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Abstract1

In recent years, algebraic topology techniques have been applied to data analysis, giving rise to an2

emerging research field called Topological Data Analysis (TDA). TDA tools are useful for inferring3

the topology underlying a dataset. On the other hand, it is known that most Machine Learning (ML)4

techniques cannot capture topological information. Consequently, TDA has been used to create5

filters and topological descriptors to improve the results of ML methods. However, and despite the6

good results, these hybrid methods do not to fully exploit the potentials of TDA and hence implicit7

duplications of computations occur. This paper proposes a TDA-based method to solve a 3-class8

classification problem. The method constructs a filtered simplicial complex K from a training set S9

and testing set X. This construction produces a large size O(2|S∪X|) searching space to classify each10

x ∈ X. We use persistent homology to downsize the searching space by detecting persistent intervals11

of desired topological features. In consequence, the searching space is reduced to O(2q+1 · |X|), with12

q � |S ∪X| the constant dimension of the sub-complex Ki ⊂ K resulting from selected persistent13

interval. In the last stage, the algorithm labels each x ∈ X, by using the label-contribution of14

every 0-simplex ∈ Ki which shares at least a simplex with x. We develop an experimental proof of15

concept by comparing our TDA-based classifier with a k-NN classifier on the Iris dataset, using 1016

evaluation metrics in a repeated-cross validation process. Our method gets 96% accuracy versus17

97% for k-NN. Our work shows that it is possible to classify only with TDA, with no additional18

machine learning algorithms. For future work we plan to apply the proposed method to datasets19

with highly dimensional and noisy samples.20
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1 Introduction21

The processing and extraction of information from large and noisy data sets is a challenging22

problem in Computer Science. The techniques of algebraic topology have gained the attention23

of scientists for years, giving rise to an emerging research field called Topological Data Analysis24

(TDA) [24, 5, 8, 9, 30, 13, 12]. TDA is an approach to infer the topology underlying a25

dataset by using combinatorial algebraic structures known as simplicial complexes. TDA26

also involves the computation of invariant properties from continuous transformations of27

these simplicial complexes: a process known as persistent homology [8, 9, 30, 13].28

Over several decades the high-dimensionality of datasets and the combinatorial and29

continuous character of Topology have been issues, making computing persistent homology a30

challenge. Regarding persistent homology, Edelsbrunner et al. [8] present an efficient algorithm31

and its visualization as a persistence diagram [8, 30]. Carlson et al. [5] strengthened the32

mathematical foundations and also proposed another visualization tool called persistence33

Barcodes [13, 5]. Further developments of the TDA field are derived from those initial works.34

The construction and representation of simplicial complexes also represent a challenge,35

as a consequence of their combinatorial nature. Many works have dealt with efficient36

construction, representation and filtration of simplicial complexes. As a consequence, efficient37

data structures and algorithms were developed [7, 1, 29, 2, 3, 17, 18], mainly focusing on38

efficient construction of Čech, Rips and other kinds of simplicial complexes not used here.39

Theoretical and practical results have been organized in the form of TDA libraries like40

GUDHI [3, 19], Dionysus, Ripser, Dipha, Perseus and JavaPlex. A complete benchmark of41

those libraries can be found in Otter et al. [21].42

A TDA-based method was used in [11] for classifying high-resolution diabetic retinopathy43

images. They use a preprocessing stage for computing persistent homology to detect44

topological features encoded into persistence diagrams. A support vector machine (SVM)45

was used to classify the images according to the persistence descriptors which was used46

to discriminate between diabetic and healthy patients. They recommend exploring their47

TDA+SVM method further in larger datasets of high-resolution images.48

Also TDA has been applied to time-series analyses [6]. One common pipeline is to consider49

the time-series as a dynamic system and compute the attractors or time-variant of the signal50

which creates a manifold around the attractors, turning the signal into phase-domain [28,51

27]. Persistent Homology or another TDA-tool is applied on these phase-space manifold to52

create topological descriptors [23] and as a final step, a machine learning method is applied53

like k-NN, CNN, and also SVM. There are other applications of TDA presented in [6] like54

scientific visualization, bioinformatics, atmospheric and climate data analysis, cosmology55

and combustion simulations. Furthermore, TDA has been applied in neurosciences [25] and56

recently in human motion understanding [16, 14, 28].57

All those examples of TDA-applications have one thing in common: TDA has been used58

as a preprocessing stage of conventional Machine Learning (ML) algorithms [26]. However,59

to the best of our knowledge, there are no references to using TDA directly as a classification60

method.61

In this paper, we propose a classification method that takes advantage of the TDA62

information and topological properties. We compare our method to k-NN as a baseline, one63

of the most used supervised classification methods. This document has been organized as64

follows. Section 2 exposes the mathematical foundations that we use in this work. Section 365

explains the concepts, algorithms, and methodology of our proposed classification method.66

Next, Section 4 presents our experimental design, evaluation criteria, selected metrics, and67
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our results. Section 5 is where we explain our preliminary results and development decisions68

of our method. Section 7 presents several research lines that have arisen from this work. We69

present the main conclusions of our work in the Section 6.70

2 Mathematical foundations71

In this section, we introduce the mathematical definition of simplices, simplicial complex, the72

Čech and Rips complexes, the star, and link concepts. We also define persistent homology,73

filtration, sub-complex, and filtration levels.74

2.1 Simplicial Complexes75

Simplicial complexes are combinatorial and algebraic objects which represent a discrete space76

homotopically equivalent to data space. There are some related concepts to understand. In a77

nutshell, a q-simplex is the convex hull of q+ 1 affinely independent points {s0, s1, · · · , sq} ∈78

S, S ⊂ Rn. A q-simplex σ has dimension dim(σ) = q and cardinality |σ| = card(σ) =79

dim(σ) + 1. A simplex τ defined by S′ ⊆ S is a face of σ and has σ as a coface. A q-simplex80

has
(
q+1
d+1
)
faces of dimension d and

∑q
d=−1

(
q+1
d+1
)

= 2q+1 faces in total. We symbolize the81

face and coface relationships with σ ≥ τ and τ ≤ σ. So, a simplicial complex K is a finite82

collection of simplices such that:83

σ ∈ K and τ ≤ σ =⇒ τ ∈ K.84

σ1, σ2 ∈ K =⇒ σ1 ∩ σ2 ≤ σ1, σ2.85

The dimension of K is dim(K) = max{dim(σ) | σ ∈ K}.86

There are many known simplicial complexes, though the most popular are the Čech and87

Vietoris-Rips complexes. The Čech complex is built by all non-empty intersections of closed88

balls Bs(ε), with ε radius and centered on each point s from the dataset [13, 8]:89

Čech(ε) = {σ ⊆ S |
⋂
τ∈σ

Bτ (ε) 6= ∅}.90

The Vietoris-Rips (VR) complex from a point set S and ε value is built with all subsets, for91

which each minimum enclosing ball has a diameter up to 2ε [8]:92

V R(ε) = {σ ⊆ S | diam(σ) ≤ 2ε}.93

This implies Čech(ε) ⊆ V R(ε) ⊆ Čech(
√

2ε) a proof is given in [8], this relationship is shown98

in Figure 1. The Čech complex is intrinsically a high dimensional simplicial complex. From99

a computational sense, V R complex is more feasible (i.e. lower storage and time complexity)100

than Čech, even when V R complex has more simplices in general. Compared to Čech, VR101

complex does not need to be completely stored, it can be stored like a graph and reconstituted102

combinatorially [13].103

I Definition 1 (Star and Link). Let K be a simplicial complex, and τ ∈ K a q-simplex.104

The star of τ defined by St(τ) = {σ ∈ K | τ ≤ σ} is the set of all cofaces of τ [18, 8]105

(see Figure 2). The St(τ) is not a simplicial complex because of the missing faces. If those106

faces are added to St(τ), we get the closed star of τ denoted by St(τ), which is the smallest107

simplicial complex that contains the star. The link of τ is a set of simplices in the closed108

star that does not share any face with τ , Lk(τ) = {ν ∈ St(τ) | ν ∩ τ = ∅} [18, 8]. If τ is a109

0-simplex, then Lk(τ) = St(τ)− St(τ) (see Figure 2).110

CVIT 2016
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Figure 1 From a point set [upper left] a proximity parameter varepsilon is applied [upper right]
and two complexes were built: a Čech complex [lower left] and a VR complex [lower right]. There
are differences between V R(ε) and Čech( ε

2 ). V R has more simplices than Čech as expected, note
all colored 2-simplices.This picture was taken from [13].

94

95

96

97

Figure 2 Example of Lk(S4), St(S4) and Lk(S7), St(S7) on a given simplicial complex K.118

In Figure 2 we present two examples of the St and Lk from points s4, s7 from a point set S.111

If we expand the solutions we get the following:112

St(s4) = {{s4}, {s4, s2}, {s5, s4}, {s4, s3}, {s3, s4, s2}, {s3, s5, s4}, {s4, s5, s2},113

{s3, s5, s2, s4}},114

Lk(s4) = {{s3}, {s2}, {s5}, {s2, s3}, {s3, s5}, {s5, s2}, {s3, s5, s2}},115

St(s7) = {{s7}, {s7, s1}, {s5, s7, s2}},116

Lk(s7) = {{s1}, {s2}, {s5}, {s5, s2}}.117

2.2 Persistent Homology119

Persistent homology is a tool to find topological features in a metric space [8, 13, 5]. As120

a general rule, the objective of persistent homology is to track how topological features121
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Figure 3 A fragment example of a simplicial complex filtration..129

on a topological space appear and disappear when a scale value (usually a radius) varies122

incrementally, a process known as filtration [9, 29, 30].123

I Definition 2 (Sub-complex). Let K be a simplicial complex. K ′ is a sub-complex of K if124

K ′ ⊆ K and besides K ′ is by itself a simplicial complex.125

I Definition 3 (Filtration). Let K be a simplicial complex. A filtration f is a succession of126

increasing sub-complexes of K:127

∅ = K0 ⊆ K1 ⊆ K2 ⊆ K3 ⊆ · · · ⊆ Kn = K.128

We can understand a filtration as a method to build the whole simplicial complex K from130

a “family” of sub-complexes incrementally sorted according to some criteria, where each131

level i corresponds to the “birth” or “death” of a q-simplex set as described in the following132

definition.133

I Definition 4 (Birth and Death). birth is a metaphorical concept to describe the filtration134

level when a set of simplices are created. Similarly, death refers to the filtration level when a135

set of simplices disappeared. Thus, a persistence interval (birth, death) is the “lifetime” of a136

given set of simplices Q [8, 9, 5, 29, 30]. Note Q is not a sub-complex because of missing137

faces with other intervals.138

3 Proposed Classification Method139

Let P be a metric space, with every p ∈ P a data feature value vector in Rn. We split the140

dataset P in two sets S,X in which S 6= ∅;X 6= ∅;S ∩X = ∅ and S ∪X = P . Let S be141

the training set and X the testing set to be classified. Let L be a label set. The 2-tuple set142

T = {(p, l) | p ∈ P ; l ∈ L} relates each element of P with its associated label from L. The143

incomplete association set T ′ is a 2-tuple set with T ′ = {(p, l) | (p ∈ S; l ∈ L)∨(p ∈ X; l = ∅)}144

where each element of S has an associated label from L, but each element of X does not have145

any label.146

3.1 Definitions147

In order to understand and clarify the proposed method, we define several mathematical148

concepts.149

I Definition 5 (Useful-simplex and Non-useful-simplex). Let K be a simplicial complex built150

from S ∪X. A q-simplex σ ∈ K. Let α, β be two sets where α ⊂ S, β ⊂ X,α ⊆ σ, β ⊆ σ and151

α ∪ β = σ, α ∩ β = ∅. We say σ is a useful-simplex if |α| > |β|. In another case, if |α| ≤ |β|,152

then σ is a non-useful-simplex.153

CVIT 2016
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I Definition 6 (Association function, Ψ). Let K be a simplicial complex, σ a q-simplex σ ∈ K.154

Let P(L) be the power-set of L. Let T be a 2-tuple set of associations T ∈ {T, T ′}. We define155

the association function Ψ : K ×K → P(L) such as:156

Ψ(σ,K) =


l ∈ P(L) ∨ (σ, l) ∈ T iff card(σ) = 1; l 6= ∅,⋃
α∈Lk(σ)) Ψ(α,K) iff card(σ) = 1; l = ∅,⋃
τ∈σ Ψ(τ,K) iff card(σ) > 1

(1)157

When card(σ) = 1, σ is a 0-simplex with, σ ∈ S, or (exclusive or) σ ∈ X. In the first case it158

is obvious that l 6= ∅ because the labels are always known for all elements in S. In the second159

case, l 6= ∅ if l was previously computed or T = T . In any other case, as l = ∅, we found l160

value by using the union of all associations of each element of Lk(σ).161

By definition 1, for a simplicial complex K, the intersection of Lk of any element of a162

simplex σ ∈ K, is necessarily non-empty, therefore all solutions of Ψ(σ,K) are overlapping163

and it is possible to optimize its computation by using dynamic programming.164

I Definition 7 (Indicator function, I). Let c be a logical statement. The indicator function I165

is defined by:166

I(c) =
{

if c = True 1,
if c = False 0. (2)167

Function Γ(σ,K) returns a vector V ∈ R|L| for which each element vi ∈ V represents the168

amount of apparitions (votes) achieved by label li ∈ L during Ψ(σ,K) computation. According169

to definition 6, we can also make optimizations on computing Γ(σ,K) by using dynamic170

programming.171

I Definition 8 (Labeling function, Υ). Let K be a simplicial complex, and σ a q-simplex172

σ ∈ K. Let M : R|L| → N ∪ {0} a function, which by taking a vector V ∈ R|L| returns an173

integer 0 ≤ i < |L| where i is the position of maximum value in V . We define the labeling174

function of a q-simplex as follows:175

Υ(σ,K) = G(i); i =M(Γ(σ,K)). (3)176

Function Υ(σ,K) assigns to σ the most voting label l ∈ L during computation of Ψ(σ,K).177

I Definition 9 (Real label list, Y ). Let assume a given lexicographic order in X and another178

one in L. Y is a list of labels assigned to each element of X defined by:179

Y = (li | (xi, li) ∈ T ;xi ∈ X; li ∈ L).180

we call Y the real label list of X.181

I Definition 10 (Predicted label list, Ŷ ). Let K be a simplicial complex, T an association182

set, T ′ an uncompleted association set and L a label set. Assuming a lexicographic order in183

X, we define the predicted label list Ŷ as:184

Ŷ = (ŷi | ŷi = Υ(xi,K);xi ∈ X).185

Note, when we assume T = T as known associations in basic cases of computation of Ψ, then186

Ŷ = Y , with Y the real labels list from definition 9. In another case, when using T = T ′ as187

associations then Ŷ is a prediction of labels of any value in X.188
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I Lemma 11. Let P be a point set and S a non-empty subset of P . Let C be a simplicial189

complex built from P . If K is a simplicial complex built on S with the same construction190

rules of C, then K ⊆ C. In other words: K is a sub-complex of C.191

Proof. Suppose by contradiction K 6⊆ C. According to section 2.1: we have ∀σ ∈ K; τ ∈192

σ =⇒ τ ∈ K. Now, if C is formed by all points in P , then C is a set of subsets of P . Since193

C and K have the same formation rules, moreover S ⊆ P , then ∀σ ∈ K =⇒ σ ∈ C. As194

well as ∀σ ∈ K;σ ∈ C also K ∈ C, which implies K ⊆ C. That makes K in a sub-complex195

of C. But this contradicts the premise of K 6⊆ C. J196

I Definition 12 (Simplicial complexes union operator, ]). Let S,X be two point sets. Let197

K,A be two simplicial complexes where K was built from S and A built from X respectively.198

The union operator ] is defined by K ] A = C where C is a simplicial complex built from199

{S ∪X}.200

I Definition 13 (Filtration level access function, ψ). Let F be the set of all possible filtrations201

on a point set S. Let K be a simplicial complex built from S. The level access function202

ψ : F × N→ K is defined by ψ(f, i) = Ki. In other words, for a filtration f ∈ F and a level203

i, ψ returns the sub-complex in the ith level of f . If i ≥ n with n the maximum level of f ,204

then ψ(f, n) = Kn is invoked.205

Let C be a simplicial complex built from P , let f ′ be a filtration of C (see Figure 4) with206

n+ 1 levels:207

∅ = C0 ⊆ C1 ⊆ C2 ⊆ · · · ⊆ Cn = C,208

and let K be a simplicial complex built from S, with S ⊆ P , and let f be a filtration of K209

(see Figure 3) with m+ 1 levels and m ≤ n:210

∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K.211

Thus, for each level value i, we can get Ci = ψ(f ′, i) and Ki = ψ(f, i) according to212

Definition 13. As we said in Lemma 11 and definitions 1, 3 and 12 we can affirm ∀i ≤ n:213

Ki ≤ Ci, (4)214

Ci − {St(x,Ci) | x ∈ C0 ∧ x ∈ X} = Ki, (5)215

Ki ] {St(x,Ci) | x ∈ C0 ∧ x ∈ X} = Ci. (6)216

That is, if we remove from Ci those simplices which contain elements of X, then we can get217

Ki. At the same time, by using the union operator of definition 12 and equation 6, if we218

include all elements of X in Ki step by step, we can get some sub-complex of Ci.219

Now we define the algorithm.220

3.2 Classification by using simplicial complexes and persistent221

homology222

The proposed method computes the predicted label list Ŷ corresponding to X according to223

definition 10 assuming T ′ is an incomplete association set. The entire process is summarized224

in Algorithm 1. We show a simplified example in Figure 4. The following section explains225

each step in detail.226

CVIT 2016
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Algorithm 1 TDABC: TDA-Based Classification Algorithm227228

Require: A training set S 6= ∅.
A testing set X 6= ∅ to be classified.
The incomplete association set T ′.

229

230

231

Ensure: A prediction list Ŷ of X by using T ′.232

1: Obtain the filtration f ′ (see Figure 4) of the simplicial complex C constructed by using
S and X (Algorithms 2 and 3)

233

234

2: Obtaining the prediction list Ŷ = (l0, l1, · · · , l|X|) where each li ∈ Ŷ is the most reliable
label corresponding to xi ∈ X, with 0 ≤ i < |X| by using f ′ filtration (Algorithm 4)

235

236

3: return the prediction list Ŷ .237

Figure 4 TDABC (see algorithm 1) using a 4-level fragment of a filtration f ′ from a C simplicial
complex. Two black points x1, x2 ∈ X must be classified. The colored points are elements in S,
where each color represents different labels. By applying the Algorithm 1 in C1, C2, C3, C4 we get
different labels for x1 and x2 depending on a selected Ci simplicial complex with 1 ≤ i ≤ 4.

238

239

240

241

3.2.1 Building the simplicial complex C and its filtration f ′.242

We can build the simplicial complex C in two ways: using an incremental algorithm (Al-243

gorithm 2) or using a direct one (Algorithm 3). From Lemma 11 we know both algorithms244

are equivalents.245

If we have a complex K from set S, we can use the incremental algorithm to insert in K246

every point x ∈ X. Each time we insert a point, we need to recompute or update the entire247

simplicial complex. In comparison to the direct algorithm, this strategy has the advantage248

of controlling resource consumption because it builds the simplicial complex step by step249

according to Equation 6. The direct strategy is useful when we need to classify a set and not250

just one point. In this case, it is better to build the complete simplicial complex once, in251

order to avoid updating the simplicial complex every time we insert a point.252

3.2.2 Obtaining the most reliable label284

Once we have a filtering f ′ from a simplicial complex C, we need to label all the elements285

of X, by using ∀x ∈ X; Υ({x}, C) to assign the most voted label l ∈ L during computation286

of Γ({x}, C) and Ψ({x}, C) according to definitions 6, ?? and 8.287

As we know from Definition 13, C is the infinite level of the filtration f ′. Theoretically the288

dimension of C can be N −1;N = |P | in case all the vertices are connected with all. We need289

to check ∀x ∈ X,Lk(x) which contains the other elements of C. But, if ∃x′ ∈ X;x′ ∈ Lk(x)290

we need to analyze it recursively and so on until some s ∈ S is found, which must contribute291

with its label. Resulting in a method with O(|X| · 2N ) is the worst case. Even with a table of292

dynamic programming to avoid recalculating the labels of the values twice, the computational293
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Algorithm 2 Incremental Construction of simplicial complex C253254

Require: A pre-existent filtration f from a non-empty simplicial complex K. A non-empty
testing set X. An ξ increment value used to change the filtration level.

255

256

Ensure: f ′ a filtration of C simplicial complex (see Figure 4).257

1: Let n← |f | be the maximum level of filtration f258

2: Split X in n disjoint partitions {X0, X1, · · · , Xn}259

3: f ′ ← f260

4: i← 0261

5: while i ≤ n do262

6: Ki ← ψ(f, i), see definition 13263

7: Ci ← Ki ]Xi264

8: update f ′ with ψ(f ′, i)← Ci265

9: i← i+ ξ266

10: end while267

11: return f ′268

Algorithm 3 Direct Construction of simplicial complex C269270

Require: A non-empty training set S. A non-empty testing set X. An ξ increment value
used to change the filtration level. Let n be the maximum desired level of resulting
filtration f ′.

271

272

273

Ensure: f ′ a filtration of C simplicial complex (see Figure 4).274

1: f ′ ← {∅}275

2: Unify S and X by P ← S ∪X276

3: i← 0277

4: while i ≤ n do278

5: Build a simplicial complex Ci from P by using an i value [8, 1, 3, 2]279

6: Update ith level of filtration f ′ with ψ(f ′, i)← Ci280

7: i = i+ ξ281

8: end while282

9: return f ′283

complexity would still be at least O(2N ) that is required to initialize the table. If we could294

compute functions Ψ(x,C) and Γ(x,C) from definitions 6 y ?? without any change, it is295

very likely that the point x ∈ X it would have all possible labels, due to the high degree of296

the analyzed simplices dimensions.297

Two questions arise that address the calculation:298

(a) How do we know which simplices of C that contain some x ∈ X are reliable and which299

are noise?300

(b) How can we make sure to assign a reliable label ∀x ∈ X?301

We can use persistent homology to downsize the dimension of the problem. With302

persistence, we can get all topological invariants for all simplices dimension in f ′. But we303

are just interested in working with q dimension; with 2 ≤ q � N − 1, which represents304

a complexity reduction of O(|X| · 2q+1) with q a constant value. Thus, we can say our305

method is linear in |X|. Those invariants are determined by persistence intervals with values306

(birth, death) (see definition 4).307

For long life invariants (high death− birth) we are in the presence of a topological feature,308

but for short life, we have noise [13, 8, 29]. We need to find the level of filtration Ci that309

CVIT 2016
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Algorithm 4 Labeling a testing set X set325326

Require: A filtration f ′ of a simplicial complex C.
A non-empty testing set X to classify.
The incomplete association set T ′ .

327

328

329

Ensure: A predicted labels list Ŷ of X according to definitions 10.330

1: D ← ComputePersistentHomology(f ′) [24, 9] where: D = {di | di = (birth, death)}331

2: Get a desired persistent interval d ∈ D with d ∈ {MaxInt(D), RandInt(D), AvgInt(D)}332

333

3: i = d[birth]334

4: Ci = ψ(f ′, i) see definition 13335

5: Ŷ ← {∅}336

6: while X 6= ∅ do337

7: x ∈ X338

8: l← Υ({x}, Ci) see definitions 6, ??, 8339

9: Ŷ ← Ŷ ∪ {l}340

10: X ← X/{x}341

11: end while342

12: return Ŷ343

maximizes the number of topological features associated to each x ∈ X. At the same time,310

we would like sub-complex Ci to have as many useful-simplices (see definition 5) as possible.311

As a result, it is highly likely that we get a reliable label ∀x ∈ X.312

As we have already described in Definition 4, a persistent interval d = (birth, death)313

represents the life time of a simplex set Q, in which every q-simplex was created and destroyed314

on filtration levels d[birth] and d[death], respectively. Let D be the set of persistence interval315

of q-simplices, and d ∈ D, then int(d) = d[death]− d[birth]. We define three ways to find316

the desired persistent interval:317

(a) The maximum persistent interval:318

dm = MaxInt(D) = Max(int(d));∀d ∈ D. (7)319

(b) A persistent interval selected in a random way:320

dr = RandInt(D) = random(D). (8)321

(c) The ceiling of persistent interval average:322

da = AvgInt(D) = dAvg(int(d))e;∀d ∈ D. (9)323

Algorithm 4 executes the labeling process.324

4 Results344

We use the GUDHI library [19, 2, 1] to implement our TDA Based Classifier (TDABC), see345

Algorithm 1. GUDHI is one of the most complete libraries for building simplicial complexes346

and computing persistent homology [2, 21, 18, 1, 3].347

To evaluate our proposed TDABC algorithm we use the Iris dataset [10]. The dataset348

contains 3 classes of 50 instances each, where each class refers to a type of Iris plant. One349

class is linearly separable from the other two; the latter are NOT linearly separable from each350
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Figure 5 Iris dataset (first two components)[left], decision boundaries from TDABC by using
RandInt-function [center], and decision boundaries from k-NN [right].

357

358

other [10] (see Figure 5). L is the label set where L = {“Setosa”, “V ersicolor”, “V irginica”}.351

Each sample in the Iris dataset is a 5-tuple, defined by:352

5-tuple = (sepal_length, sepal_width, petal_length, petal_width, label)353

We use the class of Iris plant as a predicted attribute. The left side of Figure 5 shows the354

distribution of the dataset (we choose the first two components for plotting purposes). We355

build a point set P using the first four components of every Iris dataset Sample.356

4.1 Classifier Evaluation359

We create three different versions on our TDABC method depending on the applied selection360

function (see equations 7, 8 and 9): TDABC+MaxInt (TDABC-M), TDABC+RandInt361

(TDABC-R) and TDABC+AvgInt (TDABC-A). As a baseline algorithm, we choose the362

sci-kit learn k-Nearest Neighbors (k-NN) Classifier [22] to compare our results.363

To make our evaluation more robust and avoid overfitting and underfitting we use Cross-364

Validation [22, 15, 20] method. The idea of Cross-Validation is to divide the data set P into365

equal pieces or folds. One piece of them is taken as the testing set X, and remaining folds366

as the set S. When we repeat this process, and folds of different sizes are generated, the367

method is called Repeated Cross-Validation.368

Let R be the fold number in our Cross-Validation approach to avoid confusion with our369

use of k in k-NN. We decide to execute the repeated R-FOLD 5 times (n=5) and R will be370

one of (5, 10, 15, 20, 25) values, depending on the value of n, i.e.: n=1, R=5; n=2, R=10 and371

so on. For any value of R, we use (R-1)-fold for a training set as S and the remaining fold as372

testing data as X in each iteration. The overall evaluation process is shown in Figure 6.373

In machine learning algorithms it is common to use parameters whose values are set374

before the learning process begins. Those parameters are called hyper-parameters [22, 15,375

20]. By contrast, the values of other parameters are derived via training. In our evaluation,376

we need to find the best values for hyper-parameters k, and q (Param Estimator process in377

Figure 6). For k-NN we found k=15 as a good number of neighbors; we get it by using the378

hyper-parameter estimators from scikit-learn [22].379

For the TDABC algorithm, we need to know the max simplex dimension q to control381

the VR-complex construction process. We fix q = 3 because the hardware limitation:16 GB382

RAM, Intel® Core™ i5 CPU 750 a 2.67GHz.383
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Figure 6 Repeated Cross Validation overall process to compare TDABC variants and k-NN.380

4.2 Metrics for Classifiers Evaluation384

In the interest of evaluating the performance of the proposed and baseline classifiers, we385

need to compute several metrics like: Accuracy (Acc), Precision (P ), Recall (R), False386

Positive Rate (FPR), F1 measure (F1 or Armonic Measure of P and R), Mean Squared387

Error (MSE). As a graphical and general evaluation of a classifier we use the Confusion388

Matrix. With the exception of MSE, aforementioned metrics are defined by using the True389

Positives (TP ), True Negatives (TN), False Positives (FP ) and False Negatives (FN). Since390

the Iris dataset has multiple classes we consider TPl, FPl, TNl, FNl for each class l ∈ L. Let391

Y be the real label set ∀x ∈ X (see definition 9). Let Ŷ be the predicted label set ∀x ∈ X392

computed by Algorithm 1, n = |Y | = |Ŷ | = |X|.393

Therefore, we get each metric as the average of metric computation by each class l ∈ L,394
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according to equations from 10 to 19:395

TPl =
n∑
i=1
I(l = ŷi) · I(ŷi = yi), (10)396

FPl =
n∑
i=1
I(l = ŷi) · I(ŷi 6= yi), (11)397

TNl =
n∑
i=1
I(l 6= ŷi) · I(ŷi = yi), (12)398

FNl =
n∑
i=1
I(l 6= ŷi) · I(ŷi 6= yi), (13)399

Acc = 1
|L|
·
∑
l∈L

TPl + TNl
TPl + TNl + FPl + FNl

, (14)400

P = 1
|L|
·
∑
l∈L

TPl
TPl + FPl

, (15)401

R = 1
|L|
·
∑
l∈L

TPl
TPl + FNl

, (16)402

PR = 1
|L|
·
∑
l∈L

FPl
TNl + FPl

, (17)403

F1 = 2 · P ·R
P +R

, (18)404

MSE = 1
n
·
n∑
i=1

(ŷi − yi)2. (19)405

We compute these 10 metrics [15, 4, 22] for any iteration of our repeated R-Fold strategy.406

4.3 Comparison407

Since k ∈ (5, 10, 15, 20, 25) we execute each classifier a total number of
∑5
i=1 ki = 75 times.408

We then compute the average of each metric and show the results in Table 1.409

410 Name Acc P R FPR MSE F1
411 k-NN 0.97 0.92 0.89 0.04 0.10 0.91
412 TDABC-R 0.96 0.93 0.90 0.06 0.14 0.92
413 TDABC-A 0.95 0.91 0.88 0.05 0.29 0.90
414 TDABC-M 0.93 0.88 0.83 0.10 0.57 0.85

Table 1 Comparison of General Metrics by Classifier.415

On the other hand, we compute the Overall Confusion Matrix (CM) for each classifier416

concatenating all sets into one, resulting in two big sets of predicted labels and real labels:417

Ŷ = (Ŷ1, Ŷ2, · · · , Ŷ75), (20)418

Y = (Y1, Y2, · · · , Y75). (21)419

where Ŷi is the predicted labels set and Yi the real labels set, both resulting from ith execution420

of Repeated K-Fold. As we respect the relations between each predicted and real labels we421

can easily calculate the CM for each classifier. The result is shown in the Figure 7.422
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(a) TDABC-M.423 (b) TDABC-A.423

(c) TDABC-R.424 (d) k-NN.424

Figure 7 Confusion Matrices.425

5 Discussion426

In section 3.2.1 we presented two algorithms to construct the simplicial complex using testing427

X and training S point sets. One is an incremental algorithm (Algorithm 2) and another is428

a direct one (Algorithm 3). Both are equivalents in their final result, as we have shown in429

Lemma 11. However, the incremental algorithm is recommended when a previous filtered430

simplicial complex was computed. Thus, a few values are classified if needed and you avoid431

recomputing all every time. This approach gives us the possibility of storing the filtered432

simplicial complex as a sort of knowledge representation (or topological database) for a433

specific dataset. The Direct algorithm is useful for training the TDABC with a new dataset434

or for classifying an entire point set at the same time.435

The proposed voting system of assigning the most reliable label (see Definition 8), also436

offers the possibility of dealing with elements belonging to multiple classes at the same time.437

Perhaps in a more complex dataset, this possibility can be exploited in order to eliminate438

intra-class and extra-class variability.439

The persistent homology is vital in Algorithm 4 to reduce the search space by taking440

advantage of topological features that are encoded inside selected persistent intervals.441

Another interesting aspect is that the proposed method does not necessarily generate442

same-sized “neighborhoods” for each point to be classified as k-NN does. To get multi-sizes443

neighborhoods, no previous training is required, but k-NN needs a tuning process before444

inferring the best k hyper-param in order to get better results.445
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For the evaluation process, we use 10 metrics to cover as much as possible of analyzed446

classification methods. In the end, we compute the overall confusion matrix for our three447

classifiers (TDABC-R, TDABC-A, TDABC-M) and also for the k-NN classifier (see Figure 7).448

Table 1 shows metric results in general terms, and our three TDABC have good classification449

rates. However, the TDABC-R method is better than other TDBC analyzed methods, being450

close to the k-NN classifier. On the other hand, TDABC-M is the worst, showing us that451

more persistent topological features are not necessarily the best. Thus, more persistent452

topological features could contain simplices with elements from several classes, resulting in453

several errors during the labeling process with Ψ(σ) function.454

A more detailed analysis of the confusion matrices shows that for some classes the quality455

of the proposed classification algorithms is equal to or surpasses k-NN. The TDABC-R456

gets better results at classifying the Virginica class, see decision boundaries in Figure 5.457

TDABC-A and TDABC-M are better at classifying Versicolor class and they are similar to458

k-NN classifying Setosa with 100% accuracy. Therefore, in a detailed analysis of classification459

per-class, our method is better than k-NN by detecting non-isolated classes.460

6 Conclusions461

In this work, we develop a new classification method exclusively using Topological Data462

Analysis tools. In particular, simplicial complexes and persistent homology. We also create463

algorithms to build filtered simplicial complexes combining test and training sets. We also464

create functions to label simplicial complexes and show how to use them in practice. The465

use of persistent homology was determinant to reduce the complexity of the search space,466

giving us a robust framework to understand data shapes and use it for classification. We467

compare our proposed TDABC and its variants with k-NN obtaining similar rates. But, in468

non-isolated classes, our methods were better. We think our method can be applied to solve469

at least the same problems that k-NN solves. In this preliminary study, we experimentally470

prove the possibility of classifying data by using TDA directly, with good accuracy rates.471

Hopefully, this will open further research opportunities and of understanding data.472

7 Future Works473

We have shown preliminary results about TDA-based classification. To our knowledge, this474

is the first time TDA is directly used for classification. We still need to further explore new475

data structures and algorithms to reveal and take advantage of the topological properties of476

data. Furthermore, we want to process more complex datasets and evaluate the behavior of477

our methods in the presence of noisy and high-dimensional data.478

A new challenge is to find the lower simplicial complex dimension q needed to capture all479

topological features from an arbitrary and high dimensional point set P . A lower q value is480

useful for reducing the size of the searching space as much as possible and maintaining our481

TDABC method in a linear or quasi-linear computation worst case. We do not know if there482

is any relation between q and dataset sample dimensions. Finding this relation, we will be483

able to understand how the optimum simplicial dimension q′ can be found for any complex484

dataset.485

We want to explore the possibilities of our method in Feature Engineering as a data486

imputation method in Missing Data Analysis (MDA). Finally, we want to better understand487

the sort of problems and datasets in which our method could outperforms other methods.488
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