
Gradual Refinement Types
Extended Version with Proofs

Nico Lehmann ∗

PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile
nlehmann@dcc.uchile.cl

Éric Tanter †

PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile
etanter@dcc.uchile.cl

Abstract
Refinement types are an effective language-based verification tech-
nique. However, as any expressive typing discipline, its strength is
its weakness, imposing sometimes undesired rigidity. Guided by
abstract interpretation, we extend the gradual typing agenda and
develop the notion of gradual refinement types, allowing smooth
evolution and interoperability between simple types and logically-
refined types. In doing so, we address two challenges unexplored
in the gradual typing literature: dealing with imprecise logical in-
formation, and with dependent function types. The first challenge
leads to a crucial notion of locality for refinement formulas, and the
second yields novel operators related to type- and term-level sub-
stitution, identifying new opportunity for runtime errors in gradual
dependently-typed languages. The gradual language we present is
type safe, type sound, and satisfies the refined criteria for gradually-
typed languages of Siek et al. We also explain how to extend our
approach to richer refinement logics, anticipating key challenges to
consider.

Categories and Subject Descriptors D.3.1 [Software]: Program-
ming Languages—Formal Definitions and Theory

Keywords gradual typing; refinement types; abstract interpreta-
tion

1. Introduction
Refinement types are a lightweight form of language-based veri-
fication, enriching types with logical predicates. For instance, one
can assign a refined type to a division operation (/), requiring that
its second argument be non-zero:

Int→ {ν : Int | ν 6= 0} → Int

∗ Funded by CONICYT-PCHA/Magíster Nacional/2015-22150894
† Partially funded by Fondecyt Project 1150017

Any program that type checks using this operator is guaranteed to
be free from division-by-zero errors at runtime. Consider:

let f (x: Int) (y : Int) = 1/(x− y)

Int is seen as a notational shortcut for {ν : Int | >}. Thus, in the
definition of f the only information about x and y is that they are
Int, which is sufficient to accept the subtraction, but insufficient to
prove that the divisor is non-zero, as required by the type of the
division operator. Therefore, f is rejected statically.

Refinement type systems also support dependent function types,
allowing refinement predicates to depend on prior arguments. For
instance, we can give f the more expressive type:

x : Int→ {ν : Int | ν 6= x} → Int

The body of f is now well-typed, because y 6= x implies x−y 6= 0.
Refinement types have been used to verify various kinds of

properties (Bengtson et al. 2011; Kawaguchi et al. 2009; Rondon
et al. 2008; Xi and Pfenning 1998), and several practical implemen-
tations have been recently proposed (Chugh et al. 2012a; Swamy
et al. 2016; Vazou et al. 2014; Vekris et al. 2016).

Integrating static and dynamic checking. As any static typing
discipline, programming with refinement types can be demanding
for programmers, hampering their wider adoption. For instance, all
callers of f must establish that the two arguments are different.

A prominent line of research for improving the usability of re-
finement types has been to ensure automatic checking and infer-
ence, e.g. by restricting refinement formulas to be drawn from an
SMT decidable logic (Rondon et al. 2008). But while type infer-
ence does alleviate the annotation burden on programmers, it does
not alleviate the rigidity of statically enforcing the type discipline.

Therefore, several researchers have explored the complemen-
tary approach of combining static and dynamic checking of refine-
ments (Flanagan 2006; Greenberg et al. 2010; Ou et al. 2004; Tanter
and Tabareau 2015), providing explicit casts so that programmers
can statically assert a given property and have it checked dynami-
cally. For instance, instead of letting callers of f establish that the
two arguments are different, we can use a cast:

let g (x: Int) (y : Int) = 1/(〈c〉 (x− y))

The cast 〈c〉 ensures at runtime that the division is only applied
if the value of x − y is not 0. Division-by-zero errors are still
guaranteed to not occur, but cast errors can.

These casts are essentially the refinement types counterpart of
downcasts in a language like Java. As such, they have the same
limitation when it comes to navigating between static and dynamic
checking—programming in Python feels very different from pro-
gramming in Java with declared type Object everywhere and ex-
plicit casts before every method invocation!

Gradual typing. To support a full slider between static and dy-
namic checking, without requiring programmers to explicitly deal
with casts, Siek and Taha (2006) proposed gradual typing. Gradual
typing is much more than “auto-cast” between static types, because
gradual types can denote partially-known type information, yield-
ing a notion of consistency. Consider a variable x of gradual type
Int → ?, where ? denotes the unknown type. This type conveys
some information about x that can be statically exploited to defi-
nitely reject programs, such as x+ 1 and x(true), definitely accept
valid applications such as x(1), and optimistically accept any use
of the return value, e.g. x(1) + 1, subject to a runtime check.

In essence, gradual typing is about plausible reasoning in pres-
ence of imprecise type information. The notion of type precision
(Int → ? is more precise than ? → ?), which can be raised to
terms, allows distinguishing gradual typing from other forms of
static-dynamic integration: weakening the precision of a term must
preserve both its typeability and reduceability (Siek et al. 2015).
This gradual guarantee captures the smooth evolution along the
static-dynamic checking axis that gradual typing supports.

Gradual typing has triggered a lot of research efforts, including
how to adapt the approach to expressive type disciplines, such as
information flow typing (Disney and Flanagan 2011; Fennell and
Thiemann 2013) and effects (Bañados Schwerter et al. 2014, 2016).
These approaches show the value of relativistic gradual typing,
where one end of the spectrum is a static discipline (i.e. simple
types) and the other end is a stronger static discipline (i.e. simple
types and effects). Similarly, in this work we aim at a gradual
language that ranges from simple types to logically-refined types.

Gradual refinement types. We extend refinement types with
gradual formulas, bringing the usability benefits of gradual typ-
ing to refinement types. First, gradual refinement types accom-
modate flexible idioms that do not fit the static checking disci-
pline. For instance, assume an external, simply-typed function
check :: Int → Bool and a refined get function that requires
its argument to be positive. The absence of refinements in the sig-
nature of check is traditionally interpreted as the absence of static
knowledge denoted by the trivial formula >:

check :: {ν : Int | >} → {ν :Bool | >}

Because of the lack of knowledge about check idiomatic expres-
sions like:

if check(x) then get(x) else get(−x)

cannot possibly be statically accepted. In general, lack of knowl-
edge can be due to simple/imprecise type annotations, or to the
limited expressiveness of the refinement logic. With gradual refine-
ment types we can interpret the absence of refinements as imprecise
knowledge using the unknown refinement ?:1

check :: {ν : Int | ?} → {ν :Bool | ?}

Using this annotation the system can exploit the imprecision to
optimistically accept the previous code subject to dynamic checks.

Second, gradual refinements support a smooth evolution on
the way to static refinement checking. For instance, consider the
challenge of using an existing library with a refined typed interface:

a :: {ν : Int | ν < 0} → Bool b :: {ν : Int | ν < 10} → Int

One can start using the library without worrying about refinements:

let g (x: {ν : Int | ?}) = if a(x) then 1/x else b(x)

1 In practice a language could provide a way to gradually import statically
annotated code or provide a compilation flag to treat the absence of a
refinement as the unknown formula ? instead of >.

Based on the unknown refinement of x, all uses of x are statically
accepted, but subject to runtime checks. Clients of g have no static
requirement beyond passing an Int. The evolution of the program
can lead to strengthening the type of x to {ν : Int | ν > 0 ∧ ?}
forcing clients to statically establish that the argument is positive. In
the definition of g, this more precise gradual type pays off: the type
system definitely accepts 1/x, making the associated runtime check
superfluous, and it still optimistically accepts b(x), subject to a
dynamic check. It now, however, definitely rejects a(x). Replacing
a(x) with a(x − 2) again makes the type system optimistically
accept the program. Hence, programmers can fine tune the level of
static enforcement they are willing to deal with by adjusting the
precision of type annotations, and get as much benefits as possible
(both statically and dynamically).

Gradualizing refinement types presents a number of novel chal-
lenges, due to the presence of both logical information and de-
pendent types. A first challenge is to properly capture the notion
of precision between (partially-unknown) formulas. Another chal-
lenge is that, conversely to standard gradual types, we do not want
an unknown formula to stand for any arbitrary formula, otherwise
it would be possible to accept too many programs based on the po-
tential for logical contradictions (a value refined by a false formula
can be used everywhere). This issue is exacerbated by the fact that,
due to dependent types, subtyping between refinements is a con-
textual relation, and therefore contradictions might arise in a non-
local fashion. Yet another challenge is to understand the dynamic
semantics and the new points of runtime failure due to the stronger
requirements on term substitution in a dependently-typed setting.

Contributions. This work is the first development of gradual typ-
ing for refinement types, and makes the following contributions:

• Based on a simple static refinement type system (Section 2),
and a generic interpretation of gradual refinement types, we
derive a gradual refinement type system (Section 3) that is a
conservative extension of the static type system, and preserves
typeability of less precise programs. This involves developing a
notion of consistent subtyping that accounts for gradual logical
environments, and introducing the novel notion of consistent
type substitution.
• We identify key challenges in defining a proper interpretation

of gradual formulas. We develop a non-contradicting, semantic,
and local interpretation of gradual formulas (Section 4), estab-
lishing that it fulfills both the practical expectations illustrated
above, and the theoretical requirements for the properties of the
gradual refinement type system to hold.
• Turning to the dynamic semantics of gradual refinements, we

identify, beyond consistent subtyping transitivity, the need for
two novel operators that ensure, at runtime, type preservation
of the gradual language: consistent subtyping substitution, and
consistent term substitution (Section 5). These operators crys-
tallize the additional points of failure required by gradual de-
pendent types.
• We develop the runtime semantics of gradual refinements as

reductions over gradual typing derivations, extending the work
of Garcia et al. (2016) to accommodate logical environments
and the new operators dictated by dependent typing (Section 6).
The gradual language is type safe, satisfies the dynamic gradual
guarantee, as well as refinement soundness.
• To address the decidability of gradual refinement type checking,

we present an algorithmic characterization of consistent subtyp-
ing (Section 7).

T ∈ TYPE, x ∈ VAR, c ∈ CONST, t ∈ TERM,
p ∈ FORMULA, Γ ∈ ENV, Φ ∈ LENV

v ::= λx :T.t | x | c (Values)
t ::= v | t v | let x = t in t (Terms)

if v then t else t | t :: T
B ::= Int | Bool (Base Types)
T ::= {ν :B | p} | x :T → T (Types)
p ::= p = p | p < p | p+ p | v | ν (Formulas)

p ∧ p | p ∨ p | ¬p | > | ⊥
Γ ::= • | Γ, x :T (Type Environments)
Φ ::= • | Φ, x :p (Logical Environments)

Γ; Φ ` t : T (Tx-refine)
Γ(x) = {ν :B | p}

Γ; Φ ` x : {ν :B | ν = x}

(Tx-fun)
Γ(x) = y :T1 → T2

Γ; Φ ` x : (y :T1 → T2)
(Tc)

Γ; Φ ` c : ty(c)

(Tλ)
Φ ` T1 Γ, x :T1 ; Φ, x :LT1M ` t : T2

Γ; Φ ` λx :T1.t : (x :T1 → T2)

(Tapp)
Γ; Φ ` t : (x :T1 → T2) Γ; Φ ` v : T Φ ` T <: T1

Γ; Φ ` t v : T2[v/x]

(Tif)

Γ; Φ ` v : {ν :Bool | p} Φ ` T1 <: T Φ ` T2 <: T
Γ; Φ, x : (v = true) ` t1 : T1 Γ; Φ, x : (v = false) ` t2 : T2

Γ; Φ ` if v then t1 else t2 : T

(Tlet)

Γ, x :T1 ; Φ, x :LT1M ` t2 : T2 Γ; Φ ` t1 : T1
Φ, x :LT1M ` T2 <: T Φ ` T

Γ; Φ ` let x = t1 in t2 : T

(T::)
Γ; Φ ` t : T1 Φ ` T1 <: T2

Γ; Φ ` t :: T2 : T2

Φ ` T1 <: T2 (<:-refine)

LΦM ∪ { p } |= q
` Φ Φ ` p Φ ` q

Φ ` {ν :B | p} <: {ν :B | q}

(<:-fun)
Φ ` T21 <: T11 Φ, x :LT21M ` T12 <: T22

Φ ` x :T11 → T12 <: x :T21 → T22

Figure 1. Syntax and static semantics of the static language.

• Finally, we explain how to extend our approach to accommo-
date a more expressive refinement logic (Section 8), by adding
measures (Vazou et al. 2014) to the logic.

Section 9 elaborates on some aspects of the resulting design, Sec-
tion 10 discusses related work and Section 11 concludes. The
proofs and complete definitions are in the supplementary material,
referenced in this technical report as specific Appendices.

To design the gradual refinement type system, we exercise the
Abstracting Gradual Typing methodology (Garcia et al. 2016), a
systematic approach to derive gradual typing disciplines based on
abstract interpretation (Cousot and Cousot 1977). We summarize
our specific contributions to AGT in Section 10.

2. A Static Refinement Type System
Figure 1 describes the syntax and static semantics of a language
with refinement types. Base refinements have the form {ν :B | p}
where p is a formula that can mention the refinement variable
ν. Here, we consider the simple quantifier free logic of linear
arithmetic (QF-LIA), which suffices to capture the key issues in
designing gradual refinement types; we discuss extensions of our
approach to more expressive logics in Section 8. Base refinements

are used to build up dependent function types x : T1 → T2. In
order to restrict logical formulas to values, application arguments
and conditions must be syntactic values (Vazou et al. 2014).

The typing judgment Γ; Φ ` t : T uses a type environment Γ to
track variables in scope and a separate logical environment to track
logical information. This separation is motivated by our desire to
gradualize only the logical parts of types. For example, in Rule (Tλ)
the body of a lambda λx :T.t is typed as usual extending the
type environment and also enriching the logical environment with
the logical information extracted from T , denoted LT M. Extraction
is defined as L{ν :B | p}M = p, and Lx :T1 → T2M = > since
function types have no logical interpretation per se.

Subtyping is defined based on entailment in the logic. Rule
(<:-refine) specifies that {ν :B | p} is a subtype of {ν :B | q} in
an environment Φ if p, in conjunction with the information in Φ,
entails q. Extraction of logical information from an environment,
denoted LΦM, substitutes actual variables for refinement variables,
i.e. Lx :pM = p[x/ν]. The judgment ∆ |= p states that the set of
formulas ∆ entails p modulo the theory from which formulas are
drawn. A judgment ∆ |= p can be checked by issuing the query
VALID(∆ → p) to an SMT solver. Note that subtyping holds only
for well-formed types and environments (<:-refine); a type is well-
formed if it only mentions variables that are in scope (auxiliary
definitions are in Appendix A.1).

For the dynamic semantics we assume a standard call-by-value
evaluation. Note also that Rule (Tapp) allows for arbitrary values
in argument position, which are then introduced into the logic upon
type substitution. Instead of introducing arbitrary lambdas in the
logic, making verification undecidable, we introduce a fresh con-
stant for every lambda (Chugh 2013). This technique is fundamen-
tal to prove soundness directly in the system since lambdas can
appear in argument position at runtime. For proofs of type safety
and refinement soundness refer to Appendix A.1.

3. A Gradual Refinement Type System
Abstracting Gradual Typing (AGT) is a methodology to system-
atically derive the gradual counterpart of a static typing disci-
pline (Garcia et al. 2016), by viewing gradual types through the lens
of abstract interpretation (Cousot and Cousot 1977). Gradual types
are understood as abstractions of possible static types. The meaning
of a gradual type is hence given by concretization to the set of static
types that it represents. For instance, the unknown gradual type ?
denotes any static type; the imprecise gradual type Int→ ? denotes
all function types from Int to any type; and the precise gradual type
Int only denotes the static type Int.

Once the interpretation of gradual types is defined, the static
typing discipline can be promoted to a gradual discipline by lifting
type predicates (e.g. subtyping) and type functions (e.g. subtyping
join) to their consistent counterparts. This lifting is driven by the
plausibility interpretation of gradual typing: a consistent predicate
between two types holds if and only if the static predicate holds
for some static types in their respective concretization. Lifting type
functions additionally requires a notion of abstraction from sets of
static types back to gradual types. By choosing the best abstrac-
tion that corresponds to the concretization, a Galois connection is
established and a coherent gradual language can be derived.

In this work, we develop a gradual language that ranges from
simple types to logically-refined types. Therefore we need to spec-
ify the syntax of gradual formulas, p̃ ∈ GFORMULA, and their
meaning through a concretization function γp : GFORMULA →
P(FORMULA). Once γp is defined, we need to specify the corre-
sponding best abstraction αp such that 〈γp, αp〉 is a Galois con-
nection. We discovered that capturing a proper definition of grad-
ual formulas and their interpretation to yield a practical gradual
refinement type system—i.e. one that does not degenerate and ac-

T̃ ∈ GTYPE, t ∈ GTERM, p̃ ∈ GFORMULA, Γ ∈ GENV, Φ̃ ∈ GLENV

Γ; Φ̃ ` t : T̃ (T̃x-refine)
Γ(x) = {ν :B | p̃}

Γ; Φ̃ ` x : {ν :B | ν = x}

(T̃x-fun)
Γ(x) = y : T̃1 → T̃2

Γ; Φ̃ ` x : (y : T̃1 → T̃2)
(T̃c)

Γ; Φ̃ ` c : ty(c)

(T̃λ)
Φ̃ ` T̃1 Γ, x : T̃1 ; Φ̃, x :LT̃1M ` t : T̃2

Γ; Φ̃ ` λx : T̃1.t : (x : T̃1 → T̃2)

(T̃app)
Γ; Φ̃ ` t : x : T̃1 → T̃2 Γ; Φ̃ ` v : T̃ Φ̃ ` T̃ . T̃1

Γ; Φ̃ ` t v : T̃2Jv/xK

(T̃if)

Γ; Φ̃ ` v : {ν :Bool | p̃} Φ̃ ` T̃1 . T̃ Φ̃ ` T̃2 . T̃
Γ; Φ̃, x : (v = true) ` t1 : T̃1 Γ; Φ̃, x : (v = false) ` t2 : T̃2

Γ; Φ̃ ` if v then t1 else t2 : T̃

(T̃let)

Γ, x : T̃1 ; Φ̃, x :LT̃1M ` t2 : T̃2 Γ; Φ̃ ` t1 : T̃1

Φ̃, x :LT̃1M ` T̃2 . T̃ Φ̃ ` T̃

Γ; Φ̃ ` let x = t1 in t2 : T̃

(T̃::)
Γ; Φ̃ ` t : T̃1 Φ̃ ` T̃1 . T̃2

Γ; Φ̃ ` t :: T̃2 : T̃2

Figure 2. Typing rules of the gradual language.

cept almost any program—is rather subtle. In order to isolate this
crucial design point, we defer the exact definition of GFORMULA,
γp and αp to Section 4. In the remainder of this section, we de-
fine the gradual refinement type system and establish its properties
independently of the specific interpretation of gradual formulas.

The typing rules of the gradual language (Figure 2) directly
mimic the static language typing rules, save for the fact that they
use gradual refinement types T̃ , built from gradual formulas p̃ , and
gradual environments Φ̃. Also, the rules use consistent subtyping
and consistent type substitution. We define these notions below.2

3.1 Gradual Types and Environments
As we intend the imprecision of gradual types to reflect the impre-
cision of formulas, the syntax of gradual types T̃ ∈ GTYPE simply
contains gradual formulas.

T̃ ::= {ν :B | p̃} | x : T̃ → T̃ (Gradual Types)

Then, the concretization function for gradual formulas γp can be
compatibly lifted to gradual types.

Definition 1 (Concretization of gradual types). Let the concretiza-
tion function γT : GTYPE → P(TYPE) be defined as follows:

γT ({ν :B | p̃}) = { {ν :B | p} | p ∈ γp(p̃) }

γT (x : T̃1 → T̃2) = { x :T1 → T2 | T1 ∈ γT (T̃1) ∧ T2 ∈ γT (T̃2) }

The notion of precision for gradual types captures how much
static information is available in a type, and by extension, in a

2 Terms t and type environments Γ have occurrences of gradual types in
them, but we do not change their notation for readability. In particular, func-
tions that operate over the type environment Γ are unaffected by gradual-
ization, which only affects the meaning of relations over the logical envi-
ronment Φ, most notably subtyping.

program. As noticed by Garcia et al. (2016), precision is naturally
induced by the concretization of gradual types:

Definition 2 (Precision of gradual types). T̃1 is less imprecise than
T̃2, notation T̃1 v T̃2, if and only if γT (T̃1) ⊆ γT (T̃2).

The interpretation of a gradual environment is obtained by
pointwise lifting of the concretization of gradual formulas.

Definition 3 (Concretization of gradual logical environments). Let
γΦ : GLENV → P(LENV) be defined as:

γΦ (Φ̃) = {Φ | ∀x.Φ(x) ∈ γp(Φ̃(x)) }

3.2 Consistent Relations
With the meaning of gradual types and logical environments, we
can lift static subtyping to its consistent counterpart: consistent
subtyping holds between two gradual types, in a given logical
environment, if and only if static subtyping holds for some static
types and logical environment in the respective concretizations.

Definition 4 (Consistent subtyping). Φ̃ ` T̃1 ‹<: T̃2 if and only if
Φ ` T1 <: T2 for some Φ ∈ γΦ(Φ̃), T1 ∈ γT (T̃1) and T2 ∈ γT (T̃2).

We describe an algorithmic characterization of consistent sub-
typing, noted · ` · . ·, in Section 7.

The static type system also relies on a type substitution function.
Following AGT, lifting type functions to operate on gradual types
requires an abstraction function from sets of types to gradual types:
the lifted function is defined by abstracting over all the possible
results of the static function applied to all the represented static
types. Instantiating this principle for type substitution:

Definition 5 (Consistent type substitution).fl̃
T [v/x] = αT ({T [v/x] | T ∈ γT (T̃) })

where αT is the natural lifting of the abstraction for formulas αp:

Definition 6 (Abstraction for gradual refinement types). Let
αT : P(TYPE) ⇀ GTYPE be defined as:

αT ({ {ν :B | pi} }) = {ν :B | αp({ pi })}
αT ({ x :Ti1 → Ti2 }) = x :αT ({Ti1 })→ αT ({Ti2 })

The algorithmic version of consistent type substitution, noted
·J·/·K, substitutes in the known parts of formulas (Appendix A.8).

3.3 Properties of the Gradual Refinement Type System
The gradual refinement type system satisfies a number of desirable
properties. First, the system is a conservative extension of the un-
derlying static system: for every fully-annotated term both systems
coincide (we use `S to denote the static system).

Proposition 1 (Equivalence for fully-annotated terms). For any
t ∈ TERM, Γ; Φ `S t : T if and only if Γ; Φ ` t : T

More interestingly, the system satisfies the static gradual guar-
antee of Siek et al. (2015): weakening the precision of a term pre-
serves typeability, at a less precise type.

Proposition 2 (Static gradual guarantee). If • ; • ` t1 : T̃1 and
t1 v t2, then • ; • ` t2 : T̃2 and T̃1 v T̃2.

We prove both properties parametrically with respect to the ac-
tual definitions of GFORMULA, γp and αp. The proof of Prop 1
only requires that static type information is preserved exactly,
i.e. γT (T) = {T } and αT ({T }) = T , which follows directly
from the same properties for γp and αp. These hold trivially for
the different interpretations of gradual formulas we consider in the
next section. The proof of Prop 2 relies on the fact that 〈γT , αT 〉
is a Galois connection. Again, this follows from 〈γp, αp〉 being a
Galois connection—a result we will establish in due course.

4. Interpreting Gradual Formulas
The definition of the gradual type system of the previous section
is parametric over the interpretation of gradual formulas. Starting
from a naive interpretation, in this section we progressively build
a practical interpretation of gradual formulas. More precisely, we
start in Section 4.1 with a definition of the syntax of gradual formu-
las, GFORMULA, and an associated concretization function γp, and
then successively redefine both until reaching a satisfactory defini-
tion in Section 4.4. We then define the corresponding abstraction
function αp in Section 4.5.

We insist on the fact that any interpretation of gradual formu-
las that respects the conditions stated in Section 3.3 would yield a
“coherent” gradual type system. Discriminating between these dif-
ferent possible interpretations is eventually a design decision, moti-
vated by the expected behavior of a gradual refinement type system,
and is hence driven by considering specific examples.

4.1 Naive Interpretation
Following the abstract interpretation viewpoint on gradual typing, a
gradual logical formula denotes a set of possible logical formulas.
As such, it can contain some statically-known logical information,
as well as some additional, unknown assumptions. Syntactically,
we can denote a gradual formula as either a precise formula (equiv-
alent to a fully-static formula), or as an imprecise formula, p ∧ ?,
where p is called its known part.3

p̃ ∈ GFORMULA, p ∈ FORMULA

p̃ ::= p (Precise Formulas)
| p ∧ ? (Imprecise Formulas)

We use a conjunction in the syntax to reflect the intuition of a for-
mula that can be made more precise by adding logical information.
Note however that the symbol ? can only appear once and in a con-
junction at the top level. That is, p ∨ ? and p ∨ (q ∧ ?) are not
syntactically valid gradual formulas. We pose ? def

= > ∧ ?.
Having defined the syntax of gradual formulas, we must turn to

their semantics. Following AGT, we give gradual formulas meaning
by concretization to sets of static formulas. Here, the ? in a gradual
formula p ∧ ? can be understood as a placeholder for additional
logical information that strengthens the known part p. A natural,
but naive, definition of concretization follows.

Definition 7 (Naive concretization of gradual formulas). Let
γp : GFORMULA → P(FORMULA) be defined as follows:

γp(p) = { p } γp(p ∧ ?) = { p ∧ q | q ∈ FORMULA }

This definition is problematic. Consider a value v refined with
the gradual formula ν ≥ 2 ∧ ?. With the above definition, we
would accept passing v as argument to a function that expects a
negative argument! Indeed, a possible interpretation of the gradual
formula would be ν ≥ 2∧ν = 1, which is unsatisfiable4 and hence
trivially entails ν < 0. Therefore, accepting that the unknown part
of a formula denotes any arbitrary formula—including ones that
contradict the known part of the gradual formula—annihilates one
of the benefits of gradual typing, which is to reject such blatant
inconsistencies between pieces of static information.

4.2 Non-Contradicting Interpretation
To avoid this extremely permissive behavior, we must develop
a non-contradicting interpretation of gradual formulas. The key
requirement is that when the known part of a gradual formula is
satisfiable, the interpretation of the gradual formula should remain

3 Given a static entity X , X̃ denotes a gradual entity, and ÛX a set of Xs.
4 We use the term “(un)satisfiable” instead of “(in)consistent” to avoid
confusion with the term “consistency” from the gradual typing literature.

satisfiable, as captured by the following definition (we write SAT(p)
for a formula p that is satisfiable):

Definition 8 (Non-contradicting concretization of gradual formu-
las). Let γp : GFORMULA → P(FORMULA) be defined as:

γp(p) = { p } γp(p ∧ ?) = { p ∧ q | SAT(p)⇒ SAT(p ∧ q) }

This new definition of concretization is however still problem-
atic. Recall that a given concretization induces a natural notion of
precision by relating the concrete sets (Garcia et al. 2016). Preci-
sion of gradual formulas is the key notion on top of which precision
of gradual types and precision of gradual terms are built.

Definition 9 (Precision of gradual formulas). p̃ is less imprecise
(more precise) than q̃ , noted p̃ v q̃ , if and only if γp(p̃) ⊆ γp(q̃).

The non-contradicting interpretation of gradual formulas is
purely syntactic. As such, the induced notion of precision fails
to capture intuitively useful connections between programs. For
instance, the sets of static formulas represented by the gradual for-
mulas x ≥ 0 ∧ ? and x > 0 ∧ ? are incomparable, because they are
syntactically different. However, the gradual formula x > 0 ∧ ?
should intuitively refer to a more restrictive set of formulas, be-
cause the static information x > 0 is more specific than x ≥ 0.

4.3 Semantic Interpretation
To obtain a meaningful notion of precision between gradual formu-
las, we appeal to the notion of specificity of logical formulas, which
is related to the actual semantics of formulas, not just their syntax.

Formally, a formula p is more specific than a formula q if
{ p } |= q. Technically, this relation only defines a pre-order, be-
cause formulas that differ syntactically can be logically equivalent.
As usual we work over the equivalence classes and consider equal-
ity up to logical equivalence. Thus, when we write p we actually
refer to the equivalence class of p. In particular, the equivalence
class of unsatisfiable formulas is represented by ⊥, which is the
bottom element of the specificity pre-order.

In order to preserve non-contradiction in our semantic interpre-
tation of gradual formulas, it suffices to remove (the equivalence
class of) ⊥ from the concretization. Formally, we isolate ⊥ from
the specificity order, and define the order only for the satisfiable
fragment of formulas, denoted SFORMULA:

Definition 10 (Specificity of satisfiable formulas). Given two for-
mulas p, q ∈ SFORMULA, we say that p is more specific than q in
the satisfiable fragment, notation p � q, if { p } |= q.

Then, we define gradual formulas such that the known part of
an imprecise formula is required to be satisfiable:

p̃ ∈ GFORMULA, p ∈ FORMULA, pX ∈ SFORMULA

p̃ ::= p (Precise Formulas)
| pX ∧ ? (Imprecise Formulas)

Note that the imprecise formula x > 0∧x = 0∧?, for example,
is syntactically rejected because its known part is not satisfiable.
However, x > 0 ∧ x = 0 is a syntactically valid formula because
precise formulas are not required to be satisfiable.

The semantic definition of concretization of gradual formulas
captures the fact that an imprecise formula stands for any satisfiable
strengthening of its known part:

Definition 11 (Semantic concretization of gradual formulas). Let
γp : GFORMULA → P(FORMULA) be defined as follows:

γp(p) = { p } γp(pX ∧ ?) = { qX | qX� pX}

This semantic interpretation yields a practical notion of preci-
sion that admits the judgment x > 0 ∧ ? v x ≥ 0 ∧ ?, as wanted.

Unfortunately, despite the fact that, taken in isolation, gradual
formulas cannot introduce contradictions, the above definition does

not yield an interesting gradual type system yet, because it allows
other kinds of contradictions to sneak in. Consider the following:

let g (x: {ν : Int | ν > 0}) (y: {ν : Int | ν = 0 ∧ ?}) = x/y

The static information y = 0 should suffice to statically reject this
definition. But, at the use site of the division operator, the consistent
subtyping judgment that must be proven is:

x : (ν > 0), y : (ν = 0 ∧ ?) ` {ν : Int | ν = y} . {ν : Int | ν 6= 0}

While the interpretation of the imprecise refinement of y cannot
contradict y = 0, it can stand for ν = 0∧x ≤ 0, which contradicts
x > 0. Hence the definition is statically accepted.

The introduction of contradictions in the presence of gradual
formulas can be even more subtle. Consider the following program:

let h (x: {ν : Int | ?}) (y : {ν : Int | ?}) (z : {ν : Int | ν = 0})
= (x+ y)/z

One would expect this program to be rejected statically, because it
is clear that z = 0. But, again, one can find an environment that
makes consistent subtyping hold: x : (ν > 0), y : (ν = x ∧ ν <
0), z : (ν = 0). This interpretation introduces a contradiction
between the separate interpretations of different gradual formulas.

4.4 Local Interpretation
We need to restrict the space of possible static formulas repre-
sented by gradual formulas, in order to avoid contradicting already-
established static assumptions, and to avoid introducing contradic-
tions between the interpretation of different gradual formulas in-
volved in the same consistent subtyping judgment.

Stepping back: what do refinements refine? Intuitively, the re-
finement type {ν :B | p} refers to all values of type B that satisfy
the formula p. Note that apart from ν, the formula p can refer to
other variables in scope. In the following, we use the more explicit
syntax p(~x; ν) to denote a formula p that constrains the refinement
variable ν based on the variables in scope ~x.

The well-formedness condition in the static system ensures that
variables ~x on which a formula depends are in scope, but does not
restrict in any way how a formula uses these variables. This per-
missiveness of traditional static refinement type systems admits cu-
rious definitions. For example, the first argument of a function can
be constrained to be positive by annotating the second argument:

x : Int→ y :{ν : Int | x > 0} → Int

Applying this function to some negative value is perfectly valid but
yields a function that expects ⊥. A formula can even contradict
information already assumed about a prior argument:

x :{ν : Int | ν > 0} → y :{ν : Int | x < 0} → Int

We observe that this unrestricted freedom of refinement formu-
las is the root cause of the (non-local) contradiction issues that can
manifest in the interpretation of gradual formulas.

Local formulas. The problem with contradictions arises from
the fact that a formula p(~x; ν) is allowed to express restrictions
not just on the refinement variable ν but also on the variables in
scope ~x. In essence, we want unknown formulas to stand for any
local restriction on the refinement variable, without allowing for
contradictions with prior information on variables in scope.

Intuitively, we say that a formula is local if it only restricts
the refinement variable ν. Capturing when a formula is local goes
beyond a simple syntactic check because formulas should be able
to mention variables in scope. For example, the formula ν > x is
local: it restricts ν based on x without further restricting x. The key
to identify ν > x as a local formula is that, for every value of x,
there exists a value for ν for which the formula holds.

Definition 12 (Local formula). A formula p(~x; ν) is local if the
formula ∃ν.p(~x; ν) is valid.

We call LFORMULA the set of local formulas. Note that the
definition above implies that a local formula is satisfiable, be-
cause there must exist some ν for which the formula holds. Hence,
LFORMULA ⊂ SFORMULA ⊂ FORMULA.

Additionally, a local formula always produces satisfiable as-
sumptions when combined with a satisfiable logical environment:

Proposition 3. Let Φ be a logical environment, ~x = dom(Φ) the
vector of variables bound in Φ, and q(~x, ν) ∈ LFORMULA. If LΦM
is satisfiable then LΦM ∪ { q(~x, ν) } is satisfiable.

Moreover, we note that local formulas have the same expres-
siveness than non-local formulas when taken as a conjunction (we
use ≡ to denote logical equivalence).

Proposition 4. Let Φ be a logical environment. If LΦM is satisfiable
then there exists an environment Φ′ with the same domain such that
LΦM ≡ LΦ′M and for all x the formula Φ′(x) is local.

Similarly to what we did for the semantic interpretation, we
redefine the syntax of gradual formulas such that the known part
of an imprecise formula is required to be local:

p̃ ∈ GFORMULA, p ∈ FORMULA, p◦ ∈ LFORMULA

p̃ ::= p (Precise Formulas)
| p◦ ∧ ? (Imprecise Formulas)

The local concretization of gradual formulas allows imprecise for-
mulas to denote any local formula strengthening the known part:

Definition 13 (Local concretization of gradual formulas). Let
γp : GFORMULA → P(FORMULA) be defined as follows:

γp(p) = { p } γp(p◦ ∧ ?) = { q◦ | q◦ � p◦ }

From now on, we simply write p ∧ ? for imprecise formulas,
leaving implicit the fact that p is a local formula.

Examples. The local interpretation of imprecise formulas forbids
the restriction of previously-defined variables. To illustrate, con-
sider the following definition:

let f (x: Int) (y : {ν : Int | ?}) = y/x

The static information on x is not sufficient to prove the code safe.
Because any interpretation of the unknown formula restricting y
must be local, x cannot possibly be restricted to be non-zero, and
the definition is rejected statically.

The impossibility to restrict previously-defined variables avoids
generating contradictions and hence accepting too many programs.
Recall the example of contradictions between different interpreta-
tions of imprecise formulas:

let h (x: {ν : Int | ?}) (y : {ν : Int | ?}) (z : {ν : Int | ν = 0})
= (x+ y)/z

This definition is now rejected statically because accepting it would
mean finding well-formed local formulas p and q such that the
following static subtyping judgment holds:

x :p, y :q, z : (ν = 0) ` {ν : Int | ν = z} <: {ν : Int | ν 6= 0}
However, by well-formedness, p and q cannot restrict z; and by
locality, p and q cannot contradict each other.

4.5 Abstracting Formulas
Having reached a satisfactory definition of the syntax and con-
cretization function γp for gradual formulas, we must now find the
corresponding best abstraction αp in order to construct the required
Galois connection. We observe that, due to the definition of γp,

specificity � is central to the definition of precision v. We exploit
this connection to derive a framework for abstract interpretation
based on the structure of the specificity order.

The specificity order for the satisfiable fragment of formulas
forms a join-semilattice. However, it does not contain a join for
arbitrary (possible infinite) non-empty sets. The lack of a join for
arbitrary sets, which depends on the expressiveness of the logical
language, means that it is not always possible to have a best abstrac-
tion. We can however define a partial abstraction function, defined
whenever it is possible to define a best one.

Definition 14. Let αp : P(FORMULA) ⇀ GFORMULA be the
partial abstraction function defined as follows.

αp({ p }) = p

αp(Ûp) =
(jÛp) ∧ ? if Ûp ⊆ LFORMULA and

jÛp is defined

αp(Ûp) is undefined otherwise

(
b

is the join for the specificity order in the satisfiable fragment)

The function αp is well defined because the join of a set of local
formulas is necessarily a local formula. In fact, an even stronger
property holds: any upper bound of a local formula is local.

We establish that, whenever αp is defined, it is the best possible
abstraction that corresponds to γp. This characterization validates
the use of specificity instead of precision in the definition of αp.

Proposition 5 (αp is sound and optimal). If αp(Ûp) is defined, thenÛp ⊆ γp(p̃) if and only if αp(Ûp) v p̃ .

A pair 〈α, γ〉 that satisfies soundness and optimality is a Galois
connection. However, Galois connections relate total functions.
Here αp is undefined whenever: (1) Ûp is the empty set (the join is
undefined since there is no least element), (2) Ûp is non-empty, but
contains both local and non-local formulas, or (3) Ûp is non-empty,
and only contains local formulas, but

bÛp does not exist.
Garcia et al. (2016) also define a partial abstraction function

for gradual types, but the only source of partiality is the empty
set. Technically, it would be possible to abstract over the empty set
by adding a least element. But they justify the decision of leaving
abstraction undefined based on the observation that, just as static
type functions are partial, consistent functions (which are defined
using abstraction) must be too. In essence, statically, abstracting
the empty set corresponds to a type error, and dynamically, it
corresponds to a cast error, as we will revisit in Section 5.

The two other sources of partiality of αp cannot however be
justified similarly. Fortunately, both are benign in a very precise
sense: whenever we operate on sets of formulas obtained from the
concretization of gradual formulas, we never obtain a non-empty
set that cannot be abstracted. Miné (2004) generalized Galois con-
nections to allow for partial abstraction functions that are always
defined whenever applying some operator of interest. More pre-
cisely, given a set F of concrete operators, Miné defines the notion
of 〈α, γ〉 being an F-partial Galois connection, by requiring, in ad-
dition to soundness and optimality, that the composition α ◦ F ◦ γ
be defined for every operator F ∈ F (see Appendix A.4).

Abstraction for gradual types αT is the natural extension of ab-
straction for gradual formulas αp, and hence inherits its partiality.
Observe that, in the static semantics of the gradual language, ab-
straction is only used to define the consistent type substitution op-
erator ·[·/·] (Section 3.2). We establish that, despite the partiality of
αp, the pair 〈αT , γT 〉 is a partial Galois connection:

Proposition 6 (Partial Galois connection for gradual types). The
pair 〈αT , γT 〉 is a { t̆subst }-partial Galois connection, where
t̆subst is the collecting lifting of type substitution, i.e.

t̆subst(ÛT , v, x) = {T [v/x] | T ∈ ÛT }

The runtime semantics described in Sect. 5 rely on another notion
of abstraction built over αp, hence also partial, for which a similar
result will be established, considering the relevant operators.

5. Abstracting Dynamic Semantics
Exploiting the correspondence between proof normalization and
term reduction (Howard 1980), Garcia et al. (2016) derive the dy-
namic semantics of a gradual language by reduction of gradual typ-
ing derivations. This approach provides the direct runtime seman-
tics of gradual programs, instead of the usual approach by transla-
tion to some intermediate cast calculus (Siek and Taha 2006).

As a term (i.e. and its typing derivation) reduces, it is necessary
to justify new judgments for the typing derivation of the new term,
such as subtyping. In a type safe static language, these new judg-
ments can always be established, as justified in the type preserva-
tion proof, which relies on properties of judgments such as transi-
tivity of subtyping. However, in the case of gradual typing deriva-
tions, these properties may not always hold: for instance the two
consistent subtyping judgments Int . ? and ? . Bool cannot be
combined to justify the transitive judgment Int . Bool.

More precisely, Garcia et al. (2016) introduce the notion of ev-
idence to characterize why a consistent judgment holds. A consis-
tent operator, such as consistent transitivity, determines when evi-
dences can be combined to produce evidence for a new judgment.
The impossibility to combine evidences so as to justify a combined
consistent judgment corresponds to a cast error: the realization, at
runtime, that the plausibility based on which the program was con-
sidered (gradually) well-typed is not tenable anymore.

Compared to the treatment of (record) subtyping by Garcia
et al. (2016), deriving the runtime semantics of gradual refine-
ments presents a number of challenges. First, evidence of consistent
subtyping has to account for the logical environment in the judg-
ment (Sect. 5.1), yielding a more involved definition of the consis-
tent subtyping transitivity operator (Sect. 5.2). Second, dependent
types introduce the need for two additional consistent operators:
one corresponding to the subtyping substitution lemma, account-
ing for substitution in types (Sect. 5.3), and one corresponding to
the lemma that substitution in terms preserves typing (Sect. 5.4).

Section 6 presents the resulting runtime semantics and the prop-
erties of the gradual refinement language.

5.1 Evidence for Consistent Subtyping
Evidence represents the plausible static types that support some
consistent judgment. Consider the valid consistent subtyping judg-
ment x :? ` {ν : Int | ν = x} . {ν : Int | ν > 0}. In addition to know-
ing that it holds, we know why it holds: for any satisfying inter-
pretation of the gradual environment, x should be refined with a
formula ensuring that it is positive. That is, we can deduce precise
bounds on the set of static entities that supports why the consis-
tent judgment holds. The abstraction of these static entities is what
Garcia et al. (2016) call evidence.

Because a consistent subtyping judgment involves a gradual en-
vironment and two gradual types, we extend the abstract interpre-
tation framework coordinate-wise to subtyping tuples:5

Definition 15 (Subtyping tuple concretization). Let
γτ : GTUPLE<: → P(TUPLE<:) be defined as:

γτ (Φ̃, T̃1, T̃2) = γΦ(Φ̃)× γT (T̃1)× γT (T̃2)

Definition 16 (Subtypting tuple abstraction). Let
ατ : P(TUPLE<:) ⇀ GTUPLE<: be defined as:

ατ ({Φi, Ti1, Ti2 }) = 〈αΦ({Φi }), αT ({Ti1 }), αT ({Ti2 })〉
5 We pose τ ∈ TUPLE<: = LENV × TYPE × TYPE for subtyping tuples,
and GTUPLE<: = GLENV × GTYPE × GTYPE for their gradual lifting.

This definition uses abstraction of gradual logical environments.

Definition 17 (Abstraction for gradual logical environments). Let
αΦ : P(ENV) ⇀ GENV be defined as:

αΦ (ÛΦ)(x) = αp({Φ(x) | Φ ∈ ÛΦ })
We can now define the interior of a consistent subtyping judg-

ment, which captures the best coordinate-wise information that can
be deduced from knowing that such a judgment holds.

Definition 18 (Interior). The interior of the judgment Φ̃ ` T̃1 .
T̃2, notation I<:(Φ̃, T̃1, T̃2) is defined by the function
I<: : GTUPLE<: → GTUPLE<::

I<:(τ̃) = ατ (FI<:(γτ (τ̃)))

where FI<: : P(TUPLE<:)→ P(TUPLE<:)

FI<:(Ûτ) = { 〈Φ, T1, T2〉 ∈ Ûτ | Φ ` T1 <: T2 }

Based on interior, we define what counts as evidence for con-
sistent subtyping. Evidence is represented as a tuple in GTUPLE<:

that abstracts the possible satisfying static tuples. The tuple is self-
interior to reflect the most precise information available:

Definition 19 (Evidence for consistent subtyping). EV<: =

{ 〈Φ̃, T̃1, T̃2〉 ∈ GTUPLE<: | I<:(Φ̃, T̃1, T̃2) = 〈Φ̃, T̃1, T̃2〉 }

We use metavariable ε to range over EV<:, and introduce the
extended judgment ε . Φ̃ ` T̃1 . T̃2, which associates particular
runtime evidence to some consistent subtyping judgment. Initially,
before a program executes, evidence ε corresponds to the interior
of the judgment, also called the initial evidence (Garcia et al. 2016).

The abstraction function ατ inherits the partiality of αp. We
prove that 〈ατ , γτ 〉 is a partial Galois connection for every operator
of interest, starting with FI<: , used in the definition of interior:

Proposition 7 (Partial Galois connection for interior). The pair
〈ατ , γτ 〉 is a {FI<: }-partial Galois connection.

5.2 Consistent Subtyping Transitivity
The initial gradual typing derivation of a program uses initial evi-
dence for each consistent judgment involved. As the program ex-
ecutes, evidence can be combined to exhibit evidence for other
judgments. The way evidence evolves to provide evidence for fur-
ther judgments mirrors the type safety proof, and justifications sup-
ported by properties about the relationship between static entities.

As noted by Garcia et al. (2016), a crucial property used in
the proof of preservation is transitivity of subtyping, which may
or may not hold in the case of consistent subtyping judgments,
because of the imprecision of gradual types. For instance, both
• ` {ν : Int | ν > 10} . {ν : Int | ?} and • ` {ν : Int | ?} . {ν : Int |
ν < 10} hold, but • ` {ν : Int | ν > 10} . {ν : Int | ν < 10} does not.

Following AGT, we can formally define how to combine evi-
dences to provide justification for consistent subtyping.

Definition 20 (Consistent subtyping transitivity). Suppose:

ε1 . Φ̃ ` T̃1 . T̃2 ε2 . Φ̃ ` T̃2 . T̃3
We deduce evidence for consistent subtyping transitivity as

(ε1 ◦<: ε2) . Φ̃ ` T̃1 . T̃3
where ◦<: : EV<: → EV<: ⇀ EV<: is defined by:

ε1 ◦<: ε2 = ατ (F◦<: (γτ (ε1), γτ (ε2)))

and F◦<: : P(TUPLE<:)→ P(TUPLE<:)→ P(TUPLE<:) is:

F◦<: (Ûτ1,Ûτ2) = {〈Φ, T1, T3〉 | ∃T2. 〈Φ, T1, T2〉 ∈ Ûτ1∧
〈Φ, T2, T3〉 ∈ Ûτ2 ∧ Φ ` T1 <: T2 ∧ Φ ` T2 <: T3}

The consistent transitivity operator collects and abstracts all
available justifications that transitivity might hold in a particular
instance. Consistent transitivity is a partial function: if F◦<: pro-
duces an empty set, ατ is undefined, and the transitive claim has
been refuted. Intuitively this corresponds to a runtime cast error.

Consider, for example, the following evidence judgments:
ε1 . • ` {ν : Int | ν > 0 ∧ ?} . {ν : Int | ?}
ε2 . • ` {ν : Int | ?} . {ν : Int | ν < 10}

where
ε1 = 〈•, {ν : Int | ν > 0 ∧ ?}, {ν : Int | ?}〉
ε2 = 〈•, {ν : Int | ν < 10 ∧ ?}, {ν : Int | ν < 10}〉

Using consistent subtyping transitivity we can deduce evidence
for the judgment:

(ε1 ◦<: ε2) . • ` {ν : Int | ν > 0 ∧ ?} . {ν : Int | ν < 10}
where

ε1 ◦<: ε2 = 〈•, {ν : Int | ν > 0 ∧ ν < 10 ∧ ?}, {ν : Int | ν < 10}〉

As required, 〈ατ , γτ 〉 is a partial Galois connection for the
operator used to define consistent subtyping transitivity.

Proposition 8 (Partial Galois connection for transitivity). The pair
〈ατ , γτ 〉 is a {F◦<: }-partial Galois connection.

5.3 Consistent Subtyping Substitution
The proof of type preservation for refinement types also relies on a
subtyping substitution lemma, stating that a subtyping judgment is
preserved after a value is substituted for some variable x, and the
binding for x is removed from the logical environment:

Γ; Φ1 ` v : T11 Φ1 ` T11 <: T12

Φ1, x :LT12M,Φ2 ` T21 <: T22

Φ1,Φ2[v/x] ` T21[v/x] <: T22[v/x]

In order to justify reductions of gradual typing derivations, we
need to define an operator of consistent subtyping substitution that
combines evidences from consistent subtyping judgments in order
to derive evidence for the consistent subtyping judgment between
types after substitution of v for x.

Definition 21 (Consistent subtyping substitution). Suppose:

Γ; Φ̃1 ` v : T̃11 ε1 . Φ̃1 ` T̃11 . T̃12
ε2 . Φ̃1, x :LT̃12M, Φ̃2 ` T̃21 . T̃22

Then we deduce evidence for consistent subtyping substitution as

(ε1 ◦[v/x]<: ε2) . Φ̃1, Φ̃2Jv/xK ` T̃21Jv/xK . T̃22Jv/xK

where ◦[v/x]<: : EV<: → EV<: ⇀ EV<: is defined by:

ε1 ◦[v/x]<: ε2 = ατ (F
◦[v/x]
<:

(γτ (ε1), γτ (ε2)))

and F
◦[v/x]
<:

: P(TUPLE<:)→ P(TUPLE<:)→ P(TUPLE<:) is:

F
◦[v/x]
<:

(Ûτ1,Ûτ2) = {〈Φ1 ·Φ2[v/x], T21[v/x], T22[v/x]〉 |

∃T11, T12. 〈Φ1, T11, T12〉 ∈ Ûτ1 ∧
〈Φ1 ·x :LT12M·Φ2, T21, T22〉 ∈ Ûτ2 ∧
Φ1 ` T11 <: T12 ∧ Φ1 ·x :LT12M·Φ2 ` T21 <: T22}

The consistent subtyping substitution operator collects and ab-
stracts all justifications that some consistent subtyping judgment
holds after substituting in types with a value, and produces the most
precise evidence, if possible. Note that this new operator introduces
a new category of runtime errors, made necessary by dependent
types, and hence not considered in the simply-typed setting of Gar-
cia et al. (2016).

To illustrate consistent subtyping substitution consider:
· ; · ` 3 : {ν : Int | ν = 3}

ε1 . • ` {ν : Int | ν = 3} . {ν : Int | ?}
ε2 . x :?, y :? ` {ν : Int | ν = x+ y} . {ν : Int | ν ≥ 0}

where
ε1 = 〈•, {ν : Int | ν = 3}, {ν : Int | ?}〉

ε2 = 〈x :?·y :?, {ν : Int | ν = x+ y}, {ν : Int | ν ≥ 0}〉

We can combine ε1 and ε2 with the consistent subtyping substitu-
tion operator to justify the judgment after substituting 3 for x:

(ε1 ◦[3/x]<: ε2) . y :? ` {ν : Int | ν = 3 + y} . {ν : Int | ν ≥ 0}
where
ε1 ◦[3/x]<: ε2 = 〈y :ν ≥ −3 ∧ ?, {ν : Int | ν = 3 + y}, {ν : Int | ν ≥ 0}〉

Proposition 9 (Partial Galois connection for subtyping substitu-
tion). The pair 〈ατ , γτ 〉 is a {F

◦[v/x]
<:

}-partial Galois connection.

5.4 Consistent Term Substitution
Another important aspect of the proof of preservation is the use of a
term substitution lemma, i.e. substituting in an open term preserves
typing. Even in the simply-typed setting considered by Garcia et al.
(2016), the term substitution lemma does not hold for the gradual
language because it relies on subtyping transitivity. Without further
discussion, they adopt a simple technique: instead of substituting a
plain value v for the variable x, they substitute an ascribed value
v :: T̃ , where T̃ is the expected type of x. This technique ensures
that the substitution lemma always holds.

With dependent types, the term substitution lemma is more
challenging. A subtyping judgment can rely on the plausibility that
a gradually-typed variable is replaced with the right value, which
may not be the case at runtime. Consider the following example:

let f (x: {ν : Int | ν > 0}) = x
let g (x: {ν : Int | ?}) (y : {ν : Int | ν ≥ x}) =
let z = f y in z + x

This code is accepted statically due to the possibility of x be-
ing positive inside the body of g. If we call g with −1 the ap-
plication f y can no longer be proven possibly safe. Precisely,
the application f y relies on the consistent subtyping judgment
x :?·y :ν ≥ x ` {ν : Int | ν = y} . {ν : Int | ν > 0} supported by the
evidence 〈x :ν > 0 ∧ ?·y :ν ≥ x, {ν : Int | ν = y}, {ν : Int | ν > 0}〉.
After substituting by −1 the following judgment must be justi-
fied: y : ν ≥ −1 ` {ν : Int | ν = y} . {ν : Int | ν > 0}. This (fully
precise) judgment cannot however be supported by any evidence.

Note that replacing by an ascribed value does not help in the
dependently-typed setting because, as illustrated by the previous
example, judgments that must be proven after substitution may not
even correspond to syntactic occurrences of the replaced variable.
Moreover, substitution also pervades types, and consequently for-
mulas, but the logical language has no notion of ascription.

Stepping back, the key characteristic of the ascription technique
used by Garcia et al. (2016) is that the resulting substitution opera-
tor on gradual terms preserves exact types. Noting that after substi-
tution some consistent subtyping judgments may fail, we define a
consistent term substitution operator that preserves typeability, but
is undefined if it cannot produce evidence for some judgment. This
yields yet another category of runtime failure, occurring at substi-
tution time. In the above example, the error manifests as soon as
the application g −1 beta-reduces, before reducing the body of g.

Consistent term substitution relies on the consistent subtyping
substitution operator defined in Section 5.2 to produce evidence for
consistent subtyping judgments that result from substitution. We
defer its exact definition to Section 6.3 below.

(Ix-refine)
Φ̃ ; x{ν :B | p̃} ∈ TERM{ν :B | ν = x}

(Ix-fun)
Φ̃ ; xy:T̃1→ T̃2 ∈ TERM

y:T̃1→ T̃2

(Iλ)
Φ̃, x :LT̃1M ; tT̃2 ∈ TERM

T̃2

Φ̃ ; λxT̃1 .tT̃2 ∈ TERM
x:T̃1→ T̃2

(Iapp)

Φ̃ ; tT̃1 ∈ TERM
T̃1

ε1 . Φ̃ ` T̃1 . (x : T̃11 → T̃12)

Φ̃ ; v ∈ TERM
T̃2

ε2 . Φ̃ ` T̃2 . T̃11

Φ̃ ; (ε1t
T̃1)@x:T̃11→T̃12 (ε2v) ∈ TERM

T̃12Jv/xK

Figure 3. Gradual intrinsic terms (selected rules)

6. Dynamic Semantics and Properties
We now turn to the actual reduction rules of the gradual language
with refinement types. Following AGT, reduction is expressed over
gradual typing derivations, using the consistent operators men-
tioned in the previous section. Because writing down reduction
rules over (bidimensional) derivation trees is unwieldy, we use
instrincally-typed terms (Church 1940) as a convenient unidimen-
sional notation for derivation trees (Garcia et al. 2016).

We expose this notational device in Section 6.1, and then use
it to present the reduction rules (Section 6.2) and the definition of
the consistent term substitution operator (Section 6.3). Finally, we
state the meta-theoretic properties of the resulting language: type
safety, gradual guarantee, and refinement soundness (Section 6.4).

6.1 Intrinsic Terms
We first develop gradual intrinsically-typed terms, or gradual in-
trinsic terms for short. Intrinsic terms are isomorphic to typing
derivation trees, so their structure corresponds to the gradual typ-
ing judgment Γ; Φ̃ ` t : T̃—a term is given a type in a specific
type environment and gradual logical environment. Intrinsic terms
are built up from disjoint families of intrinsically-typed variables
xT̃ ∈ VAR

T̃
. Because these variables carry type information, type

environments Γ are not needed in intrinsic terms. Because typeabil-
ity of a term depends on its logical context, we define a family
TERMΦ̃

T̃
of sets indexed by both types and gradual logical envi-

ronments. For readability, we use the notation Φ̃ ; tT̃ ∈ TERM
T̃

,
allowing us to view an intrinsic term as made up of a logical envi-
ronment and a term (when Φ̃ is empty we stick to TERM

•

T̃
).

Figure 3 presents selected formation rules of intrinsic terms.
Rules (Ix-refine) and (Ix-fun) are straightforward. Rule (Iλ) re-
quires the body of the lambda to be typed in an extended logical
environment. Note that because gradual typing derivations include
evidence for consistent judgments, gradual intrinsic terms carry
over evidences as well, which can be seen in rule (Iapp). The rule
for application additionally features a type annotation with the @
notation. As observed by Garcia et al. (2016), this annotation is
necessary because intrinsic terms represent typing derivations at
different steps of reduction. Therefore, they must account for the
fact that runtime values can have more precise types than the ones
determined statically. For example, a term t in function position of
an application may reduce to some term whose type is a subtype
of the type given to t statically. An intrinsic application term hence
carries the type given statically to the subterm in function position.

et ∈ EVTERM, ev ∈ EVVALUE, u ∈ SIMPLEVALUE, x∗ ∈ VAR∗
t ∈ TERM∗∗, v ∈ VALUE, g ∈ EVFRAME, f ∈ TMFRAME

et ::= εt
ev ::= εu
u ::= x∗ | n | b | λx∗.t∗

v ::= u | εu :: T̃

g ::= � @T̃ et | ev @T̃� | � :: T̃ | (let x = � @T̃ in et)@T̃

f ::= g[ε�]

−→: TERM
•

T̃
× (TERM

•

T̃
∪ { error })

ε1(λxT̃11 .t)@x:T̃1→T̃2ε2u −→icodu(ε2, ε1)t[(ε2 ◦<: idom(ε1))u/xT̃11] :: T̃2Ju/xK
error if (ε2 ◦<: idom(ε1)), icodu(ε2, ε1) or

t[εuu/xT̃11] is not defined

(let xT̃1 = ε1u in ε2t)@T̃ −→

(ε1 ◦[v/x]<: ε2)t[ε1u/x
T̃1] :: T̃

error if t[ε1u/xT̃1] or
(ε1 ◦[v/x]<: ε2) is not defined

(if true then ε1tT̃1 else ε2tT̃2)@T̃ −→ ε1t
T̃1 :: T̃

(if false then ε1tT̃1 else ε2tT̃2)@T̃ −→ ε2t
T̃2 :: T̃

−→c: EVTERM × (EVTERM ∪ { error })

ε1(ε2u :: T̃) −→c

ß
(ε2 ◦<: ε1)u

error if (ε2 ◦<: ε1) is not defined

7−→: TERM
•

T̃
× (TERM

•

T̃
∪ { error })

(R7−→)
tT̃ −→ r r ∈ (TERM •

T̃
∪ { error })

tT̃ 7−→ r

(Rg)
et −→c et′

g[et] 7−→ g[et′]
(Rf)

tT̃1 7−→ tT̃2

f [tT̃1] 7−→ f [tT̃2]

Figure 4. Intrinsic reduction (error propagation rules omitted)

6.2 Reduction
Figure 4 presents the syntax of the intrinsic term language and its
evaluation frames, in the style of Garcia et al. (2016). Values v
are either raw values u or ascribed values εu :: T̃ , where ε is the
evidence that u is of a subtype of T̃ . Such a pair εu ∈ EVVALUE is
called an evidence value. Similarly, an evidence term εt ∈ EVTERM

is a term augmented with evidence. We use VAR∗ (resp. TERM∗∗) to
denote the set of all intrinsic variables (resp. terms).

Figure 4 presents the reduction relation 7−→ and the two no-
tions of reductions −→ and −→c. Reduction rules preserve the
exact type of a term and explicit ascriptions are used whenever a
reduction may implicitly affect type precision. The rules handle
evidences, combining them with consistent operators to derive new
evidence to form new intrinsic terms. Whenever combining evi-
dences fails, the program ends with an error. An application may
produce an error because it cannot produce evidence using con-
sistent transitivity to justify that the actual argument is subtype of
the formal argument. Additionally, the rules for application and let
expression use consistent term substitution, which fails whenever
consistent subtyping substitution cannot combine evidences to jus-
tify all substituted occurrences.

(·)[·/·] : TERM∗∗ → EVVALUE → VAR∗ ⇀ TERM∗∗

x{ν :B | p̃}[εu/x{ν :B | p̃}] = u yT̃2 [εu/xT̃1] = yT̃ Ju/xK if xT̃1 6= yT̃2

xy:T̃1→ T̃2 [εu/xy:T̃1→ T̃2] = εu :: (y : T̃1 → T̃2)

(λyT̃ .t)[εu/xT̃] = λyT̃ Ju/xK.t[εu/xT̃]

((ε1t
T̃1)@x:T̃11→T̃12 (ε2v))[εu/xT̃] =

(ε1t
T̃1)[εu/xT̃]@(x:T̃11→T̃12)Ju/xK(ε2v)[εu/xT̃]

(·)[·/·] : EVTERM → EVVALUE → VAR∗ ⇀ EVTERM

(ε1t
T̃2)[εu/xT̃1] = (ε ◦[u/x]<: ε1)tT̃2 [εu/xT̃1]

Figure 5. Consistent term substitution (selected cases)

6.3 Consistent Term Substitution
The consistent term substitution operator described in Section 5.4
is defined on intrinsic terms (Figure 5). To substitute a variable xT̃

by a value u we must have evidence justifying that the type of u
is a subtype of T̃ , supporting that substituting by u may be safe.
Therefore, consistent term substitution is defined for evidence val-
ues. The consistent term substitution operator recursively traverses
the structure of an intrinsic term applying consistent subtyping sub-
stitution to every evidence, using an auxiliary definition for substi-
tution into evidence terms. When substituting by an evidence value
ε1u in an evidence term ε2t, we first combine ε1 and ε2 using con-
sistent subtyping substitution and then substitute recursively into t.
Note that substitution is undefined whenever consistent subtyping
substitution is undefined.

When reaching a variable, there is a subtle difference between
substituting by a lambda and a base constant. Because variables
with base types are given the exact type {ν :B | ν = x}, after sub-
stituting x by a value u the type becomes {ν :B | ν = u}, which
exactly corresponds to the type for a base constant. For higher or-
der variables an explicit ascription is needed to preserve the same
type. Another subtlety is that types appearing in annotations above
@ must be replaced by the same type, but substituting for the vari-
able x being replaced. This is necessary for the resulting term to be
well-typed in an environment where the binding for the substituted
variable has been removed from the logical environment. Similarly
an intrinsic variable yT̃ other than the one being replaced must be
replaced by a variable yT̃ Ju/xK.

The key property is that consistent term substitution preserves
typeability whenever it is defined.

Proposition 10 (Consistent substitution preserves types). Suppose
Φ̃1 ; u ∈ TERM

T̃u
, ε . Φ̃1 ` T̃u . T̃x, and Φ̃1 ·x : LT̃xM·Φ̃2 ; t ∈

TERM
T̃

then Φ̃1·Φ̃2Ju/xK ; t[εu/xT̃x] ∈ TERM
T̃ Ju/xK or t[εu/xT̃x]

is undefined.

6.4 Properties of the Gradual Refinement Types Language
We establish three fundamental properties based on the dynamic
semantics. First, the gradual language is type safe by construction.

Proposition 11 (Type Safety). If tT̃1 ∈ TERM
•

T̃
then either tT̃1 is a

value v, tT̃1 7−→ tT̃2 for some term tT̃2 ∈ TERM
•

T̃
, or tT̃1 7−→ error.

More interestingly, the language satisfies the dynamic gradual
guarantee of Siek et al. (2015): a well-typed gradual program that
runs without errors still does with less precise type annotations.

Proposition 12 (Dynamic gradual guarantee). Suppose tT̃1
1 v tT̃2

1 .

If tT̃1
1 7−→ tT̃1

2 then tT̃2
1 7−→ tT̃2

2 where tT̃1
2 v t

T̃2
2 .

We also establish refinement soundness: the result of evaluat-
ing a term yields a value that complies with its refinement. This
property is a direct consequence of type preservation.

Proposition 13 (Refinement soundness).

If t{ν :B | p̃} ∈ TERM
•

{ν :B | p̃} and t{ν :B | p̃} 7−→∗ v then:

1. If v = u then Lp̃ M![u/ν] is valid
2. If v = εu :: {ν :B | p̃} then Lp̃ M![u/ν] is valid

where Lp̃ M! extracts the static part of p̃ .

7. Algorithmic Consistent Subtyping
Having defined a gradually-typed language with refinements that
satisfies the expected meta-theoretic properties (Sect. 3.3 and 6.4),
we turn to its decidability. The abstract interpretation framework
does not immediately yield algorithmic definitions. While some
definitions can be easily characterized algorithmically, consistent
subtyping (Sect. 3.2) is both central and particularly challenging.
We now present a syntax-directed characterization of consistent
subtyping, which is a decision procedure when refinements are
drawn from the theory of linear arithmetic.

The algorithmic characterization is based on solving consistent
entailment constraints of the form Φ̃ |≈ q̃ . Solving such a con-
straint consists in finding a well-formed environment Φ ∈ γΦ(Φ̃)
and a formula q ∈ γp(q̃) such that LΦM |= q. We use the notation |≈
to mirror |= in a consistent fashion. However, note that |≈ does not
correspond to the consistent lifting of |=, because entailment is de-
fined for sets of formulas while consistent entailment is defined for
(ordered) gradual logical environments. This is important to ensure
well-formedness of logical environments.

As an example consider the consistent entailment constraint:

x :?, y :?, z : (ν ≥ 0) |≈ x+ y + z ≥ 0 ∧ x ≥ 0 ∧ ? (1)

First, note that the unknown on the right hand side can be obviated,
so to solve the constraint we must find formulas that restrict the
possible values of x and y such that x + y + z ≥ 0 ∧ x ≥ 0
is always true. There are many ways to achieve this; we are only
concerned about the existence of such an environment.

We describe a canonical approach to determine whether a con-
sistent entailment is valid, by reducing it to a fully static judg-
ment.6 Let us illustrate how to reduce constraint (1) above. We
first focus on the rightmost gradual formula in the environment,
for y, and consider a static formula that guarantees the goal, using
the static information further right. Here, this means binding y to
∀z.z ≥ 0 → (x + ν + z ≥ 0 ∧ x ≥ 0). After quantifier elimi-
nation, this formula is equivalent to x + ν ≥ 0 ∧ x ≥ 0. Because
this formula is not local, we retain the strongest possible local for-
mula that corresponds to it. In general, given a formula q(ν), the
formula ∃ν.q(ν) captures the non-local part of q(ν), so the for-
mula (∃ν.q(ν)) → q(ν) is local. Here, the non-local information
is ∃ν.x+ν ≥ 0∧x ≥ 0, which is equivalent to x ≥ 0, so the local
formula for y is x ≥ 0→ x+ ν ≥ 0. Constraint (1) is reduced to:

x :?, y : (x ≥ 0→ x+ ν ≥ 0), z : (ν ≥ 0) |≈ x+ y + z ≥ 0 ∧ x ≥ 0

6 Our approach relies on the theory of linear arithmetic being full first order
(including quantifiers) decidable—see discussion at the end of Section 8.

Applying the same reduction approach focusing on x, we obtain
(after extraction) the following static entailment, which is valid:
{ x ≥ 0, x ≥ 0→ x+ y ≥ 0, z ≥ 0 } |= x+ y + z ≥ 0 ∧ x ≥ 0

Thus the consistent entailment constraint (1) can be satisfied.
With function types, subtyping conveys many consistent entail-

ment constraints that must be handled together, because the same
interpretation for an unknown formula must be maintained be-
tween different constraints. The reduction approach above can be
extended to the higher-order case noting that constraints involved
in subtyping form a tree structure, sharing common prefixes.

Proposition 14 (Constraint reduction). Consider a set of consistent
entailment constrains sharing a common prefix (Φ̃1, y :?):

{Φ̃1, y :?,Φi2 |≈ ri(~x, y, ~zi)}

Where ~x = dom(Φ̃1) (resp. ~zi = dom(Φi2)) is the set of variables
bound in Φ̃1 (resp. Φi2). Let ~z =

⋃
i ~zi and define the canonical

formula q(~x, ν) and its local restriction q′(~x, ν) as follows:

q(~x, ν) = ∀~z.
∧
i

(LΦi2M→ ri(~x, ν, ~z))

q′(~x, ν) = (∃ν.q(~x, ν))→ q(~x, ν)

Let Φ1 ∈ γΦ(Φ̃1) be any logical environment in the concretization
of Φ̃1. Then the following proposition holds: there exists p(~x, ν) ∈
γp(?) such that LΦ1, y :p(~x, ν),Φi2M |= ri(~x, y, ~zi) for every i if
and only if LΦ1, y :q′(~x, ν),Φi2M |= ri(~x, y, ~zi) for every i.

In words, when a set of consistent entailment constraints share
the same prefix, we can replace the rightmost gradual formula
by a canonical static formula that justifies the satisfiability of the
constraints.7 This reduction preserves the set of interpretations of
the prefix Φ̃1 that justify the satisfaction of the constraints.

The algorithmic subtyping judgment Φ̃ ` T̃1 . T̃2 is calculated
in two steps. First, we recursively traverse the structure of types
to collect a set of constraints C∗, made static by reduction. The
full definition of constraint collection is in Appendix A.11. Second,
we check that these constraints, prepended with Φ̃, again reduced
to static constraints, can be satisfied. The algorithmic definition
of consistent subtyping coincides with Definition 4 (Sect. 3.2),
considering the local interpretation of gradual formulas.

Proposition 15. Φ̃ ` T̃1 . T̃2 if and only if Φ̃ ` T̃1 ‹<: T̃2.

8. Extension: Measures
The derivation of the gradual refinement language is largely inde-
pendent from the refinement logic. We now explain how to extend
our approach to support a more expressive refinement logic, by
considering measures (Vazou et al. 2014), i.e. inductively-defined
functions that axiomatize properties of data types.

Suppose for example a data type IntList of lists of integers. The
measure len determines the length of a list.

measure len : IntList→ Int
len([]) = 0
len(x :: xs) = 1 + len(xs)

Measures can be encoded in the quantifier-free logic of equal-
ity, uninterpreted functions and linear arithmetic (QF-EUFLIA):
a fresh uninterpreted function symbol is defined for every mea-
sure, and each measure equation is translated into a refined type for

7 Proposition 14 states the equivalence only when the bound for the gradual
formula is>—recall that ? stands for>∧ ?. Dealing with arbitrary impre-
cise formulas p ∧ ? requires ensuring that the generated formula is more
specific than p, but the reasoning is similar (Appendix A.11).

the corresponding data constructor (Vazou et al. 2014). For exam-
ple, the definition of len yields refined types for the constructors
of IntList, namely {ν : IntList | len(ν) = 0} for empty list, and
x : Int→ l : IntList→ {ν : IntList | len(ν) = 1 + len(l)} for cons.

Appropriately extending the syntax and interpretation of grad-
ual formulas with measures requires some care. Suppose a function
get to obtain the n-th element of a list, with type:

l : IntList→ n :{ν : Int | 0 ≤ ν < len(l)} → Int

Consider now a function that checks whether the n-th element of a
list is less than a given number:

let f (l: {ν : IntList | ?}) (n: {ν : Int | ?}) (m: {ν : Int | ?}) =
(get l n) < m

We expect this code to be accepted statically because n could
stand for some valid index. We could naively consider that the un-
known refinement of n stands for 0 ≤ ν < len(l). This interpreta-
tion is however non-local, because it restricts len(l) to be strictly
greater than zero; a non-local interpretation would then also allow
the refinement form to stand for some formula that contradicts this
restriction on l. We must therefore adhere to locality to avoid con-
tradictions (Sect. 4.4). Note that we can accept the definition of f
based on a local interpretation of gradual formulas: the unknown
refinement of l could stand for len(l) > 0, and the refinement of
n could stand for a local constraint on n based on the fact that
len(l) > 0 holds, i.e. len(l) > 0→ 0 ≤ ν < len(l).

To easily capture the notion of locality we leverage the fact that
measures can be encoded in a restricted fragment of QF-EUFLIA
that contains only unary function symbols, and does not allow for
nested uninterpreted function applications. We accordingly extend
the syntax of formulas in the static language, with f ∈ MEASURE:

p ::= . . . | f v | f ν
For this logic, locality can be defined syntactically, mirroring Def-
inition 12. It suffices to notice that, in addition to restricting the
refinement variable ν, formulas are also allowed to restrict a mea-
sure applied to ν. To check locality of a formula, we consider each
syntactic occurrence of an application f(ν) as an atomic constant.

Definition 22 (Local formula for measures). Let p be a formula in
the restricted fragment of QF-EUFLIA. Let p′ be the formula re-
sulting by substituting every occurrence of f(ν) for some function
f by a fresh symbol cf(ν). Then, let X be the set of all symbols cf(ν).
We say that p is local if ∃X.∃ν.p′ is valid.

The critical property for local formulas is that they always
preserves satisfiability (recall Proposition 3).

Proposition 16. Let Φ be a logical environment with formulas
in the restricted fragment of QF-EUFLIA, ~x = dom(Φ) the vector
of variables bound in Φ, and q(~x, ν) a local formula. If LΦM is
satisfiable then LΦM ∪ { q(~x, ν) } is satisfiable.

The definition of the syntax and interpretation of gradual formu-
las follows exactly the definition from Section 4.4, using the new
definition of locality. Then, the concretization function for formu-
las is naturally lifted to refinement types, gradual logical environ-
ment and subtyping triples, and the gradual language is derived as
described in previous sections. Recall that the derived semantics
relies on 〈αT , γT 〉 and 〈ατ , γτ 〉 being partial Galois connections.
The abstraction function for formulas with measures is again par-
tial, thus αT and ατ are also partial. Therefore, we must establish
that 〈αT , γT 〉 and 〈ατ , γτ 〉 are still partial Galois connections for
the operators used in the static and dynamic semantics.

Lemma 17 (Partial Galois connections for measures). The pair
〈αT , γT 〉 is a { t̆subst }-partial Galois connection. The pair
〈ατ , γτ 〉 is a {FI<: , F◦<: , F

◦[v/x]
<:

}-partial Galois connection.

To sum up, adapting our approach to accommodate a given re-
finement logic requires extending the notion of locality (preserving
satisfiability), and establishing the partial Galois connections for
the relevant operators. This is enough to derive a gradual language
that satisfies the properties of Sections 3.3 and 6.4.

Additionally, care must be taken to maintain decidable check-
ing. For example, our algorithmic approach to consistent subtyp-
ing (Section 7) relies on the theory of linear arithmetic accepting
quantifier elimination, which is of course not true in all theories.
The syntactic restriction for measures allows us to exploit the same
approach for algorithmic consistent subtyping, since we can al-
ways see a formula in the restricted fragment of QF-EUFLIA as
an “equivalent” formula in QF-LIA. But extensions to other refine-
ment logics may require devising other techniques, or may turn out
to be undecidable; this opens interesting venues for future work.

9. Discussion
We now discuss two interesting aspects of the language design for
gradual refinement types.

Flow sensitive imprecision. An important characteristic of the
static refinement type system is that it is flow sensitive. Flow sen-
sitivity interacts with graduality in interesting ways. To illustrate,
recall the following example from the introduction:

check :: Int→ {ν :Bool | ?}
get :: {ν : Int | ν ≥ 0} → Int

The gradual type system can leverage the imprecision in the return
type of check and transfer it to branches of a conditional. This
allows us to statically accept the example from the introduction,
rewritten here in normal form:

let b = check(x) in
if b then get(x)
else (let y = −x in get(y))

Assuming no extra knowledge about x, in the then branch the
following consistent entailment constraint must be satisfied:

x :>, b :?, b = true, z : (ν = x) |≈ z ≥ 0

Similarly, for the else branch, the following consistent entailment
constraint must be satisfied:

x :>, b :?, b = false, y : (ν = −x), z : (ν = y) |≈ z ≥ 0

Note that the assumption b = true in the first constraint and
b = false in the second are inserted by the type system to allow
flow sensitivity. The first (resp. second) constraint can be trivially
satisfied by choosing ? to stand for ν = false (resp. ν = true).
This choice introduces a contradiction in each branch, but is not
a violation of locality: the contradiction results from the static
formula inserted by the flow-sensitive type system. Intuitively, the
gradual type system accepts the program because—without any
static information on the value returned by check—there is always
the possibility for each branch not to be executed.

The gradual type system also enables the smooth transition to
more precise refinements. For instance, consider a different signa-
ture for check, which specifies that if it returns true, then the input
must be positive:8

check :: x : Int→ {ν :Bool | (ν = true→ x ≥ 0) ∧ ?}

In this case the then branch can be definitively accepted, with no
need for dynamic checks. However, the static information is not
sufficient to definitely accept the else branch. In this case, the type
system can no longer rely on the possibility that the branch is never

8 The known part of the annotation may appear to be non-local; its locality
becomes evident when writing the contrapositive x < 0→ ν = false.

executed, because we know that, at least for negative inputs, check
will return false. Nevertheless, the type system can optimistically
assume that check returns false only for negative inputs. The pro-
gram is therefore still accepted statically, and subject to a dynamic
check in the else branch.

Eager vs. lazy failures. AGT allows us to systematically derive
the dynamic semantics of the gradual language. This dynamic se-
mantics is intended to serve as a reference, and not as an efficient
implementation technique. Therefore, defining an efficient cast cal-
culus and a correct translation from gradual source programs is an
open challenge.

A peculiarity of the dynamic semantics of gradual refinement
types derived with AGT is the consistent term substitution operator
(Section 6.3), which detects inconsistencies at the time of beta
reduction. This in turn requires verifying consistency relations on
open terms, hence resorting to SMT-based reasoning at runtime; a
clear source of inefficiency.

We observe that AGT has been originally formulated to derive a
runtime semantics that fails as soon as is justifiable. Eager failures
in the context of gradual refinements incurs a particularly high cost.
Therefore, it becomes interesting to study postponing the detection
of inconsistencies as late as possible, i.e. while preserving sound-
ness. If justifications can be delayed until closed terms are reached,
runtime checks boil down to direct evaluations of refinement for-
mulas, with no need to appeal to the SMT solver. To the best of our
knowledge, capturing different eagerness failure regimes within the
AGT methodology has not yet been studied, even in a simply-typed
setting; this is an interesting venue for future work.

10. Related Work
A lot of work on refining types with properties has focused
on maintaining statically decidable checking (e.g. through SMT
solvers) via restricted refinement logics (Bengtson et al. 2011;
Freeman and Pfenning 1991; Rondon et al. 2008; Xi and Pfen-
ning 1998). The challenge is then to augment the expressiveness of
the refinement language to cover more interesting programs with-
out giving up on automatic verification and inference (Chugh et al.
2012b; Kawaguchi et al. 2009; Vazou et al. 2013, 2015). Despite
these advances, refinements are necessarily less expressive than us-
ing higher-order logics such as Coq and Agda. For instance, subset
types in Coq are very expressive but require manual proofs (Sozeau
2007). F? hits an interesting middle point between both worlds by
supporting an expressive higher-order logic with a powerful SMT-
backed type checker and inferencer based on heuristics, which falls
back on manual proving when needed (Swamy et al. 2016).

Hybrid type checking (Knowles and Flanagan 2010) addresses
the decidability challenge differently: whenever the external prover
is not statically able to either verify or refute an implication, a
cast is inserted, deferring the check to runtime. Refinements are
arbitrary boolean expressions that can be evaluated at runtime.
Refinements are however not guaranteed to terminate, jeopardizing
soundness (Greenberg et al. 2010).

Earlier, Ou et al. (2004) developed a core language with refine-
ment types, featuring three constructs: simple{e}, to denote that
expression e is simply well-typed, dependent{e}, to denote that
the type checker should statically check all refinements in e, and
assert(e, τ) to check at runtime that e produces a value of type τ .
The semantics of the source language is given by translation to an
internal language, inserting runtime checks where needed.

Manifest contracts (Greenberg et al. 2010) capture the general
idea of allowing for explicit typecasts for refinements, shedding
light on the relation with dynamic contract checking (Findler and
Felleisen 2002) that was initiated by Gronski and Flanagan (2007).
More recently, Tanter and Tabareau (2015) provide a mechanism

for casting to subset types in Coq with arbitrary decidable proposi-
tions. Combining their cast mechanism with the implicit coercions
of Coq allows refinements to be implicitly asserted where required.

None of these approaches classify as gradual typing per se (Siek
and Taha 2006; Siek et al. 2015), since they either require program-
mers to explicitly insert casts, or they do not mediate between var-
ious levels of type precision. For instance, Ou et al. (2004) only
support either simple types or fully-specified refinements, while a
gradual refinement type system allows for, and exploits, partially-
specified refinements such as ν > 0 ∧ ?.

Finally, this work relates in two ways to the gradual typing
literature. First, our development is in line with the relativistic view
of gradual typing already explored by others (Bañados Schwerter
et al. 2014; Disney and Flanagan 2011; Fennell and Thiemann
2013; Thiemann and Fennell 2014), whereby the “dynamic” end of
the spectrum is a simpler static discipline. We extend the state-of-
the-art by gradualizing refinement types for the first time, including
dependent function types. Notably, we prove that our language
satisfies the gradual guarantee (Siek et al. 2015), a result that has
not been established for any of the above-mentioned work.

Second, this work builds upon and extends the Abstracting
Gradual Typing (AGT) methodology of Garcia et al. (2016). It con-
firms the effectiveness of AGT to streamline most aspects of grad-
ual language design, while raising the focus on the key issues. For
gradual refinements, one of the main challenges was to devise a
practical interpretation of gradual formulas, coming up with the
notion of locality of formulas. To support the local interpretation
of gradual formulas, we had to appeal to partial Galois connec-
tions (Miné 2004). This approach should be helpful for future ap-
plications of AGT in which the interpretation of gradual types is not
as straightforward as in prior work. Also, while Garcia et al. (2016)
focus exclusively on consistent subtyping transitivity as the locus
of runtime checking, dealing with refinement types requires other
meta-theoretic properties used for type preservation—lemmas re-
lated to substitution in both terms and types—to be backed by evi-
dence in the gradual setting, yielding new consistent operators that
raise new opportunities for runtime failure.

11. Conclusion
Gradual refinement types support a smooth evolution between sim-
ple types and logically-refined types. Supporting this continuous
slider led us to analyze how to deal with imprecise logical infor-
mation. We developed a novel semantic and local interpretation of
gradual formulas that is key to practical gradual refinements. This
specific interpretation of gradual formulas is the main challenge in
extending the refinement logic, as illustrated with measures. We
also demonstrate the impact of dependent function types in a grad-
ual language, requiring new notions of term and type substitutions
with runtime checks. This work should inform the gradualization of
other advanced type disciplines, both regarding logical assertions
(e.g. Hoare logic) and full-fledged dependent types.

A most pressing perspective is to combine gradual refinement
types with type inference, following the principled approach of
Garcia and Cimini (2015). This would allow progress towards a
practical implementation. Such an implementation should also tar-
get a cast calculus, such as a manifest contract system, respecting
the reference dynamic semantics induced by the AGT methodol-
ogy. Finally, while we have explained how to extend the refine-
ment logic with measures, reconciling locality and decidability
with more expressive logics—or arbitrary terms in refinements—
might be challenging.

Acknowledgments
We would like to thank Ronald Garcia, Jorge Pérez, Niki Vazou
and the anonymous referees for their feedback, and Nick, Jesse and
Jordan for their precious inspiration.

References
F. Bañados Schwerter, R. Garcia, and É. Tanter. A theory of gradual

effect systems. In 19th ACM SIGPLAN Conference on Functional
Programming (ICFP 2014), pages 283–295, Gothenburg, Sweden, Sept.
2014. ACM Press.

F. Bañados Schwerter, R. Garcia, and É. Tanter. Gradual type-and-effect
systems. Journal of Functional Programming, 26:19:1–19:69, Sept.
2016.

J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Maffeis.
Refinement types for secure implementations. ACM Transactions on
Programming Languages and Systems, 33(2):8:1–8:45, Jan. 2011.

R. Chugh. Nested Refinement Types for JavaScript. PhD thesis, University
of California, Sept. 2013.

R. Chugh, D. Herman, and R. Jhala. Dependent types for JavaScript. In 27th
ACM SIGPLAN Conference on Object-Oriented Programming Systems,
Languages and Applications (OOPSLA 2012), pages 587–606, Tucson,
AZ, USA, Oct. 2012a. ACM Press.

R. Chugh, P. M. Rondon, A. Bakst, and R. Jhala. Nested refinements: a logic
for duck typing. In 39th annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL 2012), pages 231–244,
Philadelphia, USA, Jan. 2012b. ACM Press.

A. Church. A formulation of the simple theory of types. J. Symbolic Logic,
5(2):56–68, 06 1940.

P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In 4th ACM Symposium on Principles of Programming Lan-
guages (POPL 77), pages 238–252, Los Angeles, CA, USA, Jan. 1977.
ACM Press.

T. Disney and C. Flanagan. Gradual information flow typing. In Interna-
tional Workshop on Scripts to Programs, 2011.

L. Fennell and P. Thiemann. Gradual security typing with references. In
Computer Security Foundations Symposium, pages 224–239, June 2013.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In 7th
ACM SIGPLAN Conference on Functional Programming (ICFP 2002),
pages 48–59, Pittsburgh, PA, USA, Sept. 2002. ACM Press.

C. Flanagan. Hybrid type checking. In 33th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL 2006),
pages 245–256, Charleston, SC, USA, Jan. 2006. ACM Press.

T. Freeman and F. Pfenning. Refinement types for ML. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’91), pages 268–277. ACM Press, 1991.

R. Garcia and M. Cimini. Principal type schemes for gradual programs.
In 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2015), pages 303–315. ACM Press, Jan. 2015.

R. Garcia, A. M. Clark, and É. Tanter. Abstracting gradual typing. In
43rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2016), St Petersburg, FL, USA, Jan. 2016. ACM
Press.

M. Greenberg, B. C. Pierce, and S. Weirich. Contracts made manifest.
In 37th annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2010), pages 353–364. ACM Press,
Jan. 2010.

J. Gronski and C. Flanagan. Unifying hybrid types and contracts. In Trends
in Functional Programming, pages 54–70, 2007.

W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin
and J. R. Hindley, editors, To H. B. Curry: Essays on Combinatory Logic,
Lambda Calculus, and Formalism, pages 479–490. Academic Press,
New York, 1980. Reprint of 1969 article.

M. Kawaguchi, P. Rondon, and R. Jhala. Type-based data structure verifi-
cation. In Proceedings of the 30th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation (PLDI 2009), pages
304–315. ACM Press, June 2009.

K. Knowles and C. Flanagan. Hybrid type checking. ACM Trans. Program.
Lang. Syst., 32(2), 2010.

N. Lehmann and É. Tanter. Formalizing simple refinement types in Coq.
In 2nd International Workshop on Coq for Programming Languages
(CoqPL’16), St. Petersburg, FL, USA, Jan. 2016.

A. Miné. Weakly Relational Numerical Abstract Domains. PhD thesis,
L’École Polythechnique, Dec. 2004.

X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with
dependent types. In Proceedings of the IFIP International Conference
on Theoretical Computer Science, pages 437–450, 2004.

P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. In 29th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI 2008), pages 159–169, Tucson, AZ, USA, June 2008.
ACM Press.

J. G. Siek and W. Taha. Gradual typing for functional languages. In Scheme
and Functional Programming Workshop, pages 81–92, Sept. 2006.

J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland. Refined cri-
teria for gradual typing. In 1st Summit on Advances in Programming
Languages (SNAPL 2015), pages 274–293, 2015.

M. Sozeau. Subset coercions in Coq. In Types for Proofs and Programs,
volume 4502 of LNCS, pages 237–252. Springer-Verlag, 2007.

N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud, S. Forest,
K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J. K. Zinzindo-
houe, and S. Zanella Béguelin. Dependent types and multi-effects in F?.
In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2016), pages 256–270, St Petersburg, FL, USA,
Jan. 2016. ACM Press.

É. Tanter and N. Tabareau. Gradual certified programming in Coq. In
Proceedings of the 11th ACM Dynamic Languages Symposium (DLS
2015), pages 26–40, Pittsburgh, PA, USA, Oct. 2015. ACM Press.

P. Thiemann and L. Fennell. Gradual typing for annotated type systems. In
Z. Shao, editor, 23rd European Symposium on Programming Languages
and Systems (ESOP 2014), volume 8410 of LNCS, pages 47–66, Greno-
ble, France, 2014. Springer-Verlag.

N. Vazou, P. M. Rondon, and R. Jhala. Abstract refinement types. In
M. Felleisen and P. Gardner, editors, Proceedings of the 22nd European
Symposium on Programming Languages and Systems (ESOP 2013), vol-
ume 7792 of LNCS, pages 209–228, Rome, Italy, Mar. 2013. Springer-
Verlag.

N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. L. P. Jones. Refine-
ment types for haskell. In 19th ACM SIGPLAN Conference on Func-
tional Programming (ICFP 2014), pages 269–282, Gothenburg, Swe-
den, Sept. 2014. ACM Press.

N. Vazou, A. Bakst, and R. Jhala. Bounded refinement types. In 20th ACM
SIGPLAN Conference on Functional Programming (ICFP 2015), pages
48–61, Vancouver, Canada, Sept. 2015. ACM Press.

P. Vekris, B. Cosman, and R. Jhala. Refinement types for TypeScript. In
Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2016), pages 310–325,
Santa Barbara, CA, USA, June 2016. ACM Press.

H. Xi and F. Pfenning. Eliminating array bound checking through de-
pendent types. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’98), pages
249–257. ACM Press, 1998.

A. Complete Formalization and Proofs
A.1 Static Refinement Types
In this section we present auxiliary definitions and properties for
the static refinement type system missing from the main body.

Proofs of type safety and refinement soundness of this sys-
tem was formalized in Coq and presented at the CoqPL work-
shop (Lehmann and Tanter 2016).

Definition 23 (Logical extraction).
L{ν :B | p}M = p

Lx :T1 → T2M = >
Lx :pM = p[x/ν]

Lx1 :, p1 . . . , xn :pnM = Lx1 :p1M ∪ · · · ∪ Lxn :pnM

Definition 24 (Well-formedness).

Φ ` p (wfp)
fv(p) ⊆ dom(Φ)

Φ ` p

Φ ` T (wf-refine)
Φ ` p

Φ ` {ν :B | p}

(wf-fun)
Φ ` T1 Φ, x :LT1M ` T2

Φ ` x :T1 → T2

` Φ (wf-empty)
` •

(wf-env)
` Φ Φ ` p x /∈ dom(Φ)

` Φ, x :p

Definition 25 (Small step operational semantics).
t1 7−→ t′1

let x = t1 in t2 7−→ let x = t′1 in t2

let x = v in t 7−→ t[v/x]

t1 7−→ t′1

t1 t2 7−→ t′1 t2

t2 7−→ t′2

v t2 7−→ v t′2 (λx :T.t) v 7−→ t[v/x]

t1 7−→ t′1

if t1 then t2 else t3 7−→ if t′1 then t2 else t3

if true then t2 else t3 7−→ t2

if false then t2 else t3 7−→ t3 c v 7−→ δc(v)

Proposition 18 (Type preservation). If • ; • ` t : T and t 7−→ t′

then • ; • ` t′ : T ′ and • ` T ′ <: T .

Proposition 19 (Progress). If • ; • ` t : T then t is a value or
t 7−→ t′.

Proposition 20 (Refinement soundness). If • ; • ` t : {ν :B | p}
and t 7−→∗ v then p[v/ν] is valid.

To be exact, the Coq development formalizes the same system,
save for some inessential details. First, the Coq development does
not make use of the logical environment. This distinction was
necessary to ease gradualization. Second, as required by the AGT
approach, the system presented in the paper uses subtyping in
an algorithmic style, while the Coq development uses a separate
subsumption rule.

A.2 Gradual Refinement Types Auxiliary Definitions
This section present auxiliary definition for the gradual refinement
type system.

Definition 26 (Term precision).

Px
x v x

Pc
c v c

Pλ
T̃1 v T̃2 t1 v t2

λx : T̃1.t1 v λx : T̃2.t2

P::
t1 v t2 T̃1 v T̃2

t1 :: T̃1 v t2 :: T̃2
Papp

t1 v t2 v1 v v2

t1 v1 v t2 v2

Pif
v1 v v2 t11 v t21 t21 v t22

if v1 then t11 else t12 v if v2 then t21 else t22

Plet
t11 v t21 t12 v t22

let x = t11 in t12 v let x = t21 in t22

Definition 27 (Precision for gradual logical environments).
Φ̃1 is less imprecise than Φ̃2, notation Φ̃1 v Φ̃2, if and only if
γΦ(Φ̃1) ⊆ γΦ(Φ̃2).

A.3 Static Criteria for Gradual Refinement Types
In this section we prove the properties of the static semantics for
gradual refinement types. We assume a partial Galois connection
〈αp, γp〉 such that γp(p) = { p } and αp({ p }) = p.

Lemma 21. αT ({T }) = T and γT (T) = {T }.

Proof. By induction on the structure of T and using the definition
assumed for αp and γp in singleton sets and precise formulas.

Lemma 22. If Φ ` T1 . T2 if and only if Φ ` T1 <: T2

Proof. Direct by Lemma 21 and definition of consistent subtyping.

Lemma 23. T [v/x] =‡T [v/x]

Proof. Direct by Lemma 21 and definition of consistent type sub-
stitution.

Proposition 1 (Equivalence for fully-annotated terms). For any
t ∈ TERM, Γ; Φ `S t : T if and only if Γ; Φ ` t : T

Proof. From left to right by induction on the static typing derivation
using lemmas 22 and 23. Form right to left by induction on the
gradual typing derivation using same lemmas.

Proposition 24 (αT is sound). If αT (ÛT) is defined, then ÛT ⊆
γT (αT (ÛT)).

Proof. By induction on the structure of αT (ÛT)

Case ({ν :B | p̃}). By inversion ÛT = { {ν :B | pi} }. Applying
definition of γT and αT .

γT (αT (ÛT)) = γT ({ν :B | αp{ pi }})
= { {ν :B | p} | p ∈ γp(αp({ pi })) }
⊇ { {ν :B | p} | p ∈ { pi } } by Proposition 40

= { {ν :B | pi} } = ÛT

Case (x : T̃1 → T̃2). By inversion ÛT = {x :Ti1 → Ti2 }.

γT (αT (ÛT)) = γT (x :αT ({Ti1 } → αT ({Ti2 })))
= {x :T1 → T2 | T1 ∈ γT (αT ({Ti1 })) ∧

T2 ∈ γT (αT ({Ti2 }))}
⊇ {x :T1 → T2 | T1 ∈ {Ti1 } ∧ T2 ∈ {Ti2 } }

By IH.

⊇ {x :Ti1 → Ti2 }

Proposition 25 (αT is optimal).
If αT (ÛT) is defined and ÛT ⊆ γT (T̃) then αT (ÛT) v T̃ .

Proof. By induction on the structure of T̃ .

Case ({ν :B | p̃}). Then ÛT = { {ν :B | pi} } and (1) { pi } ⊆
γp(p̃). It suffices to show that γT (αT (ÛT)) ⊆ γT (T̃). Applying
the definition of αT and γT .

γT (αT (ÛT)) = γT ({ν :B | αp({ pi })})
= { {ν :B | p} | p ∈ γp(αp({ pi })) }
⊆ { {ν :B | p} | p ∈ γp(p̃) } by (1) and Proposition 41
= γT ({ν :B | p̃}).

Case (x : T̃1 → T̃2). ÛT = {x :Ti1 → Ti2 }, (1) {Ti1 } ⊆
γT (T̃1) and (2) {Ti2 } ⊆ γT (T̃2). It suffices to show that
γT (αT (ÛT)) ⊆ γT (T̃). Applying the definition of αT and γT .

γT (αT (ÛT)) = γT (x :αT ({Ti1 })→ αT ({Ti2 }))
= {x :T1 → T2 | T1 ∈ γT (αT ({Ti1 }))∧

T2 ∈ γT (αT ({Ti2 }))}

⊆ {x :T1 → T2 | T1 ∈ γT (T̃1)∧

T2 ∈ γT (T̃2)} by (1), (2) and IH

= γT (x : T̃1 → T̃2).

Lemma 26 (Inversion lemma for precision of arrows). If x : T̃1 →
T̃2 v x : T̃ ′1 → T̃ ′2 then T̃1 v T̃ ′1 and T̃ ′2 v T̃ ′2.

Proof. By definition of v, γT (x : T̃1 → T̃2) ⊆ γT (x : T̃ ′1 → T̃ ′2),
thus
{x :T1 → T2 | 〈T1, T2〉 ∈ γ2(T̃1, T̃2) } ⊆

{x :T ′1 → T ′2 | 〈T ′1, T ′2〉 ∈ γ2(T̃ ′1, T̃
′
2) }

Then, γT (T̃1) ⊆ γT (T̃ ′1) and γT (T̃2) ⊆ γT (T̃ ′2), and by defi-
nition of v we have T̃1 v T̃ ′1 and T̃2 v T̃ ′2.

Lemma 27. If T̃1 v T̃ ′1 and T̃2 v T̃ ′2 then x : T̃1 → T̃2 v x : T̃ ′1 →
T̃ ′2

Proof. Direct by definition of precision.

Lemma 28. If Φ̃ ` T̃1 . T̃2, Φ̃ v Φ̃′, T̃1 v T̃ ′1 and T̃2 v T̃ ′2 then
Φ̃′ ` T̃ ′1 . T̃ ′2.

Proof. By definition of consistent subtyping there exists 〈Φ, T1, T2〉 ∈
γτ (Φ̃, T̃1, T̃2) such that Φ ` T1 <: T2. By definition of v we
also have γΦ(Φ̃) ⊆ γΦ(Φ̃′), γT (T̃1) ⊆ γT (T̃ ′1) and γT (T̃2) ⊆
γT (T̃ ′2). Therefore 〈Φ, T1, T2〉 is also in γτ (Φ̃, T̃ ′1, T̃

′
2).

Lemma 29. If T̃ v T̃ ′ then
‡̃
T [v/x] v

‡̃
T
′
[v/x].

Proof. By definition of v we know γT (T̃) ⊆ γT (T̃ ′). By defini-
tion of collecting lifting t̆subst(γT (T̃)) ⊆ t̆subst(γT (T̃ ′)). And
finally by monotonicity of αT since it forms a Galois connection
we conclude αT (t̆subst(γT (T̃))) v αT (t̆subst(γT (T̃ ′))).

Lemma 30. If Φ̃ ` T̃ , Φ̃ v Φ̃′ and T̃ v T̃ ′ then Φ̃ ` T̃

Proof. Direct since domain of Φ̃ is the same as the domain of
Φ̃′.

Lemma 31 (Static gradual guarantee for open terms). If Γ1 ; Φ̃1 `
t1 : T̃1, t1 v t2, Γ1 v Γ2 Φ̃1 v Φ̃2, then Γ2 ; Φ̃2 ` t2 : T̃2 and
T̃1 v T̃2.

Proof. By induction on the typing derivation.

Case (T̃x-refine). Because we give exact types, the type for the
variable is preserved. We conclude noting that x v x by (Px).

Case (T̃x-fun). Under the same environment Γ the type for the
variable is also the same. We also conclude noting that x v x by
(Px).

Case (T̃c). Trivial since constants are always given the same type
and by rule (P c) we have c v c.

Case (T̃λ).

(T̃λ)
Φ̃ ` T̃1 Γ, x : T̃1 ; Φ̃, x :LT̃1M ` t : T̃2

Γ; Φ̃ ` λx : T̃1.t : (x : T̃1 → T̃2)
(2)

Let t2 such that λx : T̃1.t v t2, Γ′ such that Γ v Γ′ and Φ̃′

such that Φ̃ v Φ̃′. By inversion on v we have (t2 = λx : T̃ ′1.t
′),

T̃1 v T̃ ′1 and t v t′.
Applying induction hypothesis to premises of 2 we have:

Γ′, x : T̃ ′1 ; Φ′, x :LT̃ ′1M ` t′ : T̃ ′2

such that T̃2 v T̃ ′2. We also known that Φ̃′ ` T̃ ′1 by Lemma 30.
Then applying (T̃λ) we have

Γ′ ; Φ′ ` λx : T̃ ′1.t
′ : x : T̃ ′1 → T̃ ′2

We conclude by noting that x : T̃1 → T̃2 v x : T̃ ′1 → T̃ ′2 by
Lemma 27.

Case (T̃app).

(T̃app)
Γ; Φ̃ ` t : x : T̃1 → T̃2 Γ; Φ̃ ` v : T̃ Φ̃ ` T̃ . T̃1

Γ; Φ̃ ` t v : T̃2Jv/xK
(3)

Let t2 such that t v v t2, Γ′ such that Γ v Γ′ and Φ̃′ such that
Φ̃ v Φ̃′. By inversion on v we have (t2 = t′ v′), t v t′ and
v v v′.

Applying induction hypothesis to premises of 3. we have

Γ′ ; Φ̃′ ` t′ : (x : T̃ ′1 → T̃ ′2) (4)

Γ′ ; Φ̃′ ` v′ : T̃ ′ (5)

such that x : T̃1 → T̃2 v x : T̃ ′1 → T̃ ′2. Inverting this with
Lemma 26 we have T̃2 v T̃ ′2.

We also know by Lemma 28 that

Φ̃′ ` T̃ ′ . T̃ ′1 (6)

Then using 4, 5 and 6 as premises for (T̃app) we conclude.

Γ′ ; Φ̃′ ` t′ v′ : T̃ ′2Jv
′/xK

We conclude by noting that T̃2Jv′/xK v T̃ ′2Jv′/xK by Lemma 29.

Case (T̃if).

(T̃if)

Γ; Φ̃ ` v : {ν :Bool | p̃} Φ̃ ` T̃1 . T̃ Φ̃ ` T̃2 . T̃
Γ; Φ̃, x : (v = true) ` t1 : T̃1 Γ; Φ̃, x : (v = false) ` t2 : T̃2

Γ; Φ̃ ` if v then t1 else t2 : T̃
(7)

Let t3 such that if v then t1 else t2 v t3, Γ′ such that Γ v Γ′

and Φ̃′ such that Φ̃ v Φ̃′. By inversion on v we have (t3 =
if v′ then t′1 else t′2), t1 v t′1, t2 v t′2 and v v v′.

Applying induction hypothesis to premises of 7 and inverting
resulting hypotheses.

Γ′ ; Φ̃′ ` v′ : {ν :Bool | p̃ ′} (8)

Γ; Φ̃, x : (v = true) ` t′1 : T̃ ′1 (9)

Γ; Φ̃, x : (v= false) ` t′2 : T̃ ′2 (10)

such that T̃1 v T̃ ′1 and T̃2 v T̃ ′2.
By Lemma 28 we also know:

Φ̃′ ` T ′1 . T (11)

Φ̃′ ` T ′2 . T (12)

Using 8, 9, 10, 11 and 12 as premises for (T̃if) we conclude:

Γ′ ; Φ̃′ ` if v′ then t′1 else t′2 : T̃

Case (T̃let).

(T̃let)

Γ; Φ̃ ` t1 : T̃1 Φ̃, x :LT̃1M ` T̃2 . T̃
Γ, x : T̃1 ; Φ̃, x :LT̃1M ` t2 : T̃2 Φ̃ ` T̃

Γ; Φ̃ ` let x = t1 in t2 : T̃
(13)

Let t3 such that let x = t1 in t2 v t3, Γ′ such that Γ v Γ′ and
Φ̃′ such that Φ̃ v Φ̃′. By inversion on v we have t3 = (let x =
t′1 in t′2) and t v t′.

Applying IH in premises of 13 we get:

Γ′ ; Φ̃′ ` t′1 : T̃ ′1 (14)

Γ′, x : T̃ ′1 ; Φ̃′, x :LT̃ ′1M ` t′2 : T̃ ′2 (15)

such that T̃1 v T̃ ′1 and T̃2 v T̃ ′2.
By Lemma 28 we also know that

Φ̃′, x :LT̃ ′1M ` T̃ ′2 . T̃ (16)

Finally, using 14 and 15 and 16 as premises for (T̃let) we
conclude:

Γ′ ; Φ̃′ ` let x = t′1 in t′2 : T̃

Case (T̃::).

(T̃::)
Γ; Φ̃ ` t : T̃1 Φ̃ ` T̃1 . T̃2

Γ; Φ̃ ` t :: T̃2 : T̃2
(17)

Let t2 such that t :: T̃2 v t2, Γ′ such that Γ v Γ′ and Φ̃′ such
that Φ̃ v Φ̃′. By inversion on v we have t2 = t′ :: T̃ ′2, t v t′ and
T̃2 v T̃ ′2.

By applying IH on premises of 17 we have:

Γ′ ; Φ̃′ ` t′ : T̃ ′1 (18)

such that T̃1 v T̃ ′1. By Lemma 28:

Φ̃′ ` T̃ ′1 . T̃ ′2 (19)

Using 18 and 19 as premises for (T̃::) we conclude

Γ′ ; Φ̃′ ` t′ :: T̃ ′2 : T̃ ′2

Proposition 2 (Static gradual guarantee). If • ; • ` t1 : T̃1 and
t1 v t2, then • ; • ` t2 : T̃2 and T̃1 v T̃2.

Proof. Direct consequence of Lemma 31.

Proposition 32 (αΦ is sound). If αΦ(ÛΦ) is defined, then ÛΦ ⊆
γΦ(αΦ(ÛΦ)).

Proof. Applying αΦ and γΦ , and using αp soundness (Prop-
erty 40).

γΦ(αΦ(ÛΦ)) = {Φ | ∀x.Φ(x) ∈ γp(αΦ(ÛΦ)(x)) }

= {Φ | ∀x.Φ(x) ∈ γp(αp({Φ′(x) | Φ′ ∈ ÛΦ })) }
⊇ {Φ | ∀x.Φ(x) ∈ {Φ′(x) | Φ′ ∈ ÛΦ } } by αp soundness

= ÛΦ
Proposition 33 (αΦ is optimal). IfαΦ(ÛΦ) is defined and ÛΦ ⊆ γΦ(Φ̃)

then αΦ(ÛΦ) v Φ̃.

Proof. It suffices to show γΦ(αΦ(ÛΦ)) ⊆ γΦ(Φ̃). Applying αΦ and
γΦ .

γΦ(αΦ(ÛΦ)) = {Φ | ∀x.Φ(x) ∈ γp(αΦ(ÛΦ)(x)) }

= {Φ | ∀x.Φ(x) ∈ γp(αp({Φ′(x) | Φ′ ∈ ÛΦ })) }
⊆ {Φ | ∀x.Φ(x) ∈ γp(Φ̃(x)) }

by αp optimality (Property 41)

= γΦ(Φ̃)

A.4 Partial Galois connection
Definition taken verbatim from Miné (2004), reproduced here for
convenience.

Definition 28 (Partial Galois connection). Let (C,vC) and (A,vA)
be two posets, F a set of operators on C, α : C ⇀ A a partial
function and γ : A → C a total function. The pair 〈α, γ〉 is an
F-partial Galois connection if and only if:

1. If α(c) is defined, then c vC γ(α(c)), and
2. If α(c) is defined, then c vC γ(a) implies α(c) vA a, and
3. For all F ∈ F and c ∈ C, α(F (γ(c))) is defined.

This definition can be generalized for a set F of arbitrary n-ary
operators.

A.5 Satisfiability Modulo Theory
We consider the usual notions and terminology of first order logic
an model theory. Let Σ be a signature consisting of a set of func-
tion and prediate symbols. Each function symbol f is associated
with a non-negative integer, called the arity of f . We call 0-arity
function symbols constant symbols and denote them by a, b, c and
d. We use f, g and h to denote non-constant function symbols, and
x1, x2, x3, . . . to denote variables. We also use pervasively the re-
finement variable ν which has an special meaning in our formal-
ization. We write p(x1, . . . , xn) for a formula that may contain
variables x1, . . . , xn. When there is no confusion we abbreviate
p(x1, . . . , xn) as p(~x). When a variable contains the special re-
finement variable ν we always annotate it explicitly as p(~x, ν).

A Σ-structure or model M consist of a non-empty universe
| M | and an interpretation for variables and symbols. We often
omit the Σ when it is clear from the context and talk just about a
model. Given a modelM we use the standard definition interpre-
tation of a formula and denote it asM(p). We useM[x 7→ v] to
denote a structure where the variable x is interpreted as v, and all
other variables, function and predicate symbols remain the sames
for all other variables.

Satisfaction M |= p is defined as usual. If M |= p we say
thatM is a model for p. We extend satisfaction to set of formulas:
M |= ∆ if for all p ∈ ∆, M |= p. A formula p is said to be
satisfiable if there exists a model M such that M |= p. A set of
formulas ∆ entails a formula q if for every model M such that
M |= ∆ thenM |= q.

We define a theory T as a collection of models. A formula p
is said to be satisfiable modulo T if there exists a modelM in T
such thatM |= p. A set of formulas ∆ entails a formula q modulo
T , notation ∆ |=T q, if for all modelM ∈ T ,M |= ∆ implies
M |= q.

A.6 Local Formulas
Definition 29 (Projection). Let p(~x, y) be a formula we define its
y-projection as bp(~x, y)c↓y = ∃y, p(~x). We extend the definition to
sequence of variables as bp(~x, ~y)c↓~y = ∃~y, p(~x, ~y).

Definition 30 (Localification). Let p(~x, ν) be a satisfiable formula,
we define its localification on ν as bp(~x, ν)c◦ν = bp(~x, ν)c↓ν →
p(~x, ν).

Proposition 34.
If p ∈ LFORMULA and p � q then q ∈ LFORMULA.

Proof. Let M be a any model. It suffices to show that M |=
∃ν, q(~x, ν). Since p(~x, ν) is local M |= ∃ν, p(~x, ν) and there
exists v such thatM[ν 7→ v] |= p(~x, ν). By hypothesisM[ν 7→
v] |= q(~x, ν), thusM |= ∃ν, q(~x, ν).

Proposition 3. Let Φ be a logical environment, ~x = dom(Φ) the
vector of variables bound in Φ, and q(~x, ν) ∈ LFORMULA. If LΦM
is satisfiable then LΦM ∪ { q(~x, ν) } is satisfiable.

Proof. Let p(~x) = LΦM. Because p is satisfiable then there exists
some modelMp such thatMp |= p(~x). Because q(~x, ν) is local
then for every model M there exists v such that, M[ν 7→ v] |=
q(~x, v). Let vp the value corresponding toMp. By construction ~x
cannot contain ν, thusMp[ν 7→ vp] is also a model for p(~x). We
conclude thatMp[ν 7→ vp] is a model for p(~x) ∧ q(~x, ν).

Lemma 35. Let p(~x, ν) be a satisfiable formula then bp(~x, ν)c◦ is
local.

Proof. LetM be a any model. It suffices to show thatM is a model
for ∃ν, bp(~x, ν)c◦.

• If M is a model for bq(~x, ν)c↓, then there exists v such that
M[ν 7→ v] |= q(~x, ν). Thus M[ν 7→ v] |= bq(~x, ν)c↓
which means that M[ν 7→ v] |= bp(~x, ν)c◦. Then, M |=
∃ν, bp(~x, ν)c◦ thenM[ν 7→ v] |= (∃ν, q(~x, ν))→ q(~x, ν).
• Suppose now that M is not a model for ∃ν, q(~x, ν), then
M[ν 7→ v] 6|= bq(~x, ν)c↓ for any v. Thus M[ν 7→ v] |=
bp(~x, ν)c◦ andM |= ∃ν, bp(~x, ν)c◦.

Definition 31 (Logical equivalence). We say that p is equivalent to
q, notation p ≡ q, ifM |= p if and only ifM |= q.

Lemma 36. Let p(~x, ν) be a satisfiable formula, then p(~x, ν) ≡
bp(~x, ν)c↓ ∧ bp(~x, ν)c◦.

Proof. Direct sinceM |= p(~x, ν) impliesM |= bp(~x, ν)c↓.

Definition 32 (Localification of environment). Let Φ be a well-
formed logical environment such that LΦM is satisfiable. We define
its localification as:

b•c◦ = • bx :p(ν)c◦ = x :p(ν)

bΦ, y :p(~x, ν), z :q(~x, y, ν)c◦ =

bΦ, y :p(~x, ν) ∧ bq(~x, y, ν)c↓c◦, z :bq(~x, y, ν)c◦

Lemma 37 (Equivalence of environment localification). Let Φ be a
well-formed logical environment such that LΦM is satisfiable. Then
bΦc◦ ≡ Φ and for all x the formula bΦc◦(x) is local.

Proof. By induction on the structure of Φ using lemmas 35 and
36.

Proposition 4. Let Φ be a logical environment. If LΦM is satisfiable
then there exists an environment Φ′ with the same domain such that
LΦM ≡ LΦ′M and for all x the formula Φ′(x) is local.

Proof. Direct consequence of Lemma 37.

Lemma 38 (Entailment is closed under projection). If p(~x, ~y) |=
q(~x, ~y) then bp(~x, ~y)c↓~y |= bq(~x, ~y)c↓~y .

Proof. Let M be a model for bp(~x, ~y)c↓~y . Then there exists a
sequence of values ~v such that M[~y 7→ ~v] |= p(~x, ~y). Then
by hypothesis M[~y 7→ ~v] |= q(~x, ~y), which implies M |=
bq(~x, ~y)c↓~y .

Lemma 39. ∃y, p(~x, y)∨ q(~x, y) ≡ (∃y, p(~x, y))∨ (∃y, q(~x, y))

Proof.

⇒ LetM be a model for ∃y, p(~x, y) ∨ q(~x, y). Then there exists
v such thatM[y 7→ v] |= p(~x, y) ∨ q(~x, y). IfM[y 7→ v] |=
p(~x, y) thenM |= ∃y, p(~x, y). IfM[y 7→ v] |= q(~x, y) then
M |= ∃y, q(~x, y).

⇐ LetM be a model for (∃y, p(~x, y)) ∨ (∃y, q(~x, y)). IfM |=
∃y, p(~x, y) then there exists v such thatM[y 7→ v] |= p(~x, y).
ThusM[y 7→ v] |= p(~x, y) ∨ q(~x, y) and consequentlyM |=
∃p(~x, y) ∨ q(~x, y). The case whenM |= ∃y, q(~x, y) is sym-
metric.

A.7 Soundness and Optimality of αp
This section present soundness and optimality of the pair 〈αp, γp〉.
Proposition 40 (αp is sound). If αp(Ûp) is defined, then Ûp ⊆
γp(αp(Ûp)).

Proof. By case analysis on when αp(Ûp) is defined.
Case (Ûp = { p }). γp(αp({ p })) = γp(p) = { p }

Case (Ûp ⊆ LFORMULA and
bÛp is defined). Applying the defi-

nition of αp and γp:

γp(αp(Ûp)) = γp(
jÛp ∧ ?)

= { q | q �
jÛp }

By definition
b

yields an upper bound, so if q ∈ Ûp then q �
bÛp .

Thus Ûp ⊆ { q | q � bÛp } = γp(αp(Ûp)).

Proposition 41 (αp is optimal). If αp(Ûp) is defined, then Ûp ⊆
γp(p̃) implies αp(Ûp) v p̃ .

Proof. By case analysis on the structure of p̃ .
Case (p). Because Ûp cannot be empty it must be that Ûp = { p }.
Then, αp(Ûp) = p v p.

Case (p◦ ∧ ?). By hypothesis αp(Ûp) must be defined thus Ûp ⊆
LFORMULA and

bÛp is defined. It suffices to show γp(αp(Ûp)) ⊆
γp(p̃). Applying the definition of αp and γp.

γp(αp(Ûp)) = γp(
jÛp ∧ ?)

= { q | q �
jÛp }

Then it suffices to show that
bÛp � p. By hypothesis Ûp ⊆ γp(p̃),

so if q ∈ Ûp then q � p. That is p is an upper bound for Ûp . Then, by
definition of join

bÛp � p.

A.8 Algorithmic Consistent Type Substitution
In this section we provide an algorithmic characterization of con-
sistent type substitution, which simply performs substitution in the
known parts of the formulas of a type. We also prove that 〈αT , γT 〉
is a partial Galois connection for the collecting type substitution
operator.

Definition 33 (Algorithmic consistent type substitution).

{ν :B | p}Jv/xK = {ν :B | p[v/x]}
{ν :B | p ∧ ?}Jv/xK = {ν :B | p[v/x] ∧ ?}

(y : T̃1 → T̃2)Jv/xK = y : T̃1Jv/xK→ T̃2Jv/xK

Considering the local interpretation of gradual formulas, this
definition is equivalent to Definition 5 (Sect. 3.2).

Lemma 42. If p � q then p[v/x] � p[v/x].

Proof. LetM be a model for p[v/x]. Let v′ be equal to the inter-
pretation of v inM. ThenM[x 7→ v′] is a model for p. Then by
hypothesisM[x 7→ v′] |= q and consequentlyM |= p[v/x].

Proposition 43. ‡̃T [v/x] = T̃ Jv/xK

Proof. By induction on the structure of T̃ .

Case (T̃ = {ν : B | p̃}). If p̃ = p then it holds directly. Then
assume p̃ = p ∧ ?. By Lemma 42 p[v/x] is a bound for every
formula in γp(p∧ ?) after applying the collecting substitution over
it. We conclude that p[v/x] must be the join of all that formulas
because it is also in the set.

Case (T̃ = x : T̃1 → T̃2). Direct by applying the induction
hypothesis.

Proposition 6 (Partial Galois connection for gradual types). The
pair 〈αT , γT 〉 is a { t̆subst }-partial Galois connection, where
t̆subst is the collecting lifting of type substitution, i.e.

t̆subst(ÛT , v, x) = {T [v/x] | T ∈ ÛT }
Proof. Direct by Prop. 43.

A.9 Dynamic Semantic Auxiliary Definitions
Here we present auxiliary definitions missing from main body
necessary for the dynamic semantics.

Definition 34 (Intrinsic term full definition).
(In)

Φ̃ ; n ∈ TERM{ν :Int | ν = n}

(Ib)
Φ̃ ; b ∈ TERM{ν :Bool | ν = b}

(Ix-refine)
Φ̃ ; x{ν :B | p̃} ∈ TERM{ν :B | ν = x}

(Ix-fun)
Φ̃ ; xy:T̃1→ T̃2 ∈ TERM

y:T̃1→ T̃2

(Iλ)
Φ̃, x :LT̃1M ; tT̃2 ∈ TERM

T̃2

Φ̃ ; λxT̃1 .tT̃2 ∈ TERM
x:T̃1→ T̃2

(I::)

Φ̃ ; tT̃1 ∈ TERM
T̃1

ε . Φ̃ ` T̃1 . T̃2

Φ̃ ; εtT̃1 :: T̃2 ∈ TERM
T̃2

(Iapp)

Φ̃ ; tT̃1 ∈ TERM
T̃1

ε1 . Φ̃ ` T̃1 . (x : T̃11 → T̃12)

Φ̃ ; v ∈ TERM
T̃2

ε2 . Φ̃ ` T̃2 . T̃11

Φ̃ ; (ε1t
T̃1)@x:T̃11→T̃12 (ε2v) ∈ TERM

T̃12Jv/xK

(Iif)

Φ̃ ; u ∈ TERM{ν :Bool | p̃}

Φ̃, x : (v = true) ; tT̃1 ∈ TERM
T̃1

ε1 . Φ̃ ` T̃1 . T̃

Φ̃, x : (v = false) ; tT̃2 ∈ TERM
T̃2

ε2 . Φ̃ ` T̃2 . T̃

Φ̃ ; (if u then ε1tT̃1 else ε2tT̃2)@T̃ ∈ TERM
T̃

(I let)

Φ̃ ; tT̃11 ∈ TERM
T̃11

ε1 . Φ̃ ` T̃11 . T̃12
Φ̃, x : T̃12 ; tT̃2 ∈ TERM

T̃2
ε2 . Φ̃, x :LT̃12M ` T̃2 . T̃

Φ̃ ; (let xT̃12 = ε1t
T̃11 in ε2tT̃2)@T̃ ∈ TERM

T̃

Definition 35 (Intrinsic reduction full definition).

(R 7−→)
tT̃ −→ r r ∈ (TERM

T̃
∪ { error })

tT̃ 7−→ r

(Rg)
et −→c et′

g[et] 7−→ g[et′]
(Rgerr)

et −→c error
g[et] 7−→ error

(Rf)
tT̃1 7−→ tT̃2

f [tT̃1] 7−→ f [tT̃2]
(Rferr) tT̃ 7−→ error

f [tT̃] 7−→ error

Definition 36 (Evidence domain).

idom(Φ̃, x : T̃11 → T̃12, x : T̃21 → T̃22) = 〈Φ̃, T̃21, T̃11〉

Proposition 44. If ε . Φ̃ ` x : T̃11 → T̃12 . x : T̃21 → T̃22 then
idom(ε) . Φ̃ ` T̃21 . T̃11.

Proof. Let ε = 〈Φ̃′, x : T̃ ′11 → T̃ ′12, x : T̃ ′21 → T̃ ′22〉 because ε is
self-interior and by monotonicity of ατ we have.

〈Φ̃′, T̃ ′21, T̃ ′11〉 = ατ ({〈Φ, T21, T11〉 ∈ γτ (Φ̃′, T̃ ′21, T̃
′
11) |

∃T12 ∈ γT (T̃12), T22 ∈ γT (T̃22),

Φ ` T21 <: T11 ∧ Φ, x :LT21M ` T12 <: T22})

v ατ ({〈Φ, T21, T11〉 ∈ γτ (Φ̃′, T̃ ′21, T̃
′
11) |

Φ ` T21 <: T11})

= I<:(Φ̃
′, T̃ ′21, T̃

′
11)

Thus, 〈Φ̃′, T̃ ′21, T̃ ′11〉 must be self-interior and we are done.

Definition 37 (Evidence codomain).

icod(Φ̃, x : T̃11 → T̃12, x : T̃21 → T̃22) = 〈Φ̃ · x :LT̃21M, T̃12, T̃22〉

Proposition 45. If ε . Φ̃ ` x : T̃11 → T̃12 . x : T̃21 → T̃22 then
icod(ε) . Φ̃, x : T̃21 ` T̃12 . T̃22.

Proof. Let ε = 〈Φ̃′, x : T̃ ′11 → T̃ ′12, x : T̃ ′21 → T̃ ′22〉 because ε is
self-interior and by monotonicity of ατ we have.

〈Φ̃′, T̃ ′21, T̃ ′12, T̃ ′22〉 = ατ ({〈Φ, T21, T12, T22〉 ∈

γτ (Φ̃′, T̃ ′21, T̃
′
12, T̃

′
22) | ∃T11 ∈ γT (T̃11),

Φ ` T21 <: T11 ∧ Φ, x :LT21M ` T12 <: T22})
v ατ ({〈Φ, T21, T12, T22〉 ∈

γτ (Φ̃′, T̃ ′21, T̃
′
21, T̃

′
11) |

Φ, x :LT21M ` T12 <: T22})

= I<:(Φ̃
′ ·LT̃ ′21M, T̃ ′21, T̃ ′11)

Thus, 〈Φ̃′ ·x :LT̃ ′21M, T̃ ′12, T̃ ′22〉 must be self-interior and we are
done.

Definition 38 (Evidence codomain substitution).

icodv(ε1, ε2) = (ε1 ◦<: idom(ε2)) ◦[v/x]<: icod(ε2)

Proposition 46. If ε . Φ̃ ` x : T̃11 → T̃12 . x : T̃21 → T̃22,
Γ; Φ̃ ` u : T̃u and εu . Φ̃ ` T̃u . T̃11 then icodu(εu, ε) . Φ̃ `
T̃12Ju/xK . T̃22Ju/xK or icodu(εu, ε) is undefined.

Proof. Direct by Prop. 45 and definition of consistent subtyping
substitution.

Definition 39 (Intrinsic Term precision).

IPx
T̃1 v T̃2

xT̃1 v xT̃2
IPc

c v c
IPλ

T̃1 v T̃2 t1 v t2

λx : T̃1.t1 v λx : T̃2.t2

P::
ε1 v ε2 t1 v t2 T̃1 v T̃2

ε1t1 :: T̃1 v ε2t2 :: T̃2

IPapp
T̃1 v T̃2 ε11 v ε12 ε12 v ε22 t1 v t2 v1 v v2

(ε11t1)@T̃1 (ε12v1) v (ε12t2)@T̃2 (ε22v2)

IPif

ε11 v ε21 ε21 v ε22 T̃1 v T̃2
v1 v v2 t11 v t21 t21 v t22

(if v1 then ε11t11 else ε12t12)@T̃1 v (if v2 then ε21t21 else ε22t22)@T̃2

IPlet

ε11 v ε21 ε21 v ε22
T̃11 v T̃21 T̃12 v T̃22 t11 v t21 t12 v t22

(let xT̃11 = ε11t11 in ε12t12)@T̃21 v (let xT̃21 = ε21t21 in ε22t22)@T̃22

A.10 Dynamic Criteria for Gradual Refinement Types
Lemma 47 (Subtyping narrowing). If Φ1,Φ3 ` T1 <: T2 and
` Φ2 then Φ1,Φ2,Φ3 ` T1 <: T2.

Proof. By induction on subtyping derivation.
Case (<:-refine). Trivial because the logic is monotone.

Case (<:-fun). Direct by applying the induction hypothesis.

Lemma 48 (Consistent subtyping narrowing). If Φ̃1, Φ̃2 ` T̃1 ‹<: T̃2
then Φ̃1, Φ̃2, Φ̃3 ` T̃1 ‹<: T̃2.

Proof. Direct by Lemma 47 and definition of consistent subtyping.

Lemma 49 (Subtyping strengthening). If Φ1, x :>,Φ2 ` T1 <:
T2 then Φ1,Φ2 ` T1 <: T2.

Proof. By induction on the structure of T1

Case ({ν :B | p}). Direct since adding a true assumption can be
removed from entailment.

Case (x :T11 → T12). Direct by applying induction hypothesis.

Lemma 50 (Consistent Subtyping strengthening). If Φ1, x :
>,Φ2 ` T1 ‹<: T2 then Φ1,Φ2 ` T1 ‹<: T2.

Proof. Direct by Lemma 49 and definition of consistent subtyping.

Lemma 51 (Typing strengthening). If Φ̃1, x :>, Φ̃2 ; t ∈ TERM
T̃1

then Φ̃1, Φ̃2 ; t ∈ TERM
T̃1

.

Proof. By induction on the derivation of Φ̃1, x : >, Φ̃2 ; t ∈
TERM

T̃1
and using Lemma 50.

Proposition 10 (Consistent substitution preserves types). Suppose
Φ̃1 ; u ∈ TERM

T̃u
, ε . Φ̃1 ` T̃u . T̃x, and Φ̃1 ·x : LT̃xM·Φ̃2 ; t ∈

TERM
T̃

then Φ̃1·Φ̃2Ju/xK ; t[εu/xT̃x] ∈ TERM
T̃ Ju/xK or t[εu/xT̃x]

is undefined.

Proof. By induction on the derivation of t.
Case. Cases (In) and (Ib) follows directly since there are no
replacement and constant are given the same type regardless the
environment.

Case (Ix-refine).

(Ix-refine)
Φ̃1, x :LT̃xM, Φ̃2 ; y{ν :B | q̃} ∈ TERM{ν :B | ν = y}

(1)

We have two cases:

• If x{ν :B | p̃} 6= y{ν :B | q̃} then replacement is defined as
y{ν :B | q̃}Ju/xK which regardless the environment has type {ν :
B | ν = y}, thus we are done.
• x{ν :B | p̃} = y{ν :B | q̃} then we must replace by u which has

type {ν :B | ν = u} regardless of the environment, thus we are
also done.

Case (Ix-fun).

(Ix-fun)
Φ̃1, x :LT̃xM, Φ̃2 ; yz:T̃1→ T̃2 ∈ TERM

z:T̃1→ T̃2

(2)

We have two cases:

• If the variable is not the same then we substitute by y(z:T̃1→ T̃2)Ju/xK

which has type (z : T̃1 → T̃2)Ju/xK regardless of the logical
environment.
• Otherwise by inverting the equality between variable we also

know that T̃x is equal to z : T̃1 → T̃2. By hypothesis and
narrowing (Lemma 48)

ε . Φ̃1, Φ̃2Ju/xK ` T̃u . z : T̃1 → T̃2 (3)

By 3 T̃u and z : T̃1 → T̃2 must be well formed in Φ̃1, which
cannot contain x, thus substituting for x in both produces the
same type.
Using 3 as premise for (I::) we conclude that

Φ̃1, Φ̃2Ju/xK ; εu :: (z : T̃1 → T̃2) ∈ TERM
z:T̃1→ T̃2

Case (Iλ).

(Iλ)
Φ̃1, x :LT̃xM, Φ̃2, y :LT̃1M ; t ∈ TERM

T̃2

Φ̃1, x :LT̃xM, Φ̃2 ; λyT̃1 .t ∈ TERM
y:T̃1→ T̃2

(4)

Let assume that t[εu/xT̃x] is defined, otherwise substitution is
also undefined for the lambda and we are done.

We must prove:

Φ̃1, Φ̃2 ; λyT̃1Ju/xK.t[εu/xT̃x] ∈ TERM
(y:T̃1→ T̃2)Ju/xK

Applying induction hypothesis to premise of 4 we have:

Φ̃1, Φ̃2Ju/xK, y :LT̃1Ju/xKM ; t[εu/xT̃x] ∈ TERM
T̃2Ju/xK (5)

Then, assume that 4 holds. By using 5 as premise for (Iλ) we
derive:

Φ̃1, Φ̃2Ju/xK ; λyT̃1Ju/xK.t ∈ TERM
y:T̃1Ju/xK→ T̃2Ju/xK (6)

We conclude by the algorithmic characterization of type substi-
tution (Lemma 43).

Case (I::).

(I::)

Φ̃1, x :LT̃xM, Φ̃2 ; t ∈ TERM
T̃1

ε1 . Φ̃1, x :LT̃xM, Φ̃2 ` T̃1 . T̃2
Φ̃1, x :LT̃xM, Φ̃2 ; εt :: T̃2 ∈ TERM

T̃2

(7)

We must prove that substitution is undefined or

Φ̃1, Φ̃2Ju/xK ; (ε ◦[v/x]<: ε1)t[εu/xT̃x] :: T̃2Ju/xK ∈ TERM
T̃2Ju/xK (8)

If (ε ◦[v/x]<: ε1) is undefined then substitution for the whole term
is undefined in which case we are done. Otherwise we have.

ε ◦[v/x]<: ε1 . Φ̃1, Φ̃2Ju/xK ` T̃1Ju/xK . T̃2Ju/xK (9)

Applying the induction hypothesis to first premise of 7 we have
t[εu/xT̃x] undefined, in which case we are done, or:

Φ̃1, Φ̃2Ju/xK ; t[εu/xT̃x] ∈ TERM
T̃1Ju/xK (10)

Using 9 and 10 as premises for (I::) we conclude 8 as we wanted.

Case (Iapp).

(Iapp)

Φ̃1, x :LT̃xM, Φ̃2 ; t ∈ TERM
T̃1

Φ̃1, x :LT̃xM, Φ̃2 ; v ∈ TERM
T̃2

ε1 . Φ̃1, x :LT̃xM, Φ̃2 ` T̃1 . (x : T̃11 → T̃12)

ε2 . Φ̃1, x :LT̃xM, Φ̃2 ` T̃2 . T̃11

Φ̃1, x :LT̃xM, Φ̃2 ; (ε1t)@
x:T̃11→T̃12 (ε2v) ∈ TERM

T̃12Jv/xK
(11)

If substitution in t or u is undefined, or consistent subtyping
substitution for ε1 or ε2 is undefined we are done. Assuming the
above is defined and applying induction hypothesis to premises
of 11 we have:

Φ̃1, Φ̃2Ju/xK ; t[εu/xT̃x] ∈ TERM
T̃1Ju/xK (12)

Φ̃1, Φ̃2Ju/xK ; u[εu/xT̃x] ∈ TERM
T̃2Ju/xK (13)

On the other hand by applying consistent subtyping substitution
we have:

ε ◦[v/x]<: ε1 . Φ̃1, Φ̃2Ju/xK ` T̃1Ju/xK . (x : T̃11 → T̃12)Ju/xK (14)

ε ◦[v/x]<: ε2 . Φ̃1, Φ̃2Ju/xK ` T̃2Ju/xK . T̃11Ju/xK (15)

We conclude by the algorithmic characterization of consistent
type substitution and using 12, 13, 14 and 15 as premises for (Iapp)
to obtain:

Φ̃1, Φ̃2Ju/xK ;

(ε1t)[εu/x
T̃x]@(x:T̃11→T̃12)Ju/xK (ε2v)[εu/xT̃x] ∈ TERM

T̃12Jv/xKJu/xK

Case (Iif).

(Iif)

Φ̃1, x :LT̃xM, Φ̃2, y : (v = true) ; t1 ∈ TERM
T̃1

ε1 . Φ̃ ` T̃1 . T̃
Φ̃1, x :LT̃xM, Φ̃2, y : (v = false) ; t2 ∈ TERM

T̃2
ε2 . Φ̃ ` T̃2 . T̃

Φ̃ ; (if v then ε1t1 else ε2t2)@T̃ ∈ TERM
T̃

(16)

If substitution in t1, t2 or v is undefined, or consistent subtyping
substitution for ε1 or ε2 is undefined we are done. Assuming the
above is defined and applying induction hypothesis to premises

of 16 we have:

Φ̃1, Φ̃2Ju/xK, y : (v = true) ; t1[εu/xT̃x] ∈ TERM
T̃1Ju/xK (17)

Φ̃1, Φ̃2Ju/xK, y : (v = false) ; t2[εu/xT̃x] ∈ TERM
T̃2Ju/xK (18)

And by consistent subtyping substitution:

ε ◦[v/x]<: ε1 . Φ̃1, Φ̃2Ju/xK ` T̃1Ju/xK . T̃ Ju/xK (19)

ε ◦[v/x]<: ε2 . Φ̃1, Φ̃2Ju/xK ` T̃2Ju/xK . T̃ Ju/xK (20)

By using , , and as premises for (Iif) we conclude:

Φ̃1, Φ̃2Ju/xK ;

(if v[εu/xT̃x] then (ε1t1)[εu/xT̃x] else (ε2t2)[εu/xT̃x])@
T̃u/x

∈ TERM
T̃ Ju/xK

Case (I let).

(I let)

Φ̃1, x :LT̃xM, Φ̃2 ; t1 ∈ TERM
T̃11

Φ̃1, x :LT̃xM, Φ̃2, x : T̃12 ; t2 ∈ TERM
T̃2

ε1 . Φ̃1, x :LT̃xM, Φ̃2 ` T̃11 . T̃12
ε2 . Φ̃1, x :LT̃xM, Φ̃2, y :LT̃12M ` T̃2 . T̃

Φ̃1, x :LT̃xM, Φ̃2 ; (let yT̃12 = ε1t1 in ε2t2)@T̃ ∈ TERM
T̃

(21)

We assume substitution is defined for every subterm and con-
sistent subtyping substitution for every evidence, otherwise we are
done. Applying IH to premises of 21 we obtain:

Φ̃1, Φ̃2Ju/xK ; t1[εu/xT̃x] ∈ TERM
T̃11Ju/xK (22)

Φ̃1, Φ̃2Ju/xK, y :LT̃12Jεu/xKM ; t2[εu/xT̃x] ∈ TERM
T̃2Ju/xK (23)

By applying consistent subtyping substitution we have:

ε ◦[v/x]<: ε1 . Φ̃1, Φ̃2Ju/xK ` T̃11Ju/xK . T̃12Ju/xK (24)

ε ◦[v/x]<: ε2 . Φ̃1, Φ̃2Ju/xK, y :LT̃12Ju/xKM ` T̃2Ju/xK . T̃ Ju/xK (25)

Using 22, 23, 24 and 25 as premises for (I let) we conclude that:

Φ̃1, Φ̃2Ju/xK ;

(let yT̃12Ju/xK = (ε1t)[εu/x
T̃x] in (ε2t)[εu/x

T̃x])@T̃ Ju/xK

∈ TERM
T̃ Ju/xK

Proposition 11 (Type Safety). If tT̃1 ∈ TERM
•

T̃
then either tT̃1 is a

value v, tT̃1 7−→ tT̃2 for some term tT̃2 ∈ TERM
•

T̃
, or tT̃1 7−→ error.

Proof. By induction on the derivation of tT̃1 .
Case (In,Ib,Iλ,Ix-fun,Ix-refine). t is a value.

Case (I::).

(I::)

• ; t ∈ TERM
T̃1

ε1 . • ` T̃1 . T̃2
Φ̃ ; εt :: T̃2 ∈ TERM

T̃2

(1)

If t = u then εt :: T̃2 is a value. Otherwise applying induction
hypothesis to first premise of 1 we have t 7−→ t′ and • ; t′ ∈
TERM

T̃1
or t 7−→ error. If t 7−→ error then εt :: T̃2 7−→ error

by Rule (Rgerr). Otherwise, by Rule (Rg), εt :: T̃2 7−→ εt′ :: T̃2.
• ; εt′ :: T̃2 ∈ TERM

T̃2
is well-formed because of Rule (I::).

Case (Iapp).

(Iapp)

• ; t ∈ TERM
T̃1

ε1 . • ` T̃1 . (x : T̃21 → T̃22)

• ; v ∈ TERM
T̃2

ε2 . • ` T̃2 . T̃11

• ; (ε1t)@
x:T̃21→T̃22 (ε2v) ∈ TERM

T̃22Jv/xK

(2)

If t is not a value applying induction hypothesis to first premise
of 2 we have t 7−→ error or t 7−→ t′ and • ; t ∈ TERM

T̃1
. If t 7−→

error then, by rule (Rgerr), (ε1t)@
x:T̃11→T̃12 (ε2v) 7−→ error.

Otherwise, (ε1t)@
x:T̃11→T̃12 (ε2v) 7−→ (ε1t

′)@x:T̃11→T̃12 (ε2v),

and by Rule (Iapp) • ; (ε1t
′)@x:T̃11→T̃12 (ε2v) ∈ TERM

T̃12Jv/xK.

If t is a value then it equal to λxT̃11 .t′ or ε3u :: T̃1. If it is equal
to ε3u :: T̃1 then by Rule (Rf) or (Rferr) it reduces to either error
or to (ε3 ◦<: ε1)u)@x:T̃11→T̃12 (ε2v).

If t equal to λxT̃11 .t′ then T̃1 must be equal to x : T̃11 → T̃12.
By rule (R−→) (ε1t)@

x:T̃11→T̃12 (ε2v) either goes to error
or reduces to icodu(εu, ε1)t[εuu/x] :: T̃2Ju/xK where εu =
ε2 ◦<: idom(ε1). In case every operator is defined by Prop. 10
• ; t[εuu/x] ∈ TERM

T̃12Ju/xK. By Prop. 46 icodu(εu, ε1) .

• ` T̃12Ju/xK . T̃22Ju/xK. We conclude by Rule (I::) that
• ; icodu(εu, ε1)t[εuu/x] :: T̃2Ju/xK ∈ TERM

T̃2Ju/xK

Case (Iif).

(Iif)

Φ̃ ; u ∈ TERM{ν :Bool | p̃}

x : (v = true) ; t1 ∈ TERM
T̃1

ε1 . Φ̃ ` T̃1 . T̃
x : (v = false) ; t2 ∈ TERM

T̃2
ε2 . Φ̃ ` T̃2 . T̃

• ; (if u then ε1t1 else ε2t2)@T̃ ∈ TERM
T̃

(3)

By inversion the first hypothesis of 3 we have that u is either
true or false. If u = true then by rule (R−→) the term reduces
to ε1t1 :: T̃ . Which is well-formed because • ; t1 ∈ TERM

T̃1
by

Lemma 51. We conclude analogously when u = false.

Case (I let).

(I let)

• ; t1 ∈ TERM
T̃11

ε1 . • ` T̃11 . T̃12
x : T̃12 ; t2 ∈ TERM

T̃2
ε2 . x :LT̃12M ` T̃2 . T̃

• ; (let xT̃12 = ε1t1 in ε2t2)@T̃ ∈ TERM
T̃

(4)

If t1 is not a value then by induction hypothesis it either reduces
to error or to some t′1 such that • ; t′1 ∈ TERM

T̃11
. We conclude

using Rule (Rg) or (Rgerr).
If t1 is equal to ε3u :: T̃11 then ε1(ε3u :: T̃11) reduces to

(ε1 ◦<: ε3)u or to error We conclude by Rule (Rf) or (Rferr).
If t1 is equal to u. Then, the whole term either reduces to an

error in which case we conclude by Rule (Rgerr) or it reduces
to (ε1 ◦[v/x]<: ε2)t2[ε1u/x

T̃1] :: T̃ . By Prop. 10 • ; t2[ε1u/x
T̃1] ∈

TERM
T̃ Ju/xK. Since T̃ is well-formed in • it does include x as a

free variable and hence T̃ Ju/xK = T̃ . Thus we conclude that
(ε1 ◦[v/x]<: ε2)t2[ε1u/x

T̃1] :: T̃ is well-formed.

Lemma 52 (Monotonicity of ◦<:). If ε1 v ε2, ε3 v ε4 and
ε1 ◦<: ε3 is defined then ε2 ◦<: ε4 is defined and ε1 ◦<: ε3 v
ε2 ◦<: ε4.

Proof. We have γτ (ε1) ⊆ γτ (ε2) and γτ (ε3) ⊆ γτ (ε4). Conse-
quently, F◦<:(γτ (ε1), γτ (ε3)) ⊆ F◦<:(γτ (ε2), γτ (ε4)). Because

ατ is monotone it must be that

ατ (F◦<:(γτ (ε1), γτ (ε3))) v ατ (F◦<:(γτ (ε2), γτ (ε4)))

and we conclude.

Lemma 53 (Monotonicity of ◦[v/x]<:). If ε1 v ε2, ε3 v ε4 and
ε1 ◦[v/x]<: ε3 is defined then ε2 ◦[v/x]<: ε4 is defined and ε1 ◦[v/x]<:

ε3 v ε2 ◦[v/x]<: ε4.

Proof. Direct using the same argument of Lemma 52.

Lemma 54 (Substitution preserves precision). If t1 v t2, u1 v
u2, T̃1 v T̃2, ε1 v ε2 and t1[ε1u1/x

T̃1] is defined then t2[ε2u2/x
T̃1]

is defined and t1[ε1u1/x
T̃1] v t2[ε2u2/x

T̃2].

Proof. By induction on the derivation of t1 v t2.

Case (IPx). We have t1 = yT̃
′
1 and t2 = yT̃

′
2 . If yT̃

′
1 6= xT̃1 it

follows directly. Otherwise there are two cases.
If T̃1 = {ν :B | p̃1} then it must be T̃2 = {ν :B | p̃2}. By def-

inition of substitution. yT̃
′
1 [ε1u1/x

T̃1] = u1 and yT̃
′
2 [ε2u2/x

T̃2] =
u2. We conclude because u1 v u2 by hypothesis.

If T̃1 = x : T̃11 → T̃12 then by definition of substitution.
yT̃
′
1 [ε1u1/x

T̃1] = ε1u1 :: T̃1 and yT̃
′
2 [ε2u2/x

T̃2] = ε2u2 :: T̃2.
We conclude ε1u1 :: T̃1 v ε2u2 :: T̃2 by Rule (IP::)

Case (IPc). Direct since substitution does not modify the term.

Case (IPλ). We have t1 = λxT̃11 .t11, t2 = λxT̃11 .t21 and t11 v
t21. By induction hypothesis t11[ε1u1/x

T̃1] v t21[ε2u2/x
T̃2]. We

conclude applying Rule (IPλ).

Case (IPif). We have t1 = if u1 then ε11t11 else ε12t12, t1 =
if u2 then ε21t21 else ε22t22, t1i v t2i and ε1i v ε1i. Since
t1[ε1u1/x

T̃1] is defined it must be that ε1 ◦[v/x]<: ε1i is defined. Then
by Lemma 53 ε1 ◦[v/x]<: ε1i v ε2 ◦[v/x]<: ε2i. By induction hypothe-

sis we also have t1i[ε1u1/x
T̃1] v t2i[ε2u2/x

T̃2]. We conclude by
applying Rule (IPif).

Case (IPapp). We have t1 = (ε11t11)@x:T̃11→T̃12(ε12v1), t2 =

(ε21t21)@x:T̃21→T̃22(ε22v2), ε1i v ε2i, v1 v v2 and t11 v
t21. By Lemma 53 we have ε1 ◦[v/x]<: ε1i v ε2 ◦[v/x]<: ε2i. By

induction hypothesis we also have t11[ε1u1/x
T̃1] v t21[ε2u2/x

T̃2]

and v1[ε1u1/x
T̃1] v v2[ε2u2/x

T̃2]. We conclude by applying Rule
(IPapp)

Case (IPlet). We have t1 = (let yT̃11 = ε11t11 in ε12t12)@T̃12 ,

t2 = (let yT̃21 = ε21t21 in ε22t22)@T̃22 , ε1i v ε2i and t1i v
t2i. By Lemma 53 we have ε1 ◦[v/x]<: ε1i v ε2 ◦[v/x]<: ε2i. By

induction hypothesis we also have t1i[ε1u1/x
T̃1] v t2i[ε2u2/x

T̃2].
We conclude by applying Rule (IPlet).

Lemma 55 (Dynamic gradual guarantee for −→). Suppose tT̃1
1 v

tT̃2
1 . If tT̃1

1 −→ tT̃1
2 then tT̃2

1 −→ tT̃2
2 where tT̃1

2 v t
T̃2
2 .

Proof. By induction on tT̃11 −→ tT̃12 .

Case (IPc, IPλ, IP::,IPx). Direct since tT̃11 does not reduce.

Case (IPif).

ε11 v ε21 ε21 v ε22 T̃1 v T̃2
v1 v v2 t11 v t21 t21 v t22

(if v1 then ε11t11 else ε12t12)@T̃1 v (if v2 then ε21t21 else ε22t22)@T̃2

(1)
If v1 = true then it must be v2 = true. Thus, we have.

(if v1 then ε11t11 else ε12t12)@T̃1 −→ ε11t11 :: T̃1

(if v2 then ε21t21 else ε22t22)@T̃2 −→ ε21t21 :: T̃2

By hypothesis ε12 v ε22, t12 v t22 and T̃1 v T̃2. Then by
Rule (IP::) we conclude ε11t11 :: T̃1 v ε21 :: T̃2. A symmetric
argument applies when v1 = false.

Case (Papp).

T̃1 v T̃2 ε11 v ε12 ε12 v ε22 t1 v t2 v1 v v2

(ε11t1)@x:T̃
′
11→T̃

′
12 (ε12v1) v (ε12t2)@x:T̃

′
21→T̃

′
22 (ε22v2)

(2)

If (ε11t1)@T̃1 (ε12v1) reduces then t1 = λxT̃11 .t11 and by
inversion of Rule (IPλ) t2 = λxT̃21 .t21, T̃11 v T̃21 and t11 v t21.
It also must be that v1 = u1 and v2 = u2. Then we have

(ε11t1)@x:T̃ ′
11→T̃12 (ε12u1) −→

icodu1(ε12, ε11)t[u1/x
T̃11] :: T̃12Ju1/xK

By lemmas 52, and 54 we also have.

(ε12t2)@x:T̃ ′
21→T̃22 (ε22u2) −→

icodu2(ε22, ε21)t[u2/x
T̃21] :: T̃22Ju2/xK

and t[u1/x
T̃11] v t[u2/x

T̃21]
By lemmas 52 and 53 icodu1(ε12, ε11) v icodu2(ε22, ε21). By

lemmas 26 and 29 T̃12Ju1/xK v T̃22Ju2/xK. We conclude by Rule
(IP::) that

icodu1(ε12, ε11)t[u1/x
T̃11] :: T̃12Ju1/xK v

icodu2(ε22, ε21)t[u2/x
T̃21] :: T̃22Ju2/xK

Case (IPlet).
ε11 v ε21 ε21 v ε22

T̃11 v T̃21 T̃12 v T̃22 t11 v t21 t12 v t22

(let xT̃11 = ε11t11 in ε12t12)@T̃21 v (let xT̃21 = ε21t21 in ε22t22)@T̃22

(3)

If (let xT̃11 = ε11t11 in ε12t12)@T̃21 reduces then t11 = u1

and inverting Rule (IPlet) we have t12 = u2.

(let xT̃11 = ε11t11 in ε12t12)@T̃12 −→

(ε11 ◦[u1/x]
<: ε12)t12[ε11u1/x

T̃11] :: T̃12

By lemmas 53, and 54 we also have

(let xT̃21 = ε21t21 in ε21t12)@T̃21 −→

(ε21 ◦[u2/x]
<: ε21)t22[ε21u2/x

T̃11] :: T̃22

and

(ε11 ◦[u1/x]
<: ε12)t12[ε11u1/x

T̃11] :: T̃12 v

(ε21 ◦[u2/x]
<: ε21)t22[ε21u2/x

T̃11] :: T̃22

Lemma 56. Suppose Φ̃ ; f1[tT̃1] ∈ TERM
T̃ ′1

and Φ̃ ; f2[tT̃2] ∈

TERM
T̃ ′2

. If f1[tT̃1] v f2[tT̃2] then tT̃1 v tT̃2 .

Proof. By case analysis on the structure of f1.

Lemma 57. Suppose Φ̃ ; f1[tT̃11] ∈ TERM
T̃ ′1

and Φ̃ ; f2[tT̃21] ∈

TERM
T̃ ′2

. If f1[tT̃11] v f2[tT̃21] and tT̃12 v t
T̃2
2 then f1[tT̃12] v f2[tT̃22].

Proof. By case analysis on the structure of f1.

Lemma 58. Suppose Φ̃ ; g1[ε1t
T̃1] ∈ TERM

T̃ ′1
and Φ̃ ; g2[ε2t

T̃2] ∈

TERM
T̃ ′2

. If g1[ε1t
T̃1] v g2[ε2t

T̃2] then tT̃1 v tT̃2 and ε1 v ε2.

Proof. By case analysis on the structure of g1.

Lemma 59. Suppose Φ̃ ; g1[ε11t
T̃1
1] ∈ TERM

T̃ ′1
and Φ̃ ;

g2[ε21t
T̃2
1] ∈ TERM

T̃ ′2
. If g1[ε11t

T̃1
1] v g2[ε21t

T̃2
1], tT̃12 v tT̃22 and

ε12 v ε22 then g1[ε12t
T̃1
2] v g2[ε22t

T̃2
2].

Proof. By case analysis on the structure of g1.

Proposition 12 (Dynamic gradual guarantee). Suppose tT̃1
1 v tT̃2

1 .

If tT̃1
1 7−→ tT̃1

2 then tT̃2
1 7−→ tT̃2

2 where tT̃1
2 v t

T̃2
2 .

Proof. By induction on the derivation of tT̃11 7−→ tT̃12 .

Case (Rgerr, Rferr). Impossible since tT̃11 must reduce to a well-
typed term.

Case (R−→). We have tT̃11 −→ tT̃12 so by Lemma 55 tT̃21 −→ tT̃22 .
We conclude by Rule (R−→) that tT̃21 7−→ tT̃22 .

Case (Rf).

(Rf)
tT̃11 7−→ tT̃12

f1[tT̃11] 7−→ f1[tT̃12]
(1)

We have f1[tT̃1] v f2[tT̃1]. Thus applying induction hypothesis
to premise of 1 we have tT̃21 7−→ tT̃22 and tT̃12 v tT̃22 . We conclude
by Lemma 57 that f1[tT̃12] v f2[tT̃22].

Case (Rg). We have tT̃11 = g1[ε11(ε12u1 :: T̃ ′1)] and tT̃21 =

g2[ε21(ε22u2 :: T̃ ′2)]. We have that tT̃11 7−→ tT̃12 thus tT̃12 must
be equal to g1[(ε12 ◦<: ε11)u1 :: T̃ ′1]. By Lemma 52 tT̃21 must
reduce to g2[(ε22◦<:ε21)u2 :: T̃ ′2]. We conclude by Lemma 58 and
Lemma 59 that g1[(ε12 ◦<: ε11)u1 :: T̃ ′1] v g2[(ε22 ◦<: ε21)u2 ::

T̃ ′2].

Lemma 60. If v{ν :B | p̃} ∈ TERM
•

{ν :B | p̃} then.

1. If v = u then Lp̃ M![u/ν] is valid

2. If v = εu :: {ν :B | p̃} then Lp̃ M![u/ν] is valid

Proof. (1) follows directly since p̃ must be equal to {ν :B | ν =
u}. For (2) we have that ε. • ` {ν :B | ν = u} . {ν :B | p̃}, thus
there exists p ∈ γp(p̃) such that • ` {ν :B | ν = u} <: {ν :B | p}
thus u must satisfy p and hence, it satisfies Lp̃ M!.

Proposition 13 (Refinement soundness).

If t{ν :B | p̃} ∈ TERM
•

{ν :B | p̃} and t{ν :B | p̃} 7−→∗ v then:

1. If v = u then Lp̃ M![u/ν] is valid
2. If v = εu :: {ν :B | p̃} then Lp̃ M![u/ν] is valid

Proof. Direct consequence of type preservation and Lemma 60.

A.11 Algorithmic Consistent Subtyping
Definition 40 (Constraint collecting judgment).

T̃1 � T̃2 | C∗

(�refine)
{ν :B | p̃} � {ν :B | q̃} | (x : p̃) ◦ {• |≈ Lq̃ Jx/νKM!}

(�fun1)
T̃1 � T̃2 | C∗1 C∗2 = (x : p̃2) ◦ (C∗1 ∪ {• |≈ Lp̃1Jx/νKM!})

x :{ν :B | p̃1} → T̃1 � x :{ν :B | p̃2} → T̃2 | C∗2

(�fun2)

y : T̃21 → T̃22 � y : T̃11 → T̃12 | C∗1
T̃13 � T̃23 | C∗2 C∗3 = C∗1 ∪ C

∗
2

x : (y : T̃11 → T̃12)→ T̃13 � x : (y : T̃21 → T̃22)→ T̃23 | C∗3

(x :p) ◦ {Φ1 |≈ r1, . . . ,Φn |≈ rn} =

{(x :p·Φ1 |≈ r1), . . . , (x :p·Φn |≈ rn)}
(x :p ∧ ?) ◦ {Φ1 |≈ r1, . . . ,Φn |≈ rn} =

{(x :q′ ·Φ1 |≈ r1), . . . , (x :q′ ·Φn |≈ rn)}
where ~z =

⋃
i
dom(Φi)

q = ∀~z,
∧
i
(LΦiM→ ri) ∧ p

q′ = ((∃ν, q)→ q) ∧ (¬(∃ν, q)→ p)

Definition 41 (Algorithmic consistent subtyping).

Φ̃ ` T̃1 . T̃2
T̃1 � T̃2 | C∗ ` Φ̃ ◦ C∗

Φ̃ ` T̃1 . T̃2

Φ̃ ◦ {Φ1 |≈ r1, . . . ,Φn |≈ rn} = {(Φ̃·Φ1 |≈ r1), . . . , (Φ̃·Φn |≈ rn)}

Lemma 61. Let { (Φ1, y :p(~x, ν) ∧ ?,Φi2) } be a set of well-
formed gradual environment with the same prefix, ~x = dom(Φ1)
the vector of variables bound in Φ1, ~zi = dom(Φi2) the vector of
variables bound in Φi2 and ri(~x, ν, ~zi) a set of static formulas.
Define ~z =

⋃
i ~zi and

q(~x, ν) = (∀~z,
∧
i

(LΦi2M→ ri(~x, ν, ~zi))) ∧ p(~x, ν)

q′(~x, ν) = (∃ν, q(~x, ν))→ q(~x, ν) ∧ ¬(∃ν, q(~x, ν))→ p(~x, ν)

If there exists p′(~x, ν) ∈ γp(p(~x, ν) ∧ ?) such that
LΦ1, y :p′(~x, ν),Φi2M |= ri(~x, y, ~zi) for every i then
LΦ1, y :q′(~x, ν),Φi2M |= ri(~x, y, ~zi) for every i.

Proof. LetM be a model such that

M |= LΦ1M ∧ q′(~x, ν) ∧ LΦi2M (2)

It must be thatM |= ∃ν, q(~x, ν). Indeed, let v such thatM[ν 7→
v] |= p′(~x, ν). Such v must exists because p′(~x, ν) is local. It

suffices to prove that M[ν 7→ v] |= q(~x, ν). Let ~vz an arbitrary
vector of values. We haveM[ν 7→ v][~z 7→ ~vz] |= LΦ1M ∧ p′(~x, ν)
since Φ1 and p′(~x, ν) does not mention variables in ~z and Φ1 does
not mention ν. For all i ifM[ν 7→ v][~z 7→ ~vz] |= LΦi2M then by the
above and by hypothesis M[ν 7→ v][~z 7→ ~vz] |= ri(~x, ν, ~zi). We
conclude that M[ν 7→ v][~z 7→ ~vz] |=

∧
i(LΦ

i
2M → ri(~x, ν, ~zi))

and we are done.
Then it must be that M |= q(~x, ν) and consequently for all

~vz , M[~z 7→ ~vz] |= LΦi2M → ri(~x, ν, ~zi). In particular this is true
for the vector ~v of values bound to ~z in M. It cannot be that
M 6|= LΦi2M because it contradicts 2, thus it must be that M is
a model for ri(~x, ν, ~zi) and we conclude.

Lemma 62. Let { (Φ̃1, y :p(~x, ν) ∧ ?,Φi2) } be a set of well-
formed gradual environment with the same prefix, ~x = dom(Φ̃1)

the vector of variables bound in Φ̃1, ~zi = dom(Φi2) the vector of
variables bound in Φi2 and { ri(~x, ν, ~zi) } a set of static formulas.
Define ~z =

⋃
i ~zi and

q(~x, ν) = (∀~z,
∧
i

(LΦ2M→ ri(~x, ν, ~zi))) ∧ p(~x, ν)

q′(~x, ν) = (∃ν, q(~x, ν))→ q(~x, ν) ∧ ¬(∃ν, q(~x, ν))→ p(~x, ν)

Let (Φ1) ∈ γΦ(Φ̃1) any environment in the concretization of
the common prefix. There exists p′(~x, ν) ∈ γp(p(~x, ν) ∧ ?) such
that LΦ1, y :p′(~x, ν),Φi2M |= ri(~x, ν, ~zi) for every i if and only if
LΦ1, y :q′(~x, ν),Φi2M |= ri(~x, ν, ~zi) for every i.

Proof.

⇒ Direct by Lemma 61.
⇐ It suffices to prove that q′(~x, ν) ∈ γp(p(~x, ν) ∧ ?). Indeed, let
M be a model for q′(~x, ν). If M |= ∃ν, q(~x, ν) then M |=
q(~x, ν) and consequentlyM |= p(~x, ν). IfM 6|= ∃ν, q(~x, ν)
thenM |= p(~x, ν). On the other hand it follows directly that
q′(~x, ν) is local.

Definition 42. We define the extended constraint satisfying judg-
ment to Φ ` Φ̃ ◦ C∗ where Φ ∈ γΦ(Φ̃) is an evidence for the
constraint.

Lemma 63. T̃1 � T̃2 | C∗ and Φ ` Φ̃ ◦ C∗ then Φ ` T̃1 ‹<: T̃2.

Proof. By induction on the structure of T̃1.

Case ({ν : B | p̃}). By inversion T̃2 = {ν : B | q̃}. The only
constraint generated is Φ̃, x : r |≈ Lq̃ Jx/νKM! where r is generated
canonical admissible formula. It follows from Proposition 62 that
this constraints can be satisfied if and only if Φ̃, x : p̃ |≈ Lq̃ Jx/νKM!
can be satisfied, which in turn is equivalent to Φ̃ ` {ν : B |
p̃} ‹<: {ν :B | q̃} being true.

Case (x : {ν :B | p̃1} → T̃12). By inversion T̃2 = x : {ν :B |
p̃2} → T̃22. We have as induction hypothesis.

For all Φ̃′ if T̃12 � T̃22 | C∗ and ` Φ̃′ ◦ C∗ then Φ̃′ ` T̃12 ‹<: T̃22.
(3)

By hypothesis we have Φ, x : p2 ` Φ̃, x : p̃2 ◦ C∗, thus
instantiating the induction hypothesis with Φ′ = Φ̃, x : p̃2 we have
Φ, x :p2 ` T̃12 ‹<: T̃22.

It also follows from hypothesis that Φ, x :p2 ` Φ̃, x : p̃2 ◦ {• |≈
Lp̃1Jx/νKM!} Thus, analogous as in the base case we conclude
Φ ` {ν :B | p2} ‹<: {ν :B | p̃1}.

Applying rule (<:-fun) we conclude Φ ` x : {ν : B | p̃1} →
T̃12 ‹<: x :{ν :B | p̃2} → T̃22.

Case (x : T̃11 → T̃12). Direct by induction hypothesis noting that
the binding for y does not add useful information when added to
the logical environment.

Lemma 64. If Φ̃ ` T̃1 ‹<: T̃2 then T̃1 � T̃2 | C∗ and Φ̃ ` Φ̃ ◦ C∗.

Proof. By hypothesis there exists 〈Φ, T1, T2〉 ∈ γτ (Φ̃, T̃1, T̃2)
such that Φ ` T1 <: T2. By induction on the derivation of
Φ ` T1 <: T2.
Case (<:-refine). Direct by Lemma 62.

Case (<:-fun). We have T̃1 = x : T̃11 → T̃12 and T̃2 = x : T̃21 →
T̃22. By case analysis on the structure of T̃11. Both cases follow
directly from Lemma 62

Proposition 15. Φ̃ ` T̃1 . T̃2 if and only if Φ̃ ` T̃1 ‹<: T̃2.

Proof. Direct by lemmas 64 and 63

A.12 Dynamic Operators

Definition 43. Let Φ̃ = (Φ̃1, y : p̃ , Φ̃2) be gradual logical environ-
ment, and r a static formula. For Φ̃ we define its admissible set on
x implying r as:

{p′ ∈ γp(p̃) | ∃(Φ1,Φ2) ∈ γΦ(Φ̃1, Φ̃2), LΦ1, x :p′,Φ2M |= r}

We omit y, Φ̃ or r if they are clear from the context.

Lemma 65. p |= bpc↓~y

Proof. Let M[~y 7→ ~v] be a model for p then M |= bpc↓~y which
impliesM[~y 7→ ~v] |= bpc↓~y

Lemma 66 (Join for leftmost gradual binding).
Let Φ̃ = (Φ1, y : p ∧ ?, Φ̃2) be a well-formed gradual logical
environment, ~x = dom(Φ1) the vector of variables bound in Φ1,
~z = dom(Φ̃2) the vector of variables bound in Φ̃2, and r(~x, y, ~z)
a static formula. Let Φ̃′ = (Φ1, y : p ∧ ?,Φ2) be the environment
resulting from the reduction of Φ̃ by iteratively applying Lemma 62
until reaching the binding for y. Define

q(~x, ν) = (∀~z, LΦ1M ∧ LΦ2M→ r(~x, ν, ~z)) ∧ p(~x, ν)

q′(~x, ν) = (∃ν, q(~x, ν))→ q(~x, ν) ∧ ¬(∃ν, q(~x, ν))→ p(~x, ν)

The admissible set on y implying r(~x, y, ~z) of Φ̃ is empty or its
join is q′(~x, ν).

Proof. By Lemma 61 the admissible set on y implying r(~x, y, ~z)
is the same for Φ̃ and Φ̃′ because every step of the reduction does
not change the possible set of admissible environments in the sub-
environment to the left of the binding under focus. We prove that
q′(~x, ν) is in the admissible set and then that it is an upper bound
for every formula in the admissible set, thus it must be the join.

First, q′(~x, ν) ∈ γp(p(~x, ν) ∧ ?), the proof is similar to that
on Lemma 62. Second, if M |= q′(~x, ν) it must be that M |=
r(~x, y, ~z). As in Lemma 61 it is first necessary to prove that M
must be a model for ∃ν, q(~x, ν) an then conclude that M must
be a model for r(~x, y, ~z). For that we assume that there is at least
one formula in the admissible set, otherwise we are done anyways.
Then, q′(~x, ν) is in the admissible set if it is non-empty.

We now prove that q′(~x, ν) is an upper bound for the admissible
set if it is non-empty. Let s(~x, ν) be an arbitrary formula in the
admissible set. Then LΦ1M ∧ s(~x, y) ∧ LΦ2M |= r(~x, y, ~z). LetM
be a model for s(~x, ν). If M 6|= ∃ν, q(~x, ν) then M trivially
models q′(~x, ν) since M |= p(~x, ν) because s(~x, ν) is in the
admissible set. Otherwise we must prove, thatM |= q(~x, ν). Again
we known that M models p(~x, ν) thus it suffices to show that
M |= ∀~z, LΦ1M∧LΦ2M→ r(~x, ν, ~z). Let ~v be an arbitrary vector of
values, we prove thatM[~z 7→ ~v] |= LΦ1M ∧ LΦ2M → r(~x, ν, ~z). If
M[~z 7→ ~v] 6|= LΦ1M ∧ LΦ2M we are done. OtherwiseM[~z 7→ ~v] |=
LΦ1M∧ s(~x, y)∧ LΦ2M, because s(~x, ν) does not mention variables
in ~z and we originally assumeM |= s(~x, ν). Because s(~x, ν) is in
the admissible set it must be that M[~z 7→ ~v] |= r(~x, y, ~z). Thus
M[~z 7→ ~v] |= LΦ1M ∧ LΦ2M → r(~x, ν, ~z) and we conclude that
M |= ∀~z, LΦ1M ∧ LΦ2M→ r(~x, ν, ~z).

Lemma 67 (Join for inner gradual binding).
Let Φ̃ = (Φ̃1, y :p∧?, Φ̃2) be gradual logical environment such that
dom?(Φ̃1) is non-empty, and r a static formula. If the admissible set
on y implying r of Φ̃ is non-empty then its join is p.

Proof. Let p′ be any formula in the admissible set on y. Then there
exists (Φ1,Φ2) ∈ γΦ(Φ̃1, Φ̃2) such that LΦ1, y :p′,Φ2M |= r. Let
p� be an upper bound for the admissible set. LetM be an arbitrary
model such thatM |= p, it suffices to show thatM |= p� since
we already known that p is an upper bound for the admissible set.

There is some x ∈ dom?(Φ̃1). Let q = Φ1(x) be the formula
bound to x in Φ1. Let v be the value bound to x inM. We create
the environment Φ′1 which is equal to Φ1 in every binding but in
x. For x we bound q ∧ ν 6= v. The formula s = (x 6= v →
p′) ∧ (x = ν → p) is in the admissible set because s ∈ γp(p ∧ ?)
and LΦ′1, y :s,Φ2M |= r. MoreoverM |= s thusM |= p� and we
conclude.

Proposition 7 (Partial Galois connection for interior). The pair
〈ατ , γτ 〉 is a {FI<: }-partial Galois connection.

Proof. Follows directly from lemmas 66 and 67, since they charac-
terize the join when the admissible set is non-empty.

Lemma 68. Let (Φ1, x : p) and (Φ2, x : s ∧ ?,Φ2) be two well
formed gradual environment, ~z = dom(Φ2) and r a static formula.
Define:

q(~x, ν) = (∀~z, LΦ2M→ r) ∧ s
q′(~x, ν) = ((∃ν, q(~x, ν))→ q(~x, ν)) ∧ ¬(∃ν, q(~x, ν))→ s

If there exists s′ ∈ γp(s ∧ ?) such that LΦ1, x :pM |= s′ and
LΦ1, x :s′,Φ2M |= r then LΦ1, x :pM |= q′ and LΦ1, x :q′,Φ2M |= r.

Proof. LetM be a model for LΦ1, x :pM. Then by hypothesisM |=
s′. It then follows directly thatM |= q′.

Let M be a model for LΦ, x :q′,Φ2M. It must be that M |=
∃ν, q. Indeed, it suffices to show v such that M[ν 7→ v] |= p.
Hence, we have thatM |= r and we conclude.

Lemma 69. Let (Φ̃, x : p̃) and (Φ̃, x :s∧?,Φ2) be two well formed
gradual environment and r a static formula. Define:

q(~x, ν) = (∀~z, LΦ2M→ r) ∧ s
q′(~x, ν) = ((∃ν, q(~x, ν))→ q(~x, ν)) ∧ ¬(∃ν, q(~x, ν))→ s

Let Φ ∈ γΦ(Φ̃) and p ∈ γp(p̃). There exists s′ ∈ γp(s ∧ ?)
such that LΦ, x :pM |= s′ and LΦ, x :s′,Φ2M |= r if and only if
LΦ, x :pM |= q′ and LΦ, x :q′,Φ2M |= r.

Proof.

⇒ Follows from Lemma 68.

⇐ It just suffices to notice that q ∈ γp(s ∧ ?).

Proposition 8 (Partial Galois connection for transitivity). The pair
〈ατ , γτ 〉 is a {F◦<: }-partial Galois connection.

Proof. Follows directly from lemmas 69, 67 and 66.

Proposition 9 (Partial Galois connection for subtyping substitu-
tion). The pair 〈ατ , γτ 〉 is a {F

◦[v/x]
<:

}-partial Galois connection.

Proof. Follows directly from lemmas 69, 67 and 66.

	Introduction
	A Static Refinement Type System
	A Gradual Refinement Type System
	Gradual Types and Environments
	Consistent Relations
	Properties of the Gradual Refinement Type System

	Interpreting Gradual Formulas
	Naive Interpretation
	Non-Contradicting Interpretation
	Semantic Interpretation
	Local Interpretation
	Abstracting Formulas

	Abstracting Dynamic Semantics
	Evidence for Consistent Subtyping
	Consistent Subtyping Transitivity
	Consistent Subtyping Substitution
	Consistent Term Substitution

	Dynamic Semantics and Properties
	Intrinsic Terms
	Reduction
	Consistent Term Substitution
	Properties of the Gradual Refinement Types Language

	Algorithmic Consistent Subtyping
	Extension: Measures
	Discussion
	Related Work
	Conclusion
	Complete Formalization and Proofs
	Static Refinement Types
	Gradual Refinement Types Auxiliary Definitions
	Static Criteria for Gradual Refinement Types
	Partial Galois connection
	Satisfiability Modulo Theory
	Local Formulas
	Soundness and Optimality of p
	Algorithmic Consistent Type Substitution
	Dynamic Semantic Auxiliary Definitions
	Dynamic Criteria for Gradual Refinement Types
	Algorithmic Consistent Subtyping
	Dynamic Operators

