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Abstract

The field of process mining aims at extracting knowledge from event
logs. It has caught the attention of many developers, scientists, researchers
and organizations that conform an active and growing community. This
has lead to an increasing number of techniques being developed. How-
ever, it is hard to evaluate the results of these techniques because there
is a recognized lack of frameworks and benchmarks for comparison and
evaluation. Process discovery is a subfield of process mining whose focus
is on the extraction of real process models (as-is). This survey gives a
background on the field and groups the metrics that have been proposed
to measure the results of different techniques w.r.t process discovery tech-
niques. Moreover, it presents the range of values of these metrics reported
in the literature and their implication in the resulting models extracted
with process discovery techniques.

1 Introduction

The idea of process mining (PM) is to discover, monitor and improve real or
actual processes (as-is), instead of an assumed or desired processes (to-be). For
this purpose, logs are the cornerstone needed for extracting valuable knowl-
edge about processes [19]. Those logs come from a variety of sources (e.g.,
BPM/Workflow systems, ERP, CRM, Messaging). Moreover, with the rapid
growth of the Internet of Events (IoE) and therefore the Internet of Things
(IoT), more and more data is readily available [20]. This data can be processed
using PM techniques to extract valuable information. However, it is not gener-
ally in a standardized format (e.g., XES [26] or MXML [24]) and therefore it has
to be extracted, refined, filtered and converted into event logs. PM techniques
can be used to automatically discover processes from logs; this is the subarea
of process discovery and it is the main focus of this survey. PM can also be
used to find and understand the reasons for bottlenecks, detect and understand
deviations, predict costs, risks and delays, recommend actions, support redesign
or simulation on process models [19].

Even though some of the ideas of PM are not new [1] [5], they were improved,
extended and gathered to conform what now is known as PM. It can be seen as
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the “missing link” between data mining and traditional model-driven Business
Process Management (BPM) [21]. Furthermore, PM has reached a maturity
level through a growing community of researchers and the acceptance of the
proposed techniques in a variety of application domains. Moreover, the IEEE
has established a Task Force on Process Mining, which promotes the research,
development, education and comprehension on process mining. This task force
drafted the process mining manifesto in 2011 [21], which gathered the state of
the art in PM, and identified challenges and guidelines for the application of
PM techniques. This manifesto also defines four criteria for judging the quality
of PM results: fitness, simplicity, precision and generalization. These criteria is
defined in Section 3.

Process models are a valuable asset for an organization since they are used
for a variety of purposes, which will be discussed in Section 2.1. Moreover,
unlike most BPM approaches, the process models mined by process discovery
are driven by factual event data (logs) rather than hand-made models. Thus,
the resulting process models reflect what is really done by the organization (as-
is), instead of idealized (to-be) process models. Therefore, the mined process
models may be very valuable assets for an organization [19]. However, for a
model to be useful it is important that mined models reflect the behavior seen
in the log in an appropriate way, neither overfitting nor underfitting the model
and they must be as simple as possible to be more understandable. To ensure
this, metrics were defined to assess the quality of the current variety of process
discovery algorithms [23].

This survey was made following the concepts and guides from [9] and [31].
In this regard, two research questions were made: RQ1: What metrics have
been used to measure the quality of process discovery results?, and RQ2: What
are the ranges found in the literature for these metrics? Based on these ques-
tions, some keywords were selected: “Process mining”, “Process discovery”,
“metric*”, “measure*”, “evaluat*”, “framework”, “benchmark”. After that, 4
databases were consulted: ACM Digital Library, IEEE Xplore, Springer, Sci-
ence Direct with papers containing the first three keywords; the other keywords
were found to be too general and were only used to search by title. Then, an
exclusion criterion was used in two phases. First, papers that were duplicated,
in a language other than English or not fully available were excluded. Second,
the rest of the papers were evaluated and classified according to their title and
abstract in three groups: “yes”, “no”, “partially”. These groups correspond to
relevant, not relevant and partially relevant respectively. Finally, this survey
is based on papers identified as relevant and partially relevant, as well as some
papers resulting from snowballing.

The main contributions of this survey are the answers to the research ques-
tions. RQ1 aims at gathering, discussing and reporting the metrics that have
been used to measure the results of PM techniques in the subfield of process
discovery. These metrics can be used to measure new techniques being devel-
oped or the ones that were not appropriately evaluated. Regarding RQ2, let
us say that we have built a new process discovery technique and measured it
with any metric obtaining a value. How can I compare it with other discovery
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techniques? This survey reports the range of values found for these metrics that
can serve as a reference.

The survey is divided as follows: Section 2 gives an overview of process
discovery and related concepts that are necessary to understand the rest of this
work. Section 3 shows the 4 quality criteria defined in the manifesto which
are used to classify the metrics. Section 4 reports the set of process discovery
evaluation metrics that were reported in the literature. Section 5 gives some
conclusions and discusses the two research questions addressed by this survey.
Finally, this survey ends with two appendices: Appendix A shows the formulas
or steps required to calculate the metrics discussed in Section 4. Appendix B
contains a table that summarizes the metrics classified by quality criteria and
for each one, the interval of values that was found in the literature.

2 Background

This section gives an overview of the concepts needed to discuss PM. First,
the applications of Process Modeling are introduced along with the most used
notation in process mining which is Petri nets. Second, event logs are discussed
since they are fundamental for any PM technique. Finally, this section briefly
explains the subfield of process discovery which is the focus on this survey.

2.1 Process modeling

Even though some organizations may use only informal processes, or may not
even define processes at all, it is essential for organizations with a higher level
of maturity to have defined and documented process models. Process models
are mainly used for [19]:

• Documentation: processes are documented for instructing people or cer-
tification purposes (e.g., ISO 9000 quality management, CMMI).

• Discussion: the stakeholders use models to structure discussions.

• Verification: models are analyzed to find errors in systems or procedures
(e.g., potential deadlocks)

• Performance analysis: techniques like simulation can be used to under-
stand the factors influencing response times, service levels, etc.

• Overview: view the process from various points of view or levels of ab-
straction for different stakeholders.

There is a plethora of process modeling notations (e.g., Petri nets, causal
nets, BPMN, activity diagrams, transition systems, YAWL, EPCs, etc.) In this
work, we focus on Petri nets, as well as Workflow nets, a special subclass of Petri
nets. Workflow nets are the most widely used notation in the process discovery
field.
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2.1.1 Petri Nets

In this work, we focus on Petri nets, as well as a subclass of them called
Workflow-nets. They are a mathematical modeling languages for processes [14].
Due to its solid background, properties and intuitive graphical notation, that is
able to express choice, iteration, and concurrent execution, it has been widely
used for process modeling and specifically PM. Petri nets are directed bipar-
tite graphs with two types of nodes (places and transitions), arcs and tokens.
Figure 1 shows three examples of Petri nets. Generally, transitions (rectangles)
represent activities, places (circles) and arcs (edges that connect transitions
with places and viceversa) represent the process flow with its corresponding
constructs (e.g., AND, XOR joins and splits). Finally tokens, which define the
marking of the Petri net, are represented as filled circles inside places, they move
over the model indicating the activities that are enabled and thus can be exe-
cuted through the so called firing rule: A transition is enabled if each of its input
places has a token; an enabled transition can be executed or fired, consuming
one token from each input place (also represented as {•p}), and producing one
token for each output place (also represented as {p•}). A firing sequence is a
set of transitions that correspond to the firing of consecutive enabled transitions
from an initial marking.

Even though it is common to use letters to identify transitions, some of them
correspond to an activity. Activities are encoded with letters for conciseness. A
so called Labeled Petri net also contains a set of activity names and a function
` that maps a transition to an activity name. As shown in [30], some processes
also need the inclusion of the so called invisible or silent tasks in the model
for routing purposes. In this case, labeled Petri nets reserve the label τ , i.e.,
l(t) = τ . Thus, a Marked Petri net can be seen as a pair (N,M) [19], where:

N is a tuple (P, T, F ) which represents the Petri net.
P is a finite set of places.
T is a finite set of transitions such that P ∩ T = ∅.
F is a set of directed arcs such that F ⊆ (P × T ) ∪ (T × P ).
M is a multiset over P which denotes its current marking.

For example, the Petri net in Figure 1a shows a Marked Petri net where:

P = {p1, p2, p3, p4, p5, p6}.
T = {a, b, c, d, e}.
F = {(p1, a), (a, p2), (a, p3), (p2, b), (p2, c), (p3, e), (b, p4),
(c, p4), (e, p5), (p4, d), (p5, d), (d, p6)}.
M = [p1].

The unique enabled transition is a. Firing a consumes the token in p1 and
produces tokens in p2 and p3. An example of a valid firing sequence is: a, b, e, d.

2.1.2 Workflow Nets

A Workflow net [18] (WF-net) is a Petri net with 3 additional requirements:
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(a) M1 Normal model

(b) M2 Enumerative model

(c) M3 Flower model

Figure 1: Different process models as Petri nets
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• It has a source place i (also known as initial place) where the process
starts such that it has no input places (i.e., •i = ∅).

• It has a sink place o (also known as final place) where the process ends
such that it has no output places (i.e., o• = ∅).

• The addition of a silent transition with input place i and output place
o (also known as the short-circuited net) results in a strongly connected
graph.(i.e., there is a directed path between any pair of nodes).

WF-nets have been widely used since they have demonstrated to be a natural
representation of BPM processes where each process has a well-defined beginning
and end. In-between these, activities are performed according to a predefined
workflow. Moreover, one model may be instantiated many times. In this respect,
a process can be modeled as a WF-net were each instance is a copy of the same
model [19].

However, the violation of some properties inherited from Petri nets (e.g.,
deadlock free, liveness [14]) may produce a model that is not correctly defined.
For this reason, correctness criterion for WF-nets like soundness, have been
defined [19]. A Marked WF-net (N,M) where i is the source place and o is the
sink place is sound when it fulfill 4 requirements:

• Safe: (N, [i]) is safe. This is an inherited property from Petri nets, it
ensures that no place ever holds more than 1 token for any firing sequence.

• Proper completion: for any possible marking M , if there is a token in the
final place there should not be another token in the net.

• Option to complete: from any possible marking M there should be a firing
sequence that leads to proper completion where only the final place has a
token

• Absence of dead parts: (N, [i]) contains no dead transitions, i.e, for each
transition of the net, there is a firing sequence enabling it.

As these properties hold on the models shown in Figure 1, these are all sound
WF-nets.

2.2 Event Logs

Event logs are considered the cornerstone for the application of process min-
ing techniques. As mentioned in the previous section, they may come from a
variety of sources and with a different level of maturity. Techniques for log
extraction are being studied by the community [20]. Table 1 shows a fragment
of an event log where each row corresponds to an event. In order to apply
process discovery techniques, each event must correspond to a process instance,
it should be possible to infer the order of the events, and each event should
be related to some activity [19]. These elements correspond to columns Case
Id, Timestamp and Activity respectively. Additionally, logs may contain addi-
tional information that can be used by other types of process mining techniques.
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Case Event Properties
Id Id Timestamp Activity Resource Cost
1 2671 10-09-2014:08.30 ActivityA (a) John, Peter 2
1 2672 11-09-2014:15.35 ActivityB (b) John, Lucas 4
1 2673 13-09-2014:08.00 ActivityE (e) Maria, Lucas 3
1 2674 15-09-2014:09.43 ActivityD (d) Peter, John 1
2 2771 23-09-2014:08.30 ActivityA (a) John, Carlos 3
2 2772 24-09-2014:09.33 ActivityE (e) Peter 5
2 2773 27-09-2014:17.43 ActivityC (c) Maria 2
2 2774 30-09-2014:10.18 ActivityD (d) John, Carlos 1
. . . . . . . . . . . . . . .

Table 1: Log L1 - fragment showing two cases.

Since we do not need all event properties, we use a more succinct representa-
tion. Each event activity is represented with an identifier (a letter). Each
type of case is represented as a sequence (also called trace) of these identifiers.
Finally, the log is represented as a multiset of type of cases. For example,
L1 = [〈a, b, e, d〉9, 〈a, e, c, d〉8, 〈a, c, e, d〉5] represents the full log shown in table 1
with 22 process instances (cases) and 3 types of sequences (traces). The stan-
dard format for storing logs is XES (eXtensible Event Stream) [26], which is
a successor of MXML (Mining eXtensible Markup Language) [24], both are
XML-based.

2.3 Process Discovery

Process discovery has been recognized as one of the most challenging PM tasks.
Given an event log L (e.g., a XES log), a process discovery algorithm is a
function that maps the log onto a process model (e.g., a WF-net) that is “repre-
sentative” of the behavior seen in the event log. This representative model may
exhibit different perspectives (e.g., control-flow, organizational or resource, data
perspective) depending on what is needed and the data available in the log. In
this survey, the focus is on control-flow since most of the discovery algorithms
are used for this perspective (e.g., α − algorithm [19], Heuristic miner [29],
Genetic miner [12]).

3 Quality Criteria

Soundness can be used to some extent to evaluate the correctness of a model.
However, lets assume that we have log L1 and that we have used three different
process discovery algorithms, leading to the discovering of the models shown in
Figure 1. As all these models are sound, there is a need for a more descriptive
way of evaluating the quality of a model. To address this issue, 4 criteria have
been defined [21] [19] [15]. Most of these measures are based on the replayability
(also called parse) of the log traces on the model. Given a marked WF-net with
a token in the initial place, the parsing of a trace is the firing of each of the
events as if it were a firing sequence. If the trace results in proper completion,
it is said to be properly parsed. If during the parsing, the current activity is
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not enabled by the firing rule, the net is said to have missing tokens. Finally, if
the parsing of a trace ends, but proper completion property does not hold, it is
said to have remaining tokens.

3.1 Fitness

This evaluation criterion indicates how much of the observed behavior in the
log is captured by the process model [15]. A discovered model with good fitness
should allow the replay of (most of) the behavior seen in the event log [21]. For
example, all the models shown in Figure 1 are a perfect fit for log L1. However,
lets say we add sequence σ = a, b, c, b, e, d to L1. Now, only M3 is a perfect fit
since the additional sequence can only be properly parsed by this model.

3.2 Simplicity

In order for a process model to be useful, it needs be interpreted and understood
by a variety of people with different backgrounds. To make this easier, the
discovered model should be as simple as possible. For example, there are often
several syntactic ways to express the same behavior, and there may be preferred
and less suitable representations [15]. With respect to this quality criterion, the
simplest model that can explain the behavior contained in the log is the best
model [21]. For example, we can say that M2 is the most complex model between
the models shown in Figure 1, as it has the highest number of places, transitions
and edges.

3.3 Precision

Fitness and simplicity are not enough to judge the quality of a discovered process
model [21]. Consider M3: this model is known as a flower model, and can replay
all traces in log L1, but also any other log referring to the same set of activities.
To meet this criterion, a model should fulfill certain precision property that focus
on avoiding overly general models [15]. The discovered model should not allow
for behavior very different from what was seen in the event log. For example,
M2 has perfect precision since the model does not allow for any behavior other
than seen there in log L1. M1 has a good precision since it allows additional
behavior not seen in the log (i.e., σ = a, e, b, d) but these behavior is similar
to those seen in the log. Finally, M3 has low precision, since it allows for an
infinite number of traces that are not present in the log, most of which are not
similar to the behavior represented in the log.

3.4 Generalization

As opposed to precision, this criterion focus on avoiding overly precise mod-
els [15]. Event logs are often far from complete. Consider a model where 10
activities can be executed in parallel. A log would have to contain at least 10! =
3,628,800 traces to represent all possible behavior [21]. Since it is very unlikely
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that all of this behavior is registered in a log, the model extracted from it should
be general enoigh to include similar behavior that has not been registered in
the log. For example, M3 is very general since it allows many behaviors that
are not registered in the log. On the other hand, M2 is not general at all since
it only models the behavior seen in the log. Finally, M1 has a good level of
generalization since it models similar behavior that is not present in the log.

4 Metrics

During the application of a process discovery algorithm we start with a log (L)
and end up with a mined process model (Mm). Even though process discovery
builds the model without an a-priori known model, in an experimental setting,
we may assume that we know the original model (Mo) for evaluation purposes.
It is possible to compare the discovered model Mm with the event log resulting
in a conformance checking subproblem [16]. On the other hand, the mined Mm

and original Mo model may be compared, which leads to the process equivalence
problem [3]. Finally, some simplicity evaluation only take into account the mined
model Mm.

The metrics discussed in this section are bounded to those used to evaluate
the results of process discovery. This section describes those metrics. The
formulas or steps needed to calculate these metrics are presented in Appendix A.
A summary of the metrics are shown in Appendix B, along with the range of
values reported in the evaluation of process discovery algorithms.

4.1 Parsing Measure [29] PM(L,Mm)

This is the most basic and coarse-grained function to evaluate fitness. It was de-
fined to calculate the fitness of models generated using the Heuristic Miner [29]
algorithm, returning a value between 0 and 1 indicating how much of the be-
havior in the log L is captured by Mm at a trace level. A high value indicates
that most of the traces could be properly parsed without problems. A low value
indicates that most of the traces exhibit missing or remaining tokens during the
replay.

4.2 Partial Fitness Complete [12] PFcomplete(L,Mm)

It measures the same as metric 4.1, but at a task level. i.e., it checks for the
number of events (instead of complete traces) that could be parsed without
problems during replay. This metric, together with partial fitness precise were
first used to define a stop criterion for the genetic miner algorithm [12]. Similar
to PM , it returns a value between 0 and 1 representing to the proportion of
events that could be fired without problems during the replay.
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4.3 Behavioral precision BP and recall [12] BR(L,Mm,Mo)

These metrics, along with the ones described in Section 4.4 were defined in order
to evaluate the models obtained by the genetic miner [12] algorithm. All those
metrics are based on replay of an event log by the mined and the original model.
The BP and BR check for precision and generalization, respectively, based on
the number of enabled transitions during the replay at a task level. As such,
BP checks how much behavior is allowed by the mined model that is not by the
original model, and BR checks for the opposite. Both return a value between
0 and 1. The more enabled tasks that the models have in common, the higher
the values, meaning that the behavior represented in the model is more similar
with respect to the event log.

4.4 Structural precision SP and recall [12] SR(Mm,Mo)

These metrics assess how many elements the mined and original model have
in common, from a structural point of view. These metrics are computed over
the causality relations from the models. The more causality relations that two
models have in common, the more similar their structures are. SP assesses
how many causality relations the mined model has that are not in the original
model. SR checks the opposite, i.e., how many causality relations from the
original model are not included in the mined model.

4.5 Extended Cardoso Metric [10] ECaM(Mm)

This metric, along with those described in Section 4.6 and 4.7, were defined to
capture the complexity of models. The range of their values depends on the
size of the model. The higher the value, the more complicated the model. Since
these metrics are not normalized, they cannot be directly used for comparisons.
Thus, they are excluded from the table in Appendix B. A normalized version
of these metrics was used in [7] but the authors do not explain how they were
normalized. ECaM extends the Cardoso metric [4], which counts the various
splits (XOR, OR, and AND) in the model and give each of them a certain
penalty. This metric penalizes each place p by the number of subsets of places
reachable from that place [10]. The higher the value, the more complex the
model, since it has more splits.

4.6 Extended Cyclomatic Metric [10] ECyM(Mm)

This is an extension of the McCabe’s Cyclomatic metric [11], which was intended
to reveal complex pieces of imperative code by measuring the complexity of the
control-flow associated graph. The ECyM metric is similar measuring instead
the complexity of the reachability graph [14] of a WF-net, as a way of measuring
its complexity. Thus, this metric measures the model based on the elements of
the reachability graph: number of edges, vertices and connected components.
The higher the value, the more complex the model because it exhibits more
potential behavior.
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4.7 Structuredness Metric [10] SM(Mm)

This metric takes into account the limitations of metrics 4.5 and 4.6. ECaM
(4.5) only focuses on the syntax of the model and ignores the complexity of the
behavior. ECyM (4.6) focuses on the behavior and ignores the complexity of
the model. SM defines 7 different component types in the model (e.g., sequence,
choice, while, marked graph) and assigns a weight to each of them according to
their complexity. The main idea is to identify the presence of these component
types in the model and reduce them until the WF-net is trivial (i.e., with just
one transition). A high value indicates that the model has complex components
and therefore the model itself is more complex.

4.8 Fitness [16] f(L,Mm)

This metric, along with those discussed in Section 4.9 and 4.10, were first used
for checking conformance between an event log and its corresponding model [16].
This metric measures the fitness of the model by replaying of every type of trace.
As replay advances, it counts the number of tokens that had to be artificially
added because the transition belonging to the logged event was not enabled and
therefore could not be successfully fired, as well as the number of remaining
tokens. This metric returns a value between 0 and 1. A high value indicates
that few tokens had to be artificially added and that there are few remaining
tokens after replay, meaning that the model is a good fit with respect to the
model.

4.9 Advanced behavioral appropriateness [16] a′B(L,Mm)

This metric is used to measure the behavioral appropriateness of a model, i.e.,
how much behavior is allowed by the model which is not present in the log. It
focuses on the intuition that more precise process models are more desirable,
since overly general models (like the flower model in Figure 1c) are less informa-
tive as they no longer describe the process registered in the log. a′B compares
the variability of the behavior allowed by the model and the behavior observed
in the log, based on the cardinality of sometimes follows (SF ) and sometimes
precedes (SP ) relations between each pair of activities. This metric returns a
value between 0 and 1. The higher the value, the more similar the behavior of
the model and the log are.

4.10 Advanced structural appropriateness [16] a′S(Mm)

This metric is based on the fact that syntactically there are several ways to
express the same behavior in a process model. However, the presence of some
constructs may result in a more complex model: duplicate tasks (transitions
with the same label), invisible tasks (transitions without a label or label τ) and
implicit places (places that can be removed without changing the behavior of
the model). This metric returns a value between 0 and 1. A higher value means
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that less of the mentioned constructs appear in the model and it is therefore a
simpler model.

4.11 Behavioral recall [8] rpB, specificity [8] snB and preci-
sion [6] pB(L,Mm)

These metrics are based on a technique that allows the injection of artificial neg-
ative events into an event log [8]. Negative events indicates that at a particular
position in an event sequence cannot occur. The inclusion of this kind of events
allows the use of metrics used in pattern recognition and information retrieval,
through the construction of a confusion matrix [6]. The log (which contains so
called positive events) is parsed with the supplemented negative events and gives
values for the confusion matrix: true positives (enabled transition for positive
event), true negatives (disabled transition for negative event), false positives
(enabled transition for negative event), and false negatives (disabled transition
for positive event). Based on these values, these metrics were defined for process
discovery. rpB reflects how much behavior present in the event log is captured
by the model. It assesses fitness, since a high value indicates that most of the
behavior in the log is captured by the model. snB checks how much of the intro-
duced negative events are not present in the model. It gives a sense of precision,
since a high value indicates that behavior that was not observed in the log is
not included in the model. pB(L,Mm) indicates how much of the behavior (log
and introduced negative events) are correctly shown in the model. All of these
metrics return values in the [0,1] range.

4.12 ETC Precision [13] etcP (L,Mm)

This metric was at first used for conformance checking. It checks for so called
escaping edges, i.e., situations were the model allows for more behavior than the
log. This metric returns a value between 0 and 1. A high value indicates the
presence of escaping edges and therefore the model is less precise.

4.13 Structural similarity [28] (Mm,Mo)

This metric is based in the dependency difference metric (d) [2], which is used
to compare two models. d returns the difference of the so called process matrix
that indicates the direct follows relations between activities of the models to be
compared. The structural similarity measure compares the mined and original
model with a variant of d. This metric returns a value between 0 and 1. As
its name implies, a high value indicates that the mined and original model are
similar from a structural point of view.

4.14 Behavioral similarity [28] (Mm,Mo)

This metric is measured by the Principal Transition Sequence (PTS) similarity
measure [27] of the coverability tree [14] from the mined and original models.
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These transitions sequences indicate possible behaviors in the model. Behavioral
similarity indicates the similarity of the transitions sequences of the models. A
high value indicates the models are similar in behavior.

4.15 Precision [25] P (L,Mm,Mo)

This metric is a variant of the precision metric used in [22] for conformance
checking which only takes into account the log and a model. The precision
metric checks whether enabled activities in the model actually correspond to
observed executions in the log. P checks the difference of the precision metric
applied to the original and the mined model. The higher the difference, the less
precise the mined model is.

4.16 Simplicity [25] S(L,Mm,Mo)

This metric is based on the weighted average arc degree defined in [17], which
is the average of the number of both incoming and outgoing arcs calculated
per node. Simplicity checks the difference between the weighted average arc
degrees of the mined and original model. The higher the difference, the more
complex the mined model.

5 Conclusion

The aim of this survey is to answer the research questions discussed in Section 1.
With regards RQ1, Section 4 shows that there are several ways of measuring the
quality of models mined with process discovery techniques. These metrics take
as input the log L, the mined model Mm and when available, the original model
Mo. The formulas or steps to calculate these metrics are listed in Appendix A.
We can note that most of the metrics are normalized for values between 0 to
1. Few metrics require the original model. Precision is the criterion for which
there are the most metrics in the literature. Regarding RQ2, Appendix B gives
a summary of the discussed metrics along with the quality criteria they measure.
The table in Appendix B also shows the range of reported values for 3 different
types of logs: synthetic, real and synthetic logs with supplemented 5 to 10 %
of noise. It should be noted that most of the papers included in this survey do
not provide the logs that were used. This makes the comparison of the metrics
values difficult. A noticeable exception is the work done in [25], where part of
the evaluated logs are available online.

Appendix A Metric Formulas and Steps

A.1 Parsing Measure [29] PM(L,Mm)

PM(L,M) =
PPT

|TL|
(1)
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PPT(L,Mm) # properly parsed traces from L in M .
TL set of traces in L.

A.2 Partial Fitness Complete [12] PFcomplete(L,Mm)

PFcomplete(L,Mm) =
APA(L,Mm)− punishment

NAL(L)
(2)

punishment =
AMT(L,Mm)

Traces(L)− TMT(L,Mm) + 1
+

AETLB(L,Mm)

Traces(L)− TETLB(L,M m) + 1
(3)

APA(L,Mm) All Parsed Activities from L in M without problems.
NAL(L) Number of activities found in L.
AMT(L,Mm) All Missing Tokens during the parsing of all traces.
AETLB(L,Mm) All Extra Tokens Left Behind during the parsing plus the

# tokens of end place minus 1 (proper completion).
Traces(L) Traces in L.
TMT(L,Mm) Traces in which Missing Tokens were found during the parsing.
TETLB(L,Mm) Traces in which Extra Tokens were left behind during the parsing.

A.3 Behavioral precision BP recall [12] BR(L,Mm,Mo)

BP(L,Mo,Mm) =

∑
σ∈L(L(σ)|σ| ×

∑|σ|
i=1

|Enabled(Mo,σ,i)∩Enabled(Mm,σ,i)|
|Enabled(Mm,σ,i)| )∑

σ∈L L(σ)
(4)

BR(L,Mo,Mm) =

∑
σ∈L(L(σ)|σ| ×

∑|σ|
i=1

|Enabled(Mo,σ,i)∩Enabled(Mm,σ,i)|
|Enabled(Mo,σ,i)| )∑

σ∈L L(σ)
(5)

Enabled(M,σ, i) # of enabled activities at M just before the parsing
of the element at position i in trace σ.

L(σ) # of traces σ in L.

A.4 Structural precision SP and recall [12] SR(Mm,Mo)

SP(Mo,Mm) =
|Co ∩Cm|
|Cm|

(6)

SR(Mo,Mm) =
|Co ∩Cm|
|Co|

(7)

Cx causality relations from model Mx.

A.5 Extended Cardoso Metric [10] ECaM(Mm)

ECaM(Mm) =
∑
p∈P

ECFCP(p) (8)

ECFCP(p) = |t • |t ∈ p•| (9)
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A.6 Extended Cyclomatic Metric [10] ECyM(Mm)

ECyM(Mm) = |E| − |V|+ p (10)

E edges in the reachability graph of the model.
V vertices in the reachability graph of the model.
p # of strongly connected components in the reachability graph of the model.

A.7 Structuredness Metric [10] SM(Mm)

(i) X := (Mm, τ), where τ(t) = 1, ∀t ∈ T .
(ii) while |X| 6= ∅
(iii) pick C so that px(C) = min{px(C ′)|C ′ ∈ |X|}
(iv) M ′

m := fold(Mm, C) where tc is the added transition
(v) τ ′(tc) = ωX(C) and τ ′(t) = τ(t) for all other t
(vi) X := (M ′

m, τ
′)

(vii) Output SM(Mm) = τ(t)(T = t after the net is reduced)

(i) X is the defined as a so called Annotated WF-net which is a WF-net with
a function τ that assigns a weight to each transition in Mm. τ(t) starts in 1.
(ii) The following steps are done until X is not trivial. (iii) In order to reduce
the model it identifies components that match to predefined component types,
namely: maximal sequence, choice, while, maximal marked graph, maximal
state machine, maximal well structured and unstructured. Where each type has
an associated value and weight. This step tries to find the one with the minimum
value. (iv) the model is simplified by converting the identified component into
a single transition. (v) τ is updated according to the weight of the identified
component. (vi) X is reassigned with the new Annotated WF-net. (vii) finally
τ of the last unique transition is returned as the value of SM(Mm).

A.8 Fitness [16] f(L,Mm)

f(L,Mm) =
1

2
(1−

∑k
i=1 ni mi∑k
i=1 ni ci

) +
1

2
(1−

∑k
i=1 ni ri∑k
i=1 ni pi

) (11)

k # of different traces.
ni # of traces of type k in log L.
mi # of missing tokens (artificially added) parsing i.
ri # of remaining tokens parsing i.
ci # of consumed tokens parsing i.
pi # of produced tokens parsing i.

A.9 Advanced behavioral appropriateness [16] a′B(L,Mm)

a’B(L,Mm) = (
|Sl

F ∩Sm
F |

2× |Sm
F |

+
|Sl

P ∩Sm
P |

2× |Sm
P |

) (12)
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Sl
F the set of tuples of activities with SF relation found in log L.

Sm
F the set of tuples of activities with SF relation found in model Mm.

Sl
P the set of tuples of activities with SP relation found in log L.

Sm
P the set of tuples of activities with SP relation found in model Mm.

A.10 Advanced structural appropriateness [16] a′S(Mm)

a’S(L,Mm) =
|T| − (|TDA|+ |TIR|)

|T|
(13)

T set of transitions in Mm.
TDA set of alternative duplicate tasks.
TIR set of redundant invisible tasks.

A.11 Behavioral recall [8] rpB, specificity [8] snB and preci-
sion [6]pB(L,Mm)

rpB(L,Mm) =

∑k
i=1 ni TPi∑k

i=1 ni TPi +
∑k
i=1 ni FNi

(14)

pB(L,Mm) =

∑k
i=1 ni TPi∑k

i=1 ni TPi +
∑k
i=1 ni FPi

(15)

snB(L,Mm) =

∑k
i=1 ni TNi∑k

i=1 ni TNi +
∑k
i=1 ni FPi

(16)

k # of different traces.
ni # of traces of type k in log L.
TPi number of events that are correctly parsed for trace i.
FNi number of events for which transition was forced to fire for trace i.
TNi number of negative events for which no transition was enabled for trace i.
FPi number of negative events for which a transition was enabled for trace i.

A.12 ETC Precision [13] etcP (L,Mm)

etcP(L,Mm) = 1−
∑|L|
i=1

∑|σi|+1
j=1 |EE(sij)|∑|L|

i=1

∑|σi|+1
j=1 |AT(sij)|

(17)

EE(sij) Escaping edges at state sij .
AT(sij) Allowed tasks at state sij .

A.13 Structural similarity [28](Mm,Mo)

Structural =
1

1 + d
(18)

d(Mm,Mo) Dependency difference metric of Mm and Mo.
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A.14 Behavioral similarity [28] (Mm,Mo)

(i) Construct the coverability tree for Mm and Mo.
(ii) Get the principal transition sequences from the trees.
(iii) Return the PTS-Based Similarity Measure based on the sequences found.

A.15 Precision [25] P (L,Mm,Mo)

P(L,Mm,Mo) = 1−max{0,P’L,Mo −P’L,Mm} (19)

P’(L,M) =
1

|ε|
∑
e∈ε

|enL(e)|
|enM(e)|

(20)

ε collection of unique events in a context of the log.
enM(e) enabled activities in the model M .
enL(e) observed activities actually executed in a similar context in L.

A.16 Simplicity [25] S(L,Mm,Mo)

S(L,Mm,Mo) =
1

1 +max{0,S’Mo −S’Mm}
(21)

S’M the weighted average arc degree of the model M .
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[13] J. Muñoz Gama and J. Carmona. A Fresh Look at Precision in Process Con-
formance. In Business Process Management, number 6336 in Lecture Notes in
Computer Science, pages 211–226. Springer Berlin Heidelberg, 2010.

[14] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541–580, 1989.

[15] A. Rozinat, A. K. A. de Medeiros, C. W. Günther, A. J. M. M. Weijters, and
W. M. P. Van der Aalst. Towards an evaluation framework for process mining
algorithms. Beta, Research School for Operations Management and Logistics,
2007.

[16] A. Rozinat and W. M. P. Van der Aalst. Conformance checking of processes based
on monitoring real behavior. Information Systems, 33(1):64–95, March 2008.

19
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