Studying the properties of polygon meshes built
from Delaunay triangulations

Sergio Salinas!, Nancy Hitschfeld-Kahler?, and Hang Si3

1,2 Computer Science Department, University of Chile
ssalinas@dcc.uchile.cl,nancy@dcc.uchile.cl

3 Weierstrass Institute for Applied Analysis and Stochastics
si@wias-berlin.de

—— Abstract

This paper shows a preliminary study on a new kind of polygon meshes obtained from Delaunay
triangulations. To generate each polygon, the algorithm starts by generating a Delaunay triangu-
lation of a point set; second it builds polygons (simple or not) from terminal-edge regions, third
it transforms each non simple polygon into simple ones, convex or not convex. Both types are

permitted. We analyse which kind of non simple polygons appear and show the algorithm to
divide them into simple ones. Some empirical properties of the resulting meshes are shown.

1 Introduction

Meshes based on triangles and quadrilaterals are common in simulations using Finite Element
Method (FEM). The problem is that polygons(elements) in FEM need to obey specific quality
criteria, such as to avoid too large obtuse angles or too small angles, to have sides of graded
length (aspect ratio criteria), etc. To fulfill these criteria, sometimes the insertion of a large
number of points and elements is required in order to properly model a domain, increasing the
time needed to make the simulation. New methods as Virtual Element Method (VEM) can
use any polygon as basic cell. So, (i) the domain geometry can be fitted using less elements
than if only triangles and quadrilaterals are used, (ii) the required point density distribution
is just the required by the simulation problem, and (iii) it should not be necessary to improve
further the quality of the elements. Currently, it is a research topic how far the VEM can
allow the simulation of more complex problems, both in 2D and 3D, with respect to FEM [5].

In this paper we propose an algorithm to generate meshes with polygons of arbitrary
shape (convex and non-convex) based on the label system described in [2]. These meshes
might contain non-simple polygons, so we also propose an algorithm to repair them using
the maximum area criterion per polygon. At the end, we do an experimentation to show the
properties of these polygons, and compare these meshes with Voronoi meshes.

Our motivation is the generation of meshes that adapt to a geometric domain using
polygons of any shape, but respecting the required point density. To do this, we propose to
use the concept of terminal-edge region. Our main research questions are: Can terminal-edge
regions be adapted to be used as good basic cells for polygon numerical methods? Do these
kind of meshes need less polygons to model the same problem than polygon meshes based in
the Voroni diagrmam?

This paper is organized as follows: Section 2 introduces the basic concepts to understand
the algorithm; in Section 3 there is a brief description of the algorithm divided in 3 main
phases. Section 4 shows a preliminary experimental evaluation of the generated meshes
on random points, some properties of the polygons and a comparison with Voronoi based
meshes. Section 5 shows the ongoing work.

Extended abstract submitted to the 37th European Workshop on Computational Geometry, St. Petersburg, Russia,

April 7-9, 2021. This abstract describes an ongoing work that when it is finished it will be sent to a journal or
conference.

2

3

2 Studying the properties of polygon meshes built from Delaunay triangulations

Figure 1 Terminal-edge regions: Solid lines are frontier-edges, dashed black lines are internal-edges
and red dashed edges are terminal-edges.

2 Preliminaries

The original algorithm is based in two important concepts, Longest-edge propagation path

(Lepp) introduced in [3] and terminal-edge regions defined in [1]. We will use these terminal-
edge regions as initial polygons.

» Definition 2.1. Longest-edge propagation path [3]: For any triangle ¢y, in any
triangulation €2, the Lepp(t) is the ordered list of all the triangles ¢¢ , t1, to, ..., t;—1, t;, such
that t; is the neighbor triangle of ¢;_; by the longest-edge of t;_1, for ¢ = 1,2,...,1. The
longest-edge shared by ;1 and t; is a terminal-edge and ¢;_; and ¢; are terminal-triangles.

» Definition 2.2. Terminal-edge region: A terminal-edge region [1] R is a region formed
by the union of all triangles ¢; such that Lepp(¢;) has the same terminal-edge. In case the
terminal-edge is a boundary-edge the region will be called boundary terminal-edge region.
For an illustration, see Figure 1, each solid line delimits a terminal-edge region.

Given an edge e € () and two triangles t;, to that share e, we can label e as:

Terminal-edge [3], if e is the longest-edge of ¢, and ts.
Frontier-edge, if e is neither the longest-edge of ¢ nor ts.
Internal-edge, if e is the longest edge of ¢; but not of t5 or vice-versa.

For the simplicity, in the case e is a domain boundary edge, e will be considered a frontier-edge
too (see Figure 1). In [1, 2] it was proven that terminal-edge regions cover the whole domain
without overlapping. Non-simple polygons appear when a frontier-edge is shared by two

triangles belonging to the same terminal-edge region. We call this kind of frontier edge a
Barrier-edge.

» Definition 2.3. Barrier-edge tip: A barrier-edge tip in a terminal-edge region R is a
barrier-edge endpoint shared by no other barrier-edge. See Figure 2.

4

5

Sergio Salinas, Nancy Hitschfeld-Kahler, and Hang Si 3

(a) One barrier-edge (b) Four barrier-edges and two tips (c¢) Two barrier-edges and one
and one tip tip tip

Figure 2 Examples of non-simple polygons with barrier-edges. Black lines are frontier-edges,
dashed black lines are internal-edges and red edges are terminal-edges.

» Lemma 2.4. Each vertex of a terminal-edge region is endpoint of a frontier-edge.

Proof by contradiction: Let v be a vertex of a terminal-edge region R generated by
the terminal-edge e and T the set of the triangles that contains v. Let assume that v is not
an endpoint of a frontier-edge as shown in Figure 3.

As all triangles in T are part of R, they share their longest-edge, around v, v interior point.
Due to T is finite, there should exist a triangle ¢y (see Figure 3) that shares their longest-edge
with two triangles of R in order to maintain v interior in R. This is not possible because a
triangle has just one edge labeled as its longest-edge. This contradicts our assumption, so v
has to be endpoint of som at least one frontier-edge.

Figure 3 Green vertex is not part of a frontier-edge.

Lemma 2.4 is very important since it means that the initial points used to represent the
geometric domain and the ones inserted to fulfill points density requirements are maintained
after the polygon mesh is generated. Also, it allows to use barrier-edges to splits polygons
by just adding one edge of the triangulation to them.

3 The algorithm

The following algorithm can be applied to any triangulation but because of their well-
known properties we decided to study first the kind of polygons obtained from Delaunay
triangulations. The algorithm is divided in 3 main phases. In the first one it labels each edge
of the triangulation) as terminal-edge, internal-edge or frontier-edge. In the second one it

EuroCG’'21

4 Studying the properties of polygon meshes built from Delaunay triangulations

selects a triangle with a frontier edge and uses this as starting triangle to build the polygon
border, and in the third phase it repairs polygons with barrier-edges by splitting them.

3.1 Label Phase

The label phase was proposed in [2]. Tt consists in two cycles: the first cycle marks each
longest-edge in each triangle and the second, labels which edge is not the longest-edge of
both triangles (frontier-edges). See Figure 4. To Label all edges has a cost of O(n), with n
the number of triangles.

(a) Delaunay Triangulation (b) Triangulation after applying the label
phase
7 Figure 4 Label phase: the solid lines show the frontier-edges and dashed lines the rest.

3.2 Travel phase: Polygon building

In this phase polygons are recognized and represented as a closed polyline. For any non-visited
terminal-edge region, the algorithm selects a triangle as a seed and travels through adjacent
triangles storing each frontier-edge until each polygon is built.

By lemma 2.4 there are no interior vertices; all triangles have at least one vertex which is
end-point of a frontier-edge. So the algorithm travels through all triangles in a terminal-edge
region without getting stuck in a infinite loop. To build all closed polylines has a cost of
O(n). This phase is shown in Figure 4.

8 Figure 5 Travel of the algorithm inside a terminal-edge region. Note that triangles with no
o frontier-edge are visited 3 times, with 1 frontier-edge 2 times and with 2 frontier-edges 1 time.

10

11

12

Sergio Salinas, Nancy Hitschfeld-Kahler, and Hang Si 5

3.3 Non-simple polygon reparation

To repair non-simple polygons, the algorithm uses the barrier-edges and internal-edges of the
triangulation to split them into simple ones. So, we avoid to check intersections between
inserted edges and the polygon boundary. In order to decide which internal-edge is the best,
we use the maximum area criterion because the resulting polygons are the largest ones as
possible. Let A be the area of the non-simple polygon and b the number of its barrier-edges
tips. Let A; and As be the area of the two polygons generated after the split. We define:

» Definition 3.1. Optimal Area (A,,:): The largest area that each polygon after the split
could have. It is calculated as the division between A and number of polygons needed to
eliminate all barrier-edges tips (b+ 1)

» Definition 3.2. Optimal Area difference (AA): This value is used to estimate how close is
the algorithm to find the right split. It is calculated as:

A
b+1
Given a polygon P to split and a barrier-edge tip v. The algorithm computes the optimal
area difference AA of each internal-edge incidents to v in clockwise order as shown in Figure
6. The internal-edge to split the polygon is chosen when A gets an inflection point in its
value.

AA = |mZn(A17 AQ) - Aopt)|7 Aopt =

(a) A= 307 Aopf, =10 (b) A1 = 3, AQ = 27, (C) Al = 57 A2 = 25,
AAAU,(:t =7 AAact =5

(d) Al = 117 A2 = 19, (e) Al = 22, A2 = 87 (f) A1 = 117 AQ = 19,
A140,ct =1 AAAu,ct =2 AAact =1

Figure 6 Optimal split for a polygon with 2 barrier-edges. The value Optimal Area difference
A A, decreases from the steps b) to e) and increases in the step €), so the optimal area has been
bypassed and the red edge in d) is chosen to split the polygon.

This split is a recursive function that is called for each polygon with barrier-edges tips
until barrier-edges tips are no longer present. Let k be the number of triangles in a polygon
with b barrier-edge tips and; both to calculate AA and split a polygon has cost O(k). The
algorithm has a complexity cost of O(k - b)

In the worst case scenario, all polygons have barrier-edges; the time complexity is O(n- B),
with n the number of triangles of the initial triangulation and B the number of barrier-edges
tips in the mesh. But, as we shown in the next section, this case rarely happens when a
Delaunay triangulation is used as initial mesh.

EuroCG’'21

17

18

38

13

30

31

32

33

34

35

36

6 Studying the properties of polygon meshes built from Delaunay triangulations

Se-
RS RS
ST
S dsesglt

(a) Polygon Mesh (b) Voronoi diagram

Figure 7 (a) Polygon mesh generated by 1000 random points.(b) Voronoi diagram of the same
1000 random points generated with Detri2QT [4].

4 Experimentation

1 Number | Number | Tesminal-edge Sites Triangles Edges Total | 2Max bet!
20 ites Triangles | Regions 26Regions per poly | per poly | per poly | bet! | in polygon
10 14 4 4 2.50 3.50 | 5.50 0 0
102 189 30 29 3.33 6.30 | 8.30 1
10° 1869 307 290 3.26 6.09 | 8.09 17 2
10* 18835 2886 2724 347 6.53 | 8.53 164 3
10° 188876 28698 27045 3.48 6.58 | 8.58 1716 4
10° 1888472 286479 269253 3.49 6.59 | 8.59 17877 5

Table 1 Preliminary empirical evaluation. !barrier-edge tips
y p

The input geometry can be defined by the convex hull of random point sets or using a
PSLG specification. The Delaunay triangulations were generated using the Detri2 library [4].
Statistical data of the polygon meshes generated from random points are summarized in
Table 1. We can observe that after 10* input points (sites), the number of triangles per
polygon is in average 6.5 and the number of edges per polygon is 8.5. The number of
barrier-edges is less than 1% of the number of sites, so the reparation phase just add = 0.5%
of polygons to the mesh. If we compare these polygon meshes with the meshes generated
from the Voronoi diagram, the Voronoi meshes contains 3 times more polygons than the our
meshes. In average, each Voronoi region is formed by 6 edges and the our polygons by 8
edges. Figure 7 shows at the left, the polygon meshes generated by the proposed algorithm
and at the right, the mesh based on the Voronoi Diagram.

5 Conclusions and Ongoing work

We have presented a preliminary formalization and statistical evaluation of a new kind of
polygon meshes based on terminal-edge regions in order to explore the geometric properties

Sergio Salinas, Nancy Hitschfeld-Kahler, and Hang Si 7

of the generated polygon cells. We have observed that this kind of meshes contains three
times less polygons that the standard polygon meshes based on the Voronoi diagram. It is
still an open question if these meshes will be as useful as Voronoi meshes to solve numerical
problems using the VEM. Our ongoing work is to complete the theoretical formulation and

validate this kind of meshes in real applications.

—— References

1

R. Alonso, J. Ojeda, N. Hitschfeld, C. Hervias, and L.E. Campusano. Delaunay based
algorithm for finding polygonal voids in planar point sets. Astronomy and Computing,
22:48 — 62, 2018.

José Ojeda, R. Alonso, and N. Hitschfeld-Kahler. A new algorithm for finding polygonal
voids in delaunay triangulations and its parallelization. In The 34th European Workshop
on Computational Geometry, EuroCG, pages 56:1-6, 2018.

M. C. Rivara. New longest-edge algorithms for the refinement and/or improvement of
unstructured triangulations. Int. Jour. for Num. Meth. in Eng., 40:3313-3324, 1997.
Hang Si. An introduction to unstructured mesh generation methods and softwares for scien-
tific computing. Course, 7 2019. 2019 International Summer School in Beihang University.
Peter Wriggers, Fadi Aldakheel, and Blaz Hudobivnik. Application of the virtual element
method in mechanics. Technical report, Report number: ISSN 2196-3789. Leibniz Univer-
sitdt Hannover, 01 2019.

EuroCG’'21

	Introduction
	Preliminaries
	The algorithm
	Label Phase
	Travel phase: Polygon building
	Non-simple polygon reparation

	Experimentation
	Conclusions and Ongoing work

