Challenges of Traditional and Agile Software Processes

Jacqueline Marin Sanchez
Computer Science Department, University of Chile.
jamarin@dcc.uchile.cl

Abstract— Software processes have evolved significantly since
software engineers started to follow a disciplined flow of
activities to gain quality and productivity in development.
Several process models, methodologies, methods and/or soft-
ware development practices have been proposed, adopted or
rejected that differ at the ceremony level. For many years, there
have been conflicts over whether to follow a totally traditional
approach (“classical”’) or to become more agile. Each approach
has its strengths and weaknesses, and each has followers and
critics. However, the ongoing diversity of software projects and
the advancement of technology has led to debates about what
kinds of software process approaches are more context-effective.
This paper surveys existing traditional and agile processes and
discusses their challenges.

I. INTRODUCTION

The question of how software development should be
organized has been debated by the software engineering com-
munity for decades. Improving the ways in which software
products are developed is a challenge that must be addressed
carefully [1] due to the complexity of the software [2].
The software development industry recognizes the need to
define and manage processes in order to gain quality and
productivity, as well as to apply practices that allow them to
make the best use of the available resources [3].

Software development has adopted different forms during
its evolution. It has followed highly formalized or structured
approaches (high ceremony) with a close management super-
vision, and also by other more unstructured approaches (low
ceremony). Many proposals for processes, models, methods,
tools, techniques and concrete practices have been proposed
to this end. However, evidence suggests that “there is no
unique approach to software development” [4].

Traditional processes follow methods based on the quality
of the artifacts, on the predictability of their processes and
on architectural designs that can adapt the change before it
has an adverse impact on the system [5]. The first proposal
that followed this philosophy was the waterfall model created
by Winston Royce in 1970 [6]. Waterfall model established
an era in which software development is recognized as
a complex activity, centered on people, which has many
difficulties if it is not properly organized [7].

Soon problems arose: long development time, involvement
of the client only at the beginning of the project, costly
changes, difficulties for innovation and excessive documenta-
tion that these rigorous processes implied. As a consequence,
around 1990 a community that defends change from a
radically different perspective has emerged. This new way
of addressing software development, called “agile” by its

defenders, is ruled by 12 principles explained in the “Agile
Manifesto” [8]. In this environment individuals and interac-
tions are valued over processes and tools, working software
over comprehensive documentation, customer collaboration
over contract negotiation and responding to change over
following a plan.

Agile methods and practices aim to simplify the software
process by avoiding “bureaucracy” and advocate short time
cycles, close involvement of the client and an adaptive rather
than predictive strategy [9]. Many researches defend that
agile methods provide a better way to address people’s needs,
accelerate software development and improve quality and
customer satisfaction. These and other reasons make the
industry to advocate for the agile philosophy. However, agile
methods can fail when they are applied in the wrong con-
text [10] and are also rarely used in their “pure” form [11].

The history of software development shows that the choice
of a process is not a simple deterministic exercise, but
depends on the situational characteristics of individual de-
velopment environments [7]. Therefore, it is necessary to
consider the application domain, as well as organizational,
project and team characteristics, among others [12].

This research seeks to gain a better understanding of
how software development has evolved and the challenges
involved in following a traditional or agile software process
depending on the context. The results of this study can help
organizations, projects and software teams get a better idea
of which software processes fit their needs.

II. BACKGROUND

According to Cugola and Ghezzi [13], the interest to-
wards processes arises at the beginning of the 70s. Software
engineers realized that desired qualities such as reliability,
efficiency, evolution capacity, ease of use, etc., could only be
achieved by following a disciplined flow of activities. How-
ever, only at the end of the 1980s software processes were
recognized as a subject that deserves attention. Thereafter,
efforts were made to understand its fundamentals, develop
useful models, identify methods, provide tool support and
help manage its progress.

According to Kroll and Kruchten [14] a process “de-
scribes who is doing what, how, and when”. Feiler and
Humphrey [15] emphasize that a process is a set of partially
ordered steps intended for achieving a goal that can be
associated with the production or improvement of software
products, or the provision of services.

In [2], Fuggetta states in a comprehensive way, that “a
software process can be defined as the coherent set of
policies, organizational structures, technologies, procedures,
and artifacts that are needed to conceive, develop, deploy,
and maintain a software product”. From his perspective,
Pressman [16] emphasizes that it is necessary to see the
software process as a guide for the activities, actions and
tasks that are required to obtain high quality software. In
a more general way, Miinch et. al. [17] argue that “a
software process is a goal-oriented activity in the context
of engineering-style software development”, where “software
process” not only applies to software development, but also
to planning, coding, testing and maintaining software.

Paraphrasing Osterweil [18], software processes must be
treated in the same way we treat software. These must
be carefully designed and constructed in addition to being
tested, executed, maintained and reused. Seeing software
development as a process has significantly helped to identify
the different dimensions of development and the elements
necessary to propose effective methods and practices for each
context [2].

III. AN OVERVIEW OF SOFTWARE PROCESS
APPROACHES

Since the beginning, software processes have been used to
collect and organize knowledge about software development
and, since then, a large number of approaches compete for
“the users’ favor” [11]. According the literature [5], [11],
[19], [20], [21], [22], [23], there are in practice two trends
that guide software development, one following a “rigid plan-
driven approach” and the other a set of “slim agile methods”.

Processes that follow a more rigid approach are known as
traditional [16], plan-driven [5], classic [11], structured [24],
rich [19], and heavyweight [25], among others. For this
research, the term traditional will be used. This approach
aims to address the entire life cycle of the software project.
On the other hand, the agile methods or more precisely “agile
software development methods or processes” [26], intend
to simplify the software process to the minimum to avoid
“bureaucracy”.

Each of the approaches, agile or traditional, emerged at a
critical moment in the history of software development with
well-defined purposes and contexts.

A. Traditional processes

Traditional processes intended to bring some order to the
so-called “chaos of software development” [16], providing
structure to the work and a roadmap for software teams.
The traditional development assumes that all the desired
requirements and properties of the final product can be
known and specified with precision before beginning the
construction of the final product [23]. This philosophy also
supports the need for a detailed plan from the beginning to
the end of the project, where a deviation from this plan is a
sign of bad work in the early stages of the project [19].

Boehm and Turner [5] state that traditional development
is desirable when requirements are stable and predictable,

as well as when the project is large, critical and complex.
In general, it can be said that traditional processes are char-
acterized by: predictive approach, integral planning, process
orientation, exhaustive documentation, continuous learning
during development and directed to large projects [S], [11],
[16], [17], [23], [24].

Among traditional processes there are the so-called “life-
cycle process models” such as waterfall model [6], iterative
enhancement model [27], spiral model [28], evolutionary
prototyping model [29], etc. A software life cycle defines
the skeleton and philosophy according to which the software
process must be carried out [2]. However, they generally
explain in a high level of abstraction “what” to do and not
“how” to do it [17].

These processes include similar activities for software
development, but each one places different emphasis on
them. Some examples are:

o Waterfall model [6] prescribes a systematic and sequen-
tial approach to software development that begins with
the specification of requirements and follows through
analysis, design, coding, testing and operations. Each
phase consists of a defined set of activities and deliver-
ables that must be completed before the next phase can
begin. Even so, the strict sequence allows for controlled
iterations. The use of waterfall requires familiarity with
the domain, methods, techniques, tools, as well as
having stable requirements and a good understanding
of them. This model is often referred to, but it is rarely
applied in its strict form [17].

o Iterative enhancement model [27] proposes to imple-
ment part of the complete system first, and then, add
functionality in a series of iterations. Each iteration
is completed following a waterfall model, that is, the
requirements for the respective iteration are analyzed,
designed, implemented and so on. The result of each
iteration is integrated with the system developed so far.
Developing software iteratively when the requirements
are not completely clear or are still unstable, allows
developers to deliver the most important functionalities,
and thus, clients can decide their priorities by setting the
requirements for the next iteration.

o Spiral model [28] represents a risk-based approach
where risk assessment determines the next phase of
the project. Spiral model combines aspects of waterfall,
iterative enhancement and prototyping model. It allows
choosing the best approach for each iteration in order to
address the identified risks. A prerequisite to apply the
spiral process is specialized knowledge on risk manage-
ment and assessment, so a poor risk assessment can lead
to the selection of wrong alternatives or development
approaches [17].

The Unified Process (UP) [30] was proposed in an attempt
to take advantage of the best features of life cycle processes
and to include some agile development principles. UP is
a generic process framework designed as a structure for
the methods and tools of the Unified Modeling Language

(UML). This consists of four phases, Inception, Elabora-
tion, Construction, and Transition, and is use-case driven,
architecture-centric, iterative and incremental.

The name Unified Process is used to describe the generic
process that includes the elements common to most of
its refinements [31]. The most widely known and docu-
mented refinement of UP is the Rational Unified Process
(RUP) [32]; others are Open Unified Process (OpenUP) [33],
Agile Unified Process (AUP) [34], and Enterprise Unified
Process (EUP) [35], among others. RUP provides a flex-
ible and iterative life cycle that must be adapted to the
exact characteristics of the project and a set of techniques,
templates, job descriptions and tools to guide the work. In
addition to UP characteristics, RUP includes three supporting
disciplines: Configuration and change management, Project
management and Environment. RUP sacrifices some speed
and flexibility in the development process so that changes in
the system can be explained, agreed and formally specified
before implementation [20].

According to Larman [36], UP or RUP (hereinafter RUP)
may or may not be considered agile. Although its creators
and other defenders say that RUP is an agile software
process [26], [37], many authors consider it a heavy and
bureaucratic process due to the dependence on initial plans
or extensive documentation to generate [11], [19], [23].
For the purposes of this research, it will be treated as a
traditional process taking into account its orientation towards
the process.

In the 80s, the software industry increasingly began to
worry about software quality [13]. However, reports about
the successful software projects completion [38] were not
very encouraging. All this favored the adoption of models
and quality standards under the premise that the quality of the
process guarantees product quality [3]. International quality
standards usually used to certify organizations started being
perceived as an indirect means for guaranteeing that projects
would deliver quality products. Some of these models and
standards for the improvement and evaluation of processes
are ISO 9001, Capability Maturity Model Integration for
Development (CMMI) and ISO/IEC 12207.

o ISO 9001:2015 [39] specifies the requirements to cre-
ate a quality management system in any organization,
regardless of its type, size or the products and services
it provides. ISO 9001 is sometimes criticized as being
a general approach to product quality that is not specif-
ically focused on software development [7].

o« CMMI [40] is a collection of good practices to help
organizations dedicated to the development of software
products and services, in their processes evaluation
and improvement. CMMI includes 22 different process
areas that cover five different process maturity levels.
Addressing and trying to improve performance in all
these process areas requires a significant organizational
effort and involves many people over a long period of
time. This characteristic makes CMMI generally more
attractive for large software organizations.

e ISO/IEC 12207:2008 [41] establishes a common frame-

work for software life cycle processes from the collec-
tion of the first ideas and concepts to decommissioning
obsolete systems. It organizes the activities carried out
during the life cycle in seven groups of processes. Each
of the 44 processes in these groups describes a purpose
and shows a list of expected results, as well as the
activities and tasks required. This standard has been
explicitly designed to be used as a process reference
model within ISO/IEC 15504 (SPICE) [42].

Numerous studies such as [43], [44], [45] suggest that
higher process maturity brings higher product quality, the
ability to meet deadlines and other successful indica-
tors of organizational performance. However other publi-
cations [13], [46], [47] refer to cases in which they did
not result in a better organization, but greater bureaucracy,
more time than expected and greater effort. In the opinion
of Miinch et al. [17], people often tend to reject processes
perceived as boring or unnecessarily complicated, especially
if they demand work that does not seem to directly benefit
the worker per se. According to Pressman [16], despite
the number of mechanisms that exist to determine process
maturity, the quality, opportunity and long-term viability of
a product are the best indicators of the effectiveness of the
applied process.

B. Agile Philosophy

The Agile philosophy emerges as a reaction to the tra-
ditional processes [25], as well as to cope with the new
dynamics of the market and the client’s changing needs [22].
According to Highsmith [48], the interest for agile methods
or ecosystems (as he prefers to call them) appeared at
the beginning of the 2000, although their roots go back
more than a decade before. In this time some projects were
successful using the first versions of some agile methods such
as Scrum [49], Dynamic Software Development Method-
ology (DSDM) [50] and Adaptive Software Development
(ASD) [51].

According to Abrahamson et al. [52], “agile denotes the
quality of being agile; readiness for motion; nimbleness, ac-
tivity, dexterity in motion”. However, they argue that there is
no consensus as to what is exactly agile and what it means in
different contexts [1], [53]. In the opinion of Kruchten [10],
agility is “the ability of an organization to react to changes
in its environment faster than the rate of these changes”,
beyond the application of a set of practices (Scrum, XP, etc)
or properties (The Agile Manifesto). Dings@yr et al., show
in [54] a set of opinions about what is meant by “agile”
according to various authors.

The development of agile software is generally incremen-
tal, cooperative, straightforward, and adaptive [52]. Accord-
ing to Highsmith and Cockburn [55] the novelty of agile
methods is not the practices that they use, but the recognition
of people as the main drivers of project success, together with
a focus on effectiveness and maneuverability. This vision of
the agile world is described through a set of values and the
principles in The Agile Manifesto [8].

Several publications [25], [48], [56], [57] refer to the term
“agile” as a general way of calling methods such as Scrum,
Extreme Programming (XP) [58], Lean Software Develop-
ment (Lean) [59], Crystal [60], Feature Driven Development
(FDD) [61], DSDM, ASD, Kanban [62] and others. Although
the individual practices are varied, they can be classified into
six general categories [48]:

o Visioning

« Project initiation

o Short, iterative, feature-driven, timeboxed development

cycles

o Constant feedback

o Customer involvement

o Technical excellence

All methods address the six key practice areas, but some
focus more on collaborative practices and project manage-
ment (ASD, Scrum and DSDM), while others like XP focus
on software development practices. Some of the most wide
used in industry are described below.

e Scrum [49] is a process framework used for managing
product development and other knowledge work in a
volatile environment. It is an empirical approach based
on transparency, inspection and adaptation. Scrum is
structured in a way that allows for choosing techniques,
methods and practices for software development specific
for the context of the team or project. It includes
frequent management activities with the aim of con-
sistently identifying any deficiency or impediment in
the development process, as well as in the practices
that are used. Scrum is more appropriate in case where
multifunctional teams work in a product development
configuration where there is a non-trivial amount of
work that can be divided into a set of iterations of 2
to 4 weeks [63].

o« XP [58] is the most specific of the agile methods
regarding appropriate engineering practices for software
development. According to Highsmith [48], “in XP you
only do what you need to create value for the customer”.
XP intends to enable the development of successful
software despite vague or constantly changing software
requirements. Some of the main features of XP are
short iterations with small releases and rapid feedback,
close customer participation, constant communication
and coordination, continuous refactoring, continuous
integration and testing, collective code ownership and
pair programming. Due to its specificity, its use is not
recommended in some situations' such as the develop-
ment of critical systems for security where the change
should be handled very carefully, to give an example.

e The first version of the DSDM method [50] was de-
veloped in 1994 and is considered the first truly agile
software method. Its creators and defenders call it
method or framework, that is the reason why the term
process was not used in this case. DSDM covers all
aspects of software development from project startup to

Uhttp://wiki.c2.com/?WhenIsXpNotAppropriate

support and maintenance as well as traditional software
processes. The fundamental idea of DSDM is that in-
stead of setting the amount of functionality in a product
and then adjusting the time and resources to achieve
that functionality, it is preferred to set the time and
resources, and adjust then the amount of functionality
accordingly.
For a better understanding of these methods, [64] shows
a summary table of the practices and the corresponding
agile values of six of the agile methods mentioned above.
Similarly, in [65], the agile software development practices
and the agile principles they support are shown. Also, in [52]
each method is evaluated according to software life cycle
coverage, project management support, type of guidance,
situation appropriateness and the level of empirical support.

Agile development status

According to results of the study “Status Quo Agile
2016/17” [66], in which more than 1000 people participated
with a representation of more than 30 countries (mostly
European), 85% of the users of Agile methods surveyed
agree that the most used method is Scrum and then follow
Kanban, Lean and DevOps [67]. More than 50% of the
participants started using Scrum in 2014 or later, and 70%
declare that they started using Kanban in the last 3 years.

The “11th Annual State of Agile Report” [68] with
representation from all continents (mostly North America),
confirms that the adoption of Agile continues to grow. The
94% of the respondents claimed that their organizations
practice agile, although they also say that more than half
of the teams in their organizations still do not practice agile.
Scrum and Scrum/XP Hybrid are the agile methodologies
most commonly used by organizations, while the use of XP
as an independent methodology decreases, even though the
practices associated with XP are still frequent. The report
states that 71% of organizations surveyed have current or
planned DevOps initiatives.

Both surveys agree that the main reasons to work with ag-
ile methods are: shorten time to market, improve the quality,
reduce project risk, better change management, higher team
productivity and better visibility of the project.

The results of [66] lead the authors to conclude that
the success rate of agile methods is still higher than that
of traditional project management. According to the data
of [66], [68] the improvements due to the implementation
of agile methods are greater than the effort involved in the
implementation itself. Even so, there are challenges to agile
scaling such as the disagreement of the organizational culture
with agile values and the lack of skills or experience with
the methods [68].

IV. CHALLENGES OF TRADITIONAL AND AGILE
APPROACHES

There is no unique process or particular approach that
offers a set of principles or practices equally suitable for any
purpose or be flexible enough to be applicable in any type
of project [4]. According to Feiler and Humphrey [15], the

basic requirement of an appropriate software process is that
it must fit the needs of the project. Clarke and O’Connor [7]
state that the needs of a project are based on the context
of the situation in which it should work and therefore, the
software process depends on the context.

Research such as [5], [7], [10], establish a series of factors
that characterize the software development context and that
may significantly affect the adoption of a software process
at the level of the organization, project or development
team. Some of these factors that should be taken into
account are: governance type, business domain, maturity of
the organization, level of innovation, culture, size of the
system, personnel, team distribution, architectural effort, rate
of change, and criticality, among others.

Both, traditional and agile software development, have
their strengths and limitations depending on the context,
and applying them far from their “sweet spot” is always a
challenge.

A. Contexts for traditional approaches
Strengths of discipline

Diebold and Zehler [19] state that counting on an initial
plan such as that required in traditional software development
is essential for evaluating tenders and negotiating contracts
before starting the project. In this way software development
supported on concrete and standardized processes favors
project transparency, improves management and increases the
chances of success. Other reasearch [5], [11], [22] also men-
tion that traditional processes provide better predictability,
repeatability, and optimization opportunities.

According to [69], traditional approaches stress the deter-
minant role that design and architecture play in the case of
large-scale software and systems. Also, this approach is the
most appropriate when most requirements of the final product
can be specified from the beginning and it is not needed
to involve final users during the project [19], [21]. Projects
with high criticality are another context where traditional
development is the best approach, since requirements should
be specified and analyzed up front [5], [21].

Several research works [5], [19], [21] agree that tradi-
tional software development allows personnel to be moved
between different projects without much training. Similarly,
gpundak [21] suggests that certain characteristics of the
development team make this approach the most appropriate:
development teams with little experience, when team mem-
bers are likely to change along the project, or when managers
are not in constant contact with the team. He also says that
large organizations are better suited for these processes since
they generally put a higher stress on control.

Difficulties of traditional processes

Counting on a contract offers a series of advantages
but, according to Boehm and Turner [5], this interface
between developers and clients poses the highest tension
when applying traditional methods. They say that a reaching
a precise contract delays the beginning of the project and
makes difficult to adapt to changes. On the other hand, an

imprecise contract may create false expectations and may
build low confidence relationships. In any case, the worst
scenario happens when managers prioritize complying with
the contract over reaching good project results.

Diebold and Zehler [19] establish that client’s participation
only at the beginning of the project usually provides limited
feedback for later development stages and also problems for
dealing with changes.

A study by Petersen and Wohlin [23] about challenges of
the waterfall model, indicates that the main reason for failure
in this approach is that the actual needs of the clients are not
achieved until the end of the project. Besides, the distance
with the client causes misunderstandings that may result
in modified or forgotten requirements and consequently
unnecessary work and rework.

Test coverage is sometimes reduced due to multiple rea-
sons. In general testing is addressed late in the project
and, if there are any delays, it is compromised [5], [19],
[23]. Moreover, the later testing is performed, the higher the
amount of errors found [16]. Rework is then needed and it
may be hard to correct some of these errors [5], [23].

Another common criticism to traditional processes comes
from the excessive documentation they require and that most
of the times is not used [5], [23], [69].

Scientific literature [5], [16], [23] suggests that traditional
processes are hard to adapt to small projects. Also, small
and changing applications cannot afford the investment in
architectural design demanded by traditional processes [5].

Excessively bureaucratic cultures and methods can block
software development [5]. According to Diebold and
Zehler [19], several criticisms about traditional approaches,
and specially that about inflexibility, made apparent the need
for alternatives in software processes.

Research about difficulties posed by traditional processes
is vast and deep, mainly leaded by agile philosophy and
other approaches defenders. However, in Gregory et al.’s
opinion [70], reports about the application of agility usually
describe success histories of solved problems and hardly ever
persistent difficulties, deterioration situations or even com-
plete failure. This is why this research just mentions some
general difficulties of traditional approaches and focuses on
strengths and weaknesses of agility.

B. Contexts for agile methods
Advantages of agility

Agile software development is considered more flexible
and adaptable in contexts where client’s needs change fre-
quently [5], [22], [23], [48], as well as for small collocated
teams [37], [71]. According to Highsmith [48], the more
volatile the requirements are and the more experimental
technology is, the higher success possibilities agile methods
provide.

Numerous researchers [37], [71], [72], [73], [74] agree
that the main advantages of agility relate with the benefits
derived from frequent communication and feedback, e.g.,
better learning, knowledge transfer, among others. Begel and
Nagappan [74] emphasize that agile methods promote higher

morale among team members. People feel more comfortable,
motivated and confident working in agile environments [22],
[371, [711, [74].

Clients feel more satisfied when agile methods are ap-
plied because they provide the opportunity of receiving
early feedback and they can soon answer to changes [37],
[71]. Similarly, developers value constant collaboration with
clients these methods promote [23], [37], [71], [74]. There
also exist the perception that software products exhibit higher
quality and teams are more productive [37], [71], [74].
Yet other works highlight other advantages such as project
transparency and less time wasted in irrelevant tasks [71],
[74].

Difficulties of agile software methods

Despite all the advantages that agile methods provide,
the process of adopting the approach or transforming an
organization toward agility is a challenge [10]. According
to [22], changes not only affect the development process
itself, but also they need to take into account a whole series
of other factors: communication means, client participation,
requirements, change management, management style, peo-
ple and current processes.

Table I summarizes some of the difficulties of agile
methods reported in the literature.

o Customer involvement

According to Boehm and Turner [5], the success of agile
development depends on having customers representatives
who are collaborative, representative, authorized, committed
and knowledgeable (CRACK). This is apparent in the experi-
ence on the Chrysler Comprehensive Compensation project?
(C3), that is accepted as the first evidence of the use of XP’s
practices [57].

Referring this issue, Stephens and Rosenberg [79] agree
that C3 is a success case of XP. However, after several
pauses and delays, the project was canceled [75]. Some
of the problems that lead to project failure were changing
the client on site without an opportune transfer [75], and
bad communication between the client on site and other
stakeholders [20], among others.

Another similar case is presented in [75] where the de-
velopment of a software product line called DocGen faced
several challenges due to the involvement of many different
representatives of the client party. There is certain consensus
that client on site is one of the most stressful issue for the
application of agile methods [5], [23], [37], [73].

o Professional demands

According to scientific literature [5], [22], [37], [68],
[73], [74], [76], agile methods are very demanding when
considering professional skills in order to be successful.
Creating an effective agile team is a challenging task [22].
Teams require highly trained managers, high qualifications
in all team members, and a steep learning curve. Dyba and
Dingsgyr [37] also argue that, if team members do not count

Zhttp://wiki.c2.com/?ChryslerComprehensiveCompensation; Octubre 11,
2017

on comparable skills, development will not be effective.
Similarly, the lack of experience may generate big delays
when new practices are implemented [22].

o Scalability

Scalability is understood as the breadth of activities for
which the process definition is designed. This might include
the ranges in number of people, size of product, time
duration, product life cycle, or development environment for
which the process is fit and precise [15].

Research such as [5], [37], [71], [74] found that it is a
challenge to scale agile methods. A study conducted by [22]
revealed that scalability is a rather significant limitation and
it is still an open issue to be addressed by researchers.
According to [19], [22], agility provides limited support
for distributed environments, large projects (either long in
time, very expensive or highly risky) and large teams.
Their application in these contexts can bring difficulties in
communication and/or development delays, just to mention
some. According to [5], confidence in tacit knowledge is
another limit to scale agility.

e Specific domains

Several scientific works [5], [22], [711, [72], [74], [77],
[78] agree that agile methods have serious limitations in
safety-critical domains (e.g., military or health care where
the software needs to be of the highest quality possible)
and legacy systems mainly because of simple design and
the lack of documentation. Also, testing is a bottleneck in
agile projects for safety-critical systems since they must be
frequent and exhaustive [71]. On the other hand, Boehm
and Turner [78] state that using agile methods for legacy
systems, either for maintenance or for a new development,
brings problems relating refactoring.

e Architecture focus and technical debt

Another limitation of agile methods extensively mentioned
in the literature [5], [10], [71], [74] is the lack of attention
received by design and architecture. These issues bring as a
consequence a grow in technical debt.

According to Kruchten et al. [76], technical, quality and
maintainability debts are not only caused by pressure on
schedules as other researchers argue, but carelessness, lack
of education, poor processes, nonsystematic verification of
quality, or basic incompetence. Other factors that contribute
to technical debt in agile projects are: developing and de-
livering very rapidly, with no time for proper design or to
reflect on the longer term, and lack of rigor or systematic
testing.

e Discarded practices

A study by Petersen [71] suggests that the lack of
professional skills for agile development results in aban-
doning certain agile practices as time passes. The most
frequently abandoned practices are: pair programming, test-
driven development, and continuous integration. Others work
reporting similar results [37], [71], [74] indicate that pair
programming is perceived as an exhausting task whenever
partners do no count on the same qualification.

TABLE I
REPORTED DIFFICULTIES OF AGILE METHODS

ID Difficulty Reference

AD1 Customer does not keep CRACK [5], [201], [23], [37], [73], [75]

AD2 Professional skill-specific demands [5], [22], [37], [68], [73], [74], [76]

AD3 Agile development does not scale well [51, [19], [22], [23], [37], [68], [71], [74], [77]
ADS Lack of suitability for specific product domains [51, [22], [71], [72], [74], [77], [78]

AD6 Architecture does not get enough focus [5], [10], [711, [74]

AD7 Some practices are discarded after a period of time 221, [37], [71], [74]

ADS8 Increased testing effort [22], [23], [71], [73]

AD9 Risks in knowledge and project management [51, 1221, [371, [71], [73], [74], [77]

ADI10 Increment of technical debt [76]

o Testing effort

A case study conducted by [71] concluded that in several,
sometimes in small projects, independent tests are performed
only partially or they are omitted completely. This makes
that the burden of testing falls in the latest system version,
demanding a huge effort [22], [71], [73]. A determinant
factor that influences test reduction is the close relation
between designers and testers, where designers sometimes
press testers so that they focus only in certain parts of the
system. “The close relation between testers and designers
affects independent testing negatively” [71]. Another prob-
lem relating testing is that agility requires a big effort for
performing continuous testing because creating an integrated
testing environment is difficult for different platforms and
system dependencies [23], [71].

e Knowledge and project management

Boehm and Turner [5] highlight the risk of completely
relying on the tacit knowledge assumed by agile methods,
mainly in large teams, and the situations when people
abandon the team. Dyba and Dingsgyr [37] alert that in agile
teams, members are not so interchangeable as needed and
this issue has direct consequences on project management.
Provided that the organizational environment impacts signif-
icantly in the implementation of agile project management,
the organization should be prepared to accept changes this
approach requires or otherwise they would face serious
difficulties [5]. According to [22], managerial abilities are
crucial for the success of agile philosophy. The team leader
is responsible for constantly reducing risks, recording team
progress, and soon reacting to any difficulty. On the other
hand, teams should be able to self-organize instead of being
centrally managed [22], [71], [73], [74], [77].

C. Outside of the sweet spot

Failure is a natural part of the application of any pro-
cess [80], and understanding what went wrong is a powerful
learning experience that allows us to know what went well
too [70]. One of the main causes of failure in software
development is the application of processes in contexts that
are, at least in some dimensions, far from the contexts for
which they were created [10], [47].

In [47], Glass reflects on the causes that made a company
try to implement CMMI for three years without being able
to surpass level 1. The company develops web applications
from scratch, to respond to the specific needs of diverse
clients. This scenario suggests an agile development and
not a traditional approach such as that implied by CMMI.
The author concludes that they made a big mistake trying to
apply a process -CMMI in this case- in a context far from
its application “sweet spot”.

Similar situations are described in [10], where Kruchten
explains the failure of projects involving legacy software,
safety-critical systems, low requirements change, and nobody
playing the role of client to interact with, among others.

According to [10], [26], [56], the contextual factors that
more frequently make agile projects to fail are: size, large
systems with a lack of architectural focus, software develop-
ment not driven by customer demand, lack of support from
surrounding stakeholders, novice team, very high constraints
of some quality attributes (safety-critical system, real-time
constraints). Similarly, a study conducted by [81] about agile
methods adoption for large-scale development concluded
that one of the most determinant challenges is the cultural
transformation of the organization, mainly at the middle
management level.

V. CONCLUSIONS

This study provides an overview of the evolution of the
software development approaches. It provides some defini-
tions that are sometimes vague in literature such as what a
software process actually is. A summary is provided about
weaknesses of traditional approaches that have led to the
proposal of agile methodologies. Strengths and weaknesses
of traditional and agile processes are surveyed, allowing us
to understand the challenges faced when applying one or the
other approach outside the sweet spot.

According to Adolph and Kruchten [82], “failure is the
dark family secret in our industry”. Therefore, there is poor
published evidence about persistent difficulties or failure
situations in practice that would allow us to learn from errors.

There is no unique way to develop software. The best
way depends on specific factors relating the context of

the

organization, the project and the development team.

Therefore, a large number of researchers [5], [11], [12],
[20], [21], [72] advocate for a balance between discipline
and agility in order to take advantage of the best of both
worlds.

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]
[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

Marco Kuhrmann, Jirgen Miinch, Ita Richardson, Andreas Rausch,
and He Zhang (eds.). Managing Software Process Evolution: Tradi-
tional, Agile and Beyond—How to Handle Process Change. Springer,
2016.

Alfonso Fuggetta. Software process: A roadmap. In Proceedings of
the Conference on The Future of Software Engineering, ICSE ’00,
pages 25-34, New York, NY, USA, 2000. ACM.

Watts S. Humphrey, Terry R. Snyder, and Ronald R. Willis. Software
process improvement at hughes aircraft. IEEE software, 8(4):11-23,
1991.

F Brooks and HJ Kugler. No silver bullet. April, 1987.

Barry Boehm and Richard Turner. Balancing Agility and Discipline:
A Guide for the Perplexed. Addison-Wesley Professional, 2003.
Winston W Royce. Managing the development of large software
systems. In Proceedings of the 9th international conference on
Software Engineering, pages 328-338. IEEE Computer Society Press,
1970.

Paul Clarke and Rory V O’Connor. The situational factors that affect
the software development process: Towards a comprehensive reference
framework. Information and Software Technology, 54(5):433-447,
2012.

Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn,
‘Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith,
Andrew Hunt, Ron Jeffries, et al. Manifesto for agile software
development, 2001.

Sanjiv Augustine. Managing agile projects. Prentice Hall PTR, 2005.
Philippe Kruchten. Contextualizing agile software development. Jour-
nal of Software: Evolution and Process, 25(4):351-361, 2013.
Georgios Theocharis, Marco Kuhrmann, Jiirgen Miinch, and Philipp
Diebold. Is water-scrum-fall reality? on the use of agile and traditional
development practices. In International Conference on Product-
Focused Software Process Improvement, pages 149-166. Springer,
2015.

Leo R Vijayasarathy and Charles W Butler. Choice of software
development methodologies: Do organizational, project, and team
characteristics matter? IEEE Software, 33(5):86-94, 2016.

Gianpaolo Cugola and Carlo Ghezzi. Software processes: a retrospec-
tive and a path to the future. Software Process: Improvement and
Practice, 4(3):101-123, 1998.

Per Kroll and Philippe Kruchten. The rational unified process made
easy: a practitioner’s guide to the RUP. Addison-Wesley Professional,
2003.

Peter H Feiler and Watts S Humphrey. Software process development
and enactment: Concepts and definitions. In Software Process, 1993.
Continuous Software Process Improvement, Second International Con-
ference on the, pages 28-40. IEEE, 1993.

R.S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill higher education. McGraw-Hill Education, 2010.
Jiirgen Miinch, Ove Armbrust, Martin Kowalczyk, and Martin Sotd.
Software process definition and management. Springer Science &
Business Media, 2012.

Leon Osterweil. Software processes are software too. In Proceedings
of the 9th international conference on Software Engineering, pages
2-13. IEEE Computer Society Press, 1987.

Philipp Diebold and Thomas Zehler. The Right Degree of Agility
in Rich Processes, pages 15-37. Springer International Publishing,
Cham, 2016.

Vishnu Vinekar, Craig W. Slinkman, and Sridhar P. Nerur. Can
agile and traditional systems development approaches coexist? an
ambidextrous view. IS Management, 23(3):31-42, 2006.

Mario Spundak. Mixed agile/traditional project management
methodology—reality or illusion? Procedia-Social and Behavioral
Sciences, 119:939-948, 2014.

Adam Solinski and Kai Petersen. Prioritizing agile benefits and
limitations in relation to practice usage. Software quality journal,
24(2):447-482, 2016.

[23]

[24]

[25]
[26]

[27]

(28]
[29]

[30]

[31]
[32]
[33]
[34]

[35]

[36]

(371

[38

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]
(48]
[49]

[50

[51]

Kai Petersen and Claes Wohlin. The effect of moving from a plan-
driven to an incremental software development approach with agile
practices. Empirical Software Engineering, 15(6):654-693, 2010.
Hans-Christian Estler, Martin Nordio, Carlo A Furia, Bertrand Meyer,
and Johannes Schneider. Agile vs. structured distributed soft-
ware development: A case study. Empirical Software Engineering,
19(5):1197-1224, 2014.

Kevin Aguanno. Managing agile projects. Multi-Media Publications
Inc., Lakefield, Ontario, Canada, 2005.

Philippe Kruchten. Voyage in the agile memeplex. Queue, 5(5):1,
2007.

Victor R Basil and Albert J Turner. Iterative enhancement: A practical
technique for software development. IEEE Transactions on Software
Engineering, (4):390-396, 1975.

Barry W. Boehm. A spiral model of software development and
enhancement. Computer, 21(5):61-72, 1988.

Christiane Floyd. A systematic look at prototyping. In Approaches to
prototyping, pages 1-18. Springer, 1984.

Ivar Jacobson, Grady Booch, James Rumbaugh, James Rumbaugh, and
Grady Booch. The unified software development process, volume 1.
Addison-wesley Reading, 1999.

Kendall Scott. The unified process explained.
Longman Publishing Co., Inc., 2002.

Philippe Kruchten. The rational unified process: an introduction.
Addison-Wesley Professional, 2004.

Bjorn Gustafsson. Openup—the best of two worlds. Methods & Tools,
16(1):21-32, 2008.

Scott Ambler. Agile modeling: effective practices for extreme pro-
gramming and the unified process. John Wiley & Sons, 2002.

Scott Ambler, John Nalbone, and Michael Vizdos. Enterprise unified
process, the: extending the rational unified process. Prentice Hall
Press, 2005.

Craig Larman. Agile and iterative development: a manager’s guide.
Addison-Wesley Professional, 2004.

Tore Dyba and Torgeir Dingsgyr. Empirical studies of agile software
development: A systematic review. Information and software technol-
ogy, 50(9):833-859, 2008.

Standish Group et al. The chaos report. Capturado em: http://www.
standishgroup. com, 1995.

ISO/TC 176/SC 2 Quality systems. Iso 9001:2015 quality management
systems — requirements). Technical report, International Organization
for Standardization, 2015.

CMMI Product Team. Cmmi for development (cmmi-dev). Tech-
nical report, Version 1.3, Technical Report, CMU/SEI-2010-TR-033,
Software Engineering Institute, 2010.

ISO/IEC JTC 1/SC 7 Software and systems engineering. Iso/iec
12207:2008 systems and software engineering — software life cycle
processes. Technical report, International Organization for Standard-
ization, 2008.

Han Van Loon. Process Assessment and ISO/IEC 15504: a reference
book, volume 775. Springer Science & Business Media, 2004.
Dennis Goldenson and James D Herbsleb. After the appraisal: A
systematic survey of process improvement, its benefits, and factors
that influence success. Technical Report CMU/SEI-95-TR-009, CMU,
1995.

B Clark. Quantifying the effects on effort of software process maturity.
IEEE Software Journal, 17(6):65-70, 2000.

Donald E Harter, Mayuram S Krishnan, and Sandra A Slaughter.
Effects of process maturity on quality, cycle time, and effort in
software product development. Management Science, 46(4):451-466,
2000.

Mark C Paulk. Surviving the quagmire of process models, integrated
models, and standards. In ASQ World Conference on Quality and
Improvement Proceedings, volume 58, page 429. American Society
for Quality, 2004.

Robert L Glass. Some heresy regarding software engineering. [EEE
Software, 21(4):104-103, 2004.

Jim Highsmith. What is agile software development? CROSSTALK
The Journal of Defense Software Engineering, 15(10):4-9, 2002.
Ken Schwaber. Agile project management with Scrum. Microsoft
press, 2004.

Jennifer Stapleton. DSDM, dynamic systems development method: the
method in practice. Cambridge University Press, 1997.

Jim Highsmith. Adaptive software development: a collaborative
approach to managing complex systems. Addison-Wesley, 2013.

Addison-Wesley

[52]

[53]

[54]

[55]
[56]

(571
[58]

[59]
[60]
[61]
[62]
[63]

[64]

[65]
[66]
[67]
[68]
[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

Pekka Abrahamsson, Juhani Warsta, Mikko T Siponen, and Jussi
Ronkainen. New directions on agile methods: a comparative anal-
ysis. In Software Engineering, 2003. Proceedings. 25th International
Conference on, pages 244-254. Ieee, 2003.

Pekka Abrahamsson, Kieran Conboy, and Xiaofeng Wang. ‘lots done,
more to do’: the current state of agile systems development research,
2009.

Torgeir Dingsgyr, Sridhar Nerur, VenuGopal Balijepally, and
Nils Brede Moe. A decade of agile methodologies: Towards explaining
agile software development, 2012.

Jim Highsmith and Alistair Cockburn. Agile software development:
The business of innovation. Computer, 34(9):120-127, 2001.
Rashina Hoda, Philippe Kruchten, James Noble, and Stuart Marshall.
Agility in context. ACM Sigplan Notices, 45(10):74-88, 2010.

Alan Moran. Managing Agile. Springer, 2016.

Kent Beck. Extreme programming explained: embrace change.
addison-wesley professional, 2000.

Poppendieck Mary and Poppendieck Tom. Lean software develop-
ment: an agile toolkit, 2003.

Alistair Cockburn. Crystal clear: a human-powered methodology for
small teams. Pearson Education, 2004.

Steve R Palmer and Mac Felsing. A practical guide to feature-driven
development. Pearson Education, 2001.
David J Anderson and Andy Carmichael.
densed. Blue Hole Press, 2016.

Mike Cohn. Succeeding with agile: software development using Scrum.
Pearson Education, 2010.

Asif Qumer Gill, Brian Henderson-Sellers, and Mahmood Niazi.
Scaling for agility: A reference model for hybrid traditional-agile
software development methodologies. Information Systems Frontiers,
pages 1-27, 2016.

Laurie Williams. Agile software development methodologies and
practices. Advances in Computers, 80:1-44, 2010.

Ayelt et al. Komus. Study report: Status quo agile 2016/2017.
Technical report, Hochschule Koblenz University of Applied Sciences,
http://www.status-quo-agile.de/, 2017.

Michael Httermann. DevOps for developers. Apress, 2012.
VersionOne. 11th annual state of agile report. Technical report, Tech-
nical report, VersionOne, http://stateofagile.versionone.com/, 2016.
Kai Petersen, Claes Wohlin, and Dejan Baca. The waterfall model in
large-scale development. In PROFES, pages 386—400. Springer, 2009.
Peggy Gregory, Leonor Barroca, Katie Taylor, Dina Salah, and Helen
Sharp. Agile challenges in practice: a thematic analysis. In Inter-
national Conference on Agile Software Development, pages 64—80.
Springer, 2015.

Kai Petersen and Claes Wohlin. A comparison of issues and advan-
tages in agile and incremental development between state of the art
and an industrial case. Journal of systems and software, 82(9):1479—
1490, 2009.

Marco Kuhrmann, Philipp Diebold, Jiirgen Miinch, Paolo Tell, Vahid
Garousi, Michael Felderer, Kitija Trektere, Fergal McCaffery, Oliver
Linssen, Eckhart Hanser, and Christian R. Prause. Hybrid software
and system development in practice: Waterfall, scrum, and beyond.
In Proceedings of the 2017 International Conference on Software and
System Process, ICSSP 2017, pages 30-39, New York, NY, USA,
2017. ACM.

Minna Pikkarainen, Jukka Haikara, Outi Salo, Pekka Abrahamsson,
and Jari Still. The impact of agile practices on communication in
software development. Empirical Software Engineering, 13(3):303—
337, 2008.

Andrew Begel and Nachiappan Nagappan. Usage and perceptions of
agile software development in an industrial context: An exploratory
study. In Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on, pages 255-264. IEEE,
2007.

Arie Van Deursen. Customer involvement in extreme programming.
ACM SIGSOFT Software Engineering Notes, 26(6):70, 2001.
Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical debt:
From metaphor to theory and practice. Ieee software, 29(6):18-21,
2012.

Leo R Vijayasarathy and Dan Turk. Agile software development:
A survey of early adopters. Journal of Information Technology
Management, 19(2):1-8, 2008.

Essential Kanban Con-

[78]

[79]

[80]

[81]

[82]

Barry Boehm and Richard Turner. Management challenges to im-
plementing agile processes in traditional development organizations.
IEEE software, 22(5):30-39, 2005.

Matt Stephens and Doug Rosenberg. Where Did XP Come From?
(Chrysler Knows It Ain’t Easy.), pages 31-56. Apress, Berkeley, CA,
2003.

Pekka Abrahamsson, Muhammad Ali Babar, and Philippe Kruchten.
Agility and architecture: Can they coexist? [EEE Software, 27(2),
2010.

Kim Dikert, Maria Paasivaara, and Casper Lassenius. Challenges
and success factors for large-scale agile transformations: A systematic
literature review. Journal of Systems and Software, 119:87-108, 2016.
Steve Adolph and Philippe Kruchten. Summary for scrutinizing agile
practices or shoot-out at process corral! In Companion of the 30th
international conference on Software engineering, pages 1031-1032.
ACM, 2008.

