of each component. If the ambient effects of the left component is
Σ1 + Σ′1 and of the right component is Σ2 + Σ′2 (for some Σ1, Σ

′
1, Σ2, Σ

′
2), then the latent effects

of using the left component is Σ1, and for the right component is Σ2. For additive products, the
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τ ⊔ τ
R ⊔ R = R
B ⊔ B = B

unit ⊔ unit = unit

(y : τ1)
Σ
−→ τ2 ⊔ (y : τ ′1)

Σ′
−−→ τ ′2 = (y : τ1 ⊓ τ ′1)

Σ⊔Σ′
−−−−→ (τ2 ⊔ τ ′2)

τ1 Σ1⊕Σ2 τ2 ⊔ (τ ′1
Σ′1⊕Σ

′
2 τ ′2) = (τ1 ⊔ τ ′1)

Σ1⊔Σ′1⊕Σ2⊔Σ
′
2 (τ2 ⊔ τ ′2)

τ1 Σ1&Σ2 τ2 ⊔ (τ ′1
Σ′1&Σ′2 τ ′2) = (τ1 ⊔ τ ′1)

Σ1⊔Σ′1&Σ2⊔Σ′2 (τ2 ⊔ τ ′2)
τ1 Σ1⊗Σ2 τ2 ⊔ (τ ′1

Σ′1⊗Σ
′
2 τ ′2) = (τ1 ⊔ τ ′1)

Σ1⊔Σ′1⊗Σ2⊔Σ
′
2 (τ2 ⊔ τ ′2)

τ ⊓ τ
R ⊓ R = R
B ⊓ B = B

unit ⊓ unit = unit

(y : τ1)
Σ
−→ τ2 ⊓ (y : τ ′1)

Σ′
−−→ τ ′2 = (y : τ1 ⊔ τ ′1)

Σ⊓Σ′
−−−−→ (τ2 ⊓ τ ′2)

τ1 Σ1⊕Σ2 τ2 ⊓ (τ ′1
Σ′1⊕Σ

′
2 τ ′2) = (τ1 ⊓ τ ′1)

Σ1⊓Σ′1⊕Σ2⊓Σ
′
2 (τ2 ⊓ τ ′2)

τ1 Σ1&Σ2 τ2 ⊓ (τ ′1
Σ′1&Σ′2 τ ′2) = (τ1 ⊓ τ ′1)

Σ1⊓Σ′1&Σ2⊓Σ′2 (τ2 ⊓ τ ′2)
τ1 Σ1⊗Σ2 τ2 ⊓ (τ ′1

Σ′1⊗Σ
′
2 τ ′2) = (τ1 ⊓ τ ′1)

Σ1⊓Σ′1⊗Σ2⊓Σ
′
2 (τ2 ⊓ τ ′2)

Σ ⊔ Σ
� ⊔ � = �

(Σ + sx ) ⊔ (Σ′ + s ′x ) = (Σ ⊔ Σ′) + (s ⊔ s ′)x x < dom(Σ ⊔ Σ′)
Σ ⊔ (Σ′ + sx ) = (Σ ⊔ Σ′) + sx (x < dom(Σ))
(Σ + sx ) ⊔ Σ′ = (Σ ⊔ Σ′) + sx (x < dom(Σ′))

Σ ⊓ Σ
� ⊓ � = �

(Σ + sx ) ⊓ (Σ′ + s ′x ) = (Σ ⊓ Σ′) + (s ⊓ s ′)x x < dom(Σ ⊓ Σ′)
Σ ⊓ (Σ′ + sx ) = (Σ ⊓ Σ′) (x < dom(Σ))
(Σ + sx ) ⊓ Σ′ = (Σ ⊓ Σ′) (x < dom(Σ′))

Fig. 4. Sax: Join and Meet of types and sensitivity environments

ambient effect is the maximum between Σ′1 and Σ′2, and for multiplicative products, the sum
between Σ′1 and Σ′2.
For instance, let us consider examples e1 = (2 ∗ x + y, 0), e2 = (0, 2 ∗ x + y), and e3 = (x, x + y)
from Section 4.3. We present next “lazy” type derivations for each of the examples:

pair
Γ ⊢ 2 ∗ x + y : R ; 2x + y Γ ⊢ 0 : R ; �

Γ ⊢ (2 ∗ x + y, 0) : R 2x+y&� R ; �

pair
Γ ⊢ 0 : R ; � Γ ⊢ 2 ∗ x + y : R ; 2x + y

Γ ⊢ (0, 2 ∗ x + y) : R �&2x+y R ; �

pair
Γ ⊢ x : R ; x Γ ⊢ x + y : R ; x + y
Γ ⊢ (x, 2 ∗ x + y) : R x&x+y R ; �

where Γ = x : R,y : R.
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Now, let us consider examples (2x, x ) and ⟨2x, x⟩. Here are six possible type derivations of paying
eagerly for effects:

pair
Γ ⊢ 2x : R ; � + 2x Γ ⊢ x : R ; x + �

Γ ⊢ (2x, x ) : R &x R ; 2x

tup
Γ ⊢ 2x : R ; � + 2x Γ ⊢ x : R ; x + �

Γ ⊢ ⟨2x, x⟩ : R ⊗x R ; 2x

pair
Γ ⊢ 2x : R ; x + x Γ ⊢ x : R ; x + �

Γ ⊢ (2x, x ) : R x&x R ; x

tup
Γ ⊢ 2x : R ; x + x Γ ⊢ x : R ; x + �

Γ ⊢ ⟨2x, x⟩ : R x⊗x R ; x

pair
Γ ⊢ 2x : R ; � + 2x Γ ⊢ x : R ; � + x

Γ ⊢ (2x, x ) : R & R ; 2x

tup
Γ ⊢ 2x : R ; � + 2x Γ ⊢ x : R ; � + x

Γ ⊢ ⟨2x, x⟩ : R ⊗ R ; 3x

Note that the difference between the two form of products is only present when effects are paid
eagerly for both components.

- Rules proj1 and proj2 type check the deconstruction of an additive product. The ambient effect is
computed as the cost of reducing the product (Σ), plus the cost of accessing either the first or the
second component correspondingly (Σ1 or Σ2). This differs from Duet where, and conservatively,
the cost of accessing both components are paid when the pair is created. In Sax we only paid for
the component we are accessing.
For instance, let us consider the first projections of last examples:

proj1
Γ ⊢ (2 ∗ x + y, 0) : R 2x+y&� R ; �
Γ ⊢ fst (2 ∗ x + y, 0) : R ; 2x + y

proj1
Γ ⊢ (0, 2 ∗ x + y) : R �&2x+y R ; �

Γ ⊢ fst (0, 2 ∗ x + y) : R ; �

proj1
Γ ⊢ (x, 2 ∗ x + y) : R x&x+y R ; �

Γ ⊢ fst (x, 2 ∗ x + y) : R ; x

Contrary to previous work, the ambient effects of all three projections are different, as they
capture precisely the variables accessed on the corresponding component.

- Rule untup typechecks the deconstruction of a multiplicative product, and is a little more involved.
To compute the ambient effect we start by paying for Σ2, the ambient effect of subexpression e2. We
also want to pay Σ11 and Σ12, the cost of accessing the left and the right components respectively,
proportionally to the sensitivity of the left and right variables x1 and x2 in e2, i.e. s1Σ11 + s2Σ12.
But we also have to pay for Σ1, the ambient effect of e1. We could pay (s1 + s2)Σ1, but that would
be an unnecessary over-approximation. For instance, program let x1, x2 = p in x1 + x2 would
pay twice for p (the ambient effect of e1), even though the whole pair is used only once. Instead
we want to pay proportional to the the maximum sensitivity between x1 and x2, i.e. (s1 ⊔ s2)Σ1.
Finally, the ambient effect of the let expression is (s1 ⊔ s2)Σ1 + s1Σ11 + s2Σ12 + Σ2.
For instance, let us consider the typing derivation of Example 4.2:

untup
Γ ⊢ (2 ∗ x,y) : R 2x⊗y R ; � Γ, x1 : R, x2 : R ⊢ x1 + 2 ∗ x2 : R ; x1 + 2x2

Γ ⊢ let x1, x2 = (2 ∗ x,y) in x1 + 2 ∗ x2 : R ; 1(2x ) + 2(y)

where Γ = x : R,y : R. The resulting ambient effect is 1(2x ) + 2(y) = 2x + 2y.
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blit

Γ ⊢ b : B ; �

if
Γ ⊢ e1 : B ; Σ1 Γ ⊢ e2 : τ ; Σ2 Γ ⊢ e3 : τ ; Σ3

Γ⊢ if e1 then e2 else e3 : τ ; Σ1 ⊔ (Σ2 ⊔ Σ3)

let
Γ ⊢ e1 : τ1 ; Σ1 Γ, x : τ1 ⊢ e2 : τ2 ; Σ2

Γ ⊢ let x = e1 in e2 : [Σ1/x]τ2 ; [Σ1/x]Σ2

Fig. 5. Sax: Derived type rules

Now consider Γ = p : R �⊗� R, and the following typing derivation:
untup

Γ ⊢ p : R �⊗� R ; p Γ, x1 : R, x2 : R ⊢ ⟨x1, x2⟩ : R Σ1⊗Σ2 R ; Σ3

Γ ⊢ let x1, x2 = p in ⟨x1, x2⟩ : R Σ′1⊗Σ
′
2 R ; Σ′3

Γ,y1 : R,y2 : R ⊢ y1 + y2 : R ; y1 + y2
Γ ⊢ let y1,y2 = (let x1, x2 = p in ⟨x1, x2⟩) in y1 + y2 : R ; Σ′3 + Σ′1 + Σ′2

We can typecheck subexpression let x1, x2 = p in (x1, x2) in different ways. If we do not prepay
effects, then Σ1 = x1, Σ2 = x2, and Σ3 = �. Thus Σ′1 = Σ′2 = p, and Σ′3 = �. Finally the ambient
effect of the program is 2p.
If we prepay the accesses of x1 and x2, then Σ1 = �, Σ2 = �, and Σ2 = x1 + x2. Thus Σ′1 = Σ′2 = �,
and Σ′3 = (1 ⊔ 1)p = p. Finally the ambient effect of the program is p.

- Rules for booleans, conditionals and let expressions are derived rules from sums, case, and
application rules respectively, and can be found in Figure 5.

- Finally, Rule ascr is the only rule that supports the use of subtyping, and takes the role of checking
whether the subexpression is subtype of a given type.
Subtyping for types and sensitivity environments is presented in Figure 6, and is mostly standard.

We only allow subtyping for the sensitivity parts of types. A sensitivity environment is subtype of
another if their sensitivities are less than or equal than the other for each variable. For instance,
(x : R)

x+y
−−−→ R <: (x : R)

x+2y+3z
−−−−−−−→ R because x + y <: x + 2y + 3z (x ≤ x , y ≤ 2y, and 0z ≤ 3z).

5.2 Type Safety

Type safety is established relative to the runtime semantics of Sax. We adopt a big-step semantics
with explicit substitutions. Concretely, we use γ ⊢ e ⇓ v to represent that configuration γ ⊢ e
—formed by expression e and value environment γ mapping variables to values— reduces to value
v after some number of steps. Reducion rules are rather standard and can be found in Appendix B,
Figure 27.
To establish Sax type safety, we employ simple unary logical relations, called the type safety

logical relations, that characterize well-typed, non-stuck execution. This relation is well defined
because it is defined by induction over the structure of types. The type safety result itself is derived
as a corollary of the fundamental property of the type safety logical relations.
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Σ <: Σ
Σ <: Σ′

△
⇐⇒ ∀x . Σ(x ) ≤ Σ′(x )

τ <: τ

base
τ ∈ {R, unit}

τ <: τ

lam
τ ′1 <: τ1 Σ <: Σ′ τ2 <: τ ′2

(x : τ1)
Σ
−→ τ2 <: (x : τ ′1)

Σ′
−−→ τ ′2

sum
τ1 <: τ ′1 Σ1 <: Σ′1 τ2 <: τ ′2 Σ2 <: Σ′2

τ1
Σ1⊕Σ2 τ2 <: τ ′1

Σ′1⊕Σ
′
2 τ ′2

pair
τ1 <: τ ′1 Σ1 <: Σ′1 τ2 <: τ ′2 Σ2 <: Σ′2

τ1
Σ1&Σ2 τ2 <: τ ′1

Σ′1&Σ′2 τ ′2

tup
τ1 <: τ ′1 Σ1 <: Σ′1 τ2 <: τ ′2 Σ2 <: Σ′2

τ1
Σ1⊗Σ2 τ2 <: τ ′1

Σ′1⊗Σ
′
2 τ ′2

Fig. 6. Sax: Subtyping

The type safety logical relations is defined in Figure 7. For simplicity, we only present the cases
for real numbers, variables, functions, and sums. The other cases are similar and straightforward.
The unary logical relations are split into mutually recursive value relationsV , computation relation
E, and environment relation G, and defined as follows:
- Any value is inAtomJτ K if the value type checks to some τ ′ <: τ under an empty type environment.
- A real number is in the value relation at type R if the number is in AtomJRK.
- Similarly, a unit value tt is always related at type unit.
- An inl(resp. inr) value is in the value relation at τ1 �⊕� τ2 if the value is in AtomJτ1 �⊕� τ2K
and the underlying value v is in the value relation at τ1 (resp. τ2).

- A closure is in the value relation at type (x : τ1)
sx
−−→ τ2 if it satisfies AtomJ(x : τ1)

sx
−−→ τ2K,

and given any value v in the value relation at argument type τ1, the extended configuration
γ [x 7→ v] ⊢ e is in the computation relation at type τ2/(x : τ1). We use the ./Γ operator to remove
variables from a type and is defined as follows:

τ/Γ = [�/x1, ...,�/xn]τ ,∀xi ∈ dom(Γ)

- A configuration is in the computation relation at type τ , if the configuration reduces to some
value v , which is itself in the value relation at type τ .

- Finally, a value environment γ is in the environment relation at Γ if the domains of γ and Γ are the
same, and for each variable in the domain of γ the underlying value γ (x ) is in the value relation
at type Γ(x )/Γ (we use the ./Γ operator to emphasize that the type is closed).
As usual, the fundamental property of the type safety logical relation states that well-typed open

terms are in the relation closed by an adequate environment γ :
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� ⊢ v : τ ′;� τ ′ <: τ
v ∈ AtomJτ K

r ∈ AtomJRK

r ∈ VJRK

tt ∈ AtomJunitK

tt ∈ VJunitK

inlτ
′
2 v ∈ AtomJτ1 �⊕� τ2K v ∈ VJτ1K

inlτ
′
2 v ∈ VJτ1 �⊕� τ2K

inrτ
′
1 v ∈ AtomJτ1 �⊕� τ2K v ∈ VJτ2K

inrτ
′
1 v ∈ VJτ1 �⊕� τ2K

(v1,v2) ∈ AtomJτ1 �&� τ2K v1 ∈ VJτ1K v2 ∈ VJτ2K

(v1,v2) ∈ VJτ1 �&� τ2K

⟨v1,v2⟩ ∈ AtomJτ1 �⊗� τ2K v1 ∈ VJτ1K v2 ∈ VJτ2K

⟨v1,v2⟩ ∈ VJτ1 �⊗� τ2K

⟨λ
s
x : τ .e,γ ⟩ ∈ AtomJ(x : τ1)

sx
−−→ τ2K ∀v ∈ VJτ1K.γ [x 7→ v] ⊢ e ∈ EJτ2/(x : τ1)K

⟨λ
s
x : τ1.e,γ ⟩ ∈ VJ(x : τ1)

sx
−−→ τ2K

γ ⊢ e ⇓ v v ∈ VJτ K

γ ⊢ e ∈ EJτ K

dom(Γ) = dom(γ ) ∀x ∈ dom(γ ).γ (x ) ∈ VJΓ(x )/ΓK
γ ∈ GJΓK

Fig. 7. Sax: Type Safety Logical Relations

Proposition 5.1 (Fundamental Property of the Type Safety Logical Relation).
Let Γ ⊢ e : τ ; Σ, and γ ∈ GJΓK. Then γ ⊢ e ∈ EJτ/ΓK.

Type safety for closed terms follows immediately as a corollary:

Corollary 5.1 (Type Safety and Normalization of Sax).
Let ⊢ e : τ ;�, then ⊢ e ⇓ v for some v and τ ′, such that ⊢ v : τ ′;� and τ ′ <: τ .

5.3 Type Soundness

This section establishes the type soundness of Sax, stated in terms of a metric preservation result.
Loosely speaking, metric preservation captures the maximum variation of an open term when it is
closed under two different (but related) environments.

Logical relations. To establish this soundness result, we make use of logical relations [4, 6]. In
particular, we define (mutually recursive) logical relations for sensitivity values, computations and
environments; see Figure 8. The logical relations for values (Vd JσK) and computations (Ed JσK)
are indexed by a relational distance d ∈ R∞≥0 and a so called relational distance type σ , which is a
regular type where sensitivity environments are enriched with a constant d ∈ R∞≥0 denoting the
distance induced by pair of substitutions. Formally, the syntax of relational distance types is defined
as follows:

σ = R | B | unit | (x : σ ) Σ+d
−−−→ σ | σ Σ+d⊕Σ+d σ | σ Σ+d&Σ+d σ | σ Σ+d⊗Σ+d σ

Notice that the logical relations do not mention sensitivity environments Σ because they are defined
over closed terms and values. Nevertheless, relational distance types σ do mention sensitivity
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(r1, r2) ∈ Vd JRK
△
⇐⇒ |r1 − r2 | ≤ d

(v1,v2) ∈ Vd JunitK
△
⇐⇒ v1 = tt ∧v2 = tt

(inl v1, inl v2) ∈ Vd Jσ1 d1⊕d2 σ2K
△
⇐⇒ (v1,v2) ∈ Vd+d1Jσ1K

(inr v1, inr v2) ∈ Vd Jσ1 d1⊕d2 σ2K
△
⇐⇒ (v1,v2) ∈ Vd+d2Jσ2K

((v11,v12), (v21,v22)) ∈ Vd Jσ1 d1&d2 σ2K
△
⇐⇒ ∃d ′1,d

′
2,d = d

′
1 ⊔ d

′
2∧

(v11,v21) ∈ Vd1+d ′1Jσ1K ∧ (v12,v22) ∈ Vd2+d ′2Jσ2K
(⟨v11,v12⟩, ⟨v21,v22⟩) ∈ Vd Jσ1 d1⊗d2 σ2K

△
⇐⇒ ∃d ′1,d

′
2,d = d

′
1 + d

′
2∧

(v11,v21) ∈ Vd1+d ′1Jσ1K ∧ (v12,v22) ∈ Vd2+d ′2Jσ2K

(v1,v2) ∈ Vd J(x : σ1)
∆ ·Σ+sx
−−−−−−→ σ2K

△
⇐⇒ ∀d ′,v ′1,v

′
2,γ1,γ2, (v

′
1,v
′
2) ∈ Vd ′Jσ1K =⇒

(γ1 ⊢ v1 v ′1,γ2 ⊢ v2 v
′
2) ∈ Ed+∆ ·Σ+sd ′Jd

′x (σ2)K
(γ1 ⊢ e1,γ2 ⊢ e2) ∈ Ed JσK

△
⇐⇒ ∀v1, (d < ∞∧ γ1 ⊢ e1 ⇓ v1) =⇒

∃v2,γ2 ⊢ e2 ⇓ v2 ∧ (v1,v2) ∈ Vd JσK

(γ1,γ2) ∈ G∆JΓK
△
⇐⇒ dom(γ1) = dom(γ2) = dom(Γ)∧

∀x ∈ dom(Γ). (γ1(x ),γ2(x )) ∈ V∆(x )J∆(Γ(x ))K

Fig. 8. Sax: logical relations for metric preservation

environments Σ. We use a combination of sensitivity environments and relational distances (Σ +d),
because functions types introduce binders that cannot be substituted until application. For instance,
consider type (x : R)

x+y
−−−→ (R x+3z⊕2x+2y R), and two pair of substitutions for y and z, at distance 2

and 1 respectively, e.g. γ1 = y 7→ 1, z 7→ 1 and γ2 = y 7→ 3, z 7→ 2, where |γ1(y) − γ2(y)| ≤ 2 and
|γ1(z) − γ2(z)| ≤ 1. The corresponding relational distance type after substitution is (x : R) x+2

−−−→

(R x+3⊕2x+4 R). For notation simplicity, in the rest of the section we name relational distance
types as types when the acompanying relational distances can be inferred from the context. Also
we omit the environment notations when they are empty. On the other hand, the logical relation
for environments (G∆JΓK) is indexed by a relational distance environment ∆, mapping variables
to relational distances in R∞≥0 and a type environment Γ. We use (v1,v2) ∈ Vd JσK to denote that
value v1 is related to value v2 at type σ and relational distance d , and likewise for expressions
(i.e. computations) and environments.

To define logical relations we also make use of relational distance instantiations, which have
shape ∆·(Σ + d) and act by replacing free variables in sensitivity environment Σ with the distances
provided by distance environment ∆. Relational distance instantiations only close variables defined
in ∆ and are formally defined as:

∆·� = 0
∆·(Σ + d) = ∆·Σ + d
∆·(Σ + sx ) = ∆·Σ + sd if ∆(x ) = d
∆·(Σ + sx ) = ∆·Σ + sx otherwise

Furthermore, to close a type under a sensitivity environment we use the relational distance type
instantiation operator ∆(σ ) (note that a τ is also an σ assuming that the “default” relational distance
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d is 0) defined below.

∆(R) = R
∆(B) = B

∆(unit) = unit

∆((x : σ1)
Σ′+d
−−−−→ σ2) = (x : ∆(σ1))

∆ ·Σ′+d
−−−−−→ ∆(σ2)

∆(σ1 Σ1+d1⊕Σ2+d2 σ2) = ∆(σ1) ∆ ·Σ1+d1⊕∆ ·Σ2+d2 ∆(σ2)
∆(σ1 Σ1+d1&Σ2+d2 σ2) = ∆(σ1) ∆ ·Σ1+d1&∆ ·Σ2+d2 ∆(σ2)
∆(σ1 Σ1+d1⊗Σ2+d2 σ2) = ∆(σ1) ∆ ·Σ1+d1⊗∆ ·Σ2+d2 ∆(σ2)

Now that we have all the prerequisite, we briefly go through the definition of the logical relations
(in Figure 8)5:
- Two real numbers are related at type R and distance d , if and only if the absolute difference
between both numbers is at most d . For instance, (1, 3) ∈ V2JRK and (3, 1) ∈ V2JRK, as the logical
relations are reflexive.

- Unit value tt is always related to itself at type unit under any distance.
- Two inl (resp. inr) values are related at σ1 d1⊕d2 σ2 and distance d if the underlying values
are related at type σ1 (resp. σ2) and distance d + d1 (resp. d + d2). The intuition is that d can be
treated as the distance between two computations that reduce to the given sums, and d1 can be
treated as the distance between the underlying values; thus the total cost is the addition of both
distances. For instance, for any d and σ , we have (inl 1, inl 3) ∈ V0JR 2⊕d σK because they are
at immediate distance zero (both are inl) and latent distance 2; instead of delaying the distance,
one also has (inl 1, inl 3) ∈ V2JR 0⊕d σK, i.e. both values are at distance 2 with zero latent
distance between their content.

- Two additive (resp. multiplicative) products are related at type σ1 d1&d2 σ2 (resp. σ1 d1⊗d2 σ2) and
distance d +d ′1 ⊔d ′2 (resp. d +d ′1 +d ′2), if both first components are related at type σ1 and distance
d+d1+d

′
1, and both second components are related at type σ2 and distance d+d2+d ′2. For instance,

((inl 1, 4), (inl 3, 5)) ∈ V0J(R 2⊕0 σ ) 0&1 RK are at distance 0 and (inl 1, inl 3) ∈ V0JR 2⊕0 σK
and (4, 5) ∈ V1JRK.

- Two sensitivity closures are related if, given related inputs, they produce related computations.
In more detail, first the environments has to be related at some Γ and distance environment ∆.
Note that ∆ has to be the same environment that closes the latent effect of the function ∆·Σ + s ′x ,
and the one that closes the input type (σ1 = ∆(τ1)). Second, inputs v ′1 and v ′2 have to be related
at argument type σ1 and any distance d ′. Finally, the body of the functions in environments
extended with inputs v ′1 and v ′2 have to be related computations at type d ′x(σ2) and distance
d + ∆·Σ + sd ′. Note that, as the variable x is out of scope after the application, we replace any
instance of x with the distance of the inputs d ′, using the distance type instantiation operator.
The new distance at which both computations are now related is computed as the addition of
the distance of the values d , and the closed latent effect d ′x (∆·Σ + sx ) = ∆·Σ + sd ′. For instance,
(⟨λsx : R.x + y),y 7→ 1⟩, ⟨λsx : R.x + y),y 7→ 3⟩ ∈ V0J(x : R) 2+1x

−−−−→ RK, as in this case ∆ = 2y,
Σ = 1y, and ∆·Σ = 2y·1y = 2.

- Two sensitivity configurations are related computations at type σ and distance d , noted (γ1 ⊢
e1,γ2 ⊢ e2) ∈ Ed JσK, when the distance is infinite, or if the first configuration reduces to a value,
then the second configuration also reduces to a value, and these values are related at type σ and
distance d .

5for simplicity we use “distance” instead of ”relational distance”
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- Finally, value environment γ1 is related to value environment γ2 at type environment Γ and
distance environment ∆, written (γ1,γ2) ∈ G∆JΓK, if they both map each variable x in the type
environment to values related at their corresponding type (closed with ∆) and at distance ∆(x ).

Sensitivity Metric Preservation. Armed with these logical relations, we can establish the no-
tion of type soundness, and prove the fundamental property—well-typed terms are related with
themselves—which corresponds to metric preservation [49]. As usual, we state this property ap-
pealing to open terms, where free variables indicate input parameters, which are then closed by
related value environments.
Theorem 5.2 (Sensitivity Metric Preservation). If Γ ⊢ e : τ ; Σ, then for any distance

environment ∆ with dom(Γ) ⊆ dom(∆) and any pair of value environments (γ1,γ2) ∈ G∆JΓK, it holds
that (γ1 ⊢ e,γ2 ⊢ e) ∈ E∆ ·ΣJ∆(τ )K.
In other words, if a sensitivity term is well-typed, then for any valid distance environment ∆ (that
“fits” Γ) and any two value environments γ1,γ2 related at Γ and ∆, configurations γ1 ⊢ e,γ2 ⊢ e
represent related computations at type ∆(τ ) (closing all free variables) and distance ∆·Σ. Note that
since dom(Σ) ⊆ dom(Γ) ⊆ dom(∆), we have ∆·Σ ∈ R∞≥0.

From the above theorem it is easy to derive a corollary that only characterizes closed terms:
Corrolary 5.2.1 (FP for closed sensitivity terms). If � ⊢ e : τ ; �, then (� ⊢ e,� ⊢ e) ∈
E0Jτ K.

As a direct consequence of Theorem 5.2 we can also establish the sensitivity type soundness at
base types:

Theorem 5.3 (Sensitivity Type Soundness at Base Types). If � ⊢ e : (x : R) sx
−−→ R ; �,

|r1 − r2 | ≤ d , � ⊢ e r1 ⇓ r
′
1, � ⊢ e r2 ⇓ r

′
2, then |r

′
1 − r

′
2 | ≤ sd .

Let us illustrate metric preservation by revisiting some examples. Consider example 4.2:
x : R,y : R ⊢ let x1, x2 = ⟨2 ∗ x,y⟩ in x1 + 2 ∗ x2 : R; 2x + 2y

If we know that in two different executions x may differ in at most 1, and y in at most 3, i.e.
∆ = 1x + 3y, then the result will differ in at most ∆·(2x + 2y) = 1·2 + 3·2 = 8. For instance, if in one
execution x is bound to 0 and y to 4 then the result will be 8. In a second execution, if x is bound to
1 and y to 6 then the result will be 14. Comparing both results we get |8 − 14| = 6 ≤ 8. Finally, in a
third execution, if x is bound to 1 and y to 7 then the result will be 16. Comparing with the first
execution we have |8 − 16| = 8 ≤ 8, and with the second |14 − 16| = 2 ≤ 8.

Now consider example 4.3:
x : R ⊢ case (x ≤ 10) {x1 ⇒ true}{x2 ⇒ false} : B;∞x

In this case if x varies in two different executions (∆(x ) > 0) then the outcome will differ in at most
∆(x)·∞ = ∞. For instance, if in one execution x is bound to 0 the result will be true, and if in a
second execution x is bound to 1, then the result is also going to be true, and true is at distance
zero with respect to itself, and 0 ≤ ∞. If in a third execution x is bound to 11, then the result will be
false, and false is at distance infinity with respect to true. Now, if we now that x is constant across
multiple executions (∆(x ) = 0), then we know from metric preservation that the result will differ in
0·∞ = 0, i.e. the result will be constant.

6 DESIGN OF JAZZ’S PRIVACY TYPE SYSTEM

In this section, we review the limitations of prior approaches related to the tracking of privacy, and
then discuss how they are addressed by Jazz. In this section, we color expressions and metavariables
red as they pertain to the privacy fragment of Jazz.
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6.1 Privacy Closures

Consider a family of looping combinators parameterized by the number of loop iterations n, e.g.,
where loop3 x f = f (f (f x )). In Fuzz, loopn would have the type τ → (τ → ⃝τ ) ⊸n ⃝τ . In this
type, regular arrows→ mean no sensitivity is tracked for the argument. The linear arrow ⊸n
means the result is n-sensitive (where n is the number of loop iterations) in the closure variables of
the supplied function of type (τ → ⃝τ ). This allows for instantiating loop with a closure capturing
a sensitive variable, like db. So loopn 0 (λx . x + laplaceϵ db) will give nϵ differential privacy for
db by scaling ϵ—the privacy cost of closure variable db—by the loop iteration n. When supporting
advanced variants of differential privacy like (ϵ, δ ), a different metric must be chosen to recover
this kind of scaling; otherwise this argument only holds for pure ϵ-differential privacy.

In Duet, in order to support (ϵ, δ )-differential privacy (and disallow problematic scaling), privacy
closures immediately report unbounded privacy (∞) for any captured variables in privacy lambdas.
The principle of loop’s type above is justified in Duet, but not via a scaling argument, and instead
via a primitive type rule—it cannot be expressed as a type. This is problematic for two reasons:
first, it is not possible to extend Duet’s implementation with new looping primitives by adding
terms with axiomatically justified types, leading to a bloated set of core typing rules, and second, it
is not possible to lambda abstract looping combinators, e.g., to chain or compose them in helper
functions.
To see the root cause for the limitation in Duet, we show the type rules for looping (advanced

composition) and function introduction (from [46]):
Duet: Loop (Advanced Composition)

Γ1 ⊢ e1 : τ ⌉Γ2⌈
ϵ ,δ , x :∞ τ ⊢ e2 : τ

⌉Γ1⌈
∞ + ⌉Γ2⌈

2ϵ
»
2n ln 1

δ ′ ,δ
′+nδ

⊢ loopδ
′

n e1 {x ⇒ e2} : τ

Duet: Privacy-Fun-I (1-ary)
Γ , x :ϵ ,δ τ1 ⊢ e : τ2

⌉Γ⌈∞ ⊢ λ
p (x : τ2). e : τ1@(ϵ, δ ) ⊸∗ τ2

In the rule for advanced composition shown above (left), e1 is the initial value for the looping state
of type τ , and e2 is the loop body which updates the looping state τ → τ and may mention closure
variables in Γ2. Parameter δ ′ is a meta-parameter for the advanced composition formula—this
parameter is unique to looping in (ϵ, δ )-differential privacy. The notation ⌉Γ2⌈ϵ , δ means there
must exist some privacy cost ϵ and δ which upper-bounds any individual cost for each of these
closure variables. The privacy cost of the whole loop is calculated based on this upper bound
for closure variables with the formula 2ϵ

√
2n ln(1/δ ′), δ ′ + nδ . An attempt to turn loop into a

primitive (or abstract over loop, e.g., eta-expand via lambda abstraction) fails because privacy
types in Duet do not track privacy effects for closure variables; instead, they are just thrown away.
In the rule for function introduction shown above (right), the function type τ1@(ϵ, δ ) ⊸∗ τ2 is a
probabilistic function from elements in τ1 to elements in τ2 which satisfies (ϵ, δ )-differential privacy
in its argument. Notice the closure environment Γ above the line which is bumped to∞ in ⌉Γ⌈∞
below the line. This has the effect of tossing out privacy bounds for anything with non-zero privacy
in Γ, i.e., any closure variables that are used in the function’s definition. Privacy is only tracked for
the function parameter x (or possibly multiple parameters; privacy functions in Duet are n-ary).
A deeper limitation in Duet is that the iterated 1-ary function space does not generalize to

support encoding n-ary functions (i.e., currification is not supported). For this reason, n-ary func-
tions are primitive in Duet. Implementing n-ary from 1-ary functions is computationally pos-
sible in Duet, but results in discarding bounds on privacy effects. For example, the Duet term
λ
p (x : τ1). return (λp (y : τ2). f (x,y)) in a context where f : (τ1@(ϵ1, δ1), τ2@(ϵ2, δ2)) ⊸∗ τ3 has
type (τ1@∞) ⊸∗ (τ2@(ϵ2, δ2)) ⊸∗ τ3, i.e., the privacy bounds (ϵ1, δ1) for the first argument τ1 get
discarded due to the Duet: Privacy-Fun-I rule.
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Privacy Closures in Jazz. In Jazz, both privacy and sensitivity effects are delayed and attached
to type-level connectives, including for privacy functions. Whereas in Duet privacy functions
are written (τ1@p1, . . ., τn@pn) ⊸∗ τ , privacy functions in Jazz are written simply (x : τ1)

Σ
↠ τ2

where Σ is a latent contextual effect that can mention x . A type can now be given to loop (a named
constant, analogous to the loop primitive from Duet) in Jazz, and abstracting over loop is possible
due to the function introduction rule, also shown below.

loopδ ′n : τ → (τ
⌉Σ⌈ϵ ,δ

−−−−−−−−→→ τ )
⌉Σ⌈ϵ

′,δ ′′

−−−−−−−−−→→ τ

where ϵ ′, δ ′′ ≜ 2ϵ
√
2n ln(1/δ ′), δ ′ + nδ

Jazz: Privacy-Fun-I
Γ, x : τ1 ⊢ e : τ2 ; Σ

Γ ⊢ λ
p (x : τ1·d). e : (x : τ1·d)

Σ
−−−→→ τ2 ; �

N-ary functions are now recoverable from 1-ary ones using latent contextual effects in closures.
The relational distance d defaults to 1 when omitted. The encoding of lambda-abstracted gauss
then follows the usual approach of nested lambda abstractions, but with sensitivity lambdas on the
outside with a single privacy lambda on the inside. A 3-ary abstraction of the Gaussian mechanism
applied to the sum of three arguments is as follows:

(λs (x : R·1). λs (y : R·1). λp (z : R·1).

gauss 3
sensitivity sum of (x + y + z)

desired privacy

ϵ δ (x + y + z)) : (x : R·1)→ (y : R·1)→ (z : R·1)
(ϵ ,δ )x⊔(ϵ ,δ )y⊔(ϵ ,δ )z
−−−−−−−−−−−−−−−−→→ R

Notice here that the latent contextual effect is computed using a syntactic join operator (ϵ, δ )x ⊔
(ϵ, δ )y⊔(ϵ, δ )z, which computes the pointwise maximum, instead of the sum ((ϵ, δ )x+(ϵ, δ )y+(ϵ, δ )z).
One of the novelties of Jazz is that we can reason about two executions where more than one
input is at relational distance greater than 0. In particular, if x , y and z are at relational distance
1, i.e. the argument of gauss 3 ϵ δ is at relational distance 3, then using addition would yield an
over-approximated latent privacy of (3ϵ, 3δ ), while using the join, we obtain a latent privacy of
(ϵ, δ ) as desired.

Abstracting Privacy Mechanisms. Even with support for privacy closures, there are still challenges
in supporting lambda abstraction around privacy mechanisms in full generality. In Fuzz, the
type assigned to the family of Laplace differential privacy mechanisms parameterized by ϵ is
laplaceϵ : R ⊸ϵ ⃝R for achieved privacy ϵ . This mechanism does not need a dedicated type
rule in the core calculus—it can be axiomatized as a primitive with the right type—and lambda-
abstracting this primitive is natural via eta-expansion λ(x : R). laplaceϵ x resulting in the same
type and guarantee for privacy. However this approach does not support (ϵ, δ )-differential privacy
directly. Fuzzϵδ shows how to extend Fuzz to recover (ϵ, δ )-differential privacy, by using graded
comonadic liftings, and path construction. In particular, the type assigned to the family of Gaussian
differential privacy mechanisms parametrized by ε and δ is gauss(ϵ ,δ ) : ⌈R⌉ ⊸ ⃝(ϵ ,δ )R, where
⌈R⌉ is R but with the metric rounded up to the nearest integer. In Duet, in order to support
(ϵ, δ )-differential privacy, the Gaussian mechanism requires its own typing rule, shown below.
Furthermore, a use of the mechanism looks like gausssϵ ,δ e where the argument e is a term in the
sensitivity language with sensitivity bounded by s . Using privacy closures as described above, we
can write λp (x : R). gauss 1 ϵ δ x , however note that we have lost the ability to be parametric in
s—it must be fixed to 1. This assumption that gauss will be called only with a 1-sensitive argument
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is enforced in the function application rule in Duet, also shown below.
Duet: Gauss

⌉Γ⌈s ⊢ e : R

⌉Γ⌈ϵ ,δ ⊢ gausssϵ ,δ e : R

Duet: Privacy-Fun-E
Γ1 ⊢ e1 : τ1@(ϵ, δ ) ⊸∗ τ2 ⌉Γ2⌈

1 ⊢ e2 : τ1
⌉Γ1⌈

∞ + ⌉Γ2⌈
ϵ ,δ ⊢ e1 e2 : τ2

In the rule for gauss (left) it allows an argument of any sensitivity s , however the privacy function
application rule (right) restricts that arguments must have sensitivity equal to 1. Restricting gauss
to only 1-distance arguments can be overly restrictive (e.g., gauss 2 ϵ δ (x + x )), and relaxing the
restriction on function application to an arbitrary s , 1 in Duet would be unsound.
In Jazz, we extend function introduction to include an explicit bound on the sensitivity of

the parameter, and enforce this restriction in the application rule. Function introduction syntax
introduces the bound, and allows us to eta-expand the Gaussian mechanism with relational distance
d as a parameter, as shown below. The bound d for the lambda argument is then enforced in
function application as the upper bound of argument relational distance, instead of being fixed
to 1 as in Duet. Now the use of a variable—like x in the body of eta-expanded gauss below—is
not always considered 1-sensitive. To communicate non-zero sensitivities to variables in the type
system, an environment of relational distances on lambda arguments must be threaded through the
type system, which we notate ∆. After extending this ∆ to remember that x has relational distance
d in Jazz lambda abstraction, gauss s ϵ δ x will see x as d distant inside the lambda body. To do
this, we allow lambda-abstracting gauss (including the distance parameter d , via singleton types),
and extend the structure of typing for sensitivity and privacy terms respectively as follows:

λ
s ( d : R[d̂] ). λp (x : R ·d̂ ). gauss d ϵ δ x Γ ; ∆ ⊢ e : τ ; Σ Γ ; ∆ ⊢ e : τ ; Σ

6.2 Sensitivity Binding in Privacy Contexts

Jazz improves on prior systems by supporting let-binding intermediate sensitivity computations
within the privacy language, while also supporting (ϵ, δ )-differential privacy. Fuzz and DFuzz
encode let-binding through function application, which scales the sensitivity of the right-hand-side
of the let with the sensitivity of the let-variable in the body. So let y = 2 ∗ x in 3 ∗y is 6-sensitive
in x because the right-hand-side is 2-sensitive, and this is scaled by 3, the sensitivity of y in the
body. However, monadic return and bind in Fuzz can also be used to encode let-binding, e.g.,
x ← return e1 ; e2 instead of let x = e1 in e2. Unfortunately, this encoding of let using return
and monadic bind does not preserve typeability in Fuzz; instead it destroys the sensitivity/privacy
analysis of the right-hand-side, bumping its privacy cost unnecessarily to∞. For this reason, let
statements are encoded exclusively through function application in Fuzz, and not through monadic
return/bind.

In Fuzz, let-binding a sensitivity computation (the pure fragment) inside a privacy computation
(the monadic fragment)—via encoding through function application—is supported seamlessly
without the addition of extra rules. This flexibility can be extended to advanced privacy variants
as shown by de Amorim et al. [29]. In Duet, however, the privacy/monadic fragment of Fuzz is
pulled out into its own language with explicit typing rules; the primary reason to do this is to place
restrictions on function application in order to support advanced privacy variants, as described in
the previous subsection. This leaves the need for either an explicit typing rule for let-binding inside
the privacy language, or an escape hatch so that privacy analysis is not destroyed for let-binding in
privacy contexts a la Fuzz. Duet solves this issue by introducing a boxed type which delays the
payment of a sensitivity term at the point it is “boxed”, and pays for it later when it is “unboxed”.
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This avoids the issue but is unfriendly to program with: every let-binding requires an explicit box,
and every use of a let-bound variable requires an explicit unbox. So instead of writing the program
below on the left, Duet programmers are forced to write the program on the right.

let y = expensive x in
loop 100 initial (λp (i : τ ). body y i)

let y = box (expensive x ) in
loop 100 initial (λp (i : τ ). body ( unbox y) i)

In this program it is essential to let-bind the expensive result, since inlining it would unnecessarily
duplicate the computation, and many real programs in differential privacy require support for this
pattern [46].
In Jazz, we recover the expressiveness that box types provide, while eliminating the need for

the programmer to explicitly introduce and eliminate them. In this way, our design can also be
seen as a powerful box-inference capability, although we do not demonstrate explicit embeddings
between a core language with box types. To recover the expressiveness of boxes without requiring
the programmer to write them down, we add new information to typing judgments that has the
effect of automatically boxing let-bound variables in privacy contexts, and unboxing them at their
use. The added information extends typing judgments with a new component Φ that tracks the
sensitivities of all let-bound variables w.r.t. the sensitivities of all lambda-bound variables. All
sensitivity contexts that mention both let-bound and lambda-bound variables are then reduced
using Φ as needed to contexts that only mention lambda-bound variables. Φ can be seen as a matrix,
and the reduction of contexts to only lambda-bound variables is then just matrix multiplication—a
beautiful coincidence for a linear type system. The final form of type judgments for the sensitivity
and privacy type systems are then:

Γ ; ∆ ; Φ ⊢ e : τ ; Σ Γ ; ∆ ; Φ ⊢ e : τ ; Σ

Although the prototype implementation adopts the typing rules with Φ, and because the manipula-
tion of Φ is more tedious than insightful, we omit it in the following technical presentation.

7 JAZZ’S DIFFERENTIAL PRIVACY TYPE SYSTEM, FORMALLY

In this section, we present a core subset of Jazz, dubbed λJ. λJ is an extension of Sax with support for
reasoning about differential privacy. Similarly to Sax, we prove the type safety and type soundness
property of λJ. We discuss how to bridge the gap between λJ and Jazz in Section 8. Note that our
formalism is fixed to (ϵ, δ )-differential privacy, but our design can be instantiated to other forms of
advanced differential privacy disciplines as illustrated in Section 8.

7.1 Syntax and Type System

λJ is divided in two mutually embedded sublanguages: the sensitivity sublanguage —an extension
of Sax— used to reason about the sensitivity of computations, and the privacy sublanguage used to
reason about differential privacy. Thus, the type system of λJ contains two mutually embedded
type systems, one for each of the sublanguages. Expressions of the sensitivity sublanguage remain
typeset in green and expressions of the privacy sublanguage are typeset in red.

Syntax. Figure 9 presents the syntax of λJ. Expressions of the language are divided into two
mutually embedded expressions: sensitivity expressions e and privacy expressions e. Sensitivity
expressions are defined the same way as in Sax, except that functions are split into sensitivity
lambdas λs (x : τ ·d). e and privacy lambdas λp (x : τ ·d). e. Note that the only difference between a
sensitivity lambda and a privacy lambda is that the body of a privacy lambda is a privacy expression
e. Also, both sensitivity lambdas and privacy lambdas are parametrized by a relational distance d
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e ∈ sexpr F ... | λs (x : τ ·d). e | λp (x : τ ·d). e sensitivity expressions
e ∈ pexprF return e | x : τ ← e ; e | e e return, bind, applications

| if e then e else e | case e of {x ⇒ e} {y ⇒ e} conditionals, case
| let x = e in e let

p ∈ priv ≜ (R∞,R∞) privacies
Σ ∈ penv ≜ � | px | Σ + Σ | Σ ⊔ Σ | Σ ⊓ Σ privacy environments
τ ∈ type F ... | (x : τ ·d) Σ

−→ τ | (x : τ ·d) Σ
−→→ τ types

Γ ∈ tenv ≜ var⇀ typeF {x : τ , . . . , x : τ } type environments

Fig. 9. λJ: Syntax

which represents an upper bound on distance between inputs pertained to the binary relational
property of differential privacy: the maximum argument variation for each of two executions.

A privacy expression e can be a point distribution return e , a sequential composition x : τ ←
e ; e, an application e e, a conditional if e then e else e, a case expression case e of {x ⇒

e} {y ⇒ e}, or a let let x = e in e.
A privacy cost p = (ϵ, δ ) is a pair of two (possibly-infinite) real numbers, where the first

component corresponds to the epsilon, and the second to the delta in (ϵ, δ )-differential privacy.
We use notation p.ϵ and p.δ to extract ϵ and δ respectively. A privacy environment Σ is either
an empty environment �, a pair px representing that variable x has privacy cost p, the addition
Σ + Σ of two privacy environments, the join Σ ⊔ Σ of two privacy environments, and the meet
Σ ⊓ Σ of two privacy environments. Similarly to sensitivity environments, we also write privacy
environments as first-order polynomials when possible. For instance p1x + p2x can be written as
(p1 + p2)x , but p1x + (p2x ⊔ p3y) cannot be rewritten as a polynomial without losing precision.
Function types are now divided into sensitivity function types (x : τ ·d) Σ

−→ τ , and privacy function
types (x : τ ·d) Σ

−→→ τ .

Sensitivity type system. The type system for the sensitivity sublanguage is presented in Figure 10.
The judgment Γ ; ∆ ⊢ e : τ ; Σ now includes a novel relational distance environment ∆. The rela-
tional distance environment ∆ stores how much each variable in Γ can vary in every two executions
of a program. Most of the rules are straightforward extensions of the type system of Sax to include
relational distance environments. We only present interesting cases.
Some of the rules use the sensitivity environment substitution operator [Σ/x]τ . We extend the

definition of Sax to support privacy functions as shown in Figure 11. Substitution on privacy
function types depends on the definition of sensitivity environment substitution on privacy envi-
ronments [Σ/x]Σ. [Σ/x]Σ is defined inductively on the structure of Σ, where the only interesting
case is when Σ = px . Substitution [Σ/x]px is defined using the lift operator: ⌉Σ⌈p . Intuitively, if
we wiggle 6 x on px , then the privacy obtained is at most p (no scaling, and zero if x does not
change). After substitution, as x depends on all variables on Σ, if we wiggle all variables in Σ at
the same time, then the privacy obtained should still be p (scaling p would be an over approxi-
mation). Because of this, ⌉Σ⌈p is defined as the join px1 ⊔ ... ⊔ pxn , where xi ∈ dom(Σ). If all xi
wiggle, then the privacy obtained would be at most p. But as any Σ(xi ) can be zero (it means that
6We show how to wiggle variables on privacy environment with the relational distance instantiation operator, later on
Section 7.3.
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var
Γ(x ) = τ

Γ ; ∆ + dx ⊢ x : τ ; x

s-lam
Γ, x : τ1 ; ∆ + dx ⊢ e : τ2 ; Σ

Γ ; ∆ ⊢ λs (x : τ1·d). e : (x : τ1·d)
Σ
−→ τ2 ; �

p-lam
Γ, x : τ1 ; ∆ + dx ⊢ e : τ2 ; Σ

Γ ; ∆ ⊢ λp (x : τ1·d). e : (x : τ1·d)
Σ
−→→ τ2 ; �

s-app
Γ ; ∆ ⊢ e1 : (x : τ1·d)

Σ
−→ τ2 ; Σ1 Γ ; ∆ ⊢ e2 : τ1 ; Σ2 ∆·Σ2 ≤ d

Γ ; ∆ ⊢ e1 e2 : [Σ2/x]τ2 ; Σ1 + [Σ2/x]Σ

s-case
Γ ; ∆ ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1

Γ, x : τ11 ; ∆ + (∆·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2 Γ,y : τ12 ; ∆ + (∆·(Σ1 + Σ12))y ⊢ e3 : τ3 ; Σ3
Γ ; ∆ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} :

[Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3 ; Σ1 ⊔ ([Σ1 + Σ11/x]Σ2) ⊔ ([Σ1 + Σ12/y]Σ3)

untup
Γ ; ∆ ⊢ e1 : τ11 Σ11⊗Σ12 τ12 ; Σ1

Γ, x1 : τ11, x2 : τ12 ; ∆ + (∆·(Σ1 + Σ11))x1 + (∆·(Σ1 + Σ12))x2 ⊢e2 : τ2 ; s1x1 + s2x2 + Σ2

Γ ; ∆ ⊢ let x1, x2 = e1 in e2 : [Σ1 + Σ11/x1][Σ1 + Σ12/x2]τ2 ; (s1 ⊔ s2)Σ1 + s1Σ11 + s2Σ12 + Σ2

Fig. 10. λJ: Type system of the sensitivity sublanguage (extract)

variable xi is not used), we multiply each p in pxi , by ⌉Σ(xi )⌈1, to remove those variables from the
resulting privacy environment. ⌉s ⌈s ′ along other lift operators used by Near et al. [46] are defined
in Figure 11. For instance, suppose that x depends on 2y + 0z, then [(2y + 0z)/x]px is computed as
⌉2y + 0z⌈p = py ⊔ 0z = py.

We now turn to describe the main changes of each type rule with respect to Sax.
- Rule var now requires variable x to be present in the relational distance environment ∆. This way,
if Γ;∆ ⊢ e : τ ; Σ, we can compute how much the result of evaluating e can change if we wiggle
input x , by multiplying ∆(x ) by Σ(x ). For instance, consider program x + x and the following type
derivations

D =

var
(x : R)(x ) = R

x : R; 3x ⊢ x : R ; x

plus
D D

x : R; 3x ⊢ x + x : R ; 2x

Then we know that (1) x can change at most by 3, and (2) the expression is 2-sensitive in x ,
therefore the result can change at most by 6.

- Rule s-lam type checks sensitivity functions. As the body of the lambda has x as a free variable, the
relational distance environment ∆ is extended with distance d obtained from the type annotation
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[Σ/x]τ
... = ...

[Σ/x]((y : τ1·d)
Σ′
−−→→ τ2) = (y : [Σ/x]τ1·d)

[Σ/x ]Σ′
−−−−−−−→→ [Σ/x]τ2

[Σ/x]Σ
[Σ/x]� = �

[Σ/x](px ) = ⌉Σ⌈p
[Σ/x](py) = py

[Σ/x](Σ1 + Σ2) = ([Σ/x]Σ1) + ([Σ/x]Σ2)
[Σ/x](Σ1 ⊔ Σ2) = ([Σ/x]Σ1) ⊔ ([Σ/x]Σ2)
[Σ/x](Σ1 ⊓ Σ2) = ([Σ/x]Σ1) ⊓ ([Σ/x]Σ2)

⌉Σ⌈p

⌉Σ⌈p =
⊔

x ∈dom(Σ)
px

⌉Σ⌈s

⌉s ⌈s
′

= s ′ s > 0
⌉�⌈s

′

= �

⌉Σ + sx ⌈s
′

= ⌉Σ⌈s
′

+ ⌉s ⌈s
′

x

⌉Σ + 0x ⌈s ′ = ⌉Σ⌈s ′ + 0x
⌉Σ⌈s

⌉p⌈p
′

= p′ p , (0, 0)
⌉�⌈p

′

= �

⌉px ⌈p
′

= ⌉p⌈p
′

x
⌉(0, 0)x ⌈∞ = (0, 0)x
⌉Σ1 + Σ2 ⌈∞ = ⌉Σ1 ⌈∞ + ⌉Σ2 ⌈∞

⌉Σ1 ⊔ Σ2 ⌈∞ = ⌉Σ1 ⌈∞ ⊔ ⌉Σ2 ⌈∞

⌉Σ1 ⊓ Σ2 ⌈∞ = ⌉Σ1 ⌈∞ ⊓ ⌉Σ2 ⌈∞

Fig. 11. λJ: Auxiliary definitions of the static semantics

on the argument. For example, consider program λ
s (x : R·2). x + x and its type derivation:

s-lam
x : R; 2x ⊢ x + x : R ; 2x

� ;�⊢ λs (x : R·2). x + x : (x : R·2) 2x
−−→ R ; �

The program is a sensitivity lambda that takes as argument a real with an allowed variation of at
most 2, and has a latent contextual effect of 2x .

- Rule p-lam is defined analogously to s-lam, except that its body is a privacy term, therefore it is
type checked using the privacy type system, explained later.

- Rule s-app deals with sensitivity applications. Note that from the type of the function we know
that d is an upper bound on the allowed argument variation, therefore we require that the dot
product between the relational distance environment and the sensitivity effect of the argument be
less or equal than d . Intuitively, as ∆ represents how much the input can change, and Σ2 represent
the sensitivity of variables used in the argument, ∆·Σ2 represents how much the argument
can change. For example, consider program λ

s (y : R·1). (λs (x : R·2). x + x)(y + y) and its type
derivation:
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s-lam
s-app
y : R ; 1y ⊢ (λs (x : R·2). x + x ) : (x : R·2) 2x

−−→ R

y : R ; 1y ⊢(2 ∗ y) : R; 2y (1y·2y) ≤ 2

y : R ; 1y ⊢ (λs (x : R·2). x + x )(2 ∗ y) : R ; 4y

� ;�⊢ λs (y : R·1). (λs (x : R·2). x + x )(2 ∗ y) : (y : R)
4y
−−→ R ; �

The outermost lambda allows a maximum variation of 1 in its argument y. The inner lambda
allows a maximum variation of 2 on its argument, and its being applied to 2 ∗ y. As 2 ∗ y is
2-sensitive on y and y can wiggle at most by 1, then we know that the argument is going to
wiggle at most by 2, which matches the maximum permitted argument variation. If the argument
were 3 ∗ y, then the program would not type check as the argument of the application could
wiggle at most by 1 ∗ 3 = 3.

- Rule s-case type checks subterms e2 and e3 by extending the relational distance environment
with a sound bound for x and y respectively. For x (resp. y) we use the dot product between the
relational distance on all variables in scope ∆, and the cost of using e1: the cost Σ1 of reducing
the expression, plus the latent cost of using its subterm Σ11 (resp. Σ12). For example, consider the
type derivation of Example 4.4 given e.g. relational distance environment x + 2b:

case
Γ;x + 2b ⊢ e : R ∞x⊕x R;b

Γ, x1 : R;x + 2b + ∞x1 ⊢ 0 : R;� Γ, x2 : R;x + 2b + 3x2 ⊢ x2 : R;x2
Γ;x + 2b ⊢ case e of {x1 ⇒ 0}{x2 ⇒ x2} : R;b + x

The relational distance for x1 on the first branch is computed as the dot product between the
maximum distance of all variables in scope, x + 2b, and the cost of using e if it were an inl
expression, i.e. ((x + 2b)·(∞x + b)) = ∞. Analogously, the bound for x2 on the second branch is
computed as ((x + 2b)·(x + b)) = 3.

- In Rule untup, as expression e2 has in scope new variables x1 and x2, the relational distance
environment ∆ is extended accordingly. The relational distance for x1 is computed as the dot
product between the relational distance environment ∆ and the cost Σ1 + Σ11 of accessing the
first component (we proceed similarly with x2). For instance, consider the type derivation of
Example 4.2 given some arbitrary relational distance environment 2x + 3y

untup
Γ; 2x + 3y ⊢ (2 ∗ x,y) : R 2x⊗y R ; �

Γ, x1 : R, x2 : R; 2x + 3y + 4x1 + 3x2 ⊢ x1 + 2 ∗ x2 : R ; x1 + 2x2
Γ; 2x + 3y ⊢ let x1, x2 = (2 ∗ x,y) in x1 + 2 ∗ x2 : R ; 2x + 2y

The relational distance for x1 is computed as the dot product between the relational distance of
all variables in scope 2x + 3y and the effect of using the left component of the pair 2x + 0y, i.e.
(2x + 3y)·(2x + 0y) = 4. Similarly, the bound of x2 is computed as (2x + 3y)·(y + 0x ) = 3
Subtyping is extended accordingly and presented in Figure 12. Parameterized relational distances

on function types are contravariant, and subtyping for privacy function types relies on the definition
of subtyping for privacy environment also defined in Figure 12, where • is an operator to close
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τ <: τ

s-lam
τ ′1 <: τ1 d ′ <: d Σ <: Σ′ τ2 <: τ ′2

(x : τ1·d)
Σ
−→ τ2 <: (x : τ ′1 ·d

′) Σ′
−−→ τ ′2

p-lam
τ ′1 <: τ1 d ′ <: d Σ <: Σ′ τ2 <: τ ′2

(x : τ1·d)
Σ
−→→ τ2 <: (x : τ ′1 ·d

′) Σ′
−−→→ τ ′2

Σ <: Σ

∀∆,dom(Σ) ⊆ dom(∆).∆•Σ ≤ ∆•Σ′

Σ <: Σ′

Fig. 12. λJ: Subtyping

privacy environments defined below:
∆•� = 0

∆•(Σ1 + Σ2) = (∆•Σ1) + (∆•Σ2)
∆•(Σ1 ⊔ Σ2) = (∆•Σ1) ⊔ (∆•Σ2)
∆•(Σ1 ⊓ Σ2) = (∆•Σ1) ⊓ (∆•Σ2)

∆•px = p if ∆(x ) is defined

Privacy type system. The type system of the privacy part of the language is presented in Figure 13.
The judgment Γ ; ∆ ⊢ e : τ ; Σ says that privacy term e has type τ and ambient privacy effect Σ
under type environment Γ, and relational distance environment ∆.
- Rule return uses the type system of the sensitivity language to type check its subexpression e .
Operationally, return constructs a point-distribution, and any sensitive variables in the subex-
pression e will have their privacy violated, i.e., privacy cost∞. Notice that∞ corresponds to the
pair (ϵ, δ ) = (∞,∞). The resulting ambient privacy effect is computed by lifting to infinity the
ambient effect of the subexpression as well as all free variable in e . The operator that lift to∞
free variables is written FP∞ and defined in Figure 13. As we pay infinity for every free variable
in e , we remove those variables from the reported type τ using the sensitivity environment
substitution operator defined in Figure 11. For instance, consider the following type derivation,

return
Γ;y + z ⊢ λs (x : R·1). 2x + y : (x : R·1)

2x+y
−−−−→ R;�

Γ;y + z ⊢ return λ
s (x : R·1). 2x + y : (x : R·1) 2x

−−→ R;∞y
The resulting type and effect environment is computed by paying in advance for the free variables
in scope: the type [�/y](2x + y) = 2x is computed by erasing the free variables, and the effect
environment∞y is computed by lifting the free variables to infinity.

- Rule bind type checks both subexpressions using the type system for the privacy language as
they are privacy expressions. To type check e2 we extend type environment with variable x ,
therefore the relational distance environment ∆ is also extended. We extend ∆with 0x as the value
bound to x is no longer considered sensitive—it has been declassified and can be used without
restriction. Finally, as x is out of scope we remove it from τ2 and from the resulting ambient

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: January 2023.



Contextual Linear Types for Differential Privacy—Extended Version with Proofs 41

return
Γ ; ∆ ⊢ e : τ ; Σ1 Ûx = FV(e) ∪ dom(Σ1)

Γ ; ∆ ⊢ return e : [�/Ûx]τ ; FP∞(Ûx ) bind
Γ ; ∆ ⊢ e1 : τ1 ; Σ1 Γ, x : τ1 ; ∆ + 0x ⊢ e2 : τ2 ; Σ2

Γ ; ∆ ⊢ x : τ1 ← e1 ; e2 : [�/x]τ2 ; Σ1 + [�/x]Σ2

if
Γ ; ∆ ⊢ e1 : B ; Σ1 Γ ; ∆ ⊢ e2 : τ ; Σ2 Γ ; ∆ ⊢ e3 : τ ; Σ3

Γ ; ∆ ⊢ if e1 then e2 else e3 : τ ; ⌉Σ1 ⌈∞ + (Σ2 ⊔ Σ3)

p-case
Γ ; ∆ ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1

Γ, x : τ11 ; ∆ + (∆·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2 Γ,y : τ12 ; ∆ + (∆·(Σ1 + Σ12))y ⊢ e3 : τ3 ; Σ3

Γ ; ∆ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} :
[Σ11/x]τ2 ⊔ [Σ12/y]τ3 ; ⌉Σ1 ⌈∞ ⊔ ([Σ11/x]Σ2 ⊔ [Σ12/y]Σ3)

p-app
Γ ; ∆ ⊢ e1 : (x : τ1·d)

Σ
−→→ τ2 ; Σ1 Γ ; ∆ ⊢ e2 : τ1 ; Σ2 ∆·Σ2 ≤ d

Γ ; ∆ ⊢ e1 e2 : [Σ2/x]τ2 ; ⌉Σ1 ⌈∞ + [Σ2/x]Σ

FP∞(�) = �
FP∞(Ûx,y) = FP∞(Ûx ) +∞y

Fig. 13. λJ: Type system of the privacy sublanguage

privacy effect. For instance, consider the type derivation of program y : R ← laplaceϵ1x ; z :
R← laplaceϵ2x ; return y + z, similar to the example presented in Section 6.2, given an arbitrary
relational distance environment x .

bind
Γ ; x ⊢ laplaceϵ1x : R ; (ϵ1, 0)x

bind
Γ,y : R ; x + 0y ⊢ laplaceϵ2x : R ; (ϵ2, 0)x

Γ,y : R ; x + 0y + 0z ⊢ return y + z : R ; (∞, 0)y + (∞, 0)z
Γ,y : R ; x + 0y ⊢ z : R← laplaceϵ2x ; return y + z : R ; (ϵ2, 0)x + (∞, 0)y

Γ ; x ⊢ y : R← laplaceϵ1x ; z : R← laplaceϵ2x ; return y + z : R ; (ϵ1 + ϵ2, 0)x

Each laplace call has an effect environment of (ϵ1, 0)x and (ϵ2, 0)x respectively. The return
subexpression lifts to infinite the privacy of variablesy and z, but to typecheck the innermost bind
expression the privacy on z is dropped: (ϵ2, 0)x + (∞, 0)y. Then to typecheck the outermost bind
expression, now the privacy ony is dropped getting a final effect environment of (ϵ1, 0)x+(ϵ2, 0)x =
(ϵ1 + ϵ2, 0)x .

- Rule p-case is similar to rule s-case. Here we lift the ambient sensitivity effect of the sum
expression to infinity, i.e., we pay infinity for all non-zero-sensitive variables used in e1. For
the additional cost of each branch, we compute the join between the cost of each branch by
substituting each binder by their appropriated cost: [Σ11/x]Σ2 for the first branch, and [Σ12/y]Σ3
for the second. Note that we do not use [Σ1 + Σ11/x]Σ2 and [Σ1 + Σ12/x]Σ3 as we do in rule
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s-case, because we are already lifting to infinity (or paying for) every cost associated with Σ1.
For example, consider the following type derivation

p-case
Γ ; x + 2y ⊢ x : R y⊕� R ; x Γ, x1 : R ; x + 2y + 3x1 ⊢ e2 : R ; pxx + pyy + p2x1

Γ, x2 : R ; x + 2y + x2 ⊢ e3 : R ; p ′xx + p ′yy + p3x2
Γ ; x + 2y ⊢ case x of {x1 ⇒ e2} {x2 ⇒ e3} :

R ; ⌉x ⌈∞ ⊔ (pxx + pyy + ⌉y⌈p2 ) ⊔ (p ′xx + p ′yy + ⌉�⌈p3 )

Note that the variation bound of x1 is computed as (x + 2y)·(x + y) = 3, and that of x2 as
(x +2y)·(x ) = 1. As ⌉x ⌈∞ = ∞x , ⌉y⌈p2 = p2y, and ⌉�⌈p3 = �, then the resulting effect environment
is∞x ⊔ (pxx + (py + p2)y) ⊔ (p ′xx + p ′yy) = ∞x ⊔ ((py + p2) ⊔ p ′y )y.

- Rule p-app uses the sensitivity type system to typecheck both subterms. The first subterm has to
be typed as a privacy function. Just as s-app, it checks that the sensitivity cost of the argument is
bounded by d by computing the dot operation ∆·Σ2 between relational distance environment
∆ and sensitivity environment Σ2. The resulting ambient privacy effect is computed as the lift
to infinite of the ambient sensitivity effect of e1, plus the latent contextual effect of the privacy
function, where we substitute Σ2 by x . Similarly to rule s-app, rule p-app also enforces that the
relational distance of the argument is bounded by d , i.e. ∆·Σ2 ≤ d . For instance, consider the
following type derivation:

p-app
Γ ; y ⊢ if y then e2 else e3 : (x : R·4)

p1y⊔p2x
−−−−−−→→ R ; y Γ ; y ⊢ 2 ∗ y : R ; 2y 2 ≤ 4

Γ ; y ⊢ (if y then e2 else e3}) (2 ∗ y) : R ; ⌉y⌈∞ + (p1y ⊔ ⌉2y⌈p2 )

The resulting effect environment is computed as∞y + [2y/x](p1y ⊔ p2x ) = ∞y + p1y ⊔ ⌉2y⌈p2 =
∞y + (p1 ⊔ p2)y, which is equivalent to∞y. If y does not wiggle, then the ambient privacy effect
will be zero. If the relational distance environment for y were 3, then this program would be
ill-typed since 3y·2y ≰ 4.

7.2 λJ: Type Safety

Type safety is defined in the same line of Section 5.2. To establish type safety of the privacy language,
we define a non-deterministic sampling big-step semantics of privacy expressions; see Figure 14.
We naturally extend the type safety logical relations of Figure 8 to support for both sensitivity and
privacy lambdas, and privacy expressions as shown in Figure 15. The fundamental property of the
type safety logical relation is defined similarly to Proposition 5.2, but now accounting for relational
distance environments and expressions:

Proposition 7.1 (Fundamental Property of the Type Safety Logical Relation).
(a) Let Γ;∆ ⊢ e : τ ; Σ, and γ ∈ GJΓK. Then γ ⊢ e ∈ EJτ/ΓK.
(b) Let Γ;∆ ⊢ e : τ ;Σ, and γ ∈ GJΓK. Then γ ⊢ e ∈ EJτ/ΓK.

Finally type safety for closed terms is just a corollary of the fundamental property above:

Corollary 7.1 (Type Safety and Normalization of λJ).
(a) Let ⊢ e : τ ;�, then ⊢ e ⇓ v , and ⊢ v : τ ′;�, where τ ′ <: τ .
(b) Let ⊢ e : τ ;�, then ⊢ e ⇓ v , and ⊢ v : τ ′;�, where τ ′ <: τ .
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return
γ ⊢ e ⇓ v

γ ⊢ return e ⇓ v

bind
γ ⊢ e1 ⇓ v1 γ [x 7→ v1] ⊢ e2 ⇓ v2

γ ⊢ x : τ1 ← e1 ; e2 ⇓ v2

gauss
r ∈ R

γ ⊢ gauss µ σ 2 ⇓ r

if-true
γ ⊢ e1 ⇓ true γ ⊢ e2 ⇓ v2

γ ⊢ if e1 then e2 else e3 ⇓ v2

if-false
γ ⊢ e1 ⇓ false γ ⊢ e3 ⇓ v3

γ ⊢ if e1 then e2 else e3 ⇓ v3

case-left
γ ⊢ e ⇓ inl v γ [x 7→ v] ⊢ e2 ⇓ v2
γ ⊢ case e of {x ⇒ e2} {x ⇒ e3} ⇓ v2

case-right
γ ⊢ e ⇓ inr v γ [x 7→ v] ⊢ e3 ⇓ v3
γ ⊢ case e of {x ⇒ e2} {x ⇒ e3} ⇓ v3

app
γ ⊢ e1 ⇓ ⟨λ

p
x : τ ·s . e′,γ ′⟩ γ ⊢ e2 ⇓ v γ ′[x 7→ v] ⊢ e′ ⇓ v ′

γ ⊢ e1 e2 ⇓ v
′

Fig. 14. Non-deterministic sampling semantics for privacy expressions

⟨λ
s
x : τ ·d ′.e,γ ⟩ ∈ AtomJ(x : τ1·d ′)

sx
−−→ τ2K ∀v ∈ VJτ1K.γ [x 7→ v] ⊢ e ∈ EJτ2/(x : τ1)K

⟨λ
s
x : τ1·d ′.e,γ ⟩ ∈ VJ(x : τ1·d ′)

sx
−−→ τ2K

⟨λ
p
x : τ ·d .e,γ ⟩ ∈ AtomJ(x : τ1·d)

Σ
−→→ τ2K ∀v ∈ VJτ1K.γ [x 7→ v] ⊢ e ∈ EJτ2/(x : τ1)K

⟨λ
p
x : τ1·d .e,γ ⟩ ∈ VJ(x : τ1·d)

Σ
−→→ τ2K

∀v,γ ⊢ e ⇓ v =⇒ v ∈ VJτ K

γ ⊢ e ∈ EJτ K

Fig. 15. λJ: Type Safety Logical Relation (selected rules)

7.3 Soundness of λJ: Metric Preservation

This section establishes the soundness of λJ, named metric preservation. Metric preservation for λJ
extends the notion of metric preservation of Sax. In addition to reasoning about sensitivity terms,
given a privacy term with free variables, we can reason about the achieved privacy level when
closing the privacy term under different (but related) environments.

Contrary to Sax, we establish soundness for λJ using a step-indexed logical relation [3]. Although
λJ is a strongly-normalizing language, step indexing is still required to prove the bind case of the
fundamental property of the logical relation.

Probabilistic Semantics. A first step to define the soundness property of λJ is to endow privacy
expressions with a probabilistic semantics. An important observation here is that even though to
match their traditional (theoretical) presentation, we have introduced the Laplacian and Gaussian
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return
γ ⊢ e ⇓k v

γ ⊢ return e ⇓k λx .

ß
1 when x = v
0 otherwise

bind
γ ⊢ e1 ⇓

k D1 ∀vi ∈ Sup(D1),γ [x 7→ vi ] ⊢ e2 ⇓ki D2i

γ ⊢ x : τ1 ← e1 ; e2 ⇓k+maxiki λx .
∑

vi ∈Sup(D1)
D1(vi )·D2i (x )

app
γ ⊢ e1 ⇓

k1 ⟨λ
p
x : τ ·s . e′,γ ′⟩ γ ⊢ e2 ⇓

k2 v γ ′[x 7→ v] ⊢ e′ ⇓k3 D

γ ⊢ e1 e2 ⇓
k1+k2+k3 D

case-left
γ ⊢ e ⇓k1 inl v γ [x 7→ v] ⊢ e2 ⇓k2 D

γ ⊢ case e of {x ⇒ e2} {x ⇒ e3} ⇓
k1+k2 D

Fig. 16. Probabilistic semantics of privacy expressions (selected rules)

mechanisms as sampling from the (uncountable) set of real numbers, for the formal account of the
language we consider discrete versions thereof over the set of integers [22]. This discretization is
not only a natural but also a necessary requirement for any implementation of the language (on
“finite” computers), since it is well-known that the naïve use of finite-precision approximations
may result in fatal privacy breaches [43]. (However, for the sake of uniformity, in the rest of the
presentation we refer to these mechanisms—at the type level—as operating over the set of real
numbers.) Therefore, privacy expressions in λJ sample values only from discrete distributions and
can be interpreted as discrete distributions over values.

The probabilistic semantics of a privacy expression e is formally defined in Figure 16. Judgment
γ ⊢ e ⇓k D denotes that privacy expression e reduces to distribution D within k steps; the
probability that the privacy configuration γ ⊢ e reduces to value v is then computed as D (v). We
encode discrete distributions D as probability mass functions (PMF), i.e. a discrete distribution over
A is modeled as an element of the set D(A) = { f : A→ [0, 1] |

∑
a∈A f (a) = 1}.

Let us briefly explain the set of rules in Figure 16. For simplicity, we omit the underlying step
indices. The probabilistic semantics of return e assigns probability 1 to the (necessarily unique)
value to which expression e reduces. The probabilistic semantics of a bind y : τ1 ← e1 ; e2 operates
as follows: To compute the probability that it assigns to x , it ranges over the set of values in
the support of D1 denoted as Sup(D1), i.e. the set of values v such that D1(v) > 0, and for each
vi ∈ Sup(D1) it sums the product between the probability that e1 reduces to vi with the probability
that e2 reduces to x in an extended environment where y is bound to vi . The discrete Gauss
distribution with mean µ and scale σ 2 assigns probability proportional to e−(x−µ )2/2σ 2 to each integer
x . The probabilistic semantics of a privacy application is defined as the probabilistic semantics of
the body of the resulting privacy closure, in an extended environment where the closure formal
argument is bound to the value of the real argument. Finally, the probabilistic semantics of a case
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(r1, r2) ∈ Vk
d JRK

△
⇐⇒ |r1 − r2 | ≤ d

(v1,v2) ∈ Vk
d JunitK

△
⇐⇒ v1 = tt ∧v2 = tt

(inl v1, inl v2) ∈ Vk
d Jσ1 d1⊕d2 σ2K

△
⇐⇒ (v1,v2) ∈ Vk

d+d1
Jσ1K

(inr v1, inr v2) ∈ Vk
d Jσ1 d1⊕d2 σ2K

△
⇐⇒ (v1,v2) ∈ Vk

d+d2
Jσ2K

((v11,v12), (v21,v22)) ∈ Vk
d Jσ1 d1&d2 σ2K

△
⇐⇒ ∃d ′1,d

′
2,d = d

′
1 ⊔ d

′
2∧

(v11,v21) ∈ Vk
d1+d ′1

Jσ1K ∧ (v12,v22) ∈ Vk
d2+d ′2

Jσ2K

(⟨v11,v12⟩, ⟨v21,v22⟩) ∈ Vk
d Jσ1 d1⊗d2 σ2K

△
⇐⇒ ∃d ′1,d

′
2,d = d

′
1 + d

′
2∧

(v11,v21) ∈ Vk
d1+d ′1

Jσ1K ∧ (v12,v22) ∈ Vk
d2+d ′2

Jσ2K

(v1,v2) ∈ Vk
d J(x : σ1·d ′)

∆ ·Σ
−−−→ σ2K

△
⇐⇒ ∀v ′1,v

′
2,γ1,γ2, j < k,d ′′ ≤ d ′, (v ′1,v

′
2) ∈ V

j
d ′′Jσ1K =⇒

(γ1 ⊢ v1 v ′1,γ2 ⊢ v2 v
′
2) ∈ E

j
d+(∆+d ′′x )·ΣJd ′′x (σ2)K

(v1,v2) ∈ Vk
d J(x : σ1·d ′)

∆•Σ
−−−→→ σ2K

△
⇐⇒ ∀v ′1,v

′
2,γ1,γ2, j < k,d ′′ < d ′, (v ′1,v

′
2) ∈ V

j
d ′′Jσ1K =⇒

(γ1 ⊢ v1 v ′2,γ2 ⊢ v1 v
′
2) ∈ E

j
⌉d ⌈∞+(∆+d ′′x )•ΣJd ′′x (σ2)K

(γ1 ⊢ e1,γ2 ⊢ e2) ∈ Ekd JσK
△
⇐⇒ ∀j < k,∀v1, (d < ∞∧ γ1 ⊢ e1 ⇓j v1) =⇒

∃v2, (γ2 ⊢ e2 ⇓∗ v2 ∧ (v1,v2) ∈ Vk−j
d JσK)

(γ1 ⊢ e1,γ2 ⊢ e2) ∈ Ekp JσK
△
⇐⇒ ∀j < k,∀D1, (p.ϵ + p.δ < ∞∧ γ1 ⊢ e1 ⇓j D1) =⇒ ∃D2,

(γ2 ⊢ e2 ⇓∗ D2 ∧ ∀S ⊆ val (∗),D1(S) ≤ ep .ϵD2(S) + p.δ )
(γ1,γ2) ∈ Gk∆JΓK

△
⇐⇒ dom(γ1) = dom(γ2) = dom(Γ)∧

∀x ∈ dom(Γ). (γ1(x ),γ2(x )) ∈ Vk
∆(x )J∆(Γ(x ))K

Fig. 17. λJ: logical relations for metric preservation

term is simply the probabilistic semantics of the corresponding branch in an extended environment
with the corresponding association for the branch binder variable.

We consider a step-indexed semantics to establish the language metatheory. In particular, the
metric preservation theorem is proved by induction on the step index of the logical relation. However,
step indices might not interact very well with the bind rule: when reducing y : τ1 ← e1 ; e2 , the
reduction of e2 requires a possibly different number of steps (ki ) for each value (vi ) to which e1
reduces. This set of steps could in principle be unbounded, making maxi ki undefined and thus
rendering the semantics partial. However, this is not an issue for our technical development because
all formal results are concerned with programs that reach the distribution of final values within a
finite number of steps, only.
For convenience throughout this section, we also introduce D (S) to denote the probability of

observing S in D , computed as
∑
v ∈S D (v). Also we define Pr[� ⊢ e ⇓k v] as D (v) if � ⊢ e ⇓k ′ D for

some k ′ ≤ k (undefined otherwise).

Logical relation. The logical relations for sensitivity computations, privacy computations, values,
and environments are mutually recursive and presented in Figure 17.
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Note that each logical relation is also indexed by a relational distance type that now accounts for
sensitivity and privacy lambdas:

σ = ... | (x : σ ·d) Σ+d
−−−→ σ | (x : σ ·s) Σ

−→→ σ
Σ = ... | p

Note that similarly to sensitivity environments, privacy environments Σ are also extended to
include partially instantiated data, for instance px + p ′. Notation (v1,v2) ∈ Vk

d JσK indicates that
value v1 is related to v2 at type σ and distance d for k steps.

The sensitivity parts of the logical relations are defined analogously to Figure 8 with the addition
of a step index k . We only present relevant changes:
- Two sensitivity closures are also related if, given related inputs, they produce related computations.
Specifically, first the environments have to be related for any step j < k . Second, inputs v ′1 and
v ′2 have to be related at distance d ′′ not greater than d , and for j steps. Finally, the bodies of the
functions in extended environments have to be related computations for j steps.

- Similarly to sensitivity closures, two privacy closures are related if they produce related computa-
tions when applied to related inputs. The computations are related at privacy ⌉d ⌈∞ + (∆+d ′′x )•Σ.
Note that we lift d to infinite because we cannot record relational distances as a privacy result. In
addition to that, we also pay the latent contextual effect of the function instantiated to d ′′x , i.e.
(∆ + d ′′x )•Σ.
Two sensitivity configurations are related computations at type σ and distance d for k steps,

noted (γ1 ⊢ e1,γ2 ⊢ e2) ∈ Ekd JσK, when for any j < k , if the first configuration reduces in j steps to
a value, then the second configuration also reduces to a value in any number of steps, and these
values are related for the remaining k − j steps at type σ and distance d . We write γ ⊢ e ⇓k v to say
that the configuration γ ⊢ e reduces to value v in k steps.

We now turn to the definition of related privacy computations. Notation (γ1 ⊢ e1,γ2 ⊢ e2) ∈ Ekp JσK
indicates that two privacy configurations are related computations at type σ and privacy p = (ϵ, δ )
for k steps. Two privacy configurations are related when, for any j < k , if the first privacy
configuration reduces in j steps to a distribution, then the second configuration also reduces to a
distribution in any number of steps, and the probability of observing S in the fist distribution is no
greater than eϵ times the probability of observing S in the second distribution, plus δ .

Metric Preservation. Armed with these logical relations, we can establish the notion of type
soundness for λJ, and prove the fundamental property.

Theorem 7.2 (Metric Preservation).
(1) Γ,∆ ⊢ e : τ ; Σ⇒ ∀k ≥ 0,∀∆′ ⊑ ∆,∀(γ1,γ2) ∈ Gk∆′JΓK.(γ1 ⊢ e,γ2 ⊢ e) ∈ E

k
∆′ ·ΣJ∆

′(τ )K
(2) Γ,∆ ⊢ e : τ ; Σ⇒ ∀k ≥ 0,∀∆′ ⊑ ∆,∀(γ1,γ2) ∈ Gk∆′JΓK.(γ1 ⊢ e,γ2 ⊢ e) ∈ E

k
∆′•Σ

J∆′(τ )K

where ∆′ ⊑ ∆ ⇐⇒ dom(∆′) = dom(∆) ∧ ∀x ∈ dom(∆′),∆′(x) ≤ ∆(x). The theorem says
that if a sensitivity term (resp. privacy term) is well-typed, then for any number of steps k , valid
relational distance environment ∆′ (not greater than ∆) and value environments (γ1,γ2), the two
configurations are related computations at distance type ∆′(τ ) (closing all free sensitivity or privacy
variables), and at relational distance ∆′·Σ (resp. ∆′•Σ). Note that as dom(Σ) ⊆ dom(∆′) = dom(∆)
and dom(Σ) ⊆ dom(∆′) = dom(∆), then ∆′·Σ ∈ R∞ and ∆′•Σ ∈ priv .

To prove the fundamental property, we rely on the following three lemmas which connect types,
sensitivity and privacy environments from the type system, with distances and privacy costs from
the logical relations:

Lemma 7.3. If ∆·Σ = d and x < dom(Σ) ∪ dom(∆), then ∆·([Σ/x]Σ′) = (∆ + dx )·Σ′
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Lemma 7.4. If ∆·Σ = d and x < dom(Σ) ∪ dom(∆), then ∆•([Σ/x]Σ′) = (∆ + dx )•Σ′

Lemma 7.5. Let ∆·Σ = d and x < dom(Σ) ∪ dom(∆), then ∆([Σ/x]τ ) = dx (∆(τ ))

We can also derive from the fundamental property some corollaries about closed terms.

Corollary 7.6 (FP for closed sensitivity terms). If �;� ⊢ e : τ ; �, then
∀k ≥ 0, (� ⊢ e,� ⊢ e) ∈ Ek0 Jτ K

Corollary 7.7 (FP for closed privacy terms). If �;� ⊢ e : τ ; �, then
∀k ≥ 0, (� ⊢ e,� ⊢ e) ∈ Ek(0,0)Jτ K

In addition to sensitivity type soundness at base types (Prop 5.3), from the fundamental property
we can now establish privacy type soundness at base types:

Theorem 7.8 (Privacy Type Soundness at Base Types). If � ⊢ e : (x : R·1)
(ϵ ,δ )x
−−−−−→→ R ; �,

|r1 − r2 | ≤ 1, ∀r , Pr[� ⊢ e r1 ⇓∞ r ] ≤ eϵPr[� ⊢ e r2 ⇓∞ r ] + δ

Finally, we observe that our technical development relies on the specific variant of differential
privacy considered in restricted places: the bind case of the soundness theorem (Theorem C.17);
the definition of subtyping for privacy costs, specially the base case (Figure 23); operations over
privacies p, such as dot product, addition, meet, join, lifting (Figures 25 and 26); monotonicity of
meet and join of privacies w.r.t subtyping (Lemmas C.7 and C.8); monotonicity of dot product
w.r.t. privacy ordering (Lemma C.13); distributivity of dot product w.r.t. substitution (Lemma 7.4);
weakening of related private computations (Lemma C.10). The remaining definitions and lemmas
are independent and could be reused as such in order to adapt this work to deal with other variants
of differential privacy.

8 FROM λJ TO JAZZ

The full prototype implementation of Jazz includes several extensions to the core language λJ, and
address the non-determinism of multiplicative and additive products by using type annotations.

Type Polymorphism. Jazz implements System F (universal quantification over well-kinded types)
and parametric polymorphism over all compound types, including vector/matrix schemas, allowing
all data objects and functions in the language to be fully generic. This feature requires the use of
type-level quantifiers and application.

Value Dependency. Jazz supports type-level dependency on values through singleton types—an
approach we borrow directly from DFuzz [34]. This allows differentially private algorithms to be
verified with respect to privacy parameters which are not fixed, and instead are function arguments.

More specifically, singleton types [33] are a technique for supporting limited forms of value
dependency which builds on standard (System-F-style) polymorphic type system features and an
enriched kind system. In a type system with native support for dependent types, a dependent
function with a real-valued argument is written (x : R)→ τ where the return type τ can use x to
refer symbolically to the eventual runtime value of x . In a singleton type encoding of dependent
types, the same function is written x : R[x̂] → τ , where the return type τ can use x̂ to refer
symbolically to the eventual runtime value of x . In essence, there is still a syntactic split between
term-level variables (x ) and type-level variables (x̂ ), and the type declaration (x : R[x̂]) links them,
so x̂ is the type-level proxy for the term-level variable x .
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Let-binding Sensitivity Terms in Privacy Contexts. As described in Section 6.2 we implement
latent sensitivity via local bindings in the privacy language. We implement this feature using an
environment Φ to delay the “payments” of a value’s sensitivity, which fulfills the same role as the
boxed type introduced by Near et al. [46]. Unlike boxed types, this feature requires no additional
annotations—sensitivity is inferred automatically. The complete type systems that includes Φ are
presented in Appendix A, Figures 19 and 20.

Context Polymorphism. When implementing flexible primitives in Jazz, it becomes convenient to
abstract over latent contextual effects. We label this form of abstraction as context polymorphism.
This form of polymorphism in our language is what enables us to give a single generalized type to
the primitives gauss and seqloop (a looping combinator that uses sequential composition, further
discussed in Section 9.2). Because Jazz implements quantification over latent contextual effects, it
is possible to afford privacy in type signatures to closed-over variables involved in the differentially
private computation. This feature requires the use of type-level quantifiers, application, substitution
and annotations for context schemas. A context schema is an angle bracket enclosed list of variables.
Angle bracket context schemas in Jazz denote the set of variables that we care about preserving
privacy for, and are used in the introduction forms for sums, pairs, and functions, as well as in
type-level application. For example, gauss <x> (x + y * y) is 1-sensitive in x , and bumps y to
infinity privacy. This demonstrates the use of context polymorphism to indicate which variables
we care about preserving privacy for. The use of seqloop in Section 9 provides another example of
context polymorphism in action. Note that context-polymorphic functions in Jazz are required to
be primitives.

Variants of Differential Privacy. In addition to (ϵ, δ )-differential privacy, Jazz supports zero-
concentrated differential privacy [21] and Rényi differential privacy [44], and has built-in constructs
for mixing the variants. Each variant has different privacy parameters and rules for composition,
but all of them follow the same basic pattern as (ϵ, δ )-differential privacy. For example, we can
give the Gaussian mechanism the following types for Rényi differential privacy (RDP; privacy
parameters α and ϵ) and zero-concentrated differential privacy (zCDP; privacy parameter ρ):
RDPgauss : ∀ (d̂ : R) (α̂ : R) (ϵ̂ : R). (d : R[d̂])→ (α : R[α̂])→ (ϵ : R[ϵ̂])→ (x : R·d̂)

∞(d+α+ϵ )+(α̂ ,ϵ̂ )x
−−−−−−−−−−−−−−→→ R

zCDPgauss : ∀ (d̂ : R) (ρ̂ : R). (d : R[d̂])→ (ρ : R[ρ̂])→ (x : R·d̂)
∞(d+ρ)+ρ̂x
−−−−−−−−−→→ R

Since RDP and zCDP guarantees can be converted to (ϵ, δ ) guarantees, Jazz provides constructs
for converting between variants. For example, the following code uses the Gaussian mechanism
twice, each time satisfying (20, 0.25)-RDP. By sequential composition, the total cost is (20, 0.5)-RDP.
The program then converts this guarantee to (ϵ, δ )-differential privacy, using δ = 10−5.

λ
p (x ·1). RENYI[δ = 10−5]{ r1 ← gauss 1 20 0.25 x ;

r2 ← gauss 2 20 0.25 (x + x );
return (r1 + r2) }

: (x : R·1)
(1.08,10−5)x
−−−−−−−−−→→ R

Jazz automatically finds the privacy cost of this function, in (ϵ, δ )-differential privacy, by performing
the appropriate conversion. The ability to mix privacy variants in Jazz makes it easy to frame
the privacy guarantee of any program in terms of (ϵ, δ ) privacy cost, allowing privacy costs to be
directly compared. In addition, it enables embedding iterative RDP and zCDP algorithms inside of
(ϵ, δ ) programs, allowing these programs to take advantage of the improved composition properties
RDP and zCDP provide. This approach—leveraging recent variants for composition, but reporting
privacy costs in terms of ϵ and δ—is extremely common in recent work on differentially private
machine learning [2]. We make extensive use of variant-mixing in our case studies, described next.
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9 IMPLEMENTATION & CASE STUDIES

Jazz enables programmers to implement and verify largely the same set of applications as Duet, but
Jazz empowers the programmer to construct these applications in simpler ways, e.g., via composition
of reusable library functions. This is possible because Jazz gives types to many privacy functions
and looping combinators that required custom typing rules in Duet. Our case studies demonstrate
that instead of encoding these applications as a single monolithic function, Jazz enables their
implementation through composition of multiple helper functions, and their verification without
the use of custom typing rules.
In particular, we highlight two important features of Jazz that enable refactoring programs to

reuse library functions:
• Jazz gives types to privacy primitives and looping combinators that are not typeable in Duet,
enabling privacy functions to be parameterized by these components (see Section 9.2).
• Jazz’s privacy functions allow sensitivity arguments with arbitrary sensitivity bounds, en-
abling code reuse in more places than Duet’s sensitivity-1 privacy functions (see Section 9.3).

In addition, we select realistic algorithms previously verified using other systems, to demonstrate
that Jazz maintains the capabilities of previous work.

A summary of our case study programs appears in Table 3. We present two new representative
case study algorithms we have implemented and verified using Jazz: the MWEM algorithm [38]
for a workload of linear queries, and a recently proposed algorithm for differentially private deep
learning with adaptive clipping [53]. In both case studies, privacy mechanisms (e.g. laplace and
exponential) and looping constructs (e.g. aloop—advanced composition) can be expressed with
regular functions, provided in a library of primitives. We mark these two case studies with a ∗
in Table 3, and describe them in detail later in this section. The other case study programs are
available in our source code repository.

9.1 Implementation

We have implemented a prototype of the Jazz typechecker in Haskell, and used it to verify the case
studies from Table 3. The prototype implementation is available on GitHub7. Table 3 lists the time
needed to typecheck each of the case studies; our typechecker takes just a few milliseconds for
each one.

Type inference & annotations. Our prototype implements type inference for both Sax and Jazz.
Type annotations for sensitivity and privacy are required for inputs at top-level functions and
lambda-expressions, but no additional annotations are required for function outputs or elsewhere
in the program. The case studies described later in this section have been typeset for readability, but
are otherwise identical to the input for our prototype; in particular, the actual examples typechecked
by our prototype have the same annotations as the examples in this section, except for the input
sensitivity annotations on inputs to top-level functions. The types given for primitives in this
section are also drawn directly from our implementation.

Constraint solving. As described earlier, and detailed in Section 10, prior work has made extensive
use of SMT solvers for the equations over real expressions which arise in type inference for
sensitivity. Because SMT solvers are incomplete for non-linear operations (like the logarithms and
square roots used in advanced composition), our implementation does not follow the same path.
Instead, we implement a custom solver for inequalities over symbolic real expressions, based

on the solver from Duet [46]. Our custom solver is based on a simple decidable (but incomplete)
theory; it supports logarithms, square roots, and polynomial formulas over real numbers. The
7https://github.com/uvm-plaid/contextual-duet/
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Typecheck

Technique Ref. Privacy Concept Time

Machine Learning Algorithms
Noisy Gradient Descent [18] Composition 4.1 ms
Gradient Descent w/ Output Perturbation [56] Parallel comp. (sens.) 4.2 ms
Noisy Frank-Wolfe [52] Exponential mechanism 5.9 ms

Variations on Gradient Descent
Minibatching [18] Privacy amplification 5.5 ms
Parallel-composition minibatching — Parallel composition 5.9 ms
Gradient clipping [2] Sensitivity bounds 4.5 ms
Adaptive gradient clipping∗ (§9.3) [53] Advanced variants 5.6 ms

Preprocessing & Deployment
Hyperparameter tuning [23] Exponential mechanism 6.9 ms
Adaptive clipping — Sparse Vector Technique 7.7 ms
Z-Score normalization [1] Composition 6.9 ms

Algorithms for Linear Queries
Multiplicative Weights (MWEM)∗ (§9.2) [38] Exponential mechanism 5.2 ms

Table 3. List of case studies included with the Jazz implementation. Case studies marked with a
∗
are described

in detail in this section.

solver is transparent to the programmer, and produces readable output expressions for the privacy
costs in our case studies.

9.2 MWEM

The MWEM algorithm [38] generates differentially private synthetic data approximating the target
sensitive data by iteratively optimizing the accuracy of a set of workload queries on the synthetic
data. In each iteration, the algorithm uses the exponential mechanism to pick a query from the
workload for which the synthetic data produces an inaccurate result, uses the Laplace mechanism to
run that query on the real data, and uses the result to update the synthetic data via themultiplicative
weights update rule. The Jazz program shown below implements the MWEM algorithm. Its inputs
are a sensitive datasetX over a domainD, a workloadQ of linear queries, the number of iterations to
be performed k , the privacy parameter ϵ , initial synthetic data Y0 (n times the uniform distribution
over D), and the dimensions of the input data set (matrix)m rows by n columns. The algorithm
performs k iterations, invoking laplace and exponential in each iteration. The privacy parameter
for each invocation is ϵ/2k , yielding a total privacy cost of ϵ . We omit the sensitivity annotations
on the function’s inputs for readability.

MWEM ≜ λ
s
n. λ

s
k . λ

s
ϵ . λ

s
X . λ

s
Q . λ

s
loop. λ

p
Y0.

loop k Y0 <X> (λp Ai−1.
qi Index← exponential (ϵ / (2 ∗ k)) Q X (λs X ′. λs q′. |q′ Ai−1 − q

′ X ′ |);
let qi = matrixIndex Q (index N[0]) qi Index in
mi ← laplace 1 (ϵ / (2 ∗ k)) (qi X );
return mmap-row X Ai−1 (λs x .
mScale x (exp (qi x ∗ (mi − qi Ai−1 / (2 ∗ n))))))
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The Jazz typechecker produces the following type for this implementation, indicating that the
algorithm satisfies ϵ-differential privacy. Note the homogenous matrix type notation used here
is M[m,n] τ wherem denotes the number of rows, n the number of columns, and τ the type of
each entry. <X> is the context schema argument for type-application of loop, and indicates the
program variable we want to preserve privacy for in this expression.

MWEM : ∀ (m̂ : N) (n̂ : N) (k̂ : N) (d̂ : R+) (ϵ̂ : R+).
columns

(n : N[n̂])→
iterations

(k : N[k̂])→
relational distance

(d : R+[d̂])

→

desired privacy

(ϵ : R+[ϵ̂])→
sensitive data

(X : (M[m̂, n̂] D)·d̂)→

linear queries

(Q : List ((xs : M[1, n̂]) xs
−−→ N))→

initial synthetic db

(Y0 : M[m̂, n̂] D)

→

looping combinator

(τloop)

privacy effect

∞(n + k + ϵ +Q + Y0) + (ϵ̂, 0)X
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→→

synthetic db

M[m̂, n̂] R
where τloop = ∀ (k̂ : N) (d̂ : R+) (ϵ̂ : R+) (δ̂ : R+) (ϵ̂ ′ : R+) (δ̂ ′ : R+) (Γ : cxt).

(k : N[k̂])→ (X : τ ·d̂)→ (f : (x : τ ·d̂
(ϵ̂ ,δ̂ )Γ
−−−−→→ τ ))

∞(k+d+f )+(ϵ̂ ′,δ̂ ′)Γ
−−−−−−−−−−−−−−−→→ τ

On an average of 10 runs, it takes the Jazz typechecker 5.2ms to produce this type for the MWEM
algorithm.

Beyond Duet. This example demonstrates Jazz’s ability to define algorithms in terms of library
functions, and to parameterize algorithms by the choice of component pieces. In this case, we
define MWEM in terms of a generic looping privacy combinator loop; the caller of MWEM can specify
looping combinators based on sequential composition, advanced composition, or even a custom
combinator. Jazz similarly allows functions like MWEM to be parameterized by the choice of basic
mechanism (e.g. laplace vs. gauss) with the appropriate privacy function type. In both cases, the
relevant functions can be pulled from libraries or defined by the programmer.
This kind of modularity is impossible in Duet. Functions cannot be parameterized by basic

privacy mechanisms or looping combinators, because it is not possible to write their types in Duet.

Primitives used. This case study demonstrates the composition of a complex iterative algorithm
from basic privacy mechanisms encoded as Jazz primitives (e.g. laplace and exponential) and
privacy combinators (e.g. seqloop, which implements looping with sequential composition for
privacy). These primitives with types shown above would require explicit typing rules in the core
Duet language. In Jazz, they can be given regular types, as shown below:

exponential : ∀ (m̂ : N) (n̂ : N) (d̂ : R+) (ϵ̂ : R+) (Γ : cxt) (τ :⋆).
relational distance

(d : R+[d̂])→
desired privacy

(ϵ : R+[ϵ̂])

→

linear queries

(Q : List ((xs : M[1, n̂]) xs
−−→ N))→

sensitive data

(X : (List τ )·d̂)→

scoring function

(ϕ : (x : τ )
d̂ (x+Γ)
−−−−−→ R)

privacy effect

∞(d + ϵ +Q + ϕ) + (ϵ̂, 0)(X + Γ)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→→ τ

seqloop : ∀ (k̂ : N) (d̂ : R+) (ϵ̂ : R+) (δ̂ : R+) (Γ : cxt). (k : N[k̂])→ (d : R+[d̂])→ (ϵ : R+[ϵ̂])

→ (δ : R+[δ̂ ])→ (X : (List R)·d̂)→ (f : (x : List R·d̂
(ϵ̂ ,δ̂ )Γ
−−−−→→ List R))

∞(k+d+ϵ+δ+f )+(k̂ ϵ̂ ,k̂ δ̂ )Γ
−−−−−−−−−−−−−−−−−−−−→→ List R
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To typecheck MWEM, the privacy closure rule in Jazz creates a function type for the λp which has a
privacy effect for the body of ϵ

k because of the two uses of mechanisms which give ϵ
2k differential

privacy. If we pass seqloop as the looping combinator loop, then this privacy effect is multiplied by

the loop iteration number k as a result of the type of seqloop : N[k]→ τ → (τ
⌉Σ ⌈ϵ

−−−−→→ τ )
⌉Σ ⌈kϵ

−−−−→→ τ
and the type rule for privacy function application. Finally, the new let rule for the Jazz privacy
fragment which tracks latent contextual sensitivities is used in the let-binding for qi to precompute
an intermediate value which is used multiple times, without the need for explicit boxing.

9.3 Differentially Private Deep Learning with Adaptive Clipping

The current state-of-the-art in differentially private machine learning is noisy gradient descent [2]:
at each iteration of training, compute the gradient, clip the gradient to have bounded L2 norm, and
add noise in proportion to the clipping parameter. The clipping parameter is typically treated as a
hyperparameter, set by the analyst before training.

gauss : (s : sens)→ (x : R·s)
∞s ,(ϵ ,δ )x
−−−−−−−−→→ R

zeros(n) ≜ mcreateL∞ 1 n (λs i . λs j . 0.0)
DPMean : ∀ (ϵ̂ : R) (δ̂ : R). (ϵ : R[ϵ̂])→ (δ : R[δ̂ ])
→ (s : sens)→ (x : (M[m̂, n̂] D)·s)
∞s ,(ϵ ,δ )x
−−−−−−−−→→ (M[1, n̂] R) ≜

mgauss ϵ δ (mean x )
clipUpdate(Ct ,d,γ ,дs, ϵ, δ ) ≜

β ← DPMean ϵ δ (I∥d ∥≤C t дs);
return Ct − (β − γ )

DPAL(X ,y,k,γ , ϵ, δ , δ ′) ≜
let C0 = MAXNUM in
let θ0 = zeros (cols X ) in
aloop δ ′ k θ0 <X ,y> (λp (θ t ,Ct ).

let дs = (gradients θ t X y) in
дp ← DPMean ϵ δ (mclip Ct дs);
let d = (θ t − дp ) in
Ct ′← clipUpdate Ct d γ дs ϵ δ ;
return (d,Ct ′))

Recent work by Thakkar et al. [53] proposed an algorithm for adaptively determining the clipping
parameter during training, by adaptively improving the clipping parameter based on a differentially
private estimate of the percentage of gradients clipped in each iteration.
In each iteration, the implementation computes the gradients for a batch of examples дs , clips

each gradient using the current parameter Ct , and uses the Gaussian mechanism to compute a
differentially private average gradient дp . Then, the algorithm updates the clipping parameter for
the next iterationCt ′ using clipUpdate, which computes a noisy count β of the number of gradients
in дs that are clipped under the clipping parameter Ct and uses the count to update the parameter.
The inputs to the algorithm are the training data X , the training labels y, the number of iterations
k , and the target percentage of gradients remaining un-clipped γ . ϵ , δ , and δ ′ are the privacy cost
parameters. We omit the sensitivity annotations on top-level function inputs for readability. The
Jazz typechecker typechecks DPAL in 5.6ms (averaged over 10 runs).

Beyond Duet. In this case study, we implement a library function for the differentially private
average (DPMean) and use it in two places. This refactoring is not possible in Duet, because Duet’s
privacy functions require all sensitive arguments to have a sensitivity of 1. In this algorithm, one
of the uses of DPMean in fact has data-dependent sensitivity (the sensitivity of mclip Ct дs is Ct ).
Practical implementations of algorithms like this one often rely on libraries of differentially

private functions like DPMean (e.g. the Opacus library for differentially private deep learning [57],
or the OpenDP library for differentially private analytics [35]). By lifting the limitations of Duet’s
privacy functions, Jazz makes it possible to implement and use such libraries.
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Primitives used. This algorithm demonstrates the use of privacy combinators (e.g. aloop) that
can be specified as primitives in Jazz but require special typing rules in Duet:

aloop : ∀ ϵ : R+, δ : R+, δ ′ : R+, s : R+, Γ : cxt.
δ relaxation

(δ ′ : R+[δ ′])→
iterations

(k : N)→
initial value

(init : τ )

→

loop body

(M : (x : τ
(ϵ ,δ )Γ
−−−−→→ τ ))

total privacy cost of the loop

(ϵ ′,kδ + δ ′)Γ
−−−−−−−−−−−−→→ τ

where ϵ ′ ≜ 2ϵ(
√
2k(log(1/δ ′)))

This type for aloop encodes the advanced composition theorem (introduced in Section 2). Our
advanced composition combinator runs an (ϵ, δ )-differentially private function (M) representing
the body of the loop k times, for a total privacy cost of

Ä
2ϵ(

√
2k(log(1/δ ′))),kδ + δ ′

ä
(a significant

improvement over the sequential composition cost of (kϵ,kδ )).
Our version of the adaptive clipping gradient descent algorithm uses advanced composition and

(ϵ, δ )-differential privacy, to demonstrate the encoding of aloop as a regular function in Jazz. Our
source code repository contains an alternative implementation that uses zero-concentrated differ-
ential privacy for improved composition, and converts the privacy guarantee to (ϵ, δ )-differential
privacy at the end of the algorithm.

10 RELATEDWORK

Verification techniques based on type systems. There are two threads of prior work in type-system-
based verification of differential privacy for high-level programs: those based in linear types, and
those based on relational refinement types. Reed and Pierce [49] proposed Fuzz, the first type
system for differential privacy based on linear typing; its fundamental components are a linear
type system with an indexed “scaling” modality !s for tracking the sensitivity of programs and
a monadic connective ⃝ to model randomized computations. An s-sensitive function is encoded
in Fuzz as a linear function with scaled domain !sA ⊸ B and often notated A ⊸s B. An ϵ-
differential privacy mechanism is represented as an ϵ-sensitive function with monadic return
type as in A ⊸ϵ ⃝B. DFuzz [34] extends Fuzz with dependent types to encode sensitivity and
privacy bounds that depend on the values of function arguments. This allows e.g. reasoning about
the privacy of iterative algorithms whose privacy cost depend on the number of iterations. Fuzz
and DFuzz can be characterized by strong support for higher-order programming and potential
for automation via type inference. They support pure differential privacy but approximate and
any other recent variants of differential privacy fall out of their scope due to nonlinear scaling.
Several recently-proposed approaches allow a Fuzz-like analysis for (ϵ, δ )-differentially private
programs: Azevedo de Amorim et al. [29] leverage a path construction and a Fuzz-like type system.
Fuzzi [59] integrates a Fuzz-like type system with an expressive program logic. Fuzzi directly
connects (automated) type-based proofs of composition for sensitivity and privacy properties with
(manual) apRHL proofs for basic constructs like sequential composition and the Laplace mechanism.
In our approach, on the other hand, properties of basic mechanisms must be axiomatized. The Fuzzi
system targets imperative programs, and does not provide support for higher-order programming
with privacy functions. Finally Duet [46] proposes a two-language design with linear types for
tracking sensitivity and privacy; crucial restrictions in the typing rules of the privacy language allow
encoding advanced differential privacy variants such as approximate, Rényi, zero-concentrated
and truncated-concentrated differential privacy. In Duet privacy functions are n-ary and written
(τ1@p1, . . . , τn@pn) ⊸∗ τ for privacy quantities pi such as (ϵi , δi ) in the case of approximate
differential privacy.
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System Sens. Function Sens. Typing Priv. Function Priv. Typing

(D)Fuzz τ1 ⊸s τ2 Γ ⊢ e : τ τ1 ⊸ϵ ⃝τ2 Γ ⊢ e : ⃝τ
HOARe2 Πs ′ . {x :: τ1 | Dτ1 (x◁, x▷) ≤ s

′ }

→ {y :: τ2 | Dτ2 (y◁, y▷) ≤ ss
′ }
G ⊢ e :: τ {x :: τ1 | Dτ1 (x◁, x▷) ≤ 1}

→ Mϵ ,δ [{y :: τ2 | y◁ = y▷ }] G ⊢ e :: Mϵ ,δ [τ ]
Duet τ ⊸s τ Γ ⊢ e : τ (τ@p, . . . , τ@p) ⊸∗ τ Γ ⊢ e : τ
Jazz (x : τ ) Σ

−→ τ Γ ⊢ e : τ ; Σ (x : τ ) Σ
−→→ τ Γ ⊢ e : τ ; Σ

Table 4. How each system —(D)Fuzz, HOARe2, Duet and Jazz (this paper)—(1) encodes function sensitivity

in types, (2) structures typing judgments for function sensitivity, (3) encodes differential privacy in types, and

(4) structures typing judgments for differential privacy.

Unlike previous works based on linear type systems, HOARe2 [14] uses relational refinement
types to encode arbitrary relational properties of programs, including differential privacy. In
HOARe2, an s-sensitive function type is written Πs ′. {x :: τ1 | Dτ1 (x◁, x▷) ≤ s ′} → {y :: τ2 |
Dτ2 (y◁,y▷) ≤ ss ′} whereDτ is a type-indexed distance metric, and x◁ and x▷ are explicit symbolic
representation of the “left” and “right” execution of the program in support of encoding relational
properties. To account for probabilistic private computations, HOARe2 uses an indexed monad
Mϵ ,δ [τ ]: the type of an (ϵ, δ )-differentially private function is written {x :: τ1 | Dτ1 (x◁, x▷) ≤ 1} →
Mϵ ,δ [{y :: τ2 | y◁ = y▷}]. A limitation of this encoding is that a function of two arguments which
provides different privacy bounds for each argument (as described in Section 3.3) will report a
summed, global privacy bound, because the tracking of privacy occurs in a single global index
to the privacy monadMϵ ,δ . Because privacy is proved as a relational property, rather than as a
sensitivity/Lipschitz continuity property, HOARe2 is also capable of placing relational distance
bounds on arguments to functions. Regarding the implementation, both HOARe2 and Jazz use
dependent types to capture sizes. Regarding typechecking, even though some automation has
been achieved [24], the automation relies heavily on what is achievable with SMT solvers, and
has limited application to programs which make generous use of compositional or higher-order
programming techniques, or metric-distance relationships between values at non-base types. SMT
solvers are not complete for non-linear operations, which are common in complex differential
privacy mechanisms. Consider, for example, the expression for privacy cost under advanced
composition: ϵ ′ = kϵ(eϵ − 1) + ϵ

√
2k ln(1/δ ′); SMT solvers are not capable of proving universally

quantified qualities between equations like these, which limits their ability to automate reasoning
about privacy cost.
It is important to note that all of these type systems support some form of recursion. Adding

any form of recursion in the formalism of Jazz would make the technical development even more
complicated. We just focused on a small core that could illustrate the main novelties of the latent
or contextual approach.

To conclude the overview about type-system-based verification techniques, we refer the reader
to Table 4, comparing different aspects of the reviewed type systems.

Techniques based on couplings and program logics. Approximate couplings [12] are a probabilistic
abstraction that witnesses differential privacy properties of programs and have been successfully
exploited for verification purposes. The relational Hoare logic apRHL [16] and its successors
apRHL+ [15] and span-apRHL [50] internalize the compositional construction of such couplings
and capture from pure and approximate differential privacy to more recent variants such as
Rényi, zero-concentrated and truncated-concentrated differential privacy. While compared to other
methods these program logics are rather expressive going beyond the composition of (a set of
predefined) basic mechanisms, derivations in the logics involve complex quantitative reasoning,
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not always amenable to automation. Even though there has been a successful report on partial
automation [11], e.g. the synthesis of (quantitative relational) loop invariants for iterative algorithms
remains challenging. To synthesise couplings, Albarghouthi and Hsu [5] use an alternative approach
based on constraint solving which is highly amenable to automation; the approach is however
confined to ϵ-DP. Finally, to verify programs that achieve (ϵ, δ )-DP composing basic mechanisms,
Barthe et al. [13] use a customised program product construction and traditional (non-relational
and non-probabilistic) Hoare logic augmented with mechanism-specific rules. In recent work,
Barthe et al. [9] show that checking differential privacy for imperative programs is undecidable in
general, but present a reduction to a decidable fragment of first-order logic for a restricted class of
programs. Barthe et al. [10] also shows that checking accuracy bounds for differentially private
programs is also undecidable (in general). A common limitation of all these approaches is that they
are restricted to first order imperative programs.

Techniques based on randomness alignment. LightDP [58] and ShadowDP [54] take a third approach
to verifying differential privacy based on randomness alignments. A randomness alignment is an
injective function relating the randomness from one execution of a differentially private mechanism
to a second execution of the same mechanism (i.e.M(x) outputs the same result with noise H
as M(x ′) outputs with noise f (H ), where f is the randomness alignment). Both LightDP and
ShadowDP are capable of verifying complex low-level mechanisms like the sparse vector technique
in just a few seconds. However, both tools target a first-order imperative programming language,
and have limited support for higher-order programming.

Techniques based on testing. Since differential privacy mechanisms are randomized, traditional
methods of software testing do not apply. Two recent works by Bichsel et al. [19] and Ding et al.
[30] address this challenge by automatically generating neighboring inputs for the mechanism
being tested, and sampling from their outputs many times to approximate their output distributions.
For privacy mechanisms with major bugs, these tools are able to show that the approximated
distributions do not satisfy the claimed differential privacy guarantee. Wilson et al. [55] have
implemented a testing tool based on this approach in their open-source library. DPCheck [60]
combines static analysis with instrumented concrete execution of the target program to detect bugs
in even more complex algorithms.

Type systems and contextual information. The technical device of contextual latent effects used
in Sax and Jazz is related to prior approaches to expose information about captured variables in
function types. Leroy [40] and Hannan et al. [37] use function types augmented with the set of
captured variables, the former for tracking dangerous type variables for polymorphic generalization,
and the latter for lifetime analysis. Scherer and Hoffmann [51] introduce open closure types in order
to track additional information about closed-over variables in first-class functions. An open closure
type augments the traditional arrow type with a lexical environment of closed over variables,
further decorated by a mapping characterizing the use of each variable. For instance, they formalize
a system where the mapping marks each variable with a Boolean indicating whether the evaluation
of the body of the function depends on the variable or not. An open closure type also includes
the name of the function argument similarly decorated. For the considered system, they prove a
non-interference property, which states that closing an open term with two valuations that coincide
on used variables yield the same result, up to used variables. Function types in Sax and Jazz can be
seen as specific cases of open closure types, in which the information attached to captured variables
(and arguments) is not a Boolean value, but sensitivity and privacy information. Consequently, the
type soundness result we establish is more general than noninterference; for instance, in Sax, for
two valuations that are at a given distance apart, the distance between the results are bounded
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by the sensitivities of each variables. The technical development of contextual linear types shares
many concerns with that of open closure types, notably regarding the proper handling of the typing
environment—in which order matters—and of scoping. However, our soundness results rely on
logical relations, while they adopt a more restricted technique, sufficient for the purpose of the
simple type system tracking Boolean information.

As observed by Scherer and Hoffmann, using open closure types allows delaying the accounting
of information flow into closures from abstraction time to application time. Likewise, contextual
sensitivity in Sax delays sensitivity accounting to application time. We extend this principle to
positive type constructors such as products and sums, generally deferring accounting to elimination
forms; we believe this would likewise apply to the simpler information-flow control setting they
study.

Recently, Bao et al. [8] use a similar context-annotation technique to track reachability informa-
tion in types. For instance, they augment the type of reference cell with the variables in scope that
alias the cell. This information is tracked on function types as well, in order to track the reachability
information from closures. In all these approaches, type information depends on variable names;
this is quite different from dependent types, however, where types depend on arbitrary terms. The
telescope nature of the typing environment is similar, but many of the deep challenges of dependent
types do not manifest in this restricted setting.

Hoare Type Theory [45] supports specifying effectful, heap-manipulating computations by intro-
ducing Hoare-style pre/postconditions in types. Computation types include contexts of variables
and heap locations in order to track footprints of logical assertions. In a similar vein as Leroy [40],
the context of variables is not decorated with any information, so it is unclear whether one could
handle contextual sensitivity and privacy in this approach.
Finally, it would be interesting to study if generic approaches such as coeffects [48] and graded

modal types [47] can express delayed sensitivity and privacy tracking as developed here. These
generic approaches use resource algebras (such as the semiring of natural numbers) for capturing
modalities in types. To the best of our knowledge, these are not contextual: for instance, the arrow
type is annotated with a scalar, label, etc., not with a decorated environment as in open closure
types and this work. Extending these generic approaches to support contextual information on
all type constructors could bring the benefits of lazy accounting to a wide range of type-based
quantitative program reasoning.

11 CONCLUSION

We have presented Jazz, a language and type system for differentially private programming with
strong support for both higher-order programming and advanced variants of differential privacy.
The key insight of our approach is latent contextual tracking of both privacy and sensitivity,
which enables sum, product and function types to describe their privacy effects—even for closure
variables—making it possible to delay the payment of the effects until actual elimination, sometimes
yielding advantages on the precision of the analysis and the annotation burden.

We have formalized a core subset of Jazz and proved its soundness using a step-indexed logical
relation, following a novel strategy. Case studies demonstrate the ability to encode basic privacy
mechanisms and privacy combinators as primitives in Jazz, and to compose them to develop more
complicated iterative differentially private algorithms.

Jazz extends the expressive power of systems like Fuzz [49] to advanced variants of differential
privacy. Like Fuzz, it remains incapable of proving the correctness of basic privacy mechanisms
like the Laplace mechanism. One interesting avenue for future work lies in combining Jazz with an
expressive program logic like apRHL [16, 17] in the style of Fuzzi [59]. Such a combined system
would provide a complete programming framework supporting higher-order programming and
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end-to-end privacy proofs. Another line of future work is to incorporate some form of recursion to
Jazz such as recursive types.
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r ∈ R
b ∈ B
x ∈ var
e ∈ sexpr F r | e + e | e ∗ e | e ≤ e real numbers

| x | λ
s (x : τ ·s). e | λp (x : τ ·s). e | e e vars, functions, apps

| tt unit
| inlτ2 e | inrτ1 e | case e of {x ⇒ e} {y ⇒ e} sums
| (e, e) | fst e | snd e add. products
| ⟨e, e⟩ | let x, x = e in e mult. products
| e :: τ ascription
| b | if e then e else e (derived) booleans
| let x = e in e (derived) let

e ∈ pexprF return e | x : τ ← e ; e | e e return, bind, applications
| if e then e else e | case e of {x ⇒ e} {y ⇒ e} conditionals, case
| let x = e in e let

s ∈ sens ≜ R∞ sensitivities
Σ ∈ senv ≜ var⇀ sens F sx + . . . + sx sensitivity environments
p ∈ priv ≜ (R∞,R∞) privacy costs
Σ ∈ penv ≜ � | px | Σ + Σ | Σ ⊔ Σ | Σ ⊓ Σ privacy environments
τ ∈ type F R | B | unit | (x : τ ·s) Σ

−→ τ | (x : τ ·s) Σ
−→→ τ

| τ Σ⊕Σ τ | τ Σ&Σ τ | τ Σ⊗Σ τ types
Γ ∈ tenv ≜ var⇀ typeF {x : τ , . . . , x : τ } type environments

Fig. 18. λJ: Syntax

APPENDIX

Throughout the appendix we use symbol s instead of d , and Σ instead of ∆ as they are interchange-
able.

A λJ: STATIC SEMANTICS

In this section we present some definitions of the static semantics of λJ not presented in the main
document. Figure 18 presents the syntax of λJ. Figures 19 and 19 present the complete sensitivity
type system of λJ. Figure 21 presents the complete type system of λJ. They include the usage of Φ
and the type rules for the derived expressions: boolean, conditional and let expressions. Figure 22
presents the sensitivity instantiation or dot product operator and the sensitivity type instantiation
operator. Figure 23 presents the subtyping rules for λJ. Figure 24 presents the sensitivity environment
substitution environment. Figure 25, presents the different lifts operators. Finally, Figure 26 presents
the join and meet operator between types.

B λJ: DYNAMIC SEMANTICS

Figure 27, presents the dynamic semantics of the sensitivity language. Figure 28, presents the
dynamic semantics of the privacy language.
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rlit

Γ ; ∆ ⊢ r : R ; �

plus
Γ ; ∆ ⊢ e1 : R ; Σ1 Γ ; ∆ ⊢ e2 : R ; Σ2

Γ ; ∆ ⊢ e1 + e2 : R ; Σ1 + Σ2

times
Γ ; ∆ ⊢ e1 : R ; Σ1 Γ ; ∆ ⊢ e2 : R ; Σ2 e1 , r e2 , r

Γ ; ∆ ⊢ e1 ∗ e2 : ∞(Σ1 + Σ2)

l-scale
Γ ; ∆⊢ e : R ; Σ

Γ ; ∆⊢ r ∗ e : R ; rΣ

r-scale
Γ ; ∆⊢ e : R ; Σ

Γ ; ∆⊢ e ∗ r : R ; rΣ

leq
Γ ; ∆ ⊢ e1 : R ; Σ1 Γ ; ∆ ⊢ e2 : R ; Σ2

Γ ; ∆ ⊢ e1≤e2 : ∞(Σ1 + Σ2)

var
Γ(x ) = τ

Γ ; ∆ + sx ⊢ x : τ ; x

s-lam
Γ, x : τ1 ; ∆ + dx ⊢ e : τ2 ; Σ

Γ ; ∆ ⊢ λs (x : τ1·d). e : (x : τ1·s)
Σ
→ τ2 ; �

p-lam
Γ, x : τ1 ; ∆ + sx ⊢ e : τ2 ; Σ

Γ ; ∆ ⊢ λp (x : τ1·d). e : (x : τ1·d)
Σ
→ τ2 ; �

s-app
Γ ; ∆ ⊢ e1 : (x : τ1·d ′)

Σ+dx
−−−−→ τ2 ; Σ1 Γ ; ∆ ⊢ e2 : τ1 ; Σ2 ∆·Σ2 ≤ d ′

Γ ; ∆ ⊢ e1 e2 : [Σ2/x]τ2 ; Σ1 + sΣ2 + Σ

unit

Γ ; ∆ ⊢ tt : unit ; �

inl
Γ ; ∆ ⊢ e : τ1 ; Σ

Γ ; ∆ ⊢ inlτ2 e : τ1 Σ⊕� τ2 ; �

inr
Γ ; ∆ ⊢ e : τ2 ; Σ

Γ ; ∆ ⊢ inrτ1 e : τ1 �⊕Σ τ2 ; �

Fig. 19. λJ: Complete sensitivity type system (part 1)

C λJ: SOUNDNESS

In this section we present auxiliary definitions used in Section 7.3, and the proof of the funda-
mental property. Figure 29 presents the join and meet operators for sensitivity environments and
sensitivities Σ + s . Figure 30 presents the subtyping relation between sensible types.

Lemma C.1 (Associativity of the instantiation operator). Σ·(Σ1 + Σ2) = Σ·Σ1 + Σ·Σ2

Proof. By induction on Σ1:

Case (1) Σ1 = �

Subproof. Trivial as Σ·(� + Σ2) = Σ·Σ2 = Σ·� + Σ·Σ2. ◁

Case (2) Σ1 = Σ′1 + s1x
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s-case
Γ ; ∆ ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1 Γ, x : τ11 ; ∆ + (∆·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2 + s2x

Γ,y : τ12 ; ∆ + (∆·(Σ1 + Σ12))x ⊢ e3 : τ3 ; Σ3 + s3y

Γ ; ∆ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} :
[Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3 ; (Σ1 ⊔ (s2Σ1 + s2Σ11 + Σ2) ⊔ (s3Σ1 + s3Σ12 + Σ3))

pair
Γ ; ∆ ⊢ e1 : τ1 ; Σ1 + Σ′1 Γ ; ∆ ⊢ e2 : τ2 ; Σ2 + Σ′2

Γ ; ∆ ⊢ (e1, e2) : τ1 Σ1&Σ2 τ2 ; Σ′1 ⊔ Σ′2

proj1
Γ ; ∆ ⊢e : τ1 Σ1&Σ2 τ2 ; Σ
Γ ; ∆ ⊢ fst e : τ1 ; Σ + Σ1

proj2
Γ ; ∆ ⊢e : τ1 Σ1&Σ2 τ2 ; Σ
Γ ; ∆ ⊢ snd e : τ2 ; Σ + Σ2

tup
Γ ; ∆ ⊢ e1 : τ1 ; Σ1 + Σ′1 Γ ; ∆ ⊢ e2 : τ2 ; Σ2 + Σ′2

Γ ; ∆ ⊢ ⟨e1, e2⟩ : τ1 Σ1⊗Σ2 τ2 ; Σ′1 + Σ′2

untup
Γ ; ∆ ⊢e1 : τ11 Σ11⊗Σ12 τ12 ; Σ1

Γ, x1 : τ11, x2 : τ12 ; ∆ + (∆·(Σ1 + Σ11))x1 + (∆·(Σ1 + Σ12))x2 ⊢e2 : τ2 ; Σ2 + s1x1 + s2x2

Γ ; ∆ ⊢ let x1, x2 = e1 in e2 : [Σ1 + Σ11/x1][Σ1 + Σ12/x2]τ2 ; (s1 ⊔ s2)Σ1 + s1Σ11 + s2Σ12 + Σ2

ascr
Γ ; ∆ ⊢ e : τ ; Σ τ <: τ ′

Γ ; ∆ ⊢ (e :: τ ′) : τ ′ ; Σ

. . . derived rules

blit

Γ ; ∆ ⊢ b : B ; �

if
Γ ; ∆ ⊢ e1 : B ; Σ1 Γ ; ∆ ⊢ e2 : τ ; Σ2 Γ ; ∆ ⊢ e3 : τ ; Σ3

Γ ; ∆ ⊢ if e1 then {e2} else {e3} : τ ; Σ1 + (Σ2 ⊔ Σ3)

let
Γ ; ∆ ⊢ e1 : τ1 ; Σ1 Γ, x : τ1 ; ∆ +∞x ⊢ e2 : τ2 ; Σ2 + sx

Γ ; ∆ ⊢ let x = e1 in e2 : [Σ1/x]τ2 ; sΣ1 + Σ2

Fig. 20. λJ: Complete sensitivity type system (part 2)

Subproof. Let us assume x < Σ2, and that r = Σ(x ) if Σ(x ) is defined, otherwise r = x :

Σ·((Σ′1 + s1x ) + Σ2) = Σ·((Σ′1 + Σ2) + s1x )
= Σ·(Σ′1 + Σ2) + s1r (by definition)
= (Σ·Σ′1 + Σ·Σ2) + s1r (by induction hyp.)
= (Σ·Σ′1 + s1r ) + Σ·Σ2
= Σ·(Σ′1 + s1x ) + Σ·Σ2 (by definition)
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return
Γ ; ∆ ⊢ e : τ ; Σ1 Ûx = FV(e) ∪ dom(Σ1)

Γ ; ∆ ⊢ return e : [�/Ûx]τ ; FP∞(Ûx )
bind
Γ ; ∆ ⊢ e1 : τ1 ; Σ1 Γ, x : τ1 ; ∆ + 0x ⊢ e2 : τ2 ; Σ2

Γ ; ∆ ⊢ x : τ1 ← e1 ; e2 : [�/x]τ2 ; Σ1 + [�/x]Σ2

if
Γ ; ∆ ⊢ e1 : B ; Σ1 Γ ; ∆ ⊢ e2 : τ ; Σ2 Γ ; ∆ ⊢ e3 : τ ; Σ3

Γ ; ∆ ⊢ if e1 then e2 else e3 : τ ; ⌉Σ1⌈
∞ + (Σ2 ⊔ Σ3)

p-case
Γ ; ∆ ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1

Γ, x : τ11 ; ∆ + (∆·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2 Γ,y : τ12 ; ∆ + (∆·(Σ1 + Σ12))y ⊢ e3 : τ3 ; Σ3

Γ ; ∆ ⊢ case e1of {x ⇒ e2} {y ⇒ e3} :
[Σ11/x]τ2 ⊔ [Σ12/y]τ3 ; ⌉Σ1⌈

∞ ⊔ ([Σ11/x]Σ2 ⊔ [Σ12/y]Σ3)

p-app
Γ ; ∆ ⊢ e1 : (x : τ1·s)

Σ
−→→ τ2 ; Σ1 Γ ; ∆ ⊢ e2 : τ1 ; Σ2 ∆·Σ2 ≤ s

Γ ; ∆ ⊢ e1 e2 : [Σ2/x]τ2 ; ⌉Σ1⌈
∞ + [Σ2/x]Σ

FP∞(R) = �
FP∞(unit) = �

FP∞((x : τ1·s)
Σ
−→ τ2) = [�/x]⌉Σ⌈∞ + FP∞(τ1) + FP∞([�/x]τ2)

FP∞((x : τ1·s)
Σ
−→→ τ2) = [�/x]⌉Σ⌈∞ + FP∞(τ1) + FP∞([�/x]τ2)

FP∞(τ1 Σ1⊕Σ2 τ2) = ⌉Σ1⌈
∞ + ⌉Σ2⌈

∞ + FP∞(τ1) + FP∞(τ2)
FP∞(τ1 Σ1&Σ2 τ2) = ⌉Σ1⌈

∞ + ⌉Σ2⌈
∞ + FP∞(τ1) + FP∞(τ2)

FP∞(τ1 Σ1⊗Σ2 τ2) = ⌉Σ1⌈
∞ + ⌉Σ2⌈

∞ + FP∞(τ1) + FP∞(τ2)

Fig. 21. λJ: Complete privacy type system

and the result holds. Let us assume now that Σ2 = Σ′2 + s2x , and that r = Σ(x) if Σ(x) is defined,
otherwise r = x :

Σ·((Σ′1 + s1x ) + (Σ′2 + s2x )) = Σ·((Σ′1 + Σ′2) + s1x + s2x )
= Σ·(Σ′1 + Σ′2) + (s1 + s2)r
= Σ·(Σ′1 + Σ′2) + (s1 + s2)r (by definition)
= (Σ·Σ′1 + Σ·Σ′2) + (s1 + s2)r (by induction hyp.)
= (Σ·Σ′1 + Σ·Σ′2) + s1r + s2r
= (Σ·Σ′1 + s1r ) + (Σ·Σ′2 + s2r )
= (Σ·(Σ′1 + s1x ) + Σ·(Σ′2 + s2x ) (by definition)
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Σ1·� = 0
Σ1·(Σ2 + s) = Σ1·Σ2 + s

Σ1·(Σ2 + sx ) = Σ1·Σ2 + sΣ1(x ) if Σ(x ) is defined
Σ1·(Σ2 + sx ) = Σ1·Σ2 + sx otherwise

Σ(R) = R
Σ(B) = B

Σ(unit) = unit

Σ((x : σ1)
Σ′+s
−−−→ σ2) = (x : Σ(σ1))

Σ ·Σ′+s
−−−−−→ Σ(σ2)

Σ(σ1 Σ1+s1⊕Σ2+s2 σ2) = Σ(σ1) Σ ·Σ1+s1⊕Σ ·Σ2+s2 Σ(σ2)
Σ(σ1 Σ1+s1&Σ2+s2 σ2) = Σ(σ1) Σ ·Σ1+s1&Σ ·Σ2+s2 Σ(σ2)
Σ(σ1 Σ1+s1⊗Σ2+s2 σ2) = Σ(σ1) Σ ·Σ1+s1⊗Σ ·Σ2+s2 Σ(σ2)

Fig. 22. Sensitivity instantiation / “dot product” and sensitivity type instantiation

and the result holds. ◁

Case (3) Σ1 = Σ′1 + s1
Subproof. Similar to previous case. ◁

□

Lemma C.2. If x < dom(Σ), then sx (Σ(τ )) = (Σ + sx )(τ )

Proof. By induction on τ . □

Lemma C.3. If ∆·Σ = d and x < dom(Σ) ∪ dom(∆), then ∆·([Σ/x]Σ′) = (∆ + dx )·Σ′

Proof. We prove: if ∆·Σ2 = d ∈ sens and x < dom(Σ2) ∪ dom(∆), then ∆·[Σ2/x]Σ3 = dx(∆·Σ3).
We proceed by induction on the structure of Σ3.
Case (1) Σ3 = �

Subproof. Trivial as [Σ2/x]� = dx (�) = � and ∆·� = 0. ◁

Case (2) x < dom(Σ3)
Subproof. Then [Σ2/x]Σ3 = Σ3, ∆·[Σ2/x]Σ3 = ∆·Σ3, and [s/x](∆·Σ3) = ∆·Σ3, and the result
holds. ◁
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Σ <: Σ
Σ <: Σ′

△
⇐⇒ ∀x . Σ(x ) ≤ Σ′(x )

Σ <: Σ
p.ϵ ≤ p ′.ϵ p.δ ≤ p ′.δ

px <: p ′x � <: Σ
Σ1 <: Σ′1 Σ2 <: Σ′2
Σ1 + Σ

′
2 <: Σ′1 + Σ′2

Σ1 <: Σ′1 ∨ Σ1 <: Σ′2
Σ1 <: Σ′1 ⊔ Σ′2

Σ1 <: Σ′1 ∧ Σ1 <: Σ′1
Σ1 ⊔ Σ2 <: Σ′1

Σ1 <: Σ′1 ∨ Σ2 <: Σ′1
Σ1 ⊓ Σ2 <: Σ′1

Σ1 <: Σ′1 ∧ Σ1 <: Σ′2
Σ1 <: Σ′1 ⊓ Σ′2

τ <: τ

base
τ ∈ {R, unit}

τ <: τ

s-lam
τ ′1 <: τ1 d ′ <: d Σ <: Σ′ τ2 <: τ ′2

(x : τ1·d)
Σ
−→ τ2 <: (x : τ ′1 ·d ′)

Σ′

−→ τ ′2

p-lam
τ ′1 <: τ1 d ′ <: d Σ <: Σ′ τ2 <: τ ′2

(x : τ1·d)
Σ
−→→ τ2 <: (x : τ ′1 ·d ′)

Σ′

−−→→ τ ′2

sum
τ1 <: τ ′1 Σ1 <: Σ′1 τ2 <: τ ′2 Σ2 <: Σ′2

τ1
Σ1⊕Σ2 τ2 <: τ ′1

Σ′1⊕Σ
′
2 τ ′2

pair
τ1 <: τ ′1 Σ1 <: Σ′1 τ2 <: τ ′2 Σ2 <: Σ′2

τ1
Σ1&Σ2 τ2 <: τ ′1

Σ′1&Σ′2 τ ′2

tup
τ1 <: τ ′1 Σ1 <: Σ′1 τ2 <: τ ′2 Σ2 <: Σ′2

τ1
Σ1⊗Σ2 τ2 <: τ ′1

Σ′1⊗Σ
′
2 τ ′2

Fig. 23. Subtyping
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[_/x]_ : sensv × type→ type
[Σ/x]R = R
[Σ/x]B = B

[Σ/x]unit = unit

[Σ/x]((y : τ1·d)
Σ′

−→ τ2) = (y : [Σ/x]τ1·d)
[Σ/x ]Σ′
−−−−−−→ [Σ/x]τ2

[Σ/x](τ1 Σ1⊕Σ2 τ2) = [Σ/x]τ1 [Σ/x ]Σ1⊕[Σ/x ]Σ2 [Σ/x]τ2
[Σ/x](τ1 Σ1&Σ2 τ2) = [Σ/x]τ1 [Σ/x ]Σ1&[Σ/x ]Σ2 [Σ/x]τ2
[Σ/x](τ1 Σ1⊗Σ2 τ2) = [Σ/x]τ1 [Σ/x ]Σ1⊗[Σ/x ]Σ2 [Σ/x]τ2

[_/x]_ : sensv × sensv→ sensv
[Σ/x]� = �

[Σ/x](Σ′ + sx ) = [Σ/x]Σ + sΣ′
[Σ/x](Σ′ + sy) = [Σ/x]Σ + sy

[_/x]_ : sensv × (sensv + sens)→ (sensv + sens)
[Σ/x](Σ′ + s) = [Σ/x]Σ′ + s

[Σ/x]s = s

Fig. 24. Sensitivity environment substitution

⌉s ⌈s
′

= s ′ s > 0
⌉�⌈s

′

= �

⌉Σ + sx ⌈s
′

= ⌉Σ⌈s
′

+ ⌉s ⌈s
′

x
⌉Σ + 0x ⌈s ′ = ⌉Σ⌈s ′ + 0x

⌉p⌈p
′

= p ′ p , (0, 0)
⌉(0, 0)⌈p′ = (0, 0)
⌉�⌈p

′

= �

⌉px ⌈p
′

= ⌉p⌈p
′

x
⌉Σ1 + Σ2⌈

∞ = ⌉Σ1⌈
∞ + ⌉Σ2⌈

∞

⌉Σ1 ⊔ Σ2⌈
∞ = ⌉Σ1⌈

∞ ⊔ ⌉Σ2⌈
∞

⌉Σ1 ⊓ Σ2⌈
∞ = ⌉Σ1⌈

∞ ⊓ ⌉Σ2⌈
∞

⌉Σ⌈p
′

=
⊔

x ∈dom(Σ)
(⌉Σ(x )⌈1p)x

Fig. 25. Lift operators
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_ ⊔ _ : type × type→ type
R ⊔ R = R
B ⊔ B = B

unit ⊔ unit = unit

(y : τ1·d)
Σ
−→ τ1 ⊔ (y : τ ′1 ·d ′)

Σ′

−→ τ ′2 = (y : (τ1 ⊓ τ ′1)·(d ⊓ d ′))
Σ⊔Σ′

−−−−→ (τ2 ⊔ τ ′2)
(y : τ1·d)

Σ
−→→ τ1 ⊔ (y : τ ′1 ·d ′)

Σ′

−−→→ τ ′2 = (y : (τ1 ⊓ τ ′1)·(d ⊓ d ′))
Σ⊔Σ′

−−−−→→ (τ2 ⊔ τ ′2)
τ1

Σ1⊕Σ2 τ2 ⊔ (τ ′1 Σ′1⊕Σ
′
2 τ ′2) = (τ1 ⊔ τ ′1) Σ1⊔Σ′1⊕Σ2⊔Σ

′
2 (τ2 ⊔ τ ′2)

τ1
Σ1&Σ2 τ2 ⊔ (τ ′1 Σ′1&Σ′2 τ ′2) = (τ1 ⊔ τ ′1) Σ1⊔Σ′1&Σ2⊔Σ′2 (τ2 ⊔ τ ′2)

τ1
Σ1⊗Σ2 τ2 ⊔ (τ ′1 Σ′1⊗Σ

′
2 τ ′2) = (τ1 ⊔ τ ′1) Σ1⊔Σ′1⊗Σ2⊔Σ

′
2 (τ2 ⊔ τ ′2)

_ ⊓ _ : type × type→ type
R ⊓ R = R
B ⊓ B = B

unit ⊓ unit = unit

(y : τ1·d)
Σ
−→ τ1 ⊓ (y : τ ′1 ·d ′)

Σ′

−→ τ ′2 = (y : (τ1 ⊔ τ ′1)·(d ⊔ d ′))
Σ⊓Σ′

−−−−→ (τ2 ⊓ τ ′2)
(y : τ1·d)

Σ
−→→ τ1 ⊓ (y : τ ′1 ·d ′)

Σ′

−−→→ τ ′2 = (y : (τ1 ⊔ τ ′1)·(d ⊔ d ′))
Σ⊓Σ′

−−−−→→ (τ2 ⊓ τ ′2)
τ1

Σ1⊕Σ2 τ2 ⊓ (τ ′1 Σ′1⊕Σ
′
2 τ ′2) = (τ1 ⊓ τ ′1) Σ1⊓Σ′1⊕Σ2⊓Σ

′
2 (τ2 ⊓ τ ′2)

τ1
Σ1&Σ2 τ2 ⊓ (τ ′1 Σ′1&Σ′2 τ ′2) = (τ1 ⊓ τ ′1) Σ1⊓Σ′1&Σ2⊓Σ′2 (τ2 ⊓ τ ′2)

τ1
Σ1⊗Σ2 τ2 ⊓ (τ ′1 Σ′1⊗Σ

′
2 τ ′2) = (τ1 ⊓ τ ′1) Σ1⊓Σ′1⊗Σ2⊓Σ

′
2 (τ2 ⊓ τ ′2)

_ ⊔ _ : sensv × sensv → sensv
� ⊔ � = �

(Σ + sx ) ⊔ (Σ′ + s ′x ) = (Σ ⊔ Σ′) + (s ⊔ s ′)x x < dom(Σ ⊔ Σ′)
Σ ⊔ (Σ′ + sx ) = (Σ ⊔ Σ′) + sx (x < dom(Σ))
(Σ + sx ) ⊔ Σ′ = (Σ ⊔ Σ′) + sx (x < dom(Σ′))

_ ⊔ _ : sensv × sensv → sensv
� ⊓ � = �

(Σ + sx ) ⊓ (Σ′ + s ′x ) = (Σ ⊓ Σ′) + (s ⊓ s ′)x x < dom(Σ ⊓ Σ′)
Σ ⊓ (Σ′ + sx ) = (Σ ⊓ Σ′) (x < dom(Σ))
(Σ + sx ) ⊓ Σ′ = (Σ ⊓ Σ′) (x < dom(Σ′))

Fig. 26. Join and Meet of types and sensitivity environments
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rlit

γ ⊢ r ⇓0 r

plus
γ ⊢ e1 ⇓

k1 r1 γ ⊢ e2 ⇓
k2 r2

γ ⊢ e1 + e2 ⇓
k1+k2+1 r1 + r2

times
γ ⊢ e1 ⇓

k2 r1 γ ⊢ e2 ⇓
k2 r2

γ ⊢ e1·e2 ⇓
k1+k2+1 r1r2

leq
γ ⊢ e1 ⇓

k1 r1 γ ⊢ e2 ⇓
k2 r2

γ ⊢ e1 ≤ e2 ⇓
k1+k2+1 r1 ≤ r2

var
γ (x ) = v
γ ⊢ x ⇓1 v

lam
γ ′ ⊆ γ FV (e) = dom(γ ′)

γ ⊢ λ
s (x : τ ·s). e ⇓1 ⟨λsx : τ ·s . e,γ ′⟩

app
γ ⊢ e1 ⇓

k1 ⟨λx : τ ·s . e ′,γ ′⟩ γ ⊢ e ⇓k2 v γ ′[x 7→ v] ⊢ e ′ ⇓k3 v
γ ⊢ e1 e ⇓

k1+k2+k3+1 v

unit

γ ⊢ tt ⇓0 tt

inl
γ ⊢ e ⇓k v

γ ⊢ inlτ2 e ⇓k inlτ2/γ v

inr
γ ⊢ e ⇓k v

γ ⊢ inrτ1 e ⇓k inrτ1/γ v

case-left
γ ⊢ e1 ⇓

k1 inl v γ [x 7→ v] ⊢ e2 ⇓k2 v ′

γ ⊢ case e1 of {x ⇒ e2} {x ⇒ e3} ⇓
k1+k2+1 v ′

case-right
γ ⊢ e1 ⇓

k1 inr v γ [x 7→ v] ⊢ e3 ⇓k2 v ′

γ ⊢ case e1 of {x ⇒ e2} {x ⇒ e3} ⇓
k1+k2+1 v ′

pair
γ ⊢ e1 ⇓

k1 v1 γ ⊢ e2 ⇓
k2 v2

γ ⊢ (e1, e2) ⇓k1+k2 (v1,v2)

proj1
γ ⊢ e ⇓k (v1,v2)
γ ⊢ fst e ⇓k+1 v1

proj2
γ ⊢ e ⇓k (v1,v2)
γ ⊢ snd e ⇓k+1 v2

tup
γ ⊢ e1 ⇓

k1 v1 γ ⊢ e2 ⇓
k2 v2

γ ⊢ ⟨e1, e⟩ ⇓
k1+k2 ⟨v1,v2⟩

untup
γ ⊢ e1 ⇓

k1 ⟨v1,v2⟩ γ [x1 7→ v1, x2 7→ v2] ⊢ e2 ⇓k2 v ′

γ ⊢ let x1, x2 = e1 in e2 ⇓
k1+k2+1 v ′

ascr
γ ⊢ e ⇓k v

γ ⊢ e :: τ ⇓k+1 v

blit

γ ⊢ b ⇓0 b

if-true
γ ⊢ e1 ⇓

k1 true γ ⊢ e2 ⇓
k2 v

γ ⊢ if e1 then {e2} else {e3} ⇓
k1+k2+1 v

if-false
γ ⊢ e1 ⇓

k1 false γ ⊢ e3 ⇓
k2 v

γ ⊢ if e1 then {e2} else {e3} ⇓
k1+k2+1 v

let
γ ⊢ e1 ⇓

k1 v γ [x 7→ v] ⊢ e2 ⇓k2 v ′

γ ⊢ let x = e1 in e2 ⇓
k1+k2+1 v ′

Fig. 27. λJ: Sensitivity dynamic semantics
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return
γ ⊢ e ⇓k v

return e ⇓k λx .

ß
1 when x = v
0 otherwise

bind
γ ⊢ e1 ⇓

k D1 ∀vi ,D1(vi ) > 0,γ [x 7→ vi ] ⊢ e2 ⇓ki D2i

γ ⊢ x : τ1 ← e1 ; e2 ⇓k+maxiki λx .
∑

D1(vi )>0
D1(vi )·D2i (x )

gauss

γ ⊢ gauss µ σ 2 ⇓1 λx .
e−(x−µ )

2/2σ 2∑
y∈Z e

−(y−µ )2/2σ 2

if-true
γ ⊢ e1 ⇓

k1 true γ ⊢ e2 ⇓
k2 D

γ ⊢ if e1 then e2 else e3 ⇓
k1+k2 D

if-false
γ ⊢ e1 ⇓

k1 false γ ⊢ e3 ⇓
k2 D

γ ⊢ if e1 then e2 else e3 ⇓
k1+k2 D

case-left
γ ⊢ e ⇓k1 inl v γ [x 7→ v] ⊢ e2 ⇓k2 D

γ ⊢ case e of {x ⇒ e2} {x ⇒ e3} ⇓
k1+k2 D

case-right
γ ⊢ e ⇓k1 inr v γ [x 7→ v] ⊢ e3 ⇓k2 D

γ ⊢ case e of {x ⇒ e2} {x ⇒ e3} ⇓
k1+k2 D

app
γ ⊢ e1 ⇓

k1 ⟨λ
p
x : τ ·s . e′,γ ′⟩ γ ⊢ e2 ⇓

k2 v γ ′[x 7→ v] ⊢ e′ ⇓k3 D

γ ⊢ e1 e2 ⇓
k1+k2+k3 D

Fig. 28. λJ: Probabilistic semantics

� ⊔ � = �

(Σ + sx ) ⊔ (Σ′ + s ′x ) = (Σ ⊔ Σ′) + (s ⊔ s ′)x x < dom(Σ ⊔ Σ′)
Σ ⊔ (Σ′ + sx ) = (Σ ⊔ Σ′) + sx (x < dom(Σ))
(Σ + sx ) ⊔ Σ′ = (Σ ⊔ Σ′) + sx (x < dom(Σ′))

(Σ + s) ⊔ (Σ′ + s ′) = (Σ ⊔ Σ′) + (s ⊔ s ′) s ′′ < Σ ⊔ Σ′

_ ⊔ _ : sensv × sensv → sensv
� ⊓ � = �

(Σ + sx ) ⊓ (Σ′ + s ′x ) = (Σ ⊓ Σ′) + (s ⊓ s ′)x x < dom(Σ ⊓ Σ′)
Σ ⊓ (Σ′ + sx ) = (Σ ⊓ Σ′) + sx (x < dom(Σ))
(Σ + sx ) ⊓ Σ′ = (Σ ⊓ Σ′) + sx (x < dom(Σ′))

(Σ + s) ⊓ (Σ′ + s ′) = (Σ ⊓ Σ′) + (s ⊓ s ′) s ′′ < Σ ⊓ Σ′

Fig. 29. Join and Meet of sensitivity environment and sensitivities
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σ <: σ

base
σ ∈ {R, unit}

σ <: σ

s-fun
σ ′1 <: σ1 s ′ <: s Σ1 <: Σ′2 Σ2 <: Σ′2 σ2 <: σ ′2

(x : σ1·s)
Σ1+Σ ·Σ2
−−−−−−→ σ2 <: (x : σ ′1 ·s ′)

Σ′1+Σ ·Σ
′
2

−−−−−−→ σ ′2

p-fun
σ ′1 <: σ1 s ′ <: s Σ1 <: Σ′2 Σ2 <: Σ′2 σ2 <: σ ′2

(x : σ1·s)
Σ1+Σ•Σ2
−−−−−−−→→ σ2 <: (x : σ ′1 ·s ′)

Σ′1+Σ•Σ
′
2

−−−−−−−→→ σ ′2

sum
σ1 <: σ ′1 s1 ≤ s ′1 σ2 <: σ ′2 s2 ≤ s ′2

σ1
s1⊕s2 σ2 <: σ ′1

s ′1⊕s
′
2 σ ′2

pair
σ1 <: σ ′1 s1 ≤ s ′1 σ2 <: σ ′2 s2 ≤ s ′2

σ1
s1&s2 σ2 <: σ ′1

s ′1&s ′2 σ ′2

tup
σ1 <: σ ′1 s1 ≤ s ′1 σ2 <: σ ′2 s2 ≤ s ′2

σ1
s1⊗s2 σ2 <: σ ′1

s ′1⊗s
′
2 σ ′2

Fig. 30. Subtyping of sensible types
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Case (3) Σ3 = Σ4 + d
′x

Subproof. By induction hypothesis on Σ4, we know that ∆·([Σ2/x]Σ4) = dx ((∆·Σ4)). Therefore
∆·([Σ2/x]Σ3) = ∆·([Σ2/x](Σ4 + d

′x ))
= ∆·([Σ2/x]Σ4 + d

′Σ2)
= ∆·([Σ2/x]Σ4) + ∆·d ′Σ2
= ∆·([Σ2/x]Σ4) + d ′(∆·Σ2)
= dx (∆·Σ4) + d ′(∆·Σ2) (by induction hyp.)
= dx (∆·Σ4) + d ′(dx (x ))
= dx (∆·Σ4) + dx (d ′x )
= dx ((∆·Σ4) + d ′x ) (by definition of subst)
= dx (∆·(Σ4 + d

′x )) (because x < dom(∆))
= dx (∆·Σ3)

And the result holds. ◁

Case (4) Σ3 = Σ4 + d
′y

Subproof. By induction hypothesis on Σ4, we know that ∆·([Σ2/x]Σ4) = dx (∆·Σ4). Therefore
∆·([Σ2/x]Σ3) = ∆·([Σ2/x](Σ4 + d

′y))
= ∆·([Σ2/x]Σ4 + d

′y)
= ∆·([Σ2/x]Σ4) + ∆·d ′y
= dx (∆·Σ4) + ∆·d ′y (by induction hyp.)
= dx (∆·Σ4 + ∆·d

′y) (by definition as x < dom(sy))
= dx (∆·(Σ4 + d

′y))
= dx (∆·Σ3)

And the result holds. ◁

Case (5) Σ3 = Σ4 + d
′

Subproof. By induction hypothesis on Σ4, we know that ∆·([Σ2/x]Σ4) = dx (∆·Σ4). Therefore
∆·([Σ2/x]Σ3) = ∆·([Σ2/x](Σ4 + d

′))
= ∆·([Σ2/x]Σ4 + d

′)
= ∆·([Σ2/x]Σ4) + s ′
= dx (∆·Σ4) + s ′ (by induction hyp.)
= dx (∆·Σ4 + s

′) (by definition of Σ())
= dx (∆·(Σ4 + s

′))
= dx (∆·Σ3)

And the result holds. ◁

□

Lemma C.4. If ∆·Σ = d and x < dom(Σ) ∪ dom(∆), then ∆•([Σ/x]Σ′) = (∆ + dx )•Σ′

Proof. We prove: if ∆·Σ2 = d ∈ sens and x < dom(Σ2) ∪ dom(∆), then ∆•[Σ2/x]Σ3 = dx •(∆•Σ3).
We proceed by induction on the structure of Σ3.
Case (1) Σ3 = �

Subproof. Trivial as [Σ2/x]� = dx (�) = � and ∆•� = 0. ◁

Case (2) Σ3 = py

Subproof. Then [Σ2/x]Σ3 = Σ3, ∆•[Σ2/x]Σ3 = ∆•Σ3, and [d/x](∆•Σ3) = ∆•Σ3, and the result
holds. ◁

Case (3) Σ3 = px
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Subproof. Then
∆•([Σ2/x]Σ3) = ∆•([Σ2/x](px ))

= ∆•(⌉Σ2⌈
p )

= ∆•(
⊔

x ∈dom(Σ2)
py)

=
⊔

x ∈dom(Σ2)
p

= p

But (∆ + dx )•Σ3 = (∆ + dx )•px = p and the result holds. ◁

Case (4) Σ3 = Σ4 + Σ5

Subproof. By induction hypothesis on Σ4 and Σ5, we know that ∆•([Σ2/x]Σ4) = dx •(∆·Σ4), and
∆•([Σ2/x]Σ5) = dx •(∆·Σ5). Therefore

∆•([Σ2/x]Σ3) = ∆•([Σ2/x](Σ4 + Σ5))
= ∆•([Σ2/x]Σ4 + [Σ2/x]Σ5)
= ∆•([Σ2/x]Σ4) + ∆([Σ2/x]Σ5)
= dx •(∆•Σ4) + dx (∆•Σ5) (by induction hyp.)
= dx •(∆•Σ4 + ∆•Σ5) (by definition of ∆(_))
= dx •(∆(Σ4 + Σ5))
= dx •(∆•Σ3)

And the result holds. ◁

Case (5) Σ3 = Σ4 ⊔ Σ5

Subproof. By induction hypothesis on Σ4 and Σ5, we know that ∆•([Σ2/x]Σ4) = dx •(∆·Σ4), and
∆•([Σ2/x]Σ5) = dx •(∆·Σ5). Therefore

∆•([Σ2/x]Σ3) = ∆•([Σ2/x](Σ4 ⊔ Σ5))
= ∆•([Σ2/x]Σ4 ⊔ [Σ2/x]Σ5)
= ∆•([Σ2/x]Σ4) ⊔ ∆•([Σ2/x]Σ5)
= dx •(∆•Σ4) ⊔ dx •(∆•Σ5) (by induction hyp.)
= dx •(∆•Σ4 ⊔ ∆•Σ5) (by definition of ∆(_))
= dx •(∆•(Σ4 ⊔ Σ5))
= dx •(∆•Σ3)

And the result holds. ◁

Case (6) Σ3 = Σ4 ⊓ Σ5

Subproof. By induction hypothesis on Σ4 and Σ5, we know that ∆•([Σ2/x]Σ4) = dx •(∆·Σ4), and
∆•([Σ2/x]Σ5) = dx •(∆·Σ5). Therefore

∆•([Σ2/x]Σ3) = ∆•([Σ2/x](Σ4 ⊓ Σ5))
= ∆•([Σ2/x]Σ4 ⊓ [Σ2/x]Σ5)
= ∆•([Σ2/x]Σ4) ⊓ ∆•([Σ2/x]Σ5)
= dx •(∆•Σ4) ⊓ dx •(∆•Σ5) (by induction hyp.)
= dx •(∆•Σ4 ⊓ ∆•Σ5) (by definition of ∆(_))
= dx •(∆•(Σ4 ⊓ Σ5))
= dx •(∆•Σ3)

And the result holds. ◁

□

Lemma C.5. Let ∆·Σ = d and x < dom(Σ) ∪ dom(∆), then ∆([Σ/x]τ ) = dx (∆(τ ))
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Proof. We prove: let ∆·Σ′ = d ∈ sens and x < dom(Σ′) ∪ dom(∆), then ∆([Σ′/x]τ ) = dx(∆(τ )).
We proceed by induction on τ .
Case (1) τ ∈ {R,B, unit}
Subproof. Trivial as ∆(τ ) = τ and sx (τ ) = τ . ◁

Case (2) τ = (x : τ1)
Σ′′

−−→ τ2

Subproof.

∆([Σ′/x]((x : τ1·d ′)
Σ′′

−−→ τ2)) = ∆((x : [Σ′/x]τ1·d ′)
[Σ′/x ]Σ′′
−−−−−−−→ [Σ′/x]τ2) (by def subst.)

= (x : ∆([Σ′/x]τ1·d ′))
∆ ·([Σ′/x ]Σ′′)
−−−−−−−−−→ ∆([Σ′/x]τ2) (by def inst.)

= (x : dx (∆(τ1))·d ′)
∆ ·([Σ′/x ]Σ′′)
−−−−−−−−−→ dx (∆(τ2)) (by induction hyp.)

= (x : dx (∆(τ1))·d ′)
dx (∆ ·Σ′′)
−−−−−−−→ dx (∆(τ2)) (by Lemma 7.3)

= dx ((x : ∆(τ1)·d ′)
∆ ·Σ′′

−−−→ ∆(τ2)) (by def subst.)
= dx (∆((x : τ1·d ′)

Σ′′

−−→ τ2)) (by def inst.)
and the result holds. ◁

Case (3) τ = (x : τ1·d ′)
Σ′′

−−→ τ2

Subproof.

∆([Σ′/x]((x : τ1·d ′)
Σ′′

−−→ τ2)) = ∆((x : [Σ′/x]τ1·d ′)
[Σ′/x ]Σ′′
−−−−−−−→ [Σ′/x]τ2) (by def subst.)

= (x : ∆([Σ′/x]τ1)·d ′)
∆•([Σ′/x ]Σ′′)
−−−−−−−−−−→ ∆([Σ′/x]τ2) (by def inst.)

= (x : dx (∆(τ1))·d ′)
∆•([Σ′/x ]Σ′′)
−−−−−−−−−−→ dx (∆(τ2)) (by induction hyp.)

= (x : dx (∆(τ1))·d ′)
dx (∆•Σ′′)
−−−−−−−→ dx (∆(τ2)) (by Lemma 7.4)

= dx ((x : ∆(τ1)·d ′)
∆•Σ′′

−−−−→ ∆(τ2)) (by def subst.)
= dx (∆((x : τ1·d ′)

Σ′′

−−→ τ2)) (by def inst.)
and the result holds. ◁

Case (4) τ = τ1 Σ1⊕Σ2 τ2

Subproof.
∆([Σ′/x](τ1 Σ1⊕Σ2 τ2)) = ∆([Σ′/x]τ1 [Σ′/x ]Σ1⊕[Σ

′/x ]Σ2 [Σ′/x]τ2) (by def subst.)
= ∆([Σ′/x]τ1) ∆ ·[Σ′/x ]Σ1⊕∆ ·[Σ

′/x ]Σ2 ∆([Σ′/x]τ2) (by def inst.)
= dx (∆(τ1)) ∆ ·[Σ′/x ]Σ1⊕∆ ·[Σ

′/x ]Σ2 dx (∆(τ2)) (by induction hyp.)
= dx (∆(τ1)) dx (∆ ·Σ1)⊕dx (∆ ·Σ2) dx (∆(τ2)) (by Lemma 7.3)
= dx (∆(τ1) (∆ ·Σ1)⊕(∆ ·Σ2) ∆(τ2)) (by def subst.)
= dx (∆(τ1 Σ1⊕Σ2 τ2)) (by def inst.)

and the result holds. ◁

Case (5) τ = τ1 Σ1&Σ2 τ2

Subproof. Analogous to τ = τ1 Σ1⊕Σ2 τ2 case. ◁

□

Lemma C.6. If τ <: τ ′ then Σ(τ ) <: Σ(τ ′)

Proof. By induction on τ :
Case (1) τ = R
Subproof. Then τ ′ = R so the result is trivial. ◁
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Case (2) τ = B
Subproof. Then τ ′ = B so the result is trivial. ◁

Case (3) τ = unit

Subproof. Then τ ′ = unit so the result is trivial. ◁

Case (4) τ = (x : τ1·d)
Σ′

−→ τ2

Subproof. Then τ ′ = (x : τ ′1 ·d ′)
Σ′′

−−→ τ ′2 such that d ′ <: d, τ ′1 <: τ1, Σ′ <: Σ′′, and τ2 <: τ ′2 . But
Σ((x : τ1·d)

Σ′

−→ τ2) = (x : Σ(τ1)·d)
Σ ·Σ′

−−−→ Σ(τ2), then by induction hypotheses Σ(τ ′1) <: Σ(τ1), and
Σ(τ2) <: Σ(τ ′2). Also by Lemma C.12, Σ·Σ′ <: Σ·Σ′′, therefore
Σ((x : τ1·d)

Σ′

−→ τ2) = (x : Σ(τ1)·d)
Σ ·Σ′

−−−→ Σ(τ2) <: (x : Σ(τ ′1)·d ′)
Σ ·Σ′′

−−−→ Σ(τ ′2) = Σ((x : τ ′1 ·d ′)
Σ′′

−−→ τ ′2) and
the result holds. ◁

Case (5) τ = (x : τ1·d)
Σ′

−−→→ τ2

Subproof. Then τ ′ = (x : τ ′1 ·d ′)
Σ′′

−−→→ τ ′2 such that d ′ <: d, τ ′1 <: τ1,Σ′ <: Σ′′, and τ2 <: τ ′2 . But
Σ((x : τ1·d)

Σ′

−−→→ τ2) = (x : Σ(τ1)·d)
Σ ·Σ′

−−−→→ Σ(τ2), then by induction hypotheses Σ(τ ′1) <: Σ(τ1), and
Σ(τ2) <: Σ(τ ′2). Also by Lemma C.13, Σ·Σ′ <: Σ·Σ′′, therefore
Σ((x : τ1·d)

Σ′

−−→→ τ2) = (x : Σ(τ1)·d)
Σ ·Σ′

−−−→→ Σ(τ2) <: (x : Σ(τ ′1)·d ′)
Σ ·Σ′′

−−−−→→ Σ(τ ′2) = Σ((x : τ ′1 ·d ′)
Σ′′

−−→→ τ ′2)
and the result holds. ◁

Case (6) τ = τ1 Σ1⊕Σ2 τ2

Subproof. Then τ ′ = τ ′1
Σ′1⊕Σ

′
2 τ ′2 such that τ1 <: τ ′1, Σ1 <: Σ′1, Σ

′
2 <: Σ′2, and τ2 <: τ ′2 . But

Σ(τ1 Σ1⊕Σ2 τ2) = Σ(τ1) Σ ·Σ1⊕Σ ·Σ2 Σ(τ2), then by induction hypotheses Σ(τ1) <: Σ(τ ′1), and Σ(τ2) <:
Σ(τ ′2). Also by Lemma C.12, Σ·Σ1 <: Σ·Σ′1 and Σ·Σ2 <: Σ·Σ′2, therefore
Σ(τ1 Σ1⊕Σ2 τ2) = Σ(τ1) Σ ·Σ1⊕Σ ·Σ2 Σ(τ2) <: Σ(τ ′1) Σ ·Σ′1⊕Σ ·Σ

′
2 Σ(τ ′2) = Σ(τ ′1 Σ′1⊕Σ

′
2 τ ′2) and the result

holds. ◁

Case (7) τ = τ1 Σ1&Σ2 τ2

Subproof. Then τ ′ = τ ′1
Σ′1&Σ′2 τ ′2 such that τ1 <: τ ′1, Σ1 <: Σ′1, Σ

′
2 <: Σ′2, and τ2 <: τ ′2 . But

Σ(τ1 Σ1&Σ2 τ2) = Σ(τ1) Σ ·Σ1&Σ ·Σ2 Σ(τ2), then by induction hypotheses Σ(τ1) <: Σ(τ ′1), and Σ(τ2) <:
Σ(τ ′2). Also by Lemma C.12, Σ·Σ1 <: Σ·Σ′1 and Σ·Σ2 <: Σ·Σ′2, therefore
Σ(τ1 Σ1&Σ2 τ2) = Σ(τ1) Σ ·Σ1&Σ ·Σ2 Σ(τ2) <: Σ(τ ′1) Σ ·Σ′1&Σ ·Σ′2 Σ(τ ′2) = Σ(τ ′1 Σ′1&Σ′2 τ ′2) and the result
holds. ◁

□

Lemma C.7. Let Σ and Σ′ Then
(1) Σ <: Σ ⊔ Σ′

(2) Σ ⊓ Σ′ <: Σ

Proof. By induction of Σ, and noticing that s ≤ s ⊔ s ′, and s ⊓ s ′ ≤ s . □

Lemma C.8. Let Σ and Σ′ Then
(1) Σ <: Σ ⊔ Σ′
(2) Σ ⊓ Σ′ <: Σ

Proof. By definition of the <: operator for privacy environments. □

Lemma C.9. Let τ and τ ′, such that τ ⊔ τ ′ and τ ⊓ τ ′ are defined. Then
(1) τ <: τ ⊔ τ ′
(2) τ ⊓ τ ′ <: τ
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Proof. Let us prove (1) first by induction by induction on τ :
Case (1) τ = R
Subproof. Then τ ′ = R so the result is trivial. ◁

Case (2) τ = B
Subproof. Then τ ′ = B so the result is trivial. ◁

Case (3) τ = unit

Subproof. Then τ ′ = unit so the result is trivial. ◁

Case (4) τ = (x : τ1·d)
Σ
−→ τ2

Subproof. Then τ ′ = (x : τ ′1 ·d ′)
Σ′

−→ τ ′2 , and τ ⊔ τ ′ = (x : (τ1 ⊓ τ ′1)·(d ⊓ d ′))
Σ⊔Σ′

−−−−→ (τ2 ⊔ τ ′2)
By induction hypothesis (τ1 ⊓ τ ′1) <: τ1, we know that d ⊓ d ′ ≤ d , by Lemma C.7, Σ <: Σ ⊔ Σ′, and
by induction hypothesis τ2 <: τ2 ⊔ τ ′2 . Then (x : τ1·d)

Σ
−→ τ2 <: (x : (τ1 ⊓ τ ′1)·(d ⊓ d ′))

Σ⊔Σ′

−−−−→ (τ2 ⊔ τ ′2)
and the result holds. ◁

Case (5) τ = (x : τ1·d)
Σ′

−−→→ τ2

Subproof. Then τ ′ = (x : τ ′1 ·d ′)
Σ′

−−→→ τ ′2 , and τ ⊔ τ ′ = (x : (τ1 ⊓ τ ′1)·(d ⊓ d ′))
Σ⊔Σ′

−−−−→→ (τ2 ⊔ τ ′2)
By induction hypothesis (τ1 ⊓ τ ′1) <: τ1, we know that d ⊓ d ′ ≤ d , by Lemma C.8, Σ <: Σ ⊔ Σ′, and
by induction hypothesis τ2 <: τ2 ⊔τ ′2 . Then (x : τ1·d)

Σ
−→→ τ2 <: (x : (τ1 ⊓τ ′1)·(d ⊓d ′))

Σ⊔Σ′

−−−−→→ (τ2 ⊔τ ′2)
and the result holds. ◁

Case (6) τ = τ1 Σ1⊕Σ2 τ2

Subproof. Then τ ′ = τ ′1
Σ′1⊕Σ

′
2 τ ′2 , and τ ⊔ τ ′ = (τ1 ⊔ τ ′1) Σ1⊔Σ′1⊕Σ2⊔Σ

′
2 (τ2 ⊔ τ ′2). By induction

hypotheses τ1 <: τ1 ⊔ τ ′1 , and τ2 <: τ2 ⊔ τ ′2 , and by Lemma C.7, Σ1 <: Σ1 ⊔ Σ′1, and Σ2 <: Σ2 ⊔ Σ′2.
Then τ ′1 Σ′1⊕Σ

′
2 τ ′2 <: (τ1 ⊔ τ ′1) Σ1⊔Σ′1⊕Σ2⊔Σ

′
2 (τ2 ⊔ τ ′2) and the result holds. ◁

Case (7) τ = τ1 Σ1&Σ2 τ2

Subproof. Analogous to the τ = τ1 Σ1⊕Σ2 τ2 case. ◁

Case (8) τ = τ1 Σ1⊕Σ2 τ2

Subproof. Analogous to the τ = τ1 Σ1⊕Σ2 τ2 case. ◁

□

Lemma C.10 (Relation subsumption/weakening). Consider d ≤ d ′ and σ <: σ ′ then
(1) If (v1,v2) ∈ Vk

d JσK, then (v1,v2) ∈ Vk
d ′Jσ

′K
(2) If (e1, e2) ∈ Ekd JσK, then (e1, e2) ∈ Ekd ′Jσ

′K
(3) If (e1, e2) ∈ Ekp JσK, then (e1, e2) ∈ Ekp′Jσ

′K

Proof. We only present intersting cases. We first prove (1) by induction on τ :
Case (1) σ = R
Subproof. Then v1 = r1, v2 = r2, σ ′ = R, and (r1, r2) ∈ Vk

d JRK, i.e. |r1 − r2 | ≤ s . But if s ≤ s ′, then
it is easy to see that |r1 − r2 | ≤ s ′, therefore (r1, r2) ∈ Vk

d ′JRK and the result holds. ◁

Case (2) σ = unit

Subproof. Trivial as σ ′ = unit and (v1,v2) ∈ Vk
d JunitK does not depend on s , i.e. ∀s ′, (v1,v2) ∈

Vk
d ′JunitK. ◁

Case (3) σ = (x : σ1·d2)
∆1 ·Σ2+d1x
−−−−−−−−→ σ2
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Subproof. Then σ ′ = (x : σ ′1 ·d ′2)
∆1 ·Σ′2+d

′
1x

−−−−−−−−→ σ ′2 where σ ′1 <: σ1, Σ2 <: Σ′2,d1 ≤ d ′1,d
′
2 < d2 and

σ2 <: σ ′2 .
Also v1 = ⟨λ

s
x .e1,γ1⟩, v2 = ⟨λ

s
x .e2,γ2⟩, and (⟨λsx .e1,γ1⟩, ⟨λ

s
x .e2,γ2⟩) ∈ Vd J(x : σ1·d2)

∆1 ·Σ2+d1x
−−−−−−−−→

σ2K.

We have to prove that (⟨λsx .e1,γ1⟩, ⟨λ
s
x .e2,γ2⟩) ∈ Vk

d ′J(x : σ ′1 ·d ′2)
∆1 ·Σ′2+d

′
1x

−−−−−−−−→ σ ′2K, i.e. for any j < k ,
(v1,v2) ∈ V j

d3
Jσ ′1K, d3 ≤ d ′2 then (γ1[x 7→ v1] ⊢ e1,γ2[x 7→ v2] ⊢ e2) ∈ E jd ′+∆1 ·Σ′2+d

′
1d3

Jd3x (σ ′2)K.
We know that d3 ≤ d ′2 ≤ d2, then by induction hypothesis on (v1,v2) ∈ V j

d3
Jσ ′1K, we know that

(v1,v2) ∈ V j
d3

Jσ1K. Then we instantiate the premise with d ′′ = d3 and v1 and v2, so we know that
(γ1[x 7→ v1] ⊢ e1,γ2[x 7→ v2] ⊢ e2) ∈ E jd+∆1 ·Σ2+d1d3

Jd3x(σ2)K. By Lemma C.6, d3x(σ2) <: d3x(σ ′2),
by Lemma C.12, ∆1·Σ2 ≤ ∆1·Σ

′
2, and as d + ∆1·Σ2 + d1d3 ≤ d ′ + ∆1·Σ

′
2 + d

′
1d3, then by induction

hypothesis we know that (γ1[x 7→ v1] ⊢ e1,γ2[x 7→ v2] ⊢ e2) ∈ E jd ′+Σ′1 ·Σ′2+d ′1d3Jd3x(σ
′
2)K and the

result holds. ◁

Case (4) σ = (x : σ1·d2)
∆1•Σ2
−−−−→→ σ2

Subproof. Then σ ′ = (x : σ ′1 ·d ′2)
∆1•Σ′2
−−−−→→ σ ′2 where σ ′1 <: σ1,Σ2 <: Σ′2,d ′2 < d2 and σ2 <: σ ′2 .

Also v1 = ⟨λ
p
x .e1,γ1⟩, v2 = ⟨λ

p
x .e2,γ2⟩, and (⟨λpx .e1,γ1⟩, ⟨λ

p
x .e2,γ2⟩) ∈ Vd J(x : σ1·d2)

∆1•Σ2
−−−−→→ σ2K.

We have to prove that (⟨λpx .e1,γ1⟩, ⟨λ
s
x .e2,γ2⟩) ∈ Vk

d ′J(x : σ ′1 ·d ′2)
∆1•Σ′2
−−−−→→ σ ′2K, i.e. for any j < k ,

(v1,v2) ∈ V j
d3

Jσ ′1K, d3 ≤ d ′2 then (γ1[x 7→ v1] ⊢ e1,γ2[x 7→ v2] ⊢ e2) ∈ E j⌉d ′ ⌈∞+∆1•Σ′2
Jd3x (σ ′2)K.

We know that d3 ≤ d ′2 ≤ d2, then by induction hypothesis on (v1,v2) ∈ V j
d3

Jσ ′1K, we know that
(v1,v2) ∈ V j

d3
Jσ1K. Then we instantiate the premise with d ′′ = d3 and v1 and v2, so we know that

(γ1[x 7→ v1] ⊢ e1,γ2[x 7→ v2] ⊢ e2) ∈ E j⌉d ⌈∞+∆1•Σ2
Jd3x(σ2)K. By Lemma C.6, d3x(σ2) <: d3x(σ ′2), by

Lemma C.13, ∆1•Σ2 ≤ ∆1·Σ
′
2, then ⌉d ⌈∞+∆1•Σ2 ≤ ⌉d

′⌈∞+∆1•Σ
′
2. The result follows from induction

hypothesis (3). ◁

Case (5) σ = σ1
s1⊕s2 σ2

Subproof. Then σ ′ = σ ′1
s ′1⊕s

′
2 σ ′2 where σ1 <: σ ′1, s1 ≤ s ′1, s2 ≤ s ′2, and σ2 <: σ ′2 .

We proceed by case analysis on (v1,v2):
Case (a) (v1,v2) = (inl v ′1, inl v ′2)
Subproof. Then we know that (inl v ′1, inl v ′2) ∈ Vk

d+s1
Jσ1K, then by induction hypothesis using

s + s1 ≤ s ′ + s ′1 and σ1 <: σ2, then (inl v ′1, inl v ′2) ∈ Vk
s ′+s ′1

Jσ ′1K and therefore (inl v ′1, inl v ′2) ∈
Vk
s ′ Jσ

′
1
s ′1⊕s

′
2 σ ′2K and the result holds. ◁

Case (b) (v1,v2) = (inr v ′1, inr v ′2)
Subproof. Analogous to previous case. ◁
Case (c) (v1,v2) = (inl v ′1, inr v ′2) and (v1,v2) = (inr v ′1, inl v ′2)
Subproof. Then s = ∞ and as s ≤ s ′, therefore s ′ = ∞, and the result holds immediately. ◁

◁

Case (6) σ = σ1
s1&s2 σ2

Subproof. Then σ ′ = σ ′1
s ′1&s ′2 σ ′2 where σ1 <: σ ′1, s1 ≤ s ′1, s2 ≤ s ′2, and σ2 <: σ ′2 .

We know that (v1,v2) = (⟨v11,v12⟩, ⟨v21,v22⟩), such that (v11,v21) ∈ Vk
d+s1

Jσ1K and (v12,v22) ∈
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Vk
d+s2

Jσ2K. By induction hypotheses we know that (v11,v21) ∈ Vk
s ′+s ′1

Jσ ′1K and (v12,v22) ∈ Vk
s ′+s ′2

Jσ ′2K,
and therefore (⟨v11,v12⟩, ⟨v21,v22⟩) ∈ Vk

s ′ Jσ
′
1
s ′1&s ′2 σ ′2K and the result holds. ◁

Now let us prove (2). We know that if γ1 ⊢ e1 ⇓ v1 ∧ γ2 ⊢ e2 ⇓ v2 then (v1,v2) ∈ Vk−j
d JσK. We have

to prove that (v1,v2) ∈ Vk−j
d ′ Jσ ′K, which follows from (1).

Now let us prove (3). We know that ∀S ⊆ valk∗ , if Pr[γ1 ⊢ e1 ⇓k S] ∧ Pr[γ2 ⊢ e2 ⇓k S], then Pr[γ1 ⊢
e1 ⇓

k S] ≤ ep .ϵPr[γ2 ⊢ e2 ⇓k S]+p.δ and Pr[γ1 ⊢ e2 ⇓k S] ≤ ep .ϵPr[γ2 ⊢ e1 ⇓k S]+p.δ . We have to
prove that, if Pr[γ1 ⊢ e1 ⇓k S]∧Pr[γ2 ⊢ e2 ⇓k S], then Pr[γ1 ⊢ e1 ⇓k S] ≤ ep

′ .ϵPr[γ2 ⊢ e2 ⇓k S]+p ′.δ
and Pr[γ1 ⊢ e2 ⇓k S] ≤ ep

′ .ϵPr[γ2 ⊢ e1 ⇓k S] + p ′.δ .
But notice that as p.ϵ ≤ p ′.ϵ , then ep .ϵ ≤ ep

′ .ϵ , and ep .ϵPr[γ2 ⊢ e2 ⇓k S] ≤ ep
′ .ϵPr[γ2 ⊢ e2 ⇓k S].

We also know that p.δ ≤ p ′.δ , and the result follows. □

Lemma C.11. Consider k ′ ≤ k then
(1) If (v1,v2) ∈ Vk

s JσK, then (v1,v2) ∈ Vk ′
s JσK

(2) If (e1, e2) ∈ Eks JσK, then (e1, e2) ∈ Ek
′

s JσK
(3) If (e1, e2) ∈ Ekp JσK, then (e1, e2) ∈ Ek

′

p JσK

Proof. By induction on k . □

Lemma C.12. Let dom(Σ) ⊆ dom(∆′), then ∀Σ′′, Σ <: Σ′′, then ∆′·Σ ≤ ∆′·Σ′′.

Proof. By induction on Σ.
Case (1) Σ = �
Subproof. Trivial as Σ′′ = �, therefore 0 ≤ 0. ◁

Case (2) Σ = Σ1 + dx

Subproof. Let Σ′′ = Σ′1 + d
′x such that d ≤ d ′, then we have to prove that ∆′·Σ1 + d∆

′(x) ≤
∆′·Σ′1 +d

′∆′(x ), but we know by induction hypothesis that ∆′·Σ1 ≤ ∆′·Σ′1 and d∆′(x ) ≤ d ′∆′(x ), so
the result holds immediately. ◁

Case (3) Σ = Σ1 + d

Subproof. Let Σ′′ = Σ′1 + d
′ such that d ≤ d ′, then we have to prove that ∆′·Σ1 + d ≤ ∆′·Σ′1 + d

′,
but we know by induction hypothesis that ∆′·Σ1 ≤ ∆′·Σ′1, so the result holds immediately. ◁

□

Lemma C.13. Let dom(Σ) ⊆ dom(∆), then ∀Σ′,Σ <: Σ′, then ∆•Σ ≤ ∆•Σ′.

Proof. By definition of Σ <: Σ′. □

Lemma C.14. .
(1) If Γ ; ∆ ⊢ e1 : τ ; Σ and Γ ; ∆ ⊢ e2 : τ ; Σ, then (γ1 ⊢ e1γ2 ⊢ e2) ∈ E∞J∆′(τ )K.
(2) If Γ ; ∆ ⊢ e1 : τ ; Σ and Γ ; ∆ ⊢ e2 : τ ; Σ, then (γ1 ⊢ e1γ2 ⊢ e2) ∈ E∞J∆′(τ )K.

Proof. By induction on τ . □

Lemma C.15. Let j ≤ k , γ1 ⊢ e1 ⇓j γ ′1 ⊢ e
′
1,γ2 ⊢ e2 ⇓

∗ γ ′2 ⊢ e
′
2, and (γ ′1 ⊢ e′1,γ ′2 ⊢ e′2) ∈ E

k−j
p Jτ K,

then
(γ1 ⊢ e1,γ2 ⊢ e2) ∈ Ekp Jτ K.

Proof. We know that for j ′ < k − j if γ ′1 ⊢ e′1 ⇓j
′

D1, then γ ′2 ⊢ e′2 ⇓∗ D2, and both distributions
satisfy the dp inequality. Then as γ1 ⊢ e1 ⇓j γ ′1 ⊢ e′1 and γ ′1 ⊢ e

′
1 ⇓

j′ D1, then γ1 ⊢ e1 ⇓
j+j′ D1

(j + j ′ < k), and γ2 ⊢ e2 ⇓∗ D1, and the result is direct. □
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Lemma C.16. If Γ;∆ ⊢ e : τ ; Σ, γ1,γ ⊢ e ⇓∗ v1, γ2,γ ⊢ e ⇓∗ v2, and FV(e) ⊆ dom(γ ), then v1 = v2.
Proof. By induction on Γ;∆ ⊢ e : τ ; Σ.

Case (1) Γ;∆ ⊢ r : R ; �
Subproof. Trivial as numbers are already values. ◁

Case (2) Γ;∆ ⊢ e1 + e2 : R ; Σ1 + Σ2
Subproof. By induction hypotheses on Γ;∆ ⊢ e1 : R ; Σ1, and Γ;∆ ⊢ e2 : R ; Σ2. γ1,γ ⊢ e1 ⇓∗ r1,
γ2,γ ⊢ e1 ⇓

∗ r1, and γ1,γ ⊢ e2 ⇓∗ r2, γ2,γ ⊢ e2 ⇓∗ r2. The result holds as r1 + r2 = r1 + r2. ◁

Case (3) Γ;∆ ⊢ e1 ∗ e2 : R ; ∞(Σ1 + Σ2)
Subproof. By induction hypotheses on Γ;∆ ⊢ e1 : R ; Σ1, and Γ;∆ ⊢ e2 : R ; Σ2. γ1,γ ⊢ e1 ⇓∗ r1,
γ2,γ ⊢ e1 ⇓

∗ r1, and γ1,γ ⊢ e2 ⇓∗ r2, γ2,γ ⊢ e2 ⇓∗ r2. The result holds as r1 ∗ r2 = r1 ∗ r2. ◁

Case (4) Γ;∆ ⊢ e1 ≤ e2 : B ; ∞(Σ1 + Σ2)
Subproof. By induction hypotheses on Γ;∆ ⊢ e1 : R ; Σ1, and Γ;∆ ⊢ e2 : R ; Σ2. γ1,γ ⊢ e1 ⇓∗ r1,
γ2,γ ⊢ e1 ⇓

∗ r1, and γ1,γ ⊢ e2 ⇓∗ r2, γ2,γ ⊢ e2 ⇓∗ r2. The result holds as r1 ≤ r2 = r1 ≤ r2. ◁

Case (5) Γ;∆ ⊢ x : τ ; x
Subproof. Given that FV(e) = {x} ⊆ dom(γ ), then x ∈ dom(γ ). Then γ1,γ ⊢ x ⇓∗ γ (x) and
γ2,γ ⊢ x ⇓

∗ γ (x ), and the result holds as γ (x ) = γ (x ). ◁

Case (6) Γ;∆ ⊢ λs (x : τ1·d1). e ′ : (x : τ1·d1)
Σ′′+s ′x
−−−−−→ τ2 ; �

Subproof. We know that FV(e) ⊆ dom(γ ), then γ1,γ ⊢ λ
s (x : τ1·d1). e ′ ⇓1 ⟨λ

s (x : τ1·d1). e ′,γ ′⟩ and
γ2,γ ⊢ λ

s (x : τ1·d1). e ′ ⇓1 ⟨λ
s (x : τ1·d1). e ′,γ ′⟩, for γ ′ ⊆ γ and the result holds. ◁

Case (7) Γ;∆ ⊢ ⟨λs (x : τ1·d1). e ′,γ ⟩ : (x : τ1·d1)
s ′x
−−→ τ2 ; �

Subproof. Trivial as closures are already values. ◁

Case (8) Γ;∆ ⊢ e1 e2 : [Σ2/x]τ2 ; Σ1 + sΣ2 + Σ′′

Subproof. By induction hypotheses on Γ ⊢ e1 : (x : τ1)
Σ′′+sx
−−−−−→ τ2 ; Σ1 and Γ ⊢ e2 : τ1 ; Σ2. γ1,γ ⊢

e1 ⇓
∗ ⟨λ

s (x : τ1·s1). e ′,γ ′⟩, γ2,γ ⊢ e1 ⇓∗ ⟨λ
s (x : τ1·s1). e ′,γ ′⟩, and γ1,γ ⊢ e2 ⇓∗ v , γ2,γ ⊢ e2 ⇓∗ v . The

result holds as γ ′[x 7→ v] ⊢ e ′ ⇓∗ v1 and γ ′[x 7→ v] ⊢ e ′ ⇓∗ v2, therefore v1 = v2. ◁

Case (9) Γ;∆ ⊢ tt : unit ; �
Subproof. Trivial. ◁

Case (10) Γ;∆ ⊢ inlτ2 e ′ : τ1 Σ′′⊕� τ2 ; �
Subproof. By induction hypothesis on Γ ⊢ e ′ : τ1 ; Σ′′. γ1,γ ⊢ e ′ ⇓∗ v , γ2,γ ⊢ e ′ ⇓∗ v , and the
result holds as inlτ2v = inlτ2v . ◁

Case (11) Γ;∆ ⊢ inrτ1 e ′ : τ1 �⊕Σ
′′

τ2 ; �
Subproof. By induction hypothesis on Γ ⊢ e ′ : τ1 ; Σ′′. γ1,γ ⊢ e ′ ⇓∗ v , γ2,γ ⊢ e ′ ⇓∗ v , and the
result holds as inrτ2v = inrτ2v . ◁

Case (12) Γ;∆ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} : [Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3 ; Σ1 ⊔ ([Σ1 +
Σ11/x](Σ2 + s2x ) ⊔ [Σ1 + Σ12/y](Σ3 + s3y))
Subproof. By induction hypothesis on Γ;∆ ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1, we know that
γ1,γ ⊢ e1 ⇓

∗ v1, γ2,γ ⊢ e1 ⇓
∗ v1. Suppose v1 = inl v ′1 (the other case is analogous). Then

by induction hypothesis on Γ, x : τ11;∆ + (∆·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2 + s2x , we know that,
γ1,γ [x 7→ v ′1] ⊢ e2 ⇓∗ v , γ2,γ [x 7→ v ′1] ⊢ e2 ⇓∗ v , and the result holds, ◁

Case (13) Γ;∆ ⊢ (e1, e2) : τ1 Σ1&Σ2 τ2 ; �
Subproof. By induction hypotheses on Γ ⊢ e1 : τ1 ; Σ1 and Γ ⊢ e2 : τ2 ; Σ2, γ1,γ ⊢ e1 ⇓∗ v1,
γ2,γ ⊢ e1 ⇓

∗ v1, and γ1,γ ⊢ e2 ⇓∗ v2, γ2,γ ⊢ e2 ⇓∗ v2. The result holds as (v1,v2) = (v1,v2). ◁
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Case (14) Γ;∆ ⊢ fst e ′ : τ1 ; Σ′′ + Σ1

Subproof. By induction hypothesis on Γ ⊢ e ′ : τ1 Σ1&Σ2 τ2 ; Σ′′, γ1,γ ⊢ e ′ ⇓∗ (v1,v2), γ2,γ ⊢ e ′ ⇓∗
(v1,v2). The result holds as γ1,γ ⊢ e ′ ⇓∗ v1 and γ2,γ ⊢ e ′ ⇓∗ v1. ◁

Case (15) Γ;∆ ⊢ snd e ′ : τ1 ; Σ′′ + Σ2

Subproof. By induction hypothesis on Γ ⊢ e ′ : τ1 Σ1&Σ2 τ2 ; Σ′′, γ1,γ ⊢ e ′ ⇓∗ (v1,v2), γ2,γ ⊢ e ′ ⇓∗
(v1,v2). The result holds as γ1,γ ⊢ e ′ ⇓∗ v2 and γ2,γ ⊢ e ′ ⇓∗ v2. ◁

Case (16) Γ;∆ ⊢ ⟨e1, e2⟩ : τ1 Σ1⊗Σ2 τ2 ; �
Subproof. By induction hypotheses on Γ ⊢ e1 : τ1 ; Σ1 and Γ ⊢ e2 : τ2 ; Σ2, γ1,γ ⊢ e1 ⇓∗ v1,
γ2,γ ⊢ e1 ⇓

∗ v1, and γ1,γ ⊢ e2 ⇓∗ v2, γ2,γ ⊢ e2 ⇓∗ v2. The result holds as ⟨v1,v2⟩ = ⟨v1,v2⟩. ◁

Case (17) Γ;∆ ⊢ let x1, x2 = e1 in e2 : [Σ1+Σ11/x1][Σ1+Σ12/x2]τ2 ; s1(Σ11+Σ1)+s2(Σ12+Σ1)+Σ2

Subproof. By induction hypothesis on Γ;∆ ⊢ e1 : τ11 Σ11⊗Σ12 τ12 ; Σ1, we know that
γ1,γ ⊢ e1 ⇓

∗ ⟨v1,v2⟩, γ2,γ ⊢ e1 ⇓
∗ ⟨v1,v2⟩. Then by induction hypothesis on Γ, x : τ11, x :

τ12;∆ + (∆·(Σ1 + Σ11))x1 + (∆·(Σ1 + Σ12))x2 ⊢ e2 : τ2 ; Σ2 + s1x1 + s2x2, we know that, γ1,γ [x1 7→
v1, x2 7→ v2] ⊢ e2 ⇓∗ v , γ2,γ [x1 7→ v1, x2 7→ v2] ⊢ e2 ⇓∗ v , and the result holds, ◁

Case (18) Γ;∆ ⊢ (e ′ :: τ ) : τ ; Σ
Subproof. By induction hypothesis on Γ ⊢ e ′ : τ ′ ; Σ, γ1,γ ⊢ e ′ ⇓∗ v , γ2,γ ⊢ e ′ ⇓∗ v . The result
holds as γ1,γ ⊢ (e ′ :: τ ) ⇓∗ v and γ2,γ ⊢ (e ′ :: τ ) ⇓∗ v1. ◁

Case (19) Γ;∆ ⊢ λp (x : τ1·d ′). e′ : (x : τ1·d ′)
Σ′′

−−→→ τ2 ; �
Subproof. We know that FV(e) ⊆ dom(γ ), therefore γ1,γ ⊢ λ

s (x : τ1·d ′). e′ ⇓1 ⟨λ
s (x : τ1·d ′). e′,γ ′⟩

and γ2,γ ⊢ λ
s (x : τ1·s1). e′ ⇓1 ⟨λ

s (x : τ1·s1). e′,γ ′⟩, for γ ′ ⊆ γ and the result holds. ◁

□

Theorem C.17 (Metric Preservation).
(1) Γ,∆ ⊢ e : τ ; Σ⇒ ∀k ≥ 0,∀∆′ ⊑ ∆,∀(γ1,γ2) ∈ Gk∆′JΓK.(γ1 ⊢ e,γ2 ⊢ e) ∈ E

k
∆′ ·ΣJ∆

′(τ )K
(2) Γ,∆ ⊢ e : τ ; Σ⇒ ∀k ≥ 0,∀∆′ ⊑ ∆,∀(γ1,γ2) ∈ Gk∆′JΓK.(γ1 ⊢ e,γ2 ⊢ e) ∈ E

k
∆′•Σ

J∆′(τ )K

Proof. We prove the two parts using induction on k first.
We start by proving Part (1) by induction on k and the typing derivation.
Case (1) Γ;∆ ⊢ r : R ; �
Subproof. We have to prove that ∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ r ,γ2 ⊢ r ) ∈ E∆′ ·�J∆

′(R)K, for ∆′ ⊑ ∆.
Notice that ∆′·� = 0 and γ1(r ) = γ2(r ) = r . Then we have to prove that (r , r ) ∈ Vk

0 JRK, i.e. |r −r | ≤ 0
which is direct. ◁

Case (2) Γ;∆ ⊢ e1 + e2 : R ; Σ1 + Σ2

Subproof. We have to prove that∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ e1+e2,γ2 ⊢ e1+e2) ∈ E
k
∆′ ·(Σ1+Σ2)J∆

′(R)K,
for ∆′ ⊑ ∆. By induction hypotheses
Γ;∆ ⊢ e1 : R ; Σ1 ⇒ (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆

′(R)K and Γ;∆ ⊢ e2 : R ; Σ2 ⇒ (γ1 ⊢ e2,γ2 ⊢ e2) ∈
E
k−j1
∆′ ·Σ2

J∆′(R)K for some j1 ≤ k . By unfolding (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆
′(R)K, we know that if

γ1 ⊢ e1 ⇓
j1 r11 then γ2 ⊢ e1 ⇓∗ r12 and (r11, r12) ∈ Vk−j1

∆′ ·Σ1
JRK, where |r11 − r12 | ≤ ∆′·Σ1.

Also, by unfolding (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ek−j1∆′ ·Σ2
J∆′(R)K, if γ1 ⊢ e2 ⇓

j2 r21 then γ2 ⊢ e2 ⇓
∗ r22

and (r21, r22) ∈ Vk−j1−j2
∆′ ·Σ2

JRK, where |r21 − r22 | ≤ ∆′·Σ2.
Then if γ1 ⊢ e1 + e2 ⇓j1+j2+1 r ′1 and γ2 ⊢ e1 + e2 ⇓j1+j2+1 r ′2, where r ′1 = r11 + r21 and r ′2 = r12 + r22, we
have to prove that (r ′1, r ′2) ∈ V

k−j1−j2−1
∆′ ·(Σ1+Σ2) JRK, i.e. |(r11 + r21) − (r12 + r22)| ≤ ∆′·(Σ1 + Σ2).

Notice that |(r11+r21)−(r12+r22)| = |(r11−r12)+(r21−r22)|, and by the triangle inequality of the absolute

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: January 2023.



78 Matías Toro, David Darais, Chike Abuah, Joseph P. Near, Damián Árquez, Federico Olmedo, and Éric Tanter

value, |(r11−r12)+(r21−r22)| ≤ |(r11−r12)|+|(r21−r22)|. Also as |r11−r12 | ≤ ∆′·Σ1 and |r21−r22 | ≤ ∆′·Σ2,
then |(r11−r12)|+ |(r21−r22)| ≤ ∆′·Σ1+∆

′·Σ2. By Lemma C.1, ∆′·Σ1+∆
′·Σ2 = ∆′·(Σ1+Σ2), therefore

|(r11 + r21) − (r12 + r22)| ≤ ∆′·(Σ1 + Σ2) and the result holds. ◁

Case (3) Γ;∆ ⊢ e1 ∗ e2 : R ; ∞(Σ1 + Σ2)
Subproof. We have to prove that∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ e1∗e2,γ2 ⊢ e1∗e2) ∈ E

k
∆′ ·∞(Σ1+Σ2)J∆

′(R)K,
for ∆′ ⊑ ∆. By induction hypotheses
Γ ⊢ e1 : R ; Σ1 ⇒ (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆

′(R)K and Γ ⊢ e2 : R ; Σ2 ⇒ (γ1 ⊢ e2,γ2 ⊢

e2) ∈ Ek−j1∆′ ·Σ2
J∆′(R)K for j1 ≤ k . By unfolding (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆

′(R)K, we know that if
γ1 ⊢ e1 ⇓

j1 r11 then γ2 ⊢ e1 ⇓∗ r12 and (r11, r12) ∈ Vk−j
∆′ ·Σ1

JRK, where |r11 − r12 | ≤ ∆′·Σ1.
Also, by unfolding (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ek−j1∆′ ·Σ2

J∆′(R)K, if γ1 ⊢ e2 ⇓
j2 r21 then γ2 ⊢ e2 ⇓

∗ r22

and (r21, r22) ∈ Vk−j1−j2
∆′ ·Σ2

JRK, where |r21 − r22 | ≤ ∆′·Σ2.
Then if γ1 ⊢ e1 ∗ e2 ⇓j1+j2+1 r ′1 and γ2 ⊢ e1 ∗ e2 ⇓j1+j2+1 r ′2, where r ′1 = r11 ∗ r21 and r ′2 = r12 ∗ r22, we
have to prove that (r ′1, r ′2) ∈ VV

k−j1−j2−1
∆′ ·∞(Σ1+Σ2)JRK, i.e. |(r11·r21) − (r12 ∗ r22)| ≤ ∆′·∞(Σ1 + Σ2).

Notice that ∆′·∞(Σ1 + Σ2) = ∞(∆′·(Σ1 + Σ2)) = s . There are two cases to analyze, where if s = ∞
then the result holds immediately. Let us suppose that s = 0. Then by Lemma C.1, ∆′·(Σ1 + Σ2) =
∆′·Σ1 + ∆′·Σ1, also notice that |r11 − r12 | ≤ ∆′·Σ1 and |r21 − r22 | ≤ ∆′·Σ2, then 0 ≤ ∆′·Σ1 and
0 ≤ ∆′·Σ2. Therefore if ∆′·Σ1 + ∆

′·Σ1 = 0, then ∆′·Σ1 = 0 and ∆′·Σ2 = 0. This means that r11 = r12
and r21 = r22, thus r11 ∗ r21 = r12 ∗ r22, |(r11 ∗ r21) − (r12 ∗ r22)| = 0, and the result holds. ◁

Case (4) Γ;∆ ⊢ e1 ≤ e2 : B ; ∞(Σ1 + Σ2)
Subproof. We have to prove that∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ e1 ≤ e2,γ2 ⊢ e1 ≤ e2) ∈ Ek∆′ ·∞(Σ1+Σ2)J∆

′(B)K,
for ∆′ ⊑ ∆. By induction hypotheses
Γ ⊢ e1 : R ; Σ1 ⇒ (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆

′(B)K and Γ ⊢ e2 : R ; Σ2 ⇒ (γ1 ⊢ e2,γ2 ⊢ e2) ∈
E
k−j1
∆′ ·Σ2

J∆′(B)K, for some j1 ≤ k . By unfolding (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆
′(B)K, we know that if

γ1 ⊢ e1 ⇓
j1 r11 then γ2 ⊢ e1 ⇓∗ r12 and (r11, r12) ∈ Vk−j1

∆′ ·Σ1
JRK, where |r11 − r12 | ≤ ∆′·Σ1.

Also, by unfolding (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Vk−j1
∆′ ·Σ2

J∆′(B)K, if γ1 ⊢ e2 ⇓
j2 r21 then γ2 ⊢ e2 ⇓

∗ r22

and (r21, r22) ∈ Vk−j1−j2
∆′ ·Σ2

JRK, where |r21 − r22 | ≤ ∆′·Σ2.
Then if γ1 ⊢ e1 ≤ e2 ⇓

j1+j2+1 b1 and γ2 ⊢ e1 ≤ e2 ⇓
j1+j2+1 b2, where bi ∈ {inl tt, inr tt}, we have

to prove that (b1,b2) ∈ Vk−j1−j2−1
∆′ ·∞(Σ1+Σ2)JBK.

Notice that ∆′·∞(Σ1+Σ2) = ∞(∆′·(Σ1+Σ2)) = s . There are two cases to analyze, if s = ∞ or s = 0. If
s = ∞ andb1 , b2 then the result holds immediately. If s = ∞ andb1 = b2, let us supposeb1 = inl tt

(the other case is analogous), then we have to prove that (inl tt, inl tt) ∈ Vk−j1−j2−1
∞ JunitK,

but this is direct as (tt, tt) ∈ Vk−j1−j2−1
∞ JunitK. Let us suppose that s = 0. Then by Lemma C.1,

∆′·(Σ1 + Σ2) = ∆′·Σ1 + ∆′·Σ1, also notice that |r11 − r12 | ≤ ∆′·Σ1 and |r21 − r22 | ≤ ∆′·Σ2, then
0 ≤ ∆′·Σ1 and 0 ≤ ∆′·Σ2. Therefore if ∆′·Σ1 +∆

′·Σ1 = 0, then ∆′·Σ1 = 0 and ∆′·Σ2 = 0. This means
that r11 = r12 and r21 = r22, thus r11 ≤ r21 = r12 ≤ r22. Then b1 = b2, let us suppose b1 = inl tt (the
other case is analogous), then we have to prove that (inl tt, inl tt) ∈ Vk−j1−j2−1

0 JunitK, but this
is direct as (tt, tt) ∈ Vk−j1−j2−1

0 JunitK. ◁

Case (5) Γ;∆ ⊢ x : τ ; x
Subproof. We have to prove that ∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ x,γ2 ⊢ x) ∈ E

k
∆′ ·x J∆

′(τ )K, where
τ = Γ(x ), for ∆′ ⊑ ∆. Notice that ∆′·x = ∆′·1x = ∆′(x ), therefore we have to prove that (γ1 ⊢ x,γ2 ⊢
x) ∈ Vk−j

∆′(x )J∆
′(Γ(x))K. But γ1 ⊢ x ⇓1 γ1(x) and γ2 ⊢ x ⇓

1 γ2(x) therefore we have to prove that
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(γ1(x),γ2(x)) ∈ Vk−1
∆′(x )J∆

′(Γ(x))K. The result is direct as by definition of (γ1,γ2) ∈ Gk∆′JΓK, we know
by weakening that (γ1(x ),γ2(x )) ∈ Vk−1

∆′(x )J∆
′(Γ(x ))K. ◁

Case (6) Γ;∆ ⊢ λs (x : τ1·s1). e ′ : (x : τ1·s1)
Σ′′+s ′x
−−−−−→ τ2 ; �

Subproof. We have to prove that ∀k,∀(γ1,γ2) ∈ Gk∆′JΓK,
(γ1 ⊢ λ

s (x : τ1·s1). e ′,γ2 ⊢ λ
s (x : τ1·s1). e ′) ∈ Ek∆′ ·�J∆

′(τ1·s1)
∆′ ·Σ′′+s ′x
−−−−−−−−→ ∆′(τ2)K, for ∆′ ⊑ ∆..

Notice that∆′·� = 0, that∆′((x : τ1·s1)
Σ′′+s ′x
−−−−−→ τ2) = (x : ∆′(τ1)·s1)

∆′ ·Σ′′+s ′x
−−−−−−−−→ ∆′(τ2) (as x < dom(∆′)),

and that lambdas reduce to closures, therefore we have to prove that
(⟨λs (x : τ1·s1). e ′,γ1⟩, ⟨λ

s (x : τ1·s1). e ′,γ2⟩) ∈ Vk−1
0 J(x : ∆′(τ1)·s1)

∆′ ·Σ′′+s ′x
−−−−−−−−→ ∆′(τ2)K.

Note that as Γ, x : τ1;∆+s1x ⊢ e ′ : τ2; Σ′′+s ′x and (γ1,γ2) ∈ Gk∆′JΓK, then dom(Σ′′) ⊆ dom(∆′), there-
fore ∆′·Σ′′ ∈ sens (the result is a scalar). Consider s ′′ ≤ s1,v1 andv2 such that (v1,v2) ∈ V j

s ′′J∆
′(τ1)K

for some j < k . We have to prove that (γ1, x 7→ v1 ⊢ e
′,γ2, x 7→ v2 ⊢ e

′) ∈ E j−1∆′ ·Σ′′+s ′s ′′Js
′′x(∆′(τ2))K.

Notice that by Lemma C.2 s ′′x(∆′(τ2)) = (∆′ + s ′′x)(τ2), therefore we have to prove that (γ1, x 7→
v1 ⊢ e

′,γ2, x 7→ v2 ⊢ e
′) ∈ E j−1∆′ ·Σ′′+s ′s ′′J(∆

′ + s ′′x )(τ2)K.
By induction hypothesis on Γ, x : τ1;∆ + s1x ⊢ e ′ : τ2; Σ′′ + s ′x , and choosing Σχ = ∆′ + s ′′x , we
know that ∀γ ′1,γ ′2, (γ ′1,γ ′2) ∈ G

j−1
Σχ JΓ, x : τ1K then (γ ′1 ⊢ e ′,γ ′2 ⊢ e ′) ∈ E

j−1
Σχ ·(Σ′′+s ′x )JΣ

χ (τ2)K. Notice that
Σχ ·(Σ′′ + s ′x ) = (∆′ + s ′′x )·(Σ′′ + s ′x ) = ∆′·Σ′′ + s ′s ′′. Therefore we know that
(γ ′1 ⊢ e ′,γ ′2 ⊢ e ′) ∈ E

j−1
∆′ ·Σ′′+s ′s ′′J(∆

′ + s ′′x )(τ2)K.
As (γ1,γ2) ∈ Gk∆′JΓK, and by Lemma C.10 (γ1,γ2) ∈ G j−1

∆′ JΓK, also (v1,v2) ∈ V j−1
s ′′ J∆′(τ1)K, and

∆′(τ1) = (∆′ + sx ′′)(τ1) (as x is not free in τ1), it is easy to see that (γ1, x 7→ v1,γ2, x 7→ v2) ∈
G
j−1
∆′+s ′′x JΓ, x : τ1K. Finally, the result follows by choosing γ ′1 = γ1, x 7→ v1, and γ ′2 = γ2, x 7→ v2. ◁

Case (7) Γ;∆ ⊢ λs (x : τ1·s1). e ′ : (x : τ1·s1)
Σ′′+s ′x
−−−−−→ τ2 ; Σ′

Subproof. We have to prove that ∀k,∀(γ1,γ2) ∈ Gk∆′JΓK,
(γ1 ⊢ λ

s (x : τ1·s1). e ′,γ2 ⊢ λ
s (x : τ1·s1). e ′) ∈ Ek∆′ ·Σ′J∆

′(τ1·s1)
∆′ ·Σ′′+s ′x
−−−−−−−−→ ∆′(τ2)K, for ∆′ ⊑ ∆..

Notice that ∆′((x : τ1·s1)
Σ′′+s ′x
−−−−−→ τ2) = (x : ∆′(τ1)·s1)

∆′ ·Σ′′+s ′x
−−−−−−−−→ ∆′(τ2) (as x < dom(∆′)), and that

lambdas reduce to closures, therefore we have to prove that
(⟨λs (x : τ1·s1). e ′,γ1⟩, ⟨λ

s (x : τ1·s1). e ′,γ2⟩) ∈ Vk−1
∆′ ·Σ′J(x : ∆′(τ1)·s1)

∆′ ·Σ′′+s ′x
−−−−−−−−→ ∆′(τ2)K.

Note that as Γ, x : τ1;∆ + s1x ⊢ e ′ : τ2; Σ′′ + Σ′ + s ′x and (γ1,γ2) ∈ Gk∆′JΓK, then dom(Σ′′) ⊆
dom(∆′), therefore ∆′·Σ′′ ∈ sens (the result is a scalar). Consider s ′′ ≤ s1,v1 and v2 such that
(v1,v2) ∈ V j

s ′′J∆
′(τ1)K for some j < k . We have to prove that (γ1, x 7→ v1 ⊢ e

′,γ2, x 7→ v2 ⊢ e
′) ∈

E
j−1
∆′ ·Σ′′+∆′ ·Σ′+s ′s ′′Js

′′x (∆′(τ2))K. Notice that by Lemma C.2 s ′′x (∆′(τ2)) = (∆′ + s ′′x )(τ2), therefore we
have to prove that (γ1, x 7→ v1 ⊢ e

′,γ2, x 7→ v2 ⊢ e
′) ∈ E j−1∆′ ·Σ′′+∆′ ·Σ′+s ′s ′′J(∆

′ + s ′′x )(τ2)K.
By induction hypothesis on Γ, x : τ1;∆+s1x ⊢ e ′ : τ2; Σ′′+Σ′+s ′x , and choosing Σχ = ∆′+s ′′x , we
know that ∀γ ′1,γ ′2, (γ ′1,γ ′2) ∈ G

j−1
Σχ JΓ, x : τ1K then (γ ′1 ⊢ e ′,γ ′2 ⊢ e ′) ∈ E

j−1
Σχ ·(Σ′′+Σ′+s ′x )JΣ

χ (τ2)K. Notice
that Σχ ·(Σ′′+Σ′+ s ′x ) = (∆′+ s ′′x )·(Σ′′+Σ′+ s ′x ) = ∆′·Σ′′+∆′·Σ′+ s ′s ′′. Therefore we know that
(γ ′1 ⊢ e ′,γ ′2 ⊢ e ′) ∈ E

j−1
∆′ ·Σ′′+∆′ ·Σ′+s ′s ′′J(∆

′ + s ′′x )(τ2)K.
As (γ1,γ2) ∈ Gk∆′JΓK, and by Lemma C.10 (γ1,γ2) ∈ G j−1

∆′ JΓK, also (v1,v2) ∈ V j−1
s ′′ J∆′(τ1)K, and

∆′(τ1) = (∆′ + sx ′′)(τ1) (as x is not free in τ1), it is easy to see that (γ1, x 7→ v1,γ2, x 7→ v2) ∈
G
j−1
∆′+s ′′x JΓ, x : τ1K. Finally, the result follows by choosing γ ′1 = γ1, x 7→ v1, and γ ′2 = γ2, x 7→ v2. ◁

Case (8) Γ;∆ ⊢ ⟨λs (x : τ1·s1). e ′,γ ⟩ : (x : τ1·s1)
s ′x
−−→ τ2 ; �
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Subproof.
∃Γ′,∆′0,dom(Σ′′) ⊆ dom(Γ′) ⊆ dom(∆′0)

∀xi ∈ dom(Γ′),�;� ⊢ γ (xi ) : τ ′i , τ ′i <: Γ′(xi );� Γ′, x : τ1;∆′0 + s1x ⊢ e ′ : τ2 ; Σ′′ + s ′x

Γ;∆ ⊢ ⟨λs (x : τ1·s1). e ′,γ ⟩ : (x : [�/x1, ...,�/xn]τ1·s1)
s ′x
−−→ [�/x1, ...,�/xn]τ2 ; �

By induction hypotheses on ∀xi ∈ dom(Γ′),�;� ⊢ γ (xi ) : τ ′i ;�, we know that, ⟨γ (xi ),γ (xi )⟩ ∈
Vk−1

0 J�(τ ′i )K, and by C.10 ⟨γ (xi ),γ (xi )⟩ ∈ Vk−1
0 J�(Γ′(xi ))K. Therefore ⟨γ ,γ ⟩ ∈ Vk−1

� JΓ′K, and by
Lemma C.11, ⟨γ ,γ ⟩ ∈ V j

�JΓ
′K for j < k .

Notice that∆′([�/x1, ...,�/xn]τ1) = [�/x1, ...,�/xn]τ1 = �([�/x1, ...,�/xn]τ1),∆′([�/x1, ...,�/xn]τ2) =
[�/x1, ...,�/xn]τ2 = �([�/x1, ...,�/xn]τ2), as τ1 and τ2 have no free variables. We have to prove that
(⟨λs (x : τ1·s1). e ′,γ ⟩, ⟨λ

s (x : τ1·s1). e ′,γ ⟩) ∈ Vk
0 J(x : [�/x1, ...,�/xn]τ1·s1)

s ′x
−−→ [�/x1, ...,�/xn]τ2K.

Notice that if we choose ∆′ = 0x1, ..., 0xn , we can use that same ∆′ in the induction hypothesis of
Γ′, x : τ1;∆′0 + s1x ⊢ e ′ : τ2 ; Σ′′ + s ′x , and then we can use the same analogous arguments of the
previous case and Lemma C.10 to conclude the result. ◁

Case (9) Γ;∆ ⊢ e1 e2 : [Σ2/x]τ2 ; Σ1 + sΣ2 + Σ′′

Subproof. Notice that ∆′·(Σ1 + sΣ2 + Σ′′) = (∆′·Σ1 + s(∆′·Σ2) + ∆′·Σ′′), for ∆′ ⊑ ∆.
We have to prove that∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ e1 e2,γ2 ⊢ e1 e2) ∈ E

k
∆′ ·Σ1+s (∆′ ·Σ2)+∆′ ·Σ′′J∆

′([Σ2/x]τ2)K,
i.e. if γ1 ⊢ e1 e2 ⇓j v ′1 then γ2 ⊢ e1 e2 ⇓∗ v ′2, and (v ′1,v ′2) ∈ V

k−j
∆′ ·Σ1+s (∆′ ·Σ2)+∆′ ·Σ′′J∆

′([Σ2/x]τ2)K.
By induction hypotheses we know that
Γ ⊢ e1 : (x : τ1)

Σ′′+sx
−−−−−→ τ2 ; Σ1 ⇒ (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆

′((x : τ1·s ′)
Σ′′+sx
−−−−−→ τ2)K and

Γ ⊢ e2 : τ1 ; Σ2 ⇒ (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ek−j1∆′ ·Σ2
J∆′(τ1)K for some j1 ≤ k . As ∆′((x : τ1s ′)

Σ′′+sx
−−−−−→ τ2) = (x :

∆′(τ1)·s ′)
∆′ ·Σ′′+sx
−−−−−−−→ ∆′(τ2), by unfolding (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J(x : ∆′(τ1·s ′))

∆′ ·Σ′′+sx
−−−−−−−→ ∆′(τ2)K,

we know that if γ1 ⊢ e1 ⇓j1 ⟨λ(x : τ1). e ′1,γ ′1⟩ then γ2 ⊢ e1 ⇓∗ ⟨λ(x : τ1). e ′2,γ ′2⟩ and
(⟨λs (x : τ1). e ′1,γ ′1⟩, ⟨λ

s (x : τ1·s ′). e ′2,γ ′2⟩) ∈ V
k−j
∆′ ·Σ1

J(x : ∆′(τ1·s ′))
∆′ ·Σ′′+sx
−−−−−−−→ ∆′(τ2)K (1).

Also, by unfolding (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ek−j1∆′ ·Σ2
J∆′(τ1·s ′)K, if γ1 ⊢ e2 ⇓

j2 v1 then γ2 ⊢ e2 ⇓
∗ v2

and (v1,v2) ∈ Vk−j1−j2
∆′ ·Σ2

J∆′(τ1)K.
As ∆′·Σ2 ∈ sens, we instantiate (1) with s ′′ = ∆′·Σ2 (we know that s ′′ ≤ ∆·Σ2 ≤ s ′), then
(γ ′1[x 7→ v1] ⊢ e ′1,γ ′2[x 7→ v2] ⊢ e ′2) ∈ E

k−j1−j2−1
∆′ ·Σ1+∆′ ·Σ′′+s (∆′ ·Σ2)J[∆

′·Σ2/x]∆′(τ2)K. But ∆′·Σ1 + ∆′·Σ′′ +

s(∆′·Σ2) = ∆′·Σ1 + s(∆′·Σ2) + ∆′·Σ′′, and by Lemma 7.5, [∆′·Σ2/x]∆′(τ2) = ∆′([Σ2/x]τ2), therefore
(γ ′1[x 7→ v1] ⊢ e ′1,γ ′2[x 7→ v2] ⊢ e ′2) ∈ E

k−j1−j2−1
∆′ ·Σ1+s (∆′ ·Σ2)+∆′ ·Σ′′J∆

′([Σ2/x]τ2)K, i.e. if γ ′1[x 7→ v1] ⊢ e ′1 ⇓j3

v ′′1 then γ ′2[x 7→ v2] ⊢ e ′2 ⇓∗ v ′′2 , and (v ′′1 ,v ′′2 ) ∈ V
k−j1−j2−j3−1
∆′ ·Σ1+s (∆′ ·Σ2)+∆′ ·Σ′′J∆

′([Σ2/x]τ2)K. But notice that
by app:

γ1 ⊢ e1 ⇓
j1 ⟨λx . e ′1,γ

′
1⟩ γ1 ⊢ e2 ⇓

j2 v1 γ ′1[x 7→ v1] ⊢ e ′1 ⇓j3 v ′1
γ1 ⊢ e1 e2 ⇓

j1+j2+j3+1 v ′1

and
γ2 ⊢ e1 ⇓

∗ ⟨λx . e ′2,γ
′
2⟩ γ2 ⊢ e2 ⇓

∗ v2 γ ′1[x 7→ v2] ⊢ e ′2 ⇓∗ v ′2
γ2 ⊢ e1 e2 ⇓

∗ v ′2

for i ∈ {1, 2}. Notice that j = j1 + j2 + j3 + 1, and by premise γ ′1[x 7→ vi ] ⊢ e ′i ⇓j v ′i , we know that
v ′′i = v

′
i and the result holds immediately. ◁

Case (10) Γ;∆ ⊢ tt : unit ; �
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Subproof. We have to prove that ∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ tt,γ2 ⊢ tt) ∈ E
k
∆′ ·�J∆

′(unit)K, for
∆′ ⊑ ∆. Notice that ∆′·� = 0, Σ(unit) = unit, and γ1(tt) = γ2(tt) = tt. Then we have to prove
that (tt, tt) ∈ Vk

0 JunitK which is direct. ◁

Case (11) Γ;∆ ⊢ inlτ2 e ′ : τ1 Σ′′⊕� τ2 ; �
Subproof. We have to prove that∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ inl

τ2 e ′,γ2 ⊢ inl
τ2 e ′) ∈ Ek∆′ ·�J∆

′(τ1 Σ′′⊕�

τ2)K, for ∆′ ⊑ ∆. Notice that ∆′·� = 0, and ∆′(τ1 Σ′′⊕� τ2) = ∆′(τ1) ∆′ ·Σ′′⊕0 ∆′(τ2), then we have to
prove that
(γ1 ⊢ inlτ2 e ′,γ2 ⊢ inlτ2 e ′) ∈ Ek0 J∆′(τ1) ∆′ ·Σ′′⊕0 ∆′(τ2)K, i.e. if γ1 ⊢ inlτ2 e ′ ⇓j v1 then γ2 ⊢

inlτ2 e ′ ⇓∗ v2, and (v1,v2) ∈ Vk−j
0 J∆′(τ1) ∆′ ·Σ′′⊕0 ∆′(τ2)K.

By induction hypothesis on Γ ⊢ e ′ : τ1 ; Σ′′, we know that
(γ1 ⊢ e ′,γ2 ⊢ e ′) ∈ Ek∆′ ·Σ′′J∆

′(τ1)K, i.e. if γ1 ⊢ e ′ ⇓j v ′1, then γ2 ⊢ e ′ ⇓∗ v ′2 and (v ′1,v ′2) ∈ V
k−j
∆′ ·Σ′′J∆

′(τ1)K.
If γi ⊢ inlτ2 e ′ ⇓j vi and γi ⊢ e ′ ⇓∗ v ′i , then by INL, vi = inlτ2 v ′i . Then we have to prove that
(inlτ2 v ′1, inlτ2 v ′2) ∈ V

k−j
0 J∆′(τ1) ∆′ ·Σ′′⊕0 ∆′(τ2)K, i.e. that (v ′1,v ′2) ∈ V

k−j
∆′ ·Σ′′+0J∆

′(τ1)K, but as
∆′·Σ′′ + 0 = ∆′·Σ′′, the result holds immediately. ◁

Case (12) Γ;∆ ⊢ inlτ2 e ′ : τ1 Σ′′⊕� τ2 ; Σ′

Subproof. We have to prove that∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ inl
τ2 e ′,γ2 ⊢ inl

τ2 e ′) ∈ Ek∆′ ·Σ′J∆
′(τ1 Σ′′⊕�

τ2)K, for ∆′ ⊑ ∆. Notice that ∆′·� = 0, and ∆′(τ1 Σ′′⊕� τ2) = ∆′(τ1) ∆′ ·Σ′′⊕0 ∆′(τ2), then we have to
prove that
(γ1 ⊢ inlτ2 e ′,γ2 ⊢ inlτ2 e ′) ∈ Ek∆′ ·Σ′J∆

′(τ1) ∆′ ·Σ′′⊕0 ∆′(τ2)K, i.e. if γ1 ⊢ inlτ2 e ′ ⇓j v1 then γ2 ⊢

inlτ2 e ′ ⇓∗ v2, and (v1,v2) ∈ Vk−j
∆′ ·Σ′J∆

′(τ1) ∆′ ·Σ′′⊕0 ∆′(τ2)K.
By induction hypothesis on Γ ⊢ e ′ : τ1 ; Σ′′ + Σ′, we know that
(γ1 ⊢ e ′,γ2 ⊢ e ′) ∈ Ek

∆′ ·(Σ′′+Σ′)J∆
′(τ1)K, i.e. if γ1 ⊢ e ′ ⇓j v ′1, then γ2 ⊢ e ′ ⇓∗ v ′2 and (v ′1,v ′2) ∈

V
k−j
∆′ ·(Σ′′+Σ′)J∆

′(τ1)K.
If γi ⊢ inlτ2 e ′ ⇓j vi and γi ⊢ e ′ ⇓∗ v ′i , then by INL, vi = inlτ2 v ′i . Then we have to prove that
(inlτ2 v ′1, inlτ2 v ′2) ∈ V

k−j
∆′ ·Σ′J∆

′(τ1) ∆′ ·Σ′′⊕0 ∆′(τ2)K, i.e. that (v ′1,v ′2) ∈ V
k−j
∆′ ·Σ′′+∆′ ·Σ′J∆

′(τ1)K, but as
∆′·(Σ′′ + Σ′) = ∆′·Σ′′ + ∆′·Σ′, the result holds immediately. ◁

Case (13) Γ;∆ ⊢ inrτ1 e ′ : τ1 �⊕Σ
′′

τ2 ; �
Subproof. We have to prove that∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ inr

τ1 e ′,γ2 ⊢ inr
τ1 e ′) ∈ Ek∆′ ·�J∆

′(τ1 �⊕Σ
′′

τ2)K, for ∆′ ⊑ ∆. Notice that ∆′·� = 0, and ∆′(τ1 �⊕Σ
′′

τ2) = ∆′(τ1) 0⊕∆
′ ·Σ′′ ∆′(τ2), then we have to

prove that
(γ1 ⊢ inrτ1 e ′,γ2 ⊢ inrτ1 e ′) ∈ Ek0 J∆′(τ1) 0⊕∆

′ ·Σ′′ ∆′(τ2)K, i.e. if γ1 ⊢ inrτ1 e ′ ⇓j v1 then γ2 ⊢

inrτ1 e ′ ⇓∗ v2, and (v1,v2) ∈ Vk−j
0 J∆′(τ1) 0⊕∆

′ ·Σ′′ ∆′(τ2)K.
By induction hypothesis on Γ ⊢ e ′ : τ2 ; Σ′′, we know that
(γ1 ⊢ e ′,γ2 ⊢ e ′) ∈ Ek∆′ ·Σ′′J∆

′(τ2)K, i.e. if γ1 ⊢ e ′ ⇓j v ′1, then γ2 ⊢ e ′ ⇓∗ v ′2 and (v ′1,v ′2) ∈ V
k−j
∆′ ·Σ′′J∆

′(τ2)K.
If γi ⊢ inrτ1 e ′ ⇓j vi and γi ⊢ e ′ ⇓∗ v ′i , then by INR, vi = inrτ1 v ′i . Then we have to prove that
(inrτ1 v ′1, inrτ1 v ′2) ∈ V

k−j
0 J∆′(τ1) 0⊕∆

′ ·Σ′′ ∆′(τ2)K, i.e. that (v ′1,v ′2) ∈ V
k−j
0+∆′ ·Σ′′J∆

′(τ2)K, but as
0 + ∆′·Σ′′ = ∆′·Σ′′, the result holds immediately. ◁

Case (14) Γ;∆ ⊢ inrτ1 e ′ : τ1 �⊕Σ
′′

τ2 ; Σ′

Subproof. We have to prove that∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ inr
τ1 e ′,γ2 ⊢ inr

τ1 e ′) ∈ Ek∆′ ·Σ′J∆
′(τ1 �⊕Σ

′′

τ2)K, for ∆′ ⊑ ∆. Notice that ∆′·� = 0, and ∆′(τ1 �⊕Σ
′′

τ2) = ∆′(τ1) 0⊕∆
′ ·Σ′′ ∆′(τ2), then we have to

prove that
(γ1 ⊢ inrτ1 e ′,γ2 ⊢ inrτ1 e ′) ∈ Ek∆′ ·Σ′J∆

′(τ1) 0⊕∆
′ ·Σ′′ ∆′(τ2)K, i.e. if γ1 ⊢ inrτ1 e ′ ⇓j v1 then γ2 ⊢

inrτ1 e ′ ⇓∗ v2, and (v1,v2) ∈ Vk−j
∆′ ·Σ′J∆

′(τ1) 0⊕∆
′ ·Σ′′ ∆′(τ2)K.
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By induction hypothesis on Γ ⊢ e ′ : τ2 ; Σ′′ + Σ′, we know that
(γ1 ⊢ e ′,γ2 ⊢ e ′) ∈ Ek

∆′ ·(Σ′′+Σ′)J∆
′(τ2)K, i.e. if γ1 ⊢ e ′ ⇓j v ′1, then γ2 ⊢ e ′ ⇓∗ v ′2 and (v ′1,v ′2) ∈

V
k−j
∆′ ·(Σ′′+Σ′)J∆

′(τ2)K.
If γi ⊢ inrτ1 e ′ ⇓j vi and γi ⊢ e ′ ⇓∗ v ′i , then by INR, vi = inrτ1 v ′i . Then we have to prove that
(inrτ1 v ′1, inrτ1 v ′2) ∈ V

k−j
∆′ ·Σ′J∆

′(τ1) 0⊕∆
′ ·Σ′′ ∆′(τ2)K, i.e. that (v ′1,v ′2) ∈ V

k−j
∆′ ·Σ′+∆′ ·Σ′′J∆

′(τ2)K, but as
∆′·(Σ′′ + Σ′) = ∆′·Σ′′ + ∆′·Σ′, the result holds immediately. ◁

Case (15) Γ;∆ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} : [Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3 ; Σ1 ⊔ ([Σ1 +
Σ11/x](Σ2 + s2x ) ⊔ [Σ1 + Σ12/y](Σ3 + s3y))
Subproof. We have to prove that for any k , ∀(γ1,γ2) ∈ Gk∆′JΓK,
(γ1 ⊢ case e1 of {x ⇒ e2} {y ⇒ e3},γ2 ⊢ case e1 of {x ⇒ e2} {y ⇒ e3}) ∈ Ek∆′ ·Σ′′J∆

′(τ ′)K, for
∆′ ⊑ ∆, where
Σ′′ = Σ1⊔ ([Σ1+Σ11/x](Σ2+s2x )⊔[Σ1+Σ12/y](Σ3+s3y)) = Σ1⊔ ((s2Σ1+s2Σ11Σ2)⊔ (s3Σ1+s3Σ12Σ2)),
and τ ′ = [Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3.
By induction hypothesis on Γ;∆ ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1, we know that
(γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆

′(τ11 Σ11⊕Σ12 τ12)K, i.e. ifγ1 ⊢ e1 ⇓j1 v11, thenγ2 ⊢ e1 ⇓∗ v12 and (v11,v12) ∈
V

k−j1
∆′ ·Σ1

J∆′(τ11) ∆′ ·Σ11⊕∆
′ ·Σ12 ∆′(τ12)K. Either v11 = inl v ′11 and v12 = inl v ′12, v11 = inr v ′11 and

v12 = inr v ′12, v11 = inl v ′11 and v12 = inr v ′12, or v11 = inr v ′11 and v12 = inl v ′12. We proceed
by case analysis on (v11,v12):
Case (a) (v11,v12) = (inl v ′11, inl v ′12) (the case (v11,v12) = (inr v ′11, inr v ′12) is analogous)
Subproof. By Lemma C.1 ∆′·Σ1 + ∆

′·Σ11 = ∆′·(Σ1 + Σ11), then (v ′11,v ′12) ∈ V
k−j1
∆′ ·(Σ1+Σ11)J∆

′(τ11)K.
Also, by induction hypothesis on Γ, x : τ11;∆ + (∆·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2 + s2x , by choosing
∆′ + (∆′·(Σ1 + Σ11))x ⊑ ∆ + (∆·(Σ1 + Σ11))x and k = k − j1 (and by weakening lemma C.11)
(γ1[x 7→ v ′12],γ2[x 7→ v ′22]) ∈ G

k−j1−1
∆′+(∆′ ·(Σ1+Σ11))x JΓ, x : τ11K (note that x < dom(Σ1) ∪ dom(Σ11),

therefore (∆′ + (∆′·(Σ1 + Σ11))x )(τ11) = ∆′(τ11)) we know that
(γ1[x 7→ v ′12] ⊢ e2,γ2[x 7→ v ′22] ⊢ e2) ∈ E

k−j1
(∆′+(∆′ ·(Σ1+Σ11))x )·(Σ2+s2x )J(∆

′ + (∆′·(Σ1 + Σ11))x )(τ2)K.
But (∆′ + (∆′·(Σ1 + Σ11))x)·(Σ2 + s2x) = ∆′·Σ2 + s2(∆′·(Σ1 + Σ11)) = ∆′·(s2(Σ1 + Σ11) + Σ2), and by
LemmaC.2 and because∆′·(Σ1+Σ11) ∈ sens, then (∆′+(∆′·(Σ1+Σ11))x )(τ2) = (∆′·(Σ1+Σ11))x (∆′(τ2)),
and by Lemma 7.5 (∆′·(Σ1+Σ11))x (∆′(τ2)) = ∆′([Σ1+Σ11/x]τ2). Therefore ifγ1[x 7→ v ′12] ⊢ e2 ⇓j2 v21,
then γ2[x 7→ v ′22] ⊢ e2 ⇓∗ v22, and
(v21,v22) ∈ Vk−j1−j2

∆′ ·(s2Σ1+s2Σ11+Σ2)J∆
′([Σ1 + Σ11/x]τ2)K.

By following the case-left reduction rule:
γ1 ⊢ e1 ⇓

j1 inl v ′11 γ1[x 7→ v ′11] ⊢ e2 ⇓j2 v21
γ1 ⊢ case e1 of {x ⇒ e2} {x ⇒ e3} ⇓

j1+j2+1 v21

and
γ2 ⊢ e1 ⇓

∗ inl v ′12 γ2[x 7→ v ′12] ⊢ e2 ⇓∗ v22
γ2 ⊢ case e1 of {x ⇒ e2} {x ⇒ e3} ⇓

∗ v22

for i ∈ {1, 2}. Then we just have to prove that
(v21,v22) ∈ Vk−j1−j2−1

∆′ ·(Σ1⊔(s2Σ1+s2Σ11+Σ2)⊔(s3Σ1+s3Σ12+Σ3))J∆
′([Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3)K. Notice that by

definition of the join operator (s2Σ1 + s2Σ11 + Σ2) <: (s2Σ1 + s2Σ11 + Σ2) ⊔ (s3Σ1 + s3Σ12 + Σ3), also
(s2Σ1 + s2Σ11 + Σ2) ⊔ (s3Σ1 + s3Σ12 + Σ3) <: Σ1 ⊔ (s2Σ1 + s2Σ11 + Σ2) ⊔ (s3Σ1 + s3Σ12 + Σ3) therefore
by Lemma C.12 ∆′·(s2Σ1 + s2Σ11 + Σ2) ≤ ∆′·(Σ1 ⊔ (s2Σ1 + s2Σ11 + Σ2) ⊔ (s3Σ1 + s3Σ12 + Σ3)).
Also [Σ1 + Σ11/x]τ2 <: [Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3 therefore by Lemma C.6,
∆′([Σ1 + Σ11/x]τ2) <: ∆′([Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3). Finally by Lemma C.10,
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(v21,v22) ∈ Vk−j1−j2
∆′ ·(Σ1⊔(s2Σ1+s2Σ11+Σ2)⊔(s3Σ1+s3Σ12+Σ3))J∆

′([Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3)K and the result
holds by Lemma C.11. ◁
Case (b) (v11,v12) = (inl v ′11, inr v ′12) (the case (v11,v12) = (inr v ′11, inl v ′12) is analogous)
Subproof. Then ∆′·Σ1 = ∞, and the result vacuously holds. ◁

◁

Case (16) Γ;∆ ⊢ (e1, e2) : τ1 Σ1&Σ2 τ2 ; �
Subproof. We have to prove that
∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ (e1, e2),γ2 ⊢ (e1, e2)) ∈ E

k
∆′ ·�J∆

′(τ1 Σ1&Σ2 τ2)K, for ∆′ ⊑ ∆. Notice that
∆′·� = 0, and ∆′(τ1 Σ1&Σ2 τ2) = ∆′(τ1) ∆′ ·Σ1&∆′ ·Σ2 ∆′(τ2), then we have to prove that
(γ1 ⊢ (e1, e2),γ2 ⊢ (e1, e2)) ∈ Ek0 J∆′(τ1) ∆′ ·Σ1&∆′ ·Σ2 ∆′(τ2)K, i.e. if γ1 ⊢ (e1, e2) ⇓j (v11,v12) and
γ2 ⊢ (e1, e2) ⇓j (v21,v22), then ((v11,v12), (v21,v22)) ∈ Vk−j

0 J∆′(τ1) ∆
′ ·Σ1&∆′ ·Σ2 ∆′(τ2)K, or equivalently

(v11, ,v21) ∈ Vk−j
0+∆′ ·Σ1J∆

′(τ1)K, and (v12, ,v22) ∈ Vk−j
0+∆′ ·Σ2J∆

′(τ2)K.
By induction hypothesis on Γ ⊢ e1 : τ1 ; Σ1 and Γ ⊢ e2 : τ2 ; Σ2, we know that (γ1 ⊢ e1,γ2 ⊢ e1) ∈
Ek∆′ ·Σ1

J∆′(τ1)K and (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ek∆′ ·Σ2J∆
′(τ2)K respectively. This means that if γ1 ⊢ e1 ⇓j1 v ′11,

and γ2 ⊢ e1 ⇓j1 v ′12 then (v ′11,v ′12) ∈ V
k−j1
∆′ ·Σ1

J∆′(τ1)K, and that if γ1 ⊢ e2 ⇓j2 v ′21, and γ2 ⊢ e2 ⇓j2 v ′22
then (v ′21,v ′22) ∈ V

k−j2
∆′ ·Σ2

J∆′(τ2)K. As reduction is deterministic, then j = j1+ j2 andv ′i j = vi j , therefore
as 0 + ∆′·Σi = ∆′·Σi , the result holds immediately by Lemma C.11.

◁

Case (17) Γ;∆ ⊢ (e1, e2) : τ1 Σ′1&Σ′2 τ2 ; Σ′′1 ⊔ Σ′′2
Subproof.

Γ;∆ ⊢ e1 : τ1 ; Σ′′1 + Σ′1 Γ;∆ ⊢ e2 : τ2 ; Σ′′2 + Σ′2

Γ;∆ ⊢ (e1, e2) : τ1 Σ′1&Σ′2 τ2 ; Σ′′1 ⊔ Σ′′2

We have to prove that
∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ (e1, e2),γ2 ⊢ (e1, e2)) ∈ Ek∆′ ·(Σ′′1⊔Σ′′2 )J∆

′(τ1 Σ′1&Σ′2 τ2)K, for ∆′ ⊑ ∆. Let
d ′i = ∆′·Σ′i and d ′′i = ∆′·Σ′′i . Notice that ∆′·(Σ′′1 ⊔ Σ′′2 ) = d ′′1 ⊔d ′′2 , and ∆′(τ1 Σ′1&Σ′2 τ2) = ∆′(τ1) d

′
1&d ′2

∆′(τ2), then we have to prove that
(γ1 ⊢ (e1, e2),γ2 ⊢ (e1, e2)) ∈ Ekd ′′1 ⊔d ′′2 J∆

′(τ1) d ′1&d ′2 ∆′(τ2)K, i.e. if γ1 ⊢ (e1, e2) ⇓j (v11,v12) then γ2 ⊢

(e1, e2) ⇓∗ (v21,v22), and ((v11,v12), (v21,v22)) ∈ Vk−j
d ′′1 ⊔d

′′
2
J∆′(τ1) d

′
1&d ′2 ∆′(τ2)K.

By induction hypothesis on Γ ⊢ e1 : τ1 ; Σ′′1 + Σ′1 and Γ ⊢ e2 : τ2 ; Σ′′2 + Σ′2, we know that
(γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ekd ′1+d ′′1 J∆

′(τ1)K and (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ekd ′2+d ′′2 J∆
′(τ2)K respectively. This means

that if γ1 ⊢ e1 ⇓j1 v ′11, then γ2 ⊢ e1 ⇓∗ v ′12 and (v ′11,v ′12) ∈ V
k−j1
d ′1+d

′′
1
J∆′(τ1)K, and that if γ1 ⊢ e2 ⇓j2 v ′21,

then γ2 ⊢ e2 ⇓
∗ v ′22 and (v ′21,v ′22) ∈ V

k−j2
d ′2+d

′′
2
J∆′(τ2)K. Notice that d ′′i ≤ d ′′1 ⊔ d ′′2 . As reduction is

deterministic, then j = j1 + j2 and v ′i j = vi j , therefore as 0 + d ′i + d ′′i = d ′i + d
′′
i , the result holds

immediately by Lemma C.11.
◁

Case (18) Γ;∆ ⊢ fst e ′ : τ1 ; Σ′′ + Σ1

Subproof. We have to prove that for any k , ∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ fst e ′,γ2 ⊢ fst e ′) ∈
Ek
∆′ ·(Σ′′+Σ1)J∆

′(τ1)K, for ∆′ ⊑ ∆. By induction hypothesis on Γ ⊢ e ′ : τ1 Σ1&Σ2 τ2 ; Σ′′ we know that
(γ1 ⊢ e ′,γ2 ⊢ e ′) ∈ Ek∆′ ·Σ′′J∆

′(τ1 Σ1&Σ2 τ2)K, i.e. if γ1 ⊢ e ′ ⇓j (v11,v12) then γ2 ⊢ e
′ ⇓∗ (v21,v22),

and ((v11,v12), (v21,v22)) ∈ Vk−j
∆′ ·Σ′′J∆

′(τ1) ∆′ ·Σ1&∆′ ·Σ2 ∆′(τ2)K, or equivalently
(v11, ,v21) ∈ Vk−j

∆′ ·Σ′′+∆′ ·Σ1
J∆′(τ1)K, and (v12, ,v22) ∈ Vk−j

∆′ ·Σ′′+∆′ ·Σ2
J∆′(τ2)K.
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Following the proj1 reduction rule, if:
γ1 ⊢ e

′ ⇓j (v11,v12)
γ1 ⊢ fst e ′ ⇓j v11

and
γ2 ⊢ e

′ ⇓∗ (v21,v22)
γ2 ⊢ fst e ′ ⇓∗ v21

Then we have to prove that (v11,v21) ∈ Vk−j
∆′ ·(Σ′′+Σ1)J∆

′(τ1)K, but as by Lemma C.1, ∆′·(Σ′′ + Σ1) =
∆′·Σ′′ + ∆′·Σ1, the result holds immediately. ◁

Case (19) snd e ′ : τ1 ; Σ′′ + Σ2

Subproof. Analogous to previous case. ◁

Case (20) Γ;∆ ⊢ ⟨e1, e2⟩ : τ1 Σ1⊗Σ2 τ2 ; �
Subproof. We have to prove that ∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ ⟨e1, e2⟩,γ2 ⊢ ⟨e1, e2⟩) ∈ E

k
∆′ ·�J∆

′(τ1 Σ1⊗Σ2

τ2)K, for ∆′ ⊑ ∆. Notice that ∆′·� = 0, and ∆′(τ1 Σ1⊗Σ2 τ2) = ∆′(τ1) ∆
′ ·Σ1⊗∆

′ ·Σ2 ∆′(τ2), then we have
to prove that
(γ1 ⊢ ⟨e1, e2⟩,γ2 ⊢ ⟨e1, e2⟩) ∈ Ek0 J∆′(τ1) ∆′ ·Σ1⊗∆

′ ·Σ2 ∆′(τ2)K, i.e. if γ1 ⊢ ⟨e1, e2⟩ ⇓j1 ⟨v11,v12⟩ then γ2 ⊢
⟨e1, e2⟩ ⇓

∗ ⟨v21,v22⟩, and (⟨v11,v12⟩, ⟨v21,v22⟩) ∈ Vk−j
0 J∆′(τ1) ∆′ ·Σ1⊗∆

′ ·Σ2 ∆′(τ2)K, or equivalently
(v11,v21) ∈ Vk−j

0+∆′ ·Σ1J∆
′(τ1)K, and (v12,v22) ∈ Vk−j

0+∆′ ·Σ2J∆
′(τ2)K.

By induction hypothesis on Γ ⊢ e1 : τ1 ; Σ1 and Γ ⊢ e2 : τ2 ; Σ2, we know that (γ1 ⊢ e1,γ2 ⊢ e1) ∈
Ek∆′ ·Σ1

J∆′(τ1)K and (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ek∆′ ·Σ2J∆
′(τ2)K respectively. This means that if γ1 ⊢ e1 ⇓j1 v ′11,

then γ2 ⊢ e1 ⇓
∗ v ′12 and (v ′11,v ′12) ∈ V

k−j1
∆′ ·Σ1

J∆′(τ1)K, and that if γ1 ⊢ e2 ⇓j2 v ′21, then γ2 ⊢ e2 ⇓
∗ v ′22

and (v ′21,v ′22) ∈ V
k−j2
∆′ ·Σ2

J∆′(τ2)K. As reduction is deterministic, then j = j1+ j2 andv ′i j = vi j , therefore
as 0 + ∆′·Σi = ∆′·Σi , the result holds immediately by Lemma C.11.

◁

Case (21) Γ;∆ ⊢ (e1, e2) : τ1 Σ′1⊗Σ
′
2 τ2 ; Σ′′1 + Σ′′2

Subproof.
Γ;∆ ⊢ e1 : τ1 ; Σ′′1 + Σ′1 Γ;∆ ⊢ e2 : τ2 ; Σ′′2 + Σ′2

Γ;∆ ⊢ (e1, e2) : τ1 Σ′1⊗Σ
′
2 τ2 ; Σ′′1 + Σ′′2

We have to prove that
∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ (e1, e2),γ2 ⊢ (e1, e2)) ∈ Ek∆′ ·(Σ′′1+Σ′′2 )J∆

′(τ1 Σ′1⊗Σ
′
2 τ2)K, for ∆′ ⊑ ∆. Let

d ′i = ∆′·Σ′i and d ′′i = ∆′·Σ′′i . Notice that ∆′·(Σ′′1 + Σ′′2 ) = d ′′1 +d ′′2 , and ∆′(τ1 Σ′1⊗Σ
′
2 τ2) = ∆′(τ1) d

′
1⊗d

′
2

∆′(τ2), then we have to prove that
(γ1 ⊢ (e1, e2),γ2 ⊢ (e1, e2)) ∈ Ekd ′′1 +d ′′2 J∆

′(τ1) d ′1⊗d
′
2 ∆′(τ2)K, i.e. if γ1 ⊢ (e1, e2) ⇓j (v11,v12) then γ2 ⊢

(e1, e2) ⇓∗ (v21,v22), and ((v11,v12), (v21,v22)) ∈ Vk−j
d ′′1 +d

′′
2
J∆′(τ1) d

′
1⊗d

′
2 ∆′(τ2)K.

By induction hypothesis on Γ ⊢ e1 : τ1 ; Σ′′1 + Σ′1 and Γ ⊢ e2 : τ2 ; Σ′′2 + Σ′2, we know that
(γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ekd ′1+d ′′1 J∆

′(τ1)K and (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ekd ′2+d ′′2 J∆
′(τ2)K respectively. This means

that if γ1 ⊢ e1 ⇓j1 v ′11, then γ2 ⊢ e1 ⇓∗ v ′12 and (v ′11,v ′12) ∈ V
k−j1
d ′1+d

′′
1
J∆′(τ1)K, and that if γ1 ⊢ e2 ⇓j2 v ′21,

then γ2 ⊢ e2 ⇓
∗ v ′22 and (v ′21,v ′22) ∈ V

k−j2
d ′2+d

′′
2
J∆′(τ2)K. Notice that d ′′i ≤ d ′′1 + d

′′
2 . As reduction is

deterministic, then j = j1 + j2 and v ′i j = vi j , therefore as 0 + d ′i + d ′′i = d ′i + d
′′
i , the result holds

immediately by Lemma C.11.
◁
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Case (22) Γ;∆ ⊢ let x1, x2 = e1 in e2 : [Σ1+Σ11/x1][Σ1+Σ12/x2]τ2 ; s1(Σ11+Σ1)+s2(Σ12+Σ1)+Σ2

Subproof. We have to prove that for any k , ∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ let x1, x2 = e1 in e2,γ2 ⊢

let x1, x2 = e1 in e2) ∈ Ek∆′ ·(Σ′′)J∆
′(τ )K, for ∆′ ⊑ ∆. where Σ′′ = s1(Σ11 + Σ1) + s2(Σ12 + Σ1) + Σ2.

Suppose

γ1 ⊢ e1 ⇓
j1 ⟨v11,v12⟩ γ1[x1 7→ v11, x2 7→ v12] ⊢ e2 ⇓j2 v ′1
γ1 ⊢ let x1, x2 = e1 in e2 ⇓

j1+j2+1 v ′1

By induction hypothesis on Γ;∆ ⊢ e1 : τ11 Σ11⊗Σ12 τ12 ; Σ1 we know that
(γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆

′(τ11 Σ11⊗Σ12 τ12)K, i.e. if γ1 ⊢ e1 ⇓j1 ⟨v11,v12⟩ then γ2 ⊢ e1 ⇓
∗ ⟨v21,v22⟩,

and (⟨v11,v12⟩, ⟨v21,v22⟩) ∈ Vk−j1
∆′ ·Σ1

J∆′(τ11) ∆′ ·Σ11⊗∆
′ ·Σ12 ∆′(τ12)K, or equivalently

(v11,v21) ∈ Vk−j1
∆′ ·Σ1+∆′ ·Σ11

J∆′(τ11)K, and (v12,v22) ∈ Vk−j1
∆′ ·Σ1+∆′ ·Σ12

J∆′(τ12)K. By Lemma C.1 ∆′·Σ1 +

∆′·Σ11 = ∆′·(Σ1 + Σ11), then (v11,v12) ∈ Vk−j
∆′ ·(Σ1+Σ11)J∆

′(τ11)K, and analogously ∆′·Σ1 + ∆′·Σ12 =

∆′·(Σ1 + Σ12), then (v22,v22) ∈ Vk−j
∆′ ·(Σ1+Σ12)J∆

′(τ12)K
Also, by induction hypothesis on Γ, x : τ11, x : τ12;∆ + (∆·(Σ1 + Σ11))x1 + (∆·(Σ1 + Σ12))x2 ⊢ e2 : τ2 ;
Σ2 + s1x1 + s2x2, by choosing k = k − j1
(γ1[x1 7→ v11, x2 7→ v12],γ2[x1 7→ v21, x2 7→ v22]) ∈ Gk−j1−1∆′+(∆′ ·(Σ1+Σ11))x1+(∆′ ·(Σ1+Σ12))x2JΓ, x : τ11K (note
that x1 < dom(Σ1) ∪ dom(Σ11) and x2 < dom(Σ1) ∪ dom(Σ12), therefore (∆′ + (∆′·(Σ1 + Σ11))x1 +
(∆′·(Σ1 + Σ12))x2)(τ1i ) = ∆′(τ1i )) we know that
(γ ′1 ⊢ e2,γ ′2 ⊢ e2) ∈ E

k−j1
Σ′′ ·(Σ2+s1x1+s2x2)JΣ

′′(τ2)K,
for γ ′i = γ1[x1 7→ vi1, x2 7→ vi2], Σ′′ = ∆′ + (∆′·(Σ1 + Σ11))x1 + (∆′·(Σ1 + Σ12))x2.
But (∆′+(∆′·(Σ1+Σ11))x1+(∆′·(Σ1+Σ12))x2)·(Σ2+s1x1+s2x2) = ∆′·Σ2+s1(∆′·(Σ1+Σ11))+s2(∆′·(Σ1+
Σ12)) = ∆′·(s1(Σ1 + Σ11) + s2(Σ1 + Σ12) + Σ2), and by Lemma C.2 and because ∆′·(Σ1 + Σ1i ) ∈ sens,
then (∆′ + (∆′·(Σ1 + Σ11))x1 + (∆′·(Σ1 + Σ12))x2)(τ2) = ((∆′·(Σ1 + Σ11))x1 + (∆′·(Σ1 + Σ12))x2)(∆′(τ2)),
and by Lemma 7.5 ((∆′·(Σ1 + Σ11))x1 + (∆′·(Σ1 + Σ12))x2)(∆′(τ2)) = ∆′([Σ1 + Σ11/x1][Σ1 + Σ12/x2]τ2).
Therefore if γ ′1 ⊢ e2 ⇓j2 v ′1, then γ ′2 ⊢ e2 ⇓∗ v ′2, and
(v21,v22) ∈ Vk−j1−j2

∆′ ·(s1(Σ1+Σ11)+s2(Σ1+Σ12)+Σ2)J∆
′([Σ1 + Σ11/x1][Σ1 + Σ12/x2]τ2)K, and the result holds by

Lemma C.11. ◁

Case (23) Γ;∆ ⊢ (e ′ :: τ ) : τ ; Σ
Subproof. We have to prove that for any k , ∀(γ1,γ2) ∈ Gk∆′JΓK, (γ1 ⊢ (e ′ :: τ ),γ2 ⊢ (e ′ :: τ )) ∈
Ek∆′ ·ΣJ∆

′(τ )K, for ∆′ ⊑ ∆. By induction hypothesis on Γ;∆ ⊢ e ′ : τ ′ ; Σ where τ ′ <: τ , we know that
(γ1 ⊢ e ′,γ2 ⊢ e ′) ∈ Ek∆′ ·ΣJ∆

′(τ ′)K, i.e. if γ1 ⊢ e ′ ⇓j v1 then γ2 ⊢ e ′ ⇓∗ v2, and (v1,v2) ∈ Vk−j
∆′ ·ΣJ∆

′(τ ′)K.
Following the ascr reduction rule, if:

γ1 ⊢ e
′ ⇓j v1

γ1 ⊢ e
′ :: τ ⇓j+1 v1

γ2 ⊢ e
′ ⇓∗ v2

γ2 ⊢ e
′ :: τ ⇓∗ v2

Then we have to prove that (v1,v2) ∈ Vk−j−1
∆′ ·Σ J∆′(τ )K. As τ ′ <: τ , by Lemma C.6 ∆′(τ ′) <: ∆′(τ ),

and the result holds immediately by Lemma C.11. ◁

Case (24) Γ;∆ ⊢ λp (x : τ1·d ′). e′ : (x : τ1·d ′)
Σ′′

−−→→ τ2 ; �
Subproof. We have to prove that ∀(γ1,γ2) ∈ Gk∆′JΓK,
(γ1 ⊢ λ

p (x : τ1·d ′). e′,γ2 ⊢ λ
p (x : τ1·d ′). e′) ∈ Ek∆′ ·�J∆

′(x : τ1·d ′)
∆′ ·Σ′′

−−−−→→ ∆′(τ2)K, for ∆′ ⊑ ∆.
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Notice that ∆′·� = 0, and that lambdas reduce to closures, therefore we have to prove that
(⟨λp (x : τ1·d ′). e′,γ1⟩, ⟨λ

p (x : τ1·d ′). e′,γ2⟩) ∈ Vk
0 J(x : ∆′(τ1)·d ′)

∆′ ·Σ′′

−−−−→→ ∆′(τ2)K.
Consider j < k , v1 and v2 such that (v1,v2) ∈ V j

d ′′J∆
′(τ1)K, for some d ′′ ≤ d ′. We have to prove that

(γ1, x 7→ v1 ⊢ e
′,γ2, x 7→ v2 ⊢ e

′) ∈ E j(∆′+d ′′x )·Σ′′Jd
′′x(∆′(τ2))K. Notice that by Lemma C.2

d ′′x(∆′(τ2)) = (∆′ + d ′′x)(τ2), therefore we have to prove that (γ1, x 7→ v1 ⊢ e
′,γ2, x 7→ v2 ⊢

e
′) ∈ E j(∆′+d ′′x )·Σ′′J(∆

′ + d ′′x )(τ2)K.
By induction hypothesis on Γ, x : τ1;∆+d ′x ⊢ e′ : τ2;Σ′′, and choosing Σχ = ∆′+d ′′x ⊑ ∆′+d ′x , we
know that ∀γ ′1,γ ′2, (γ ′1,γ ′2) ∈ G

j
(∆′+d ′′x )JΓ, x : τ1K then (γ ′1 ⊢ e′,γ ′2 ⊢ e′) ∈ E

j
(∆′+d ′′x )·Σ′′J(∆

′ + d ′′x )(τ2)K.
As (γ1,γ2) ∈ G j

∆′JΓK (by Lemma C.11), (v1,v2) ∈ V j
d ′′J∆

′(τ1)K, and ∆′(τ1) = (∆′ + d ′′x)(τ1) (as x is
not free in τ1), it is easy to see that (γ1, x 7→ v1,γ2, x 7→ v2) ∈ G j

(∆′+d ′′x )JΓ, x : τ1K. Finally, the result
follows by choosing γ ′1 = γ1, x 7→ v1, and γ ′2 = γ2, x 7→ v2. ◁

Let us prove now Part (2).
Case (1) Γ;∆ ⊢ e1 e2 : [Σ2/x]τ2 ; ⌉Σ1⌈

∞ + [Σ2/x]Σ′′

Subproof. We have to prove that
∀k,∀(γ1,γ2) ∈ Gk∆′JΓK, for ∆

′ ⊑ ∆, then (γ1 ⊢ e1 e2,γ2 ⊢ e1 e2) ∈ Ek∆′•ΣJ∆′([Σ2/x]τ2)K.
By induction hypotheses we know that
Γ;∆ ⊢ e1 : (x : τ1·d ′)

Σ′′

−−→→ τ2 ; Σ1 ⇒ (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆
′((x : τ1·d ′)

Σ′′

−−→→ τ2)K and
Γ;∆ ⊢ e2 : τ1 ; Σ2 ⇒ (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ek−j1∆′ ·Σ2

J∆′(τ1)K.

As ∆′((x : τ1·d ′)
Σ′′

−−→→ τ2) = (x : ∆′(τ1)·d ′)
∆′•Σ′′

−−−−→→ ∆′(τ2), by unfolding (γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J(x :

∆′(τ1)·d ′)
∆′•Σ′′

−−−−→→ ∆′(τ2)K, we know that if γ1 ⊢ e1 ⇓j1 ⟨λ
p (x : τ1). e′1,γ ′1⟩ then γ2 ⊢ e1 ⇓

∗ ⟨λ
p (x :

τ1). e′2,γ ′2⟩ and
(⟨λp (x : τ1). e′1,γ ′1⟩, ⟨λ

p (x : τ1). e′2,γ ′2⟩) ∈ V
k−j1
∆′ ·Σ1

J(x : ∆′(τ1)·d ′)
∆′•Σ′′

−−−−→→ ∆′(τ2)K (for d ′′ >= d ′) (1).
Also, by unfolding (γ1 ⊢ e2,γ2 ⊢ e2) ∈ Ek−j1∆′ ·Σ2

J∆′(τ1)K, if γ1 ⊢ e2 ⇓
j2 v1 then γ2 ⊢ e2 ⇓

∗ v2

and (v1,v2) ∈ Vk−j1−j2
∆′ ·Σ2

J∆′(τ1)K.
By p-app we know that ∆·Σ2 ≤ d ′, as ∆′ ⊑ ∆ then ∆′·Σ2 ≤ d ′. Then we instantiate (1) with
d ′′ = ∆′·Σ2, then for some j3 < k − j1 − j2
(γ ′1[x 7→ v1] ⊢ e′1,γ ′2[x 7→ v2] ⊢ e′2) ∈ E

j3
⌉∆′ ·Σ1 ⌈∞+(∆′+(∆′ ·Σ2)x )•Σ′′J(∆

′·Σ2x )(∆′(τ2))K (2).
Suppose ∆′•⌉Σ1⌈

∞ = 0 (otherwise the result follows immediately). Then ∆′•Σ = ∆′•([Σ2/x]Σ′′).
Also as ∆′ ⊑ ∆, and x < dom(∆), then by Lemma 7.4, ∆′•([Σ2/x]Σ′′ = ((∆′·Σ2)x)•(∆′•Σ′′) =
(∆′ + (∆′·Σ2)x)•Σ′′. By Lemma 7.5, [∆′·Σ2/x]∆′(τ2) = ∆′([Σ2/x]τ2), then by (1) and weakening
(Lemma C.10) (γ ′1[x 7→ v1] ⊢ e′1,γ ′2[x 7→ v2] ⊢ e′2) ∈ E

j3
∆′•Σ

J∆′([Σ2/x]τ2)K (3). The result follows by
Lemma C.15.

◁

Case (2) Γ ; ∆ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} : [Σ11/x]τ2 ⊔ [Σ12/y]τ3 ; ⌉Σ1⌈
∞ ⊔ [Σ11/x]Σ2 ⊔

[Σ12/x]Σ3

Subproof. We have to prove that for any k , ∀(γ1,γ2) ∈ Gk∆′JΓK, for ∆
′ ⊑ ∆

(γ1 ⊢ case e1 of {x ⇒ e2} {y ⇒ e3},γ2 ⊢ case e1 of {x ⇒ e2} {y ⇒ e3}) ∈ Ek∆′ ·ΣJ∆′(τ )K.
By induction hypothesis on Γ ; ∆ ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1, we know that
(γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1J∆

′(τ11 Σ11⊕Σ12 τ12)K, i.e. ifγ1 ⊢ e1 ⇓j1 v11, thenγ2 ⊢ e1 ⇓∗ v12 and (v11,v12) ∈
V

k−j1
∆′ ·Σ1

J∆′(τ11) ∆
′ ·Σ11⊕∆

′ ·Σ12 ∆′(τ12)K. Notice that ∆′•Σ = ∆′•⌉Σ1⌈
∞ ⊔∆′•([Σ11/x]Σ2)⊔∆′•([Σ12/x]Σ3).

If ∆′•⌉Σ1⌈
∞ = ∞ then the result is trivial and holds immediately. Let us suppose that ∆′•⌉Σ1⌈

∞ = 0,
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then this means that ∆′·Σ1 = 0, i.e. either v11 = inl v ′11 and v12 = inl v ′12, or v11 = inr v ′11 and
v12 = inr v ′12.
Let us suppose that (v11,v12) = (inl v ′11, inl v ′12) (the case (v11,v12) = (inr v ′11, inr v ′12) is analo-
gous). By Lemma C.1 ∆′·Σ1 + ∆

′·Σ11 = ∆′·(Σ1 + Σ11), then (v ′11,v ′12) ∈ V
k−j1
∆′ ·(Σ1+Σ11)J∆

′(τ11)K.
Also, by induction hypothesis on Γ, x : τ11;∆ + (∆·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2, by choosing
∆′+ (∆′·(Σ1+Σ11))x ⊑ ∆+ (∆·(Σ1+Σ11))x , (γ1[x 7→ v ′12],γ2[x 7→ v ′22]) ∈ G

k−j1
∆′+(∆′ ·(Σ1+Σ11))x JΓ, x : τ11K

(note that x < dom(Σ1) ∪ dom(Σ11), therefore (∆′ + (∆′·(Σ1 + Σ11))x )(τ11) = ∆′(τ11)) we know that
(γ1[x 7→ v ′12] ⊢ e2,γ2[x 7→ v ′22] ⊢ e2) ∈ E

k−j1
(∆′+(∆′ ·(Σ1+Σ11))x )•Σ2

J(∆′ + (∆′·(Σ1 + Σ11))x )(τ2)K.
But ∆′·Σ1 = 0, therefore (∆′+ (∆′·(Σ1 +Σ11))x )•Σ2 = (∆′+ (∆′·Σ11)x )•Σ2, and ∆′·(Σ1 +Σ11) = ∆′·Σ11,
and by Lemma C.2 and because ∆′·Σ11 ∈ sens, then (∆′ + (∆′·Σ11)x )(τ2) = (∆′·Σ11)x (∆′(τ2)), and by
Lemma 7.5 (∆′·Σ11)x (∆′(τ2)) = ∆′([Σ11/x]τ2).
Then by weakening lemma C.10 we know that
(γ1[x 7→ v ′12] ⊢ e2,γ2[x 7→ v ′22] ⊢ e2) ∈ E

k−j1
(∆′+(∆′ ·Σ11)x )•Σ2

J∆′([Σ11/x]τ2)K. Notice that by Lemma C.8,
Σ2 <: Σ2⊔Σ3, and then by Lemma C.13 (∆′+(∆′·Σ11)x )•Σ2 <: (∆′+(∆′·Σ11)x )•Σ2⊔(∆′+(∆′·Σ12)x )•Σ3.
Also by Lemma C.9 [Σ11/x]τ2 <: [Σ11/x]τ2 ⊔ [Σ12/y]τ3, therefore by Lemma C.6, ∆′([Σ11/x]τ2) <:
∆′([Σ11/x]τ2 ⊔ [Σ12/y]τ3). Once again by Lemma C.10, (γ1[x 7→ v ′12] ⊢ e2,γ2[x 7→ v ′22] ⊢ e2) ∈
E
k−j1
∆′•Σ

J∆′(τ )K (3). The result follows by Lemma C.15.
◁

Case (3) Γ ; ∆ ⊢ return e1 : [�/Ûx]τ ; FP∞(Ûx ), where Ûx = FV(e1) ∪ dom(Σ1)

Subproof. We use notation FP∞(e1) to stand for FP∞(Ûx ). We have to prove that for any k , ∀(γ1,γ2) ∈
Gk∆′JΓK and ∆′ ⊑ ∆, (γ1 ⊢ return e1,γ2 ⊢ return e1) ∈ Ek∆′•(⌉Σ1 ⌈∞+FP∞(e1))J∆

′([�/Ûx]τ )K.
Note that ∆′•FP∞(Ûx ) is either∞ or 0. If ∆′•FP∞(Ûx ) = ∞ then the result is direct by Lemma C.14. Let
us assume that ∆′•FP∞(Ûx ) = ∑

p∈cod (FP∞(Ûx )) p = (0, 0).
By induction hypothesis on Γ;∆ ⊢ e1 : τ ; Σ1, we know that (γ1 ⊢ e1,γ2 ⊢ e1) ∈ E∆′ ·Σ1J∆′(τ )K, i.e. if
γ1 ⊢ e1 ⇓

j v1, then γ2 ⊢ e1 ⇓∗ v2 and (v1,v2) ∈ Vk−j
∆′ ·Σ1

J∆′(τ )K. Notice that ⌉Σ1⌈
∞ = 0 and FP∞(e1) = 0,

then FV(e) = �. This means that by Lemma C.16 v1 = v2.

Let D1 = λx .

ß
1 when x = v1
0 otherwise and D2 = λx .

ß
1 when x = v2
0 otherwise . We have to prove

that D1(S) ≤ D2(S). If v1 < S then the result is trivial as D1(S) = 0 and 0 ≤ D2(S) . Let us suppose
that v1 ∈ S , then as v1 = v2, we also know that v2 ∈ S , thus D1(S) = 1, and D2(S) = 1, so the result
holds.

◁

Case (4) Γ ; ∆ ⊢ x : τ1←e1 ; e2 : [�/x]τ2 ; Σ1 + Σ2

Subproof. We have to prove that for any k , ∀(γ1,γ2) ∈ Gk∆′JΓK, for ∆
′ ⊑ ∆ it holds that

(γ1 ⊢ x : τ1←e1 ; e2,γ2 ⊢ x : τ1←e1 ; e2) ∈ Ek∆′ ·(Σ1+[�/x ]Σ2)J∆
′([�/x]τ2)K.

By induction hypothesis on Γ ; ∆ ⊢ e1 : τ1 ; Σ1, we know that
(γ1 ⊢ e1,γ2 ⊢ e1) ∈ Ek∆′ ·Σ1

J∆′(τ1)K, i.e. let (ϵ1, δ1) = ∆′·Σ1, ∀S ⊆ val(∗), for k ′ < k , if γ1 ⊢ e1 ⇓k
′

D1
then γ2 ⊢ e1 ⇓∗ D2, and D1(S) ≤ eϵ1D2(S) + δ1 (notice k ′ > 0).
Similarly, by induction hypothesis on Γ, x : τ1 ; ∆ + 0x ⊢ e2 : τ2 ; Σ2, for all (γ ′1j ,γ ′2j ) ∈ G

k−k ′j
∆′+0x JΓ, x :

τ1K, for some k ′′j < k −k ′ and ∆′ + 0x ⊑ ∆+ 0x , we know that (γ ′1j ⊢ e2,γ ′2j ⊢ e2) ∈ Ek−k
′

(∆′+0x )•Σ2
J(∆′ +

0x )(τ2)K. Let k ′′ = max(k ′′j ). Notice that by Lemma 7.4, (∆′ + 0x )·Σ2 = ∆′·([�/x]Σ2) as x < dom(∆′),
and that by Lemma 7.3, (∆′ + 0x)(τ2) = ∆′([�/x]τ2). Then let (ϵ2, δ2) = ∆′·[�/x]Σ2, ∀S ′ ∈ val , if
γ ′1j ⊢ e2 ⇓

k ′′ D ′1j then γ ′2j ⊢ e2 ⇓∗ D ′2, and D ′1j (S) ≤ eϵ2D ′2j (S) + δ2.
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Letdval = {v | D1(v) > 0}∪{v | D2(v) > 0} ⊆ val (τ1/Γ). LetD ′′i = λx .
∑
v j ∈dval Di (v j )×D ′i j (x ).We

have to prove then that ∀S ′ ∈ val (∗), let (ϵ1 +ϵ2, δ1 +δ2) = ∆′·Σ1 +∆
′·[�/x]Σ2 = ∆′·(Σ1 + [�/x]Σ2)

D ′′1 S
′ ≤ eϵ1+ϵ2 (D ′′2 S ′) + δ1 + δ2∑

v1∈S ′ D
′′
1 (v1) ≤ eϵ1+ϵ2 (

∑
v2∈S ′ D

′′
2 (v2)) + δ1 + δ2∑

v1∈S ′
∑
v j ∈dval D1(v j ) × D ′1j (v1) ≤ eϵ1+ϵ2 (

∑
v2∈S ′

∑
v j ∈dval D2(v j ) × D ′2j (v2)) + δ1 + δ2

As k − k ′ < k , by induction hypothesis (v j ,v j ) ∈ Vk−k ′
0 Jτ1/ΓK (notice that k ′ > 0 as values are

not privacy expressions), but τ1/Γ = ∆�(τ1), and by weakening lemmas C.11, and C.10 (γ1,γ2) ∈
Gk−k

′

∆′ JΓK, then we can choose (γ ′1j ,γ ′2j ) = (γ1[x 7→ v j ],γ2[x 7→ v j ]) and know that that, for all j,∑
v1∈S ′ D

′
1j (v1) ≤ eϵ2 (

∑
v2∈S ′ D

′
2j (v2)) + δ2. Also notice that

∑
v1∈S ′ D

′
1j (v1) is a probability therefore∑

v1∈S ′ D
′
1j (v1) ≤ min(eϵ2 (

∑
v2∈S ′ D

′
2j (v2)) + δ2, 1) ≤ min(eϵ2 (

∑
v2∈S ′ D

′
2j (v2)), 1) + δ2. Then∑

v1∈S ′
∑
v j ∈dval D1(v j ) × D ′1j (v1)

=
∑
v j ∈dval D1(v j ) × (

∑
v1∈S ′ D

′
1j (v1))

≤
∑
v j ∈dval D1(v j ) × (min(eϵ2 (

∑
v2∈S ′ D

′
2j (v2)), 1) + δ2)

= (
∑
v j ∈dval D1(v j ) ×min(eϵ2 (

∑
v2∈S ′ D

′
2j (v2)), 1)) + (

∑
v j ∈dval D1(v j ) × δ2)

≤
∑
v j ∈dval D1(v j ) ×min(eϵ2 (

∑
v2∈S ′ D

′
2j (v2)), 1) + δ2

Let S = dval , then we know that
∑
v j ∈dval D1(v j ) ≤ eϵ1 (

∑
v j ∈dval D2(v j )) + δ1.

Let µv = (D1(v) − eϵ1D2(v))+ (notice that µv is not necessarily a measure) and T1 = {v ∈ dval |
D1(v) − eϵ1D2(v) > 0}, then: ∑

v ∈dval µv
=
∑
v ∈dval (D1(v) − eϵ1D2(v))+

=
∑
v ∈T1 D1(v) − eϵ1D2(v)

≤ δ1 (By def. of (ϵ1, δ1)-dp)

Finally, ∑
v j ∈dval D1(v j ) ×min(eϵ2 (

∑
v1∈S ′ D

′
2j (v1)), 1) + δ2

=
∑
v j ∈dval (e

ϵ1D2(v) + µv ) ×min(eϵ2 (
∑
v1∈S ′ D

′
2j (v1)), 1) + δ2

≤
∑
v j ∈dval (e

ϵ1D2(v) × eϵ2
∑
v1∈S ′ D

′
2j (v1) +min(eϵ2 (

∑
v1∈S ′ D

′
2j (v1)), 1)µv ) + δ2

=
∑
v1∈S ′

∑
v j ∈dval e

ϵ1+ϵ2D2(v) × D ′2j (v1) + (
∑
v j ∈dval min(eϵ2 (

∑
v1∈S ′ D

′
2j (v1)), 1)µv + δ2

≤ eϵ1+ϵ2 (
∑
v1∈S ′

∑
v j ∈dval (D2(v) × D ′2j (v1)) + (

∑
v j ∈dval µv ) + δ2

≤ eϵ1+ϵ2 (
∑
v1∈S ′

∑
v j ∈dval (D2(v) × D ′2j (v1)) + δ1 + δ2

and the result holds. ◁

□

Theorem C.18 (Sensitivity Type Soundness at Base Types). If �;� ⊢ e : (x : R·∞) sx
−−→ R ; �,

|r1 − r2 | ≤ s ′, � ⊢ e r1 ⇓ r
′
1, � ⊢ e r2 ⇓ r

′
2, then |r

′
1 − r

′
2 | ≤ ss ′

Proof. We know that � ⊢ e : (x : R·∞) sx
−−→ R ; � therefore by the Fundamental Property

(Theorem C.17), using γ1 = � and γ2 = �, then (� ⊢ e,� ⊢ e) ∈ Ek0 J(x : R·∞) sx
−−→ RK, i.e. if

� ⊢ e ⇓j1 ⟨λx . e ′,γ ⟩ then (⟨λx . e ′,γ ⟩, ⟨λx . e ′,γ ⟩) ∈ Vk−j1
0 J(x : R) sx

−−→ RK, for some k > j1.
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We know that � ⊢ e r1 ⇓
k ′ r1

′, and � ⊢ e r2 ⇓
k ′ r2

′, for some k ′ = j1 + j2, and k > j1 + j2 , i.e.
app
� ⊢ e ⇓j1 ⟨λx . e ′,γ ⟩ γ [x 7→ ri ] ⊢ e ′ ⇓j2 r ′i

� ⊢ e ri ⇓
k ′ r ′i

for some γ and Γ such that Γ, x : R ⊢ e ′ : R; sx , and (γ ,γ ) ∈ Gk−j1−1� JΓK. As |r1 − r2 | ≤ s ′,
then (r1, r2) ∈ Vk−j1−1

s ′ JRK. We instantiate (⟨λx . e ′,γ ⟩, ⟨λx . e ′,γ ⟩) ∈ Vk−j1
0 J(x : R·∞) sx

−−→ RK
with (r1, r2) ∈ Vk−j1−1

s ′ JRK to know that (γ [x 7→ r1] ⊢ e ′,γ [x 7→ r2] ⊢ e ′) ∈ Ek−j1−10+0+ss ′JRK, i.e. if
γ [x 7→ ri ] ⊢ e ′ ⇓j2 r ′i then (r1 ′, r2 ′) ∈ Vk−j1−j2−1

ss ′ JRK, meaning that |r1 ′ − r2 ′ | ≤ ss ′, which is exactly
what we want to prove and the result holds immediately. □

Theorem 7.8 (Privacy Type Soundness at Base Types). If � ⊢ e : (x : R·1)
(ϵ ,δ )x
−−−−−→→ R ; �,

|r1 − r2 | ≤ 1, ∀r , Pr[� ⊢ e r1 ⇓∞ r ] ≤ eϵPr[� ⊢ e r2 ⇓∞ r ] + δ

Proof. We proceed analogously to Theorem C.18. But unfolding the definition of related com-
putations, and using a k big enough so both probabilities are defined (and using the fact that two
real numbers are semantically equivalent for any index). □

D λJ: TYPE SAFETY

In this section we present auxiliary definitions used in Section 7.2, and the proof of type safety.
Non-deterministic sampling big-step semantics of privacy expressions are presented in Figure 31.

We write e ⇓ v , when e ⇓k v for some k . This semantics is coherent with respect to the distribution
semantics of Figure 28, in the following sense:

Lemma D.1 (Coherence of non-deterministic semantics wrt distribution semantics). If
∃k .γ ⊢ e ⇓k D ∧ D (v) > 0 then γ ⊢ e ⇓ v .

Proof. We present a proof sketch for this lemma, illustrating some relevant cases. We proceed
by case analysis and induction in k and the structure of e.
Case (1) e = return e

Subproof. We know that
return
γ ⊢ e ⇓k v ′

return e ⇓k D

where

D = λx .

ß
1 when x = v ′

0 otherwise

Let v such that D (v) > 0; this means that v = v ′, and γ ⊢ e ⇓ v , Then
return
γ ⊢ e ⇓ v

return e ⇓ v

and the result holds. ◁

Case (2) e = x : τ1 ← e1 ; e2

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: January 2023.



90 Matías Toro, David Darais, Chike Abuah, Joseph P. Near, Damián Árquez, Federico Olmedo, and Éric Tanter

Subproof. We know that
bind
γ ⊢ e1 ⇓

k ′ D1 ∀vi ∈ Sup(D1),γ [x 7→ vi ] ⊢ e2 ⇓ki D2i

γ ⊢ x : τ1 ← e1 ; e2 ⇓k
′+maxiki D

where D = λx .
∑
vi ∈Sup(D1) D1(vi )·D2i (x ).

Let v such that D (v) > 0, then it must be the case that for some vj ∈ Sup(D1), D1(vj )·D2j (v) > 0,
i.e. D1(vj ) > 0 and D2j (v) > 0. By induction hypothesis in k ′ < k (note that every probabilistic
expression takes at least one step of reduction), as D1(vj ) > 0, we know that γ ⊢ e1 ⇓ vj . Also
as γ [x 7→ vj ] ⊢ e2 ⇓kj D2j , then by induction hypothesis in ki < k , as D2j (v) > 0, we know that
γ [x 7→ vj ] ⊢ e2 ⇓ v , thus

case-left
γ ⊢ e1 ⇓ v1 γ [x 7→ v1] ⊢ e2 ⇓ v

γ ⊢ x : τ1 ← e1 ; e2 ⇓ v

and the result holds. ◁

Case (3) e = case e1 of {x ⇒ e2} {x ⇒ e3}

Subproof. We know that
case-left
γ ⊢ e1 ⇓

k1 inl v1 γ [x 7→ v1] ⊢ e2 ⇓k2 D
γ ⊢ case e of {x ⇒ e2} {x ⇒ e3} ⇓

k1+k2 D

Let v such that D (v) > 0. By induction hypothesis in e2 on γ [x 7→ v1] ⊢ e2 ⇓k2 D , then we know
that γ [x 7→ v1] ⊢ e2 ⇓ v , thus

case-left
γ ⊢ e1 ⇓ inl v1 γ [x 7→ v1] ⊢ e2 ⇓ v
γ ⊢ case e1 {x ⇒ e2} {x ⇒ e3} ⇓ v

and the result holds. ◁

□

Thus, type safety of the non-deterministic semantics implies type safety for the distribution
semantics.8
The type safety logical relation is defined in Figure 32. Its definition is straightforward, split

into a value relationV , a computation relation E, and an environment relation G. As usual, the
fundamental property of the type safety logical relation states that well-typed open terms are in
the relation closed by an adequate environment γ :9

Proposition D.1 (Fundamental Property of the Type Safety Logical Relation).
(a) Let Γ; Σ0 ⊢ e : τ ; Σ, and γ ∈ GJΓK. Then γ ⊢ e ∈ EJτ/ΓK.
(b) Let Γ; Σ0 ⊢ e : τ ;Σ, and γ ∈ GJΓK. Then γ ⊢ e ∈ EJτ/ΓK.

8The other direction γ ⊢ e ⇓ v =⇒ ∃k .γ ⊢ e ⇓k D ∧ D (v ) > 0 would establish soundness of the non-deterministic se-
mantics; given that the language does not feature recursion, we believe that it holds, although this is left for future
work.
9We use the following operators to remove variables from a type:
τ /Γ = [�/x1, ..., �/xn ]τ , ∀xi ∈ dom(Γ) and τ /γ = [�/x1, ..., �/xn ]τ , ∀xi ∈ dom(γ ).
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return
γ ⊢ e ⇓ v

return e ⇓ v

bind
γ ⊢ e1 ⇓ v1 γ [x 7→ v1] ⊢ e2 ⇓ v2

γ ⊢ x : τ1 ← e1 ; e2 ⇓ v2

gauss
r ∈ R

γ ⊢ gauss µ σ 2 ⇓ r

if-true
γ ⊢ e1 ⇓ true γ ⊢ e2 ⇓ v2

γ ⊢ if e1 then {e2} else {e3} ⇓ v2

if-false
γ ⊢ e1 ⇓ false γ ⊢ e3 ⇓ v3

γ ⊢ if e1 then {e2} else {e3} ⇓ v3

case-left
γ ⊢ e ⇓ inl v γ [x 7→ v] ⊢ e2 ⇓ v2
γ ⊢ case e {x ⇒ e2} {x ⇒ e3} ⇓ v2

case-right
γ ⊢ e ⇓ inr v γ [x 7→ v] ⊢ e3 ⇓ v3
γ ⊢ case e {x ⇒ e2} {x ⇒ e3} ⇓ v3

app
γ ⊢ e1 ⇓ ⟨λx : τ ·s . e′,γ ′⟩ γ ⊢ e2 ⇓ v γ ′[x 7→ v] ⊢ e′ ⇓ v ′

γ ⊢ e1 e2 ⇓ v
′

Fig. 31. Non-deterministic sampling semantics for privacy expressions

�;� ⊢ v : τ ′;� τ ′ <: τ
v ∈ AtomJτ K

dom(Γ) = dom(γ ) ∀x ∈ dom(γ ). γ (x ) ∈ VJΓ(x )/ΓK
γ ∈ GJΓK

r ∈ AtomJRK

r ∈ VJRK

tt ∈ AtomJunitK

tt ∈ VJunitK

inlτ
′
2 v ∈ AtomJτ1 �⊕� τ2K v ∈ VJτ1K

inlτ
′
2 v ∈ VJτ1 �⊕� τ2K

inrτ
′
1 v ∈ AtomJτ1 �⊕� τ2K v ∈ VJτ2K

inrτ
′
1 v ∈ VJτ1 �⊕� τ2K

⟨λ
s
x : τ ·s ′.e,γ ⟩ ∈ AtomJ(x : τ1·s ′)

sx
−−→ τ2K ∀v ∈ VJτ1K.γ [x 7→ v] ⊢ e ∈ EJτ2/(x : τ1)K

⟨λ
s
x : τ1·s ′.e,γ ⟩ ∈ VJ(x : τ1·s ′)

sx
−−→ τ2K

⟨λ
p
x : τ ·s .e,γ ⟩ ∈ AtomJ(x : τ1·s)

Σ
−→→ τ2K ∀v ∈ VJτ1K.γ [x 7→ v] ⊢ e ∈ EJτ2/(x : τ1)K

⟨λ
p
x : τ1·s .e,γ ⟩ ∈ VJ(x : τ1·s)

Σ
−→→ τ2K

γ ⊢ e ⇓ v v ∈ VJτ K

γ ⊢ e ∈ EJτ K

∀v,γ ⊢ e ⇓ v =⇒ v ∈ VJτ K

γ ⊢ e ∈ EJτ K

Fig. 32. λJ: Type Safety Logical Relation

Proof. (a) Sensitivity FP. We proceed by induction on Γ; Σ0 ⊢ e : τ ; Σ.
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First, to deal with the cases of sensitivity and privacy functions, we give the typing rules for
sensitivity and privacy closures below:

s-closure
∃Γ′, Σ′0,dom(Σ′′) ⊆ dom(Γ′) ⊆ dom(Σ′0)

∀xi ∈ dom(Γ′),�;� ⊢ γ (xi ) : τ ′i , τ ′i <: Γ′(xi );� Γ′, x : τ1; Σ′0 + s1x ⊢ e ′ : τ2 ; Σ′′ + s ′x

Γ; Σ0 ⊢ ⟨λ
s (x : τ1·s1). e ′,γ ⟩ : (x : τ1/Γ′·s1)

s ′x
−−→ τ2/Γ

′ ; �

p-closure
∃Γ′, Σ′0,dom(Σ′′) ⊆ dom(Γ′) ⊆ dom(Σ′0)

∀xi ∈ dom(Γ′),�;� ⊢ γ (xi ) : τ ′i , τ ′i <: Γ′(xi );� Γ′, x : τ1; Σ′0 + s1x ⊢ e′ : τ2 ; Σ′′

Γ; Σ0 ⊢ ⟨λ
p (x : τ1·s1). e′,γ ⟩ : (x : τ1/Γ′·s1)

Σ′′/Γ′

−−−−→→ τ2/Γ
′ ; �

Case (1) Γ; Σ0 ⊢ x : Γ(x );x
Subproof. By γ ∈ GJΓK, we know that γ (x) ∈ VJΓ(x)/ΓK . By inspection of the evaluation rules,
we know that γ ⊢ x ⇓ γ (x ). We have to prove that γ (x ) ∈ VJΓ(x )/ΓK, which we already know and
the result holds. ◁

Case (2) Γ; Σ0 ⊢ r : R;�
Subproof. Trivial as �;� ⊢ r : R;�. ◁

Case (3) Γ; Σ0 ⊢ tt : unit;�
Subproof. Trivial as �;� ⊢ tt : unit;�. ◁

Case (4) Γ; Σ0 ⊢ e1 e2 : τ ; Σ
Subproof. By s-app we know that

s-app
Γ ; Σ0 ⊢ e1 : (x : τ1·s1)

Σ′+s2x
−−−−−→ τ2 ; Σ1 Γ ; Σ0 ⊢ e2 : τ1 ; Σ2 Σ0·Σ2 ≤ s1

Γ ; Σ0 ⊢ e1 e2 : [Σ2/x]τ2 ; Σ1 + s2Σ2 + Σ′

where τ = [Σ2/x]τ2, and Σ = Σ1 + s2Σ2 + Σ′. By induction hypotheses we know that γ ⊢ e1 ⇓ v1,
γ ⊢ e2 ⇓ v2, v1 ∈ VJ(x : τ1/Γ·s1)

s2x
−−→ τ2/ΓK and v2 ∈ VJτ1/ΓK.

By inspection of the function predicate, we know that v1 ∈ AtomJ(x : τ1/Γ·s1)
s2x
−−→ τ2/ΓK and

v1 = ⟨λ
s (x : τ ′1 ·s ′1). e ′,γ ′⟩, for some τ ′1, s ′1, e ′ and γ ′. We also know then that γ ′[x 7→ v2] ⊢ e ′ ∈

EJτ2/(Γ, x : τ1)K, i.e. γ ′[x 7→ v2] ⊢ e ′ ⇓ v ′ and [Σ2/x]τ2/Γ = [(Σ2/Γ)/x](τ2/Γ) = [�/x](τ2/Γ) =
τ2/(Γ, x : τ1), but v ′ ∈ VJτ2/(Γ, x : τ1)K and the result holds. ◁

Case (5) Γ; Σ0 ⊢ λ
s (x : τ1·s). e ′ : (x : τ1·s)

Σ′

−→ τ2;�
Subproof. We know that

s-lam
Γ, x : τ1 ; Σ0 + sx ⊢ e

′ : τ2 ; Σ′

Γ ; Σ0 ⊢ λ
s (x : τ1·s). e ′ : (x : τ1·s)

Σ′

→ τ2 ; �

We know that γ ⊢ λs (x : τ1·s). e ′ ⇓ ⟨λ
s (x : τ1·s). e ′,γ ⟩. We have to prove that ⟨λs (x : τ1·s). e ′,γ ⟩ ∈

VJ((x : τ1·s)
Σ′

−→ τ2)/ΓK. Suppose Σ′ = Σ′′ + s ′x , then ((x : τ1·s)
Σ′

−→ τ2)/Γ = (x : τ1/Γ·s)
s ′x
−−→ (τ2/Γ).

First, we have to prove that, ⟨λs (x : τ1·s). e ′,γ ⟩ ∈ AtomJ(x : τ1/Γ·s)
s ′x
−−→ (τ2/Γ)K, i.e. that

∃Γ′, Σ′0,dom(Σ′′) ⊆ dom(Γ′) ⊆ dom(Σ′0),∀xi ∈ dom(Γ′),�;� ⊢ γ (xi ) : τ ′i , τ ′i <: Γ′(xi );�, Γ′, and
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x : τ1; Σ′0 + sx ⊢ e ′ : τ2 ; Σ′′ + s ′x . We prove this by choosing Γ′ = Γ, Σ′0 = Σ0, and Σ′′ + s ′x = Σ′:

∀xi ∈ dom(Γ),�;� ⊢ γ (xi ) : τ ′i , τ ′i <: Γ(xi );� Γ, x : τ1; Σ0 + s1x ⊢ e
′ : τ2 ; Σ′′ + s ′x

Γ; Σ0 ⊢ ⟨λ
s (x : τ1·s1). e ′,γ ⟩ : (x : τ1/Γ′·s1)

s ′x
−−→ τ2/Γ

′ ; �

Then we have prove that ∀v ′ ∈ VJτ1/ΓK,γ [x 7→ v ′] ⊢ e ′ ∈ EJτ2/(Γ, x : T1)K. By induction
hypothesis on Γ, x : τ1 ; Σ0 + sx ⊢ e ′ : τ2 ; Σ′, we know that for any γ ′ ∈ GJΓ, x : τ1K, γ ′ ⊢
e ′ ∈ EJτ2/(Γ, x : τ1)K. As γ ∈ GJΓK and v ′ ∈ VJτ1/(Γ, x : τ1)K (τ1/Γ = τ1/(Γ, x : τ1)), then
γ [x 7→ v ′] ∈ GJΓ, x : τ1K, so we pick γ ′ = γ [x 7→ v ′] and the result holds. ◁

Case (6) Γ; Σ0 ⊢ λ
p (x : τ1·s). e′ : (x : τ1·s)

Σ′

−−→→ τ2;�
Subproof. We know that

p-lam
Γ, x : τ1 ; Σ0 + sx ⊢ e

′ : τ2 ; Σ′

Γ ; Σ0 ⊢ λ
p (x : τ1·s). e′ : (x : τ1·s)

Σ′

→ τ2 ; �

We know that γ ⊢ λp (x : τ1·s). e′ ⇓ ⟨λ
p (x : τ1·s). e′,γ ⟩. We have to prove that ⟨λp (x : τ1·s). e′,γ ⟩ ∈

VJ((x : τ1·s)
Σ′

−−→→ τ2)/ΓK. Then ((x : τ1·s)
Σ′

−−→→ τ2)/Γ = (x : τ1/Γ·s)
Σ′/Γ
−−−→→ (τ2/Γ).

First, we have to prove that, ⟨λp (x : τ1·s). e′,γ ⟩ ∈ AtomJ(x : τ1/Γ·s)
Σ′/Γ
−−−→→ (τ2/Γ)K, i.e. that

∃Γ′, Σ′0,dom(Σ′′) ⊆ dom(Γ′) ⊆ dom(Σ′0),∀xi ∈ dom(Γ′),�;� ⊢ γ (xi ) : τ ′i , τ ′i <: Γ′(xi );�, Γ′, and
x : τ1; Σ′0 + sx ⊢ e′ : τ2 ; Σ′. We prove this by choosing Γ′ = Γ, Σ′0 = Σ0:

∀xi ∈ dom(Γ),�;� ⊢ γ (xi ) : τ ′i , τ ′i <: Γ(xi );� Γ, x : τ1; Σ0 + s1x ⊢ e
′ : τ2 ; Σ′

Γ; Σ0 ⊢ ⟨λ
p (x : τ1·s1). e′,γ ⟩ : (x : τ1/Γ·s1)

Σ′/Γ
−−−→→ τ2/Γ ; �

Then we have prove that ∀v ′ ∈ VJτ1/ΓK,γ [x 7→ v ′] ⊢ e
′ ∈ EJτ2/(Γ, x : τ1)K. By induction

hypothesis on Γ, x : τ1 ; Σ0 + sx ⊢ e
′ : τ2 ; Σ′, we know that for any γ ′ ∈ GJΓ, x : τ1K, γ ′ ⊢ e′ ∈

EJτ2/(Γ, x : τ1)K. As γ ∈ GJΓK and v ′ ∈ VJτ1/(Γ, x : τ1)K (τ1/Γ = τ1/(Γ, x : τ1)) γ [x 7→ v ′] ∈ GJΓ, x :
τ1K, so we pick γ ′ = γ [x 7→ v ′] and the result holds. ◁

Case (7) Γ ; Σ0 ⊢ inl
τ2 e ′ : τ1 Σ⊕� τ2 ; �

Subproof. We know that
inl

Γ ; Σ0 ⊢ e
′ : τ1 ; Σ

Γ ; Σ0 ⊢ inl
τ2 e ′ : τ1 Σ⊕� τ2 ; �

By induction hypothesis on Γ ; Σ0 ⊢ e
′ : τ1 ; Σ we know that γ ⊢ e ′ ⇓ v ′ and v ′ ∈ VJτ1/ΓK.

As γ ⊢ inlτ2 e ′ ⇓ inlτ2/γv ′, we have to prove that inlτ2/γv ′ ∈ VJ(τ1 Σ⊕� τ2)/ΓK. Notice that
(τ1 Σ⊕� τ2)/Γ = (τ1/Γ �⊕� τ2/Γ, and that τ2/γ = τ2/Γ Then we have to prove that inlτ2/Γv ′ ∈
VJτ1/Γ �⊕� τ2/ΓK, which is direct as we already know that v ′ ∈ VJτ1/ΓK. ◁

Case (8) Γ ; Σ0 ⊢ inr
τ1 e ′ : τ1 Σ⊕� τ2 ; �

Subproof. Analogous to the inlτ2 e ′ case. ◁

Case (9) Γ ; Σ0 ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} : [Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3 ; ((s2 ∗ Σ1 +
s2Σ11 + Σ2) ⊔ (s3 ∗ Σ1 + s3Σ12 + Σ3))
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Subproof. We know that
s-case

Γ ; Σ0 ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1 Γ, x : τ11 ; Σ0 + (Σ0·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2 + s2x
Γ,y : τ12 ; Σ0 + (Σ0·(Σ1 + Σ12))x ⊢ e3 : τ3 ; Σ3 + s3y

Γ ; Σ0 ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} :
[Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3 ; ((s2 ∗ Σ1 + s2Σ11 + Σ2) ⊔ (s3 ∗ Σ1 + s3Σ12 + Σ3))

where τ = [Σ11/x]τ2 ⊔ [Σ12/y]τ3.
By induction hypothesis on Γ ; Σ0 ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1, we know that γ ⊢ e1 ⇓ v1 and
v1 ∈ VJτ11/Γ �⊕� τ12/ΓK (Σ1i/Γ = �). Then either v1 = inlτ12/Γ v11, or v1 = inlτ11/Γ v12. Let us
suppose v1 = inlτ12/Γ v11 (the other case is similar), then inlτ12/Γ v11 ∈ VJτ11/Γ �⊕� τ12/ΓK, and
thus v11 ∈ VJτ11/ΓK.
Then by induction hypothesis on Γ, x : τ11 ; Σ0 + (Σ0·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2 + s2x , we know that
γ [x 7→ v11] ⊢ e2 ∈ EJτ/ΓK, therefore γ ⊢ e2 ⇓ v2 and v2 ∈ VJτ2/(Γ, x : τ11)K.
Then by inspection of the evaluation semantics for p-case, γ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} ⇓
v2 and we have to prove that v2 ∈ VJ([Σ1 + Σ11/x]τ2 ⊔ [Σ1 + Σ12/y]τ3K)/Γ. But ([Σ1 + Σ11/x]τ2 ⊔
[Σ1 + Σ12/y]τ3K)/Γ = (τ2 ⊔ τ3K)/(Γ, x : τ11). The result follows from weakening lemma D.2. ◁

(b) Privacy FP. We proceed by induction on Γ; Σ0 ⊢ e : τ1;Σ.
Case (1) Γ ; Σ0 ⊢ return e : [�/Ûx]τ1 ; ⌉Σ1⌈

∞ + FS∞(τ1)
Subproof. By return we know that

return
Γ ; Σ0 ⊢ e1 : τ1 ; Σ1 Ûx = FV(FS(τ1))

Γ ; Σ0 ⊢ return e1 : [�/Ûx]τ1 ; ⌉Σ1⌈
∞ + FS∞(τ1)

where τ = [�/Ûx]τ , and Σ = ⌉Σ1⌈
∞ + FS∞(τ1). By induction hypotheses we know that γ ⊢ e1 ⇓ v1,

and v1 ∈ VJτ1/ΓK.
By inspection of the evaluation semanticsγ ⊢ return e1 ⇓ v1. Notice that Ûx ⊆ Γ, then ([�/Ûx]τ1)/Γ =
τ1/Γ, and as v1 ∈ VJτ1/ΓK the result holds immediately. ◁

Case (2) Γ ; Σ0 ⊢ x : τ1 ← e1 ; e2 : [�/x]τ2 ; Σ1 + Σ2

Subproof. By bind we know that
bind
Γ ; Σ0 ⊢ e1 : τ1 ; Σ1 Γ, x : τ1 ; Σ0 + 0x ⊢ e2 : τ2 ; Σ2

Γ ; Σ0 ⊢ x : τ1 ← e1 ; e2 : [�/x]τ2 ; Σ1 + [�/x]Σ2

where τ = [�/x]τ2, andΣ = Σ1+[�/x]Σ2. By induction hypothesis on Γ ; Σ0 ⊢ e1 : τ1 ; Σ1, we know
thatγ ⊢ e1 ∈ EJτ1/ΓK, therefore for allv1 such thatγ ⊢ e1 ⇓ v1 it follows thatv1 ∈ VJτ1/ΓK. Also, by
induction hypothesis on Γ, x : τ1 ; Σ0+0x ⊢ e2 : τ2 ; Σ2, we know that γ [x 7→ v1] ⊢ e2 ∈ EJτ2/(Γ, x :
τ1)K, therefore for all v2 such that γ [x 7→ v1] ⊢ e2 ⇓ v2 it follows that v2 ∈ VJτ2/(Γ, x : τ1)K.
Then, we have to prove that for all v2 such that γ ⊢ x : τ1 ← e1 ; e2 ⇓ v2 it follows that
v2 ∈ VJ([�/x]τ2)/ΓK. Let us fix v2. By inspection of the evaluation semantics for bind, we know
that there exist v1 such that γ ⊢ e1 ⇓ v1 and γ [x 7→ v1] ⊢ e2 ⇓ v2. But we know that for all
v1 and v2 such that γ ⊢ e1 ⇓ v1 and γ [x 7→ v1] ⊢ e2 ⇓ v2, it follows that v1 ∈ VJτ1/ΓK and
v2 ∈ VJτ2/(Γ, x : τ1)K. Finally, notice that ([�/x]τ2)/Γ = τ2/(Γ, x : τ1) and the result holds.

◁

Case (3) Γ ; Σ0 ⊢ gauss µ σ 2 : R ; �
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Subproof. By gauss we know that
gauss

Γ ; Σ0 ⊢ γ ⊢ gauss µ σ 2 : R ; �

we know that γ ⊢ gauss µ σ 2 ⇓ r , for some r . But r ∈ VJRK and the result holds. ◁

Case (4) Γ ; Σ0 ⊢ i f e1 {e2} {e3} : τ ; ⌉Σ1⌈
∞ ⊔ (Σ2 ⊔ Σ3)

Subproof. By if we know that
if
Γ ; Σ0 ⊢ e1 : B ; Σ1 Γ ; Σ0 ⊢ e2 : τ ; Σ2 Γ ; Σ0 ⊢ e3 : τ ; Σ3

Γ ; Σ0 ⊢ i f e1 {e2} {e3} : τ ; ⌉Σ1⌈
∞ ⊔ (Σ2 ⊔ Σ3)

where Σ = ⌉Σ1⌈
∞ ⊔ (Σ2 ⊔ Σ3). By induction hypothesis on Γ ; Σ0 ⊢ e1 : B ; Σ1, we know that

γ ⊢ e1 ⇓ v1 and v1 ∈ VJBK. Unfolding booleans as sums we know that v1 ∈ VJunit �⊕� unitK.
Let us assume that v1 = inlunit tt (the other case is analogous). Then by induction hypothesis
on Γ ; Σ0 ⊢ e2 : τ ; Σ2, we know that γ ⊢ e2 ∈ EJτ/ΓK, therefore for all v2 such that γ ⊢ e2 ⇓ v2 it
follows that v2 ∈ VJτ/ΓK.
Then we have to prove that for allv2 such thatγ ⊢ i f e1 {e2} {e3} ⇓ v2 it follows thatv2 ∈ VJτ/ΓK.
Then by inspection of the evaluation semantics for if, we know that if γ ⊢ i f e1 {e2} {e3} ⇓ v2
then γ ⊢ e2 ⇓ v2. Then, the result holds immediately. ◁

Case (5) Γ ; Σ0 ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} : [Σ11/x]τ2 ⊔ [Σ12/y]τ3 ; ⌉Σ1⌈
∞ ⊔ [Σ11/x]Σ2 ⊔

[Σ12/y]Σ3

Subproof. By p-case we know that
p-case

Γ ; Σ0 ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1
Γ, x : τ11 ; Σ0 + (Σ0·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2 Γ,y : τ12 ; Σ0 + (Σ0·(Σ1 + Σ12))y ⊢ e3 : τ3 ; Σ3

Γ ; Σ0 ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} :
[Σ11/x]τ2 ⊔ [Σ12/y]τ3 ; ⌉Σ1⌈

∞ ⊔ [Σ11/x]Σ2 ⊔ [Σ12/y]Σ3

where τ = [Σ11/x]τ2 ⊔ [Σ12/y]τ3, and Σ = ⌉Σ1⌈
∞ ⊔ [Σ11/x]Σ2 ⊔ [Σ12/y]Σ3.

By induction hypothesis on Γ ; Σ0 ⊢ e1 : τ11 Σ11⊕Σ12 τ12 ; Σ1, we know that γ ⊢ e1 ⇓ v1 and
v1 ∈ VJτ11/Γ �⊕� τ12/ΓK (Σ1i/Γ = �). Then either v1 = inlτ12/Γ v11, or v1 = inlτ11/Γ v12. Let us
suppose v1 = inlτ12/Γ v11 (the other case is similar), then inlτ12/Γ v11 ∈ VJτ11/Γ �⊕� τ12/ΓK, and
thus v11 ∈ VJτ11/ΓK.
Then by induction hypothesis on Γ, x : τ11 ; Σ0 + (Σ0·(Σ1 + Σ11))x ⊢ e2 : τ2 ; Σ2, we know that
γ [x 7→ v11] ⊢ e2 ∈ EJτ/ΓK, therefore for allv2 such that γ ⊢ e2 ⇓ v2 it follows thatv2 ∈ VJτ2/(Γ, x :
τ11)K.
Then we have to prove that for all v2 such that γ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} ⇓ v2 it follows
that v2 ∈ VJ([Σ11/x]τ2 ⊔ [Σ12/y]τ3K)/Γ. By inspection of the evaluation semantics for p-case, if
γ ⊢ case e1 of {x ⇒ e2} {y ⇒ e3} ⇓ v2 then γ ⊢ e2 ⇓ v2. Then, by the induction hypothesis we
know that v2 ∈ VJτ2/(Γ, x : τ11)K. But ([Σ11/x]τ2 ⊔ [Σ12/y]τ3K)/Γ = (τ2 ⊔ τ3K)/(Γ, x : τ11). The result
follows from weakening lemma D.2. ◁

Case (6) Γ ; Σ0 ⊢ e1 e2 : [Σ2/x]τ2 ; ⌉Σ1⌈
∞ + [Σ2/x]Σ

Subproof. By p-app we know that
p-app
Γ ; Σ0 ⊢ e1 : (x : τ1·s)

Σ+px
−−−−→→ τ2 ; Σ1 Γ ; Σ0 ⊢ e2 : τ1 ; Σ2 Σ0·Σ2 ≤ s

Γ ; Σ0 ⊢ e1 e2 : [Σ2/x]τ2 ; ⌉Σ1⌈
∞ + [Σ2/x]Σ
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where τ = [Σ2/x]τ2, and Σ = ⌉Σ1⌈
∞ + [Σ2/x]Σ. By induction hypotheses we know that for all

v1 and v2 such that γ ⊢ e1 ⇓ v1, γ ⊢ e2 ⇓ v2, it follows that v1 ∈ VJ(x : τ1/Γ·s1)
Σ/Γ
−−−→→ τ2/ΓK and

v2 ∈ VJτ1/ΓK.
We have to prove that for all v ′ such that γ ⊢ e1 e2 ⇓ v

′ it follows that v ′ ∈ VJ[Σ2/x]τ2/ΓK. By
inspection of the evaluation semantics for p-app, we know that if γ ⊢ e1 e2 ⇓ v

′ then v1 = ⟨λ
p (x :

τ ′1 ·s
′
1). e′,γ ′⟩ and γ ⊢ e2 ⇓ v2, for some τ ′1, s ′1, e′ and γ ′. By inspection of the function predicate,

we know that γ ′[x 7→ v2] ⊢ e′ ∈ EJτ2/(Γ, x : τ1)K, i.e. for all v ′ such that γ ′[x 7→ v2] ⊢ e′ ⇓ v ′ it
follows that v ′ ∈ VJτ2/(Γ, x : τ1)K but [Σ2/x]τ2/Γ = [(Σ2/Γ)/x](τ2/Γ) = [�/x](τ2/Γ) = τ2/(Γ, x : τ1)
and the result holds. ◁

□

Lemma D.2 (Weakening). If v ∈ VJτ K and τ <: τ ′, FV (τ ′) = �, then v ∈ VJτ ′K.

Proof. Straightforward induction on τ such thatVJτ K.
Case (1) τ ∈ {R, unit}
Subproof. Trivial as τ <: τ . ◁

Case (2) τ = (x : τ1·s)P
Σ1
−−→→ τ2

Subproof. Then τ ′ = (x : τ ′1 ·s ′)
Σ′1
−−→→ τ ′2 , for some τ ′1 <: τ1, s ′ ≤ s,Σ1 <: Σ′1, and τ2 <: τ ′2 . We know

that v ∈ VJ(x : τ1·s)
Σ1
−−→→ τ2K and we have to prove that v ∈ VJ(x : τ ′1 ·s ′)

Σ′1
−−→→ τ ′2K. First we have to

prove that v ∈ AtomJ(x : τ ′1 ·s ′)
Σ′1
−−→→ τ ′2K, which is direct.

Supposev = ⟨λpx : τ1·s .e,γ ⟩. Letv ′ ∈ VJτ ′1K, we have to prove that γ [x 7→ v ′] ⊢ e ∈ EJτ ′2K, i.e. that
γ [x 7→ v ′] ⊢ e ⇓ v ′′ and v ′′ ∈ VJτ ′2K. By induction hypothesis we know that v ′ ∈ VJτ1K, and by
v ∈ VJ(x : τ1·s)

Σ1
−−→→ τ2Kwe know that γ [x 7→ v ′] ⊢ e ∈ EJτ2K. This means that γ [x 7→ v ′] ⊢ e ⇓ v ′′

and v ′′ ∈ VJτ2K. But as τ2 <: τ ′2 by induction hypothesis v ′′ ∈ VJτ ′2K and the result holds. ◁

Case (3) τ = (x : τ1·s)
Σ1
−−→ τ2

Subproof. Then τ ′ = (x : τ ′1 ·s ′)
Σ′1
−−→ τ ′2 , for some τ ′1 <: τ1, s ′ ≤ s, Σ1 <: Σ′1, and τ2 <: τ ′2 . We know

that v ∈ VJ(x : τ1·s)
Σ1
−−→ τ2K and we have to prove that v ∈ VJ(x : τ ′1 ·s ′)

Σ′1
−−→ τ ′2K. First we have to

prove that v ∈ AtomJ(x : τ ′1 ·s ′)
Σ′1
−−→ τ ′2K, which is direct.

Supposev = ⟨λpx : τ1·s .e,γ ⟩. Letv ′ ∈ VJτ ′1K, we have to prove that γ [x 7→ v ′] ⊢ e ∈ EJτ ′2K, i.e. that
γ [x 7→ v ′] ⊢ e ⇓ v ′′ and v ′′ ∈ VJτ ′2K. By induction hypothesis we know that v ′ ∈ VJτ1K, and by
v ∈ VJ(x : τ1·s)

Σ1
−−→ τ2K we know that γ [x 7→ v ′] ⊢ e ∈ EJτ2K. This means that γ [x 7→ v ′] ⊢ e ⇓ v ′′

and v ′′ ∈ VJτ2K. But as τ2 <: τ ′2 by induction hypothesis v ′′ ∈ VJτ ′2K and the result holds. ◁

Case (4) τ = τ1 �⊕� τ2
Subproof. Then τ ′ = τ ′1

�⊕� τ ′2 , for some τ1 <: τ ′1 and τ2 <: τ ′2 . We know that v ∈ VJτ1 �⊕� τ2K
and we have to prove that v ∈ VJτ ′1

�⊕� τ ′2K. Suppose v = inlτ
′′
2 v ′ (the other case is analogous).

We know τ ′′2 <: τ2, and as τ2 <: τ ′2 , then τ ′′2 <: τ ′2 . First we have to prove that v ∈ AtomJτ ′1
�⊕� τ ′2K,

which is direct.
We know that v ′ ∈ VJτ1K, then by induction hypothesis we know that v ′ ∈ VJτ ′1K, therefore
inlτ

′′
2 v ′ ∈ VJτ ′1

�⊕� τ ′2K and the result holds. ◁

□

Type safety for open terms follows immediately.
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Corollary D.3 (Type Safety and Normalization of λJ).

(a) Let ⊢ e : τ ;�, then ⊢ e ⇓ v , and ⊢ v : τ ′;�, where τ ′ <: τ .
(b) Let ⊢ e : τ ;�, then ⊢ e ⇓ v , and ⊢ v : τ ′;�, where τ ′ <: τ .

Proof. Direct consequence of Prop D.1. □
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