
DynaTail: A Method for Hybrid Software
Process Tailoring

Jacqueline Maŕın1, Maŕıa Cecilia Bastarrica1,
Julio Ariel Hurtado2, and Luis Silvestre3

1 Computer Science Department, Universidad de Chile, Chile
{jamarin,cecilia}@dcc.uchile.cl

2 IDIS Research Group, Universidad del Cauca, Colombia
ahurtado@unicauca.edu.co

3 Computer Science Department, Universidad de Talca, Chile
lsilvestre@utalca.cl

Abstract. It is widely accepted that a good software process is essen-
tial for developing good software products. International studies have
seen that most software companies apply hybrid processes for developing
software, i.e., an organized combination of traditional and agile practices.
Software process improvement and tailoring have been researched for sev-
eral years, but there is less experience when dealing with hybrid software
processes. Therefore it is not always clear to determine the combination
of practices that best fits a certain context, either for the company or
a certain project. Moreover, the most appropriate process also depends
on a particular goal. In this paper we propose the Dynamic Tailoring for
Hybrid Software Processes (DynaTail), a method that aims to achieve
three purposes: (1) allow for the tailoring of the organization process in
order to adapt to the project context when pursuing certain goal; (2) pro-
vide a framework for trying different process and context modifications
in order to obtain better results for a particular project. We describe the
method in full detail illustrating it with a running example taken from
industry. We have found that the proposed method is a promising path
for the quantitative evaluation of hybrid software processes.

Keywords: Hybrid software process · Agile practices · Software process
tailoring · Process measurement

1 Introduction

Defining software processes has been a means for systematizing software de-
velopment in several organizations [11]. There is a plethora of processes and
standards that have been proposed in this line. The Waterfall model has guided
the software industry for several decades and still has a high incidence. It has
provided support for managing projects, training new developers, and minimiz-
ing uncertainty and improvisation. However, it has sometimes been felt as too
restrictive, limiting innovation and flexibility [6]. Agile approaches address these
issues by introducing a series of practices that each development team can adopt



2 J. Maŕın et al.

and adapt according to their needs. Since the late ’90s, several agile methods
have been in use such as XP, Scrum, Lean software development, or RUP. But
only in 2001, the Agile Manifesto synthesized the philosophy that guides all of
them.

In general, agile methods focus on people involved in software development,
are mainly appropriate for small teams, and promote productivity, especially in
projects with high uncertainty. On the other hand, they do not provide strong
support for project management activities [16].

Intending to bring a trade-off between structure and flexibility, hybrid soft-
ware development processes have been applied [5]. Here, some activities are
addressed by applying agility while others still follow traditional practices. How-
ever, it is not always clear which activities should be addressed with each paradigm,
provided that this depends on the characteristics of the organization and the
project context. For example, innovative projects tend to favor a higher level of
agility, while projects within a well-known application domain and technology re-
sult in more efficient applying structured processes. But the best combination of
practices also depends on the intended goal of the project. For example, if time
constraints are a priority, structured processes that manage a highly detailed
plan could be better, but at the expense of managerial costs. On the other hand,
innovative projects require agility, but time and cost cannot always be man-
aged because of the inherent uncertainty. Nevertheless, there are some recently
proposed models for addressing hybrid software processes management [20].

According to the literature, there are numerous improvement goals [10] such
as quality, complexity, maintainability, performance, effort estimation, maturity,
and usability, among others. Most of these works are applied in the context of
XP and Scrum, and they mainly address integrate often, test-first, daily meeting,
pair programming, retrospective, on-site customer, and product backlog.

In this paper, we propose DynaTail, a method for tailoring a software process
to the particular context of the project where it will be applied, also considering
the intended goal. The method consists of three steps:

1. Tailor the software process: starting with a process, it is adjusted to the
particular context applying tailoring rules.

2. Evaluate the process in terms of the goal according to its practices: an in-
fluence graph is built, and the process is evaluated in terms of the weighted
influences in the graph.

3. Adjust the process or the context through “what-if” activities.
– The process could be adjusted by adding, deleting, or changing activities.
– Adjust the context by changing the value of certain factors.

We describe the method in full detail and illustrate each activity with the
Sprint Planning process followed in a medium-size Chilean software company.
This running example was able to replicate the way the company defines its
process. This is an encouraging result that backs the potential of the method.

The rest of the paper is structured as follows. Section 2 describes some related
work. The complete method, along with the running example is described in
section 3. Finally, section 4 states our conclusions and describes future work.



DynaTail: A Method for Hybrid Software Process Tailoring 3

2 Related work

DynaTail focuses mainly on tailoring and evaluating hybrid software processes.
In this section, we discuss some existing proposals in these areas.

2.1 Tailoring agile software processes

Software process tailoring refers to the activity of adjusting it to meet the needs
of a certain context. Clarke and O’Connor proposed a reference framework of
the situational factors that affect the software development process [3]. This
framework consists of 8 context classifications, 44 factors, and 170 sub-factors.
Although illuminating, the size of the framework makes it impractical to be
applied directly. There are a lot of different approaches proposed for software
process tailoring [12], but only a few for agile processes.

Ambler and Lines propose the Situation Context Framework (SCF) to sup-
port selecting and tailoring an agile situation-dependent strategy [2]. SCF defines
several context factors that affect how a team chooses its way of work. These
factors are organized into two categories: those that have a significant impact on
the choice of the software process, such as team skills, and those, that motivate
the choice of the practices/strategies, as team availability.

Diebold and Zehler create the Agile Practices Impact Model (APIM) for
representing the influence of agile practices on different impact characteristics [4].
This influence can be positive or negative depending on the influence factors
(context factors or other practices) that affect the relationship between agile
practices and characteristics. APIM can be used to support the tailoring of
software processes according to a specific context.

Although the two last-mentioned publications consider only agile develop-
ment, our proposal is aligned with their concepts. On the contrary, tailoring
approaches for hybrid software processes are scarce and new.

2.2 Tailoring hybrid software processes

Vijayasarathy and Butler [19] conducted a survey on the relationship of or-
ganizational, project, and team characteristics with the methodologies used.
They found that the characteristics associated with hybrid software processes
are medium projects concerning the budget, highly criticality of the project,
and small team size. The study also suggests that the organization size does not
impact the use of hybrid processes.

Kuhrmann et al. [9] report a survey on hybrid software development showing
which approaches are used in practice, how different approaches are combined,
and what contextual factors influence the use and combination of hybrid software
development. The study also shows that hybrid practices are mainly configured
applying different strategies: a process improvement program, evolution informa-
tion from past projects, and situation-specific definition. This study shows that
process evolution and improvement are as relevant as project-specific tailoring.



4 J. Maŕın et al.

Klünder et al. [8] analyzed 829 data points from the HELENA dataset. They
found that a few context factors, e.g., project/product size and target application
domain, significantly influence the selection of methods. They also found that
certain practices are used in specific contexts, e.g., daily meetings are better for
colocated teams.

Prenner et al. [15] identified three process patterns: Waterfall-Agile-Approach,
the Waterfall-Iterations-Approach, and the Pipeline-Approach. However, their
study does not show how the practices could be combined for achieving a cer-
tain goal or suit a particular context.

2.3 Evaluation of Agile and Hybrid Software Processes

Software process evaluation has been extensively addressed by organizations [10],
being CMMI (Capability Maturity Model) and GQM (Goal Question Metric) the
most identified measurement model and method, respectively. Evaluations based
on quality models measure the grade in which the process fulfills the objectives
and practices defined by it. In contrast, evaluations based on improvement goals
follow a measurement system defined by the organization following the GQM
method. Our work follows a goal-oriented process evaluation strategy for hybrid
software processes, from practices to improvement characteristics.

According to Prenner [14], software companies have difficulties evaluating
and analyzing if their hybrid processes are suitable for their context and goals.
The author identified some challenges for configuring hybrid processes; however,
the study did not identify the characteristic to evaluate this suitability. Alaidaros
et al. [1] reviewed 48 primary studies and found that applicability, effectiveness,
efficiency, and quality are the most frequent key factors used for measuring agile
process quality. Perkusich et al. [13] propose a procedure to detect problems in
software processes using a Bayesian network. The goal is to improve the project’s
chances of success (probabilistic). Their evaluation scenario was a Scrum-based
development process applied by a capable and organized team without a com-
mitted and skilled Product Owner or an involved client. They then analyzed the
chance of a project to succeed in terms of team capabilities, team commitment
and stakeholder involvement.

Wlodarski et al. [21] planned and executed a controlled experiment with
student projects to study the implications of introducing a hybrid approach in
student projects, particularly adding incremental delivery. They evaluated the
team productivity and the external quality, contrasting iterative and sequential
processes. Their results conclude that the proposed hybrid approach contributed
to a significant increase in team productivity.

The method presented in this paper includes evaluating a hybrid software
process with respect to different improvement process characteristics. In this
way, the process engineer can choose both a good process and an appropriate
context to maximize the intended characteristic. The method is described using a
running example evaluating a process with the customer value as improvement
characteristic considering either an ‘experienced’ or an ‘inexperienced’ Scrum
team as the different contexts.



DynaTail: A Method for Hybrid Software Process Tailoring 5

Fig. 1. Dynamic Tailoring Method for Hybrid Processes- DynaTail

3 The DynaTail method

DynaTail is a context-driven and goal-oriented method that intends to provide
dynamism to the hybrid process tailoring activity. It provides a framework for
obtaining the process adapted to a certain context that best contributes to reach-
ing the desired goal.

The method obtains a process that the process engineer considers good
enough within a particular context concerning a certain characteristic, as de-
picted in Figure 1. Its inputs are the standard process, the project context, and
the characteristic to be improved. The method includes a tailoring loop where
either the process or the context can be changed to achieve a better process.
Changing the process implies including new activities, deleting activities, or
substituting activities with others implementing different practices. The change
in the context represents potential changes related to resources assigned to the
project. This new process and context are the input for the new tailoring cycle.
The output of the method is a process to be applied in the project as well as its
context. This context may be the original one or a newly defined one.

Each activity will be described in detail in the following sections, including
its objective, inputs, tasks, and outputs.

3.1 Process Tailoring

DynaTail’s tailoring requires three elements: a process, a context, and a set of
tailoring rules, and it consists of adapting the process to the particular context
by applying the rules. The result is a new process.

Figure 2 shows the Agile Sprint Planning process modeled in BPMN as a
starting process. We can see that the Scrum Team is in charge of the Estimate
tasks and Converge to consensus activities, while the Scrum Master executes
Estimate sprint story.



6 J. Maŕın et al.

Fig. 2. Agile Sprint Planning process

Table 1. Project Context

Category Context Factor Context Factor Value

Team Experience
experienced

inexperienced

For simplicity, in this running example, we will consider that the context is
determined just by one factor: Team experience, as indicated in Table 1. The
particular context value for the Tailoring activity will be initially ‘experienced’,
i.e., the Scrum Team is experienced and is perfectly capable of appropriately
estimating.

The third required element is a tailoring rule that defines the changes that
must take place in the process according to the particular project context. For
our example, in the tailoring rule shown in Rule 3.1, we state that whenever the
Scrum Team is ‘inexperienced’ the Estimate tasks and Converge to consensus
activities will be removed while the Estimate sprint story will be replaced by
Plan sprint story.

Then, applying the rule, we see that in the initial context, i.e., when the
value of Experience is ‘experienced’, the rule condition does not hold. Therefore
no change is applied, and the process remains the same.



DynaTail: A Method for Hybrid Software Process Tailoring 7

Fig. 3. Characteristic graph

Rule 3.1: Example of Tailoring Rule

i f Exper ience i s ’ i n expe r i enced ’
then

remove ’ Estimate ta sk s ’
remove ’ Converge to consensus ’
r e p l a c e ’ Estimate s p r i n t s to ry ’ by ’ Plan s p r i n t s to ry ’

e n d i f

3.2 Evaluate process

In this activity, the project-specific process is evaluated according to a charac-
teristic aligned with the intended goal. The project-tailored process evaluation
is divided into two tasks: build the characteristic graph and evaluate a project-
specific process using a model based on this graph.

Build the characteristics graph A characteristics graph in our method con-
siders the following concepts that are shown in each level of figure 3: (1) Goal
is a sentence that evidences a problem that the company has identified, (2)
Characteristics are indicators derived from the goal that allows for measuring
its achievement of it, (3) Attributes are features or properties that influence the
characteristic, (4) Activities are a set of process steps that influence the achieve-
ment of an attribute, and (5) Practices that are proven ways or strategies for
addressing activities in order to achieve their goals.

All characteristics, attributes, activities, and practices required for achieving
the improvement goal are organized as part of an influence graph. The process



8 J. Maŕın et al.

engineer includes all alternative activities that may be part of the process that
can be applied when carrying out a project; they could have been applied before
or considered as potentially applied in future projects.

We describe each step followed for building the influence graph of the Sprint
Planning process:

1. Define and prioritize the improvement goals that will address the identified
problem. In our running example, the company identified a problem in de-
laying adding value to the customer due to his/her poor involvement with
the development process principles and values. Thus, the improvement goal
to achieve an early delivery of value to the customer.

2. Identify characteristics related to goal achievement. Customer value is the
only characteristic to be considered in the example, and thus the one to be
maximized.

3. Identify attributes related to the achievement of the characteristic. In this
case “Backlog quality” and “Delivery on time” are specific attributes of Cus-
tomer value.

4. Link the standard process activities influencing the attributes and include
other activities either from other company processes or from external sources
that can improve the goal. In the Sprint Planning process, there are four
activities influencing “Backlog quality” and “Delivery on time”: Estimate
sprint story, Estimate tasks, and Plan sprint story influence “Backlog quality
while Plan sprint story, Estimate tasks, and Converge to consensus influence
“Delivery on time”.

5. Associate the practices influencing each process activity. These associations
can be given by the company’s experience or by the experience reported in
the literature. In our example, ‘Relative estimation’, ‘Release planning’, and
‘Product Owner participation’ influence Plan sprint story while ‘Point esti-
mates’ influences Estimate sprint story, ‘Team-based estimation’ influences
Estimate tasks, and ‘Planning poker’ influences Converge to consensus.

6. Assign weighted values to each influence relationship. The process engineer
can assign these values based on his/her experience or considering the com-
pany’s experience collected either through workshops with all stakeholders
or by conducting interviews with them. Another option can be using the
experience reported by empirical studies from the literature. For this exam-
ple, we use values from our experience working with hybrid processes and
Diebold’s study. We indicated each of these influence values in the diagram
in figure 3.

Evaluate a project-specific process The evaluation of the project-specific
process consists of obtaining a number that represents how good is the process
for achieving the intended goal. This evaluation follows the following steps:

1. The process engineer in charge of defining the process to be applied considers
the process resulting from the tailoring activity as well as the characteristics
graph. In our running example, these are the Agile Sprint Planning process
in figure 2 and the characteristics graph in figure 3.



DynaTail: A Method for Hybrid Software Process Tailoring 9

Fig. 4. Agile Sprint Planning process evaluation

2. A particular evaluation graph is built for the process, including only those
activities in the tailored process. The evaluation graph for the Agile Sprint
Planning process is shown in figure 4.

3. Then, the value for the improvement characteristic is depicted in figure 4
and is computed as follows.
– The value of each activity is the average value of all of its associated

practices. In the Agile Sprint Planning, there will be three activities con-
sidered, each one associated with a unique practice: Estimate sprint story
with ‘Point estimate’ with value 1.5, Estimate tasks with ‘Team-based
estimation’ with value 2.0, and Converge to consensus with ‘Planning
poker’ with value 1.5.

– The value of the attributes is the average of the weighted values of all
associated activities. The activities associated with “Backlog quality”
are Estimate sprint story and Estimate tasks; their weighted average is
then 1.8. Similarly, the activities associated with “Delivery on time” are
Estimate tasks and Converge to consensus, and their weighted average
is 2.2.

– The value of the characteristics is the average of the associated at-
tributes. Similar to the way other levels are calculated, the final value for
the Customer value characteristic of the Agile Sprint Planning process
is 2.0.

According to the value obtained in this step, the process engineer may decide
one of the following three options, as stated in Figure 1:

– The process is good enough, so it will be applied in the project as it is.
– The process may be improved, and some changes may be considered:

• Change the process
• Change the context

These two last options are described in the following sections.



10 J. Maŕın et al.

Fig. 5. Simplified Agile Sprint Planning process

3.3 Change the process

The evaluation of the project-specific process could eventually give a low value
for the characteristic and some insight about the influence of the practices. So,
the evaluation suggests some practices could be changed. Changing software
processes includes activities, artifacts, and roles, technologies supporting process
execution, and integrating these definitions with technologies.

For instance, if the characteristic Customer value is not satisfactory, the
process engineer can change Agile Sprint Planning process in different ways.
In our running example, the activity Converge to consensus could generate too
many iterations to the Scrum Team; it is possible to keep them responsible for
executing Estimate tasks but removing Converge to consensus.

The process is simpler now, and the Scrum Master must resolve the consensus
problem according to her/his criterion. Figure 5 depicts the changed process
identified as Simplified Agile Sprint Planning. As part of DynaTail’s cycle, this
process is now the input of the tailoring step. As the context did not change
(experience is still ‘experienced’), the tailoring rule condition does not hold, and
thus the process remains the same.

These changes are evaluated again to determine if the new process resulted
in an improvement with respect to the previous project-specific process. Figure 6
shows the process evaluation without the Converge to consensus activity. Now
the value for Customer value changed since practices associated with Converge
to consensus are not considered now. So, Customer value characteristic has 1.9
as value.



DynaTail: A Method for Hybrid Software Process Tailoring 11

Fig. 6. Simplified Agile Sprint Planning process evaluation

3.4 Change the context

The evaluation process could eventually give a low value for the characteristic
and some insight about the influence of weighted values. So, the process engineer
may consider changing the project context. Provided that tailoring decisions are
defined in terms of contextual factors, the process tailoring activity may result
in a different process as a consequence of context change.

The new derived process could be better than the previous process for achiev-
ing the intended characteristic. If this is so, the process engineer may negotiate
new resources represented by the newly changed context to achieve better re-
sults.

In our running example, the process engineer may consider changing the ‘ex-
perienced’ Scrum Team for an ‘inexperienced’ team and taking all estimation
responsibility from them (see Table 1). In this case, it is necessary to have the
Scrum Master execute a more complex activity Plan sprint story that includes
both estimation and planning. These changes are already represented in the tai-
loring rule shown in Rule 3.1, and the new process resulting from its application
is the Hybrid Sprint Planning process depicted in Figure 7.

Then, when this process is re-evaluated for determining its Customer value,
we found that it is worse with respect to the previous project-specific process.
For this process, running the process evaluation again, we obtain 0.7 for Cus-
tomer value that is lower than the previous evaluation (see Figure 4). At this
point, the process engineer could decide that he/she has enough information to
decide. Agile Sprint Planning will probably be the best choice for an ‘experi-
enced’ team, although he/she may choose the Simplified Agile Sprint Planning
since it achieves only a slightly lower evaluation.



12 J. Maŕın et al.

Fig. 7. Hybrid Sprint Planning process

Fig. 8. Hybrid Sprint Planning process evaluation

4 Conclusion and Future Work

This work presents the DynaTail method, a dynamic approach for tailoring hy-
brid software processes to a given project context to achieve a specific goal. The
method is illustrated with a running example from a medium-size Chilean soft-
ware company. It shows the Sprint Planning process in different scenarios, how
it is evaluated according to the goal, and the improvement steps that may be
followed. We were able to demonstrate that the method can support the pro-
cess engineer’s work in choosing the most appropriate process for a particular
project. Although our running example nicely illustrates the method, it is still
quite simple to show some more sophisticated cases, such as having practices



DynaTail: A Method for Hybrid Software Process Tailoring 13

that positively influence a certain activity and a negative influence on another
one. Also, the case when we need to improve more than one characteristic si-
multaneously needs some more work.

We are currently formalizing all elements in the method: processes, models,
and rules. On the one hand, BPMN has a defined metamodel that allows specify-
ing and manipulating processes. On the other hand, we already have experience
in defining context models and implementing process tailoring rules [7, 18], as
well as building tools on top of these formalisms [17].

However, there are still some challenges that need to be addressed. We un-
derstand that the weights assigned to each arch in the influence graphs are based
on expert knowledge derived from experience within the same organization. But
we now need to check if processes with a high evaluation in DynaTail actually
outperform in practice those with a lower evaluation.

References

1. Alaidaros, H., Omar, M., Romli, R.: The key factors of evaluating agile approaches:
A systematic literature review. International Journal of Supply Chain Management
8, 954–964 (2019)

2. Ambler, S.W., Lines, M.: The Disciplined Agile Process Decision Framework. In:
Software Quality. The Future of Systems and Software Development, 8th Interna-
tional Conference, SWQD 2016. LNBIN, vol. 238, pp. 3–14. Springer (2016)

3. Clarke, P., O’Connor, R.V.: The situational factors that affect the software devel-
opment process: Towards a comprehensive reference framework. Information and
Software Technology 54(5), 433–447 (2012)

4. Diebold, P., Zehler, T.: The agile practices impact model: idea, concept, and appli-
cation scenario. In: Proceedings of the 2015 International Conference on Software
and System Process, ICSSP 2015,. pp. 92–96. ACM (2015)

5. Geras, A., Smith, M.R., Miller, J.: Configuring hybrid agile-traditional software
processes. In: Extreme Programming and Agile Processes in Software Engineering,
7th International Conference, XP 2006. LNCS, vol. 4044, pp. 104–113. Springer
(2006)

6. Günsel, A., Açikgšz, A., Tükel, A., Öğüt, E.: The Role Of Flexibility On Software
Development Performance: An Empirical Study On Software Development Teams.
Procedia - Social and Behavioral Sciences 58, 853–860 (2012)

7. Hurtado Alegŕıa, J.A., Bastarrica, M.C., Quispe, A., Ochoa, S.F.: MDE-based
process tailoring strategy. J. Softw. Evol. Process. 26(4), 386–403 (2014)

8. Klünder, J., Karajic, D., Tell, P., Karras, O., Münkel, C., Münch, J., MacDonell,
S.G., Hebig, R., Kuhrmann, M.: Determining context factors for hybrid develop-
ment methods with trained models. In: International Conference on Software and
System Processes, ICSSP’2020. pp. 61–70. ACM (2020)

9. Kuhrmann, M., Diebold, P., Münch, J., Tell, P., Garousi, V., Felderer, M., Trektere,
K., McCaffery, F., Linssen, O., Hanser, E., Prause, C.R.: Hybrid Software and
System Development in Practice: Waterfall, Scrum, and Beyond. In: Proceedings
of the International Conference on Software and System Process, ICSSP’2017. p.
30–39. ACM (2017)

10. Meidan, A., Garćıa-Garćıa, J.A., Ramos, I.M., Escalona, M.J.: Measuring Software
Process: A Systematic Mapping Study. ACM Comput. Surv. 51(3), 58:1–58:32
(2018)



14 J. Maŕın et al.

11. Münch, J., Armbrust, O., Kowalcyzk, M., Soto, M.: Software Process Definition
and Management. Springer-Verlag, Germany (2012)

12. Pedreira, O., Piattini, M., Luaces, M.R., Brisaboa, N.R.: A systematic review of
software process tailoring. ACM SIGSOFT Softw. Eng. Notes 32(3), 1–6 (2007)

13. Perkusich, M., Soares, G., Almeida, H., Perkusich, A.: A procedure to detect prob-
lems of processes in software development projects using Bayesian networks. Expert
Systems with Applications 42(1), 437–450 (2015)

14. Prenner, N.: Towards Improving the Organization of Hybrid Development Ap-
proaches. In: International Conference on Software and System Processes, IC-
SSP’2020. p. 185–188. ACM (2020)

15. Prenner, N., Unger-Windeler, C., Schneider, K.: How are Hybrid Development
Approaches Organized? A Systematic Literature Review. In: Proceedings of the
International Conference on Software and System Processes. pp. 145–154 (2020)

16. Raharjo, T., Purwandari, B.: Agile Project Management Challenges and Mapping
Solutions: A Systematic Literature Review. In: Proceedings of the 3rd International
Conference on Software Engineering and Information Management, ICSIM ’2020.
p. 123–129. ACM, New York, NY, USA (2020)

17. Silvestre, L., Bastarrica, M.C., Ochoa, S.F.: A Usable MDE-based Tool for Soft-
ware Process Tailoring. In: Proceedings of the MoDELS 2015 Demo and Poster Ses-
sion co-located with ACM/IEEE 18th International Conference on Model Driven
Engineering Languages and Systems, MoDELS’2015. vol. 1554, pp. 36–39. CEUR-
WS.org (2015)

18. Simmonds, J., Perovich, D., Bastarrica, M.C., Silvestre, L.: A megamodel for Soft-
ware Process Line modeling and evolution. In: 18th ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Systems, MoDELS’2015. pp.
406–415. IEEE Computer Society (2015)

19. Vijayasarathy, L.R., Butler, C.W.: Choice of Software Development Methodolo-
gies: Do Organizational, Project, and Team Characteristics Matter? IEEE Software
33(5), 86–94 (2016)

20. Wysocki, W.: A hybrid software processes management support model. In:
Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings
of the 24th International Conference KES-2020, Virtual Event, 16-18 September
2020. Procedia Computer Science, vol. 176, pp. 2312–2321. Elsevier (2020)

21. W lodarski, R., Falleri, J.R., Parvéry, C.: Assessment of a hybrid software devel-
opment process for student projects: a controlled experiment. In: Accepted to the
43rd International Conference on Software Engineering, ICSE’2021 (2021)


