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Abstract
Static and dynamic type systems (as well as more recently
gradual type systems) are an important research topic in pro-
gramming language design. Although the study of such sys-
tems plays a major role in research, relatively little is known
about the impact of type systems on software development.
Perhaps one of the more common arguments for static type
systems is that they require developers to annotate their code
with type names, which is thus claimed to improve the doc-
umentation of software. In contrast, one common argument
against static type systems is that they decrease flexibility,
which may make them harder to use. While positions such
as these, both for and against static type systems, have been
documented in the literature, there is little rigorous empir-
ical evidence for or against either position. In this paper,
we introduce a controlled experiment where 27 subjects per-
formed programming tasks on an undocumented API with
a static type system (which required type annotations) as
well as a dynamic type system (which does not). Our re-
sults show that for some types of tasks, programmers were
afforded faster task completion times using a static type sys-
tem, while for others, the opposite held. In this work, we
document the empirical evidence that led us to this conclu-
sion and conduct an exploratory study to try and theorize
why.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

General Terms Human Factors, Languages

Keywords programming languages, type systems, empiri-
cal research

1. Introduction
For decades, type systems (cf. [4, 18]) have played an es-
sential role in software education, research, and industry.

While a large number of programming languages with indus-
trial relevance include a static type system (e.g., Java, C++,
Haskell, or Scala), a number of programming languages—
especially those used in web technologies—include a dy-
namic type system (such as Ruby, PHP, JavaScript, or
Smalltalk). Thus, a lingering question is whether one sys-
tem or another, either static or dynamic, has a larger benefit
for the humans that use them.

Although there is an ongoing debate about the pros and
cons of static type systems where different authors strongly
argue for or against static type systems, it is rare that such ar-
guments are backed by empirical observations. In contrast,
such claims are often backed by personal experience, specu-
lation, or anecdote.

To help summarize the debate both for and against static
type systems, typical arguments against include reasoning
such as:

• Type systems are inflexible: not all valid programs can
be handled by a given type systems. As such program-
mers often use workarounds, such as type casts, to bypass
the limitations of the type system.

• For the same reason, type systems impede rapid proto-
typing, where, for instance, an object passed as an argu-
ment may not comply with a given type, but will work in
practice if it implements an acceptable subset of the pro-
tocol it should respond to. Inserting type annotations and
making objects conform to the expected type distract the
programmer from the task at hand.

On the other hand, typical arguments in favor of static type
systems often include:

• Type systems improve the program structure. Type
systems help in the design of clear and well-structured
programs. Logical errors can be detected by any compiler
that enforces a type system. (see [1, p. 8]).



• Type systems act as a form of documentation. Quoting
Pierce: “A static type system provides the reader of code
with an implicit documentation. Because a static type
system enforces type declarations for variables, methods
parameters and return types, it implicitly increases the
documentation factor by making the code speak for it-
self.” [18, p. 5]

Interestingly, more recent programming languages such as
Dart1 try to avoid this question by providing a gradual type
system (see [25]) which permits developers to use static and
dynamic typing in combination. While this approach appears
to be a compromise at first glance, such a technique essen-
tially pushes the decision onto developers themselves. While
developers using a gradual type system have the freedom to
choose the type system, they (still) suffer from the problem
of determining in what situations each type system is appro-
priate.

In order to address the question of pros and cons of static
and dynamic type systems, this paper focusses on the second
of the above mentioned arguments—the static type system’s
potential benefit in documentation. We present an empiri-
cal study on 27 human subjects that we asked to perform
five different programming tasks on an API which was not
initially known to the subjects and which was documented
only via its source code (without any additional documenta-
tion such as comments, programming examples, handbooks,
etc.). While the expected outcome of this experiment was
that the static type system has, at least, no negative impact
on the usability of such APIs, our empirical observations re-
vealed that for three of the five tasks, static type systems
had a positive impact on development time–while for two
programming tasks, we found that dynamic type systems af-
forded faster development times.

We start this paper with a discussion of related work in
section 2. Then, section 3 describes the experimental design,
the programming tasks given to the subjects, the execution
of the experiment, and the threats to its validity. Section 4
describes the results of the experiment. As the results we
observed did not conform to our initial expectations, we
performed exploratory studies that try to explain the result
of the experiment using further measurements (section 5).
We discuss this work in section 6. Finally, we conclude the
paper in section 7 and include additional empirical data in
an appendix.

2. Related Work
In an experiment in the late 1970s, Gannon was able to show
a positive impact of static type systems [8]. Thirty-eight
subjects participated in a two-group experiment where each
group had to solve a programming task twice, with a stat-
ically type checked language and a language without type
checking. The study reveled an increase in programming re-

1 See http://www.dartlang.org/

liability for subjects using the language with the static type
checking. The programming languages used were artificially
designed for the experiment.

By using the programming languages ANSI C and K&R
C, Prechelt and Tichy studied the impact of static type check-
ing on procedure arguments [21]; ANSI C is a language
which performs type checking on arguments of procedure
calls while K&R C does not. The experiment divided 34 sub-
jects into four groups. Each group had to solve two program-
ming tasks, one using ANSI C and one using K&R C. The
groups differed with respect to the ordering of the tasks and
with respect to what task had to be fulfilled with what tech-
nique. While the experiment tested several hypotheses with
slightly mixed results, it measured with respect to develop-
ment time for one of the two programming tasks a signifi-
cant impact of the programming language in use—for one
task subjects using the statically type checked ANSI C were
faster in solving the programming task. For the other pro-
gramming task, no significant difference was measured.

In a qualitative pilot-study on static type systems Daly et
al. observed programmers who used a new type system for
an existing language (a statically typed Ruby [6]). The au-
thors concluded from their work that the benefits of static
typing could not be shown, however, the study did not in-
clude quantitative analysis, making it difficult for other re-
search teams to replicate their findings at other institutions.

Another study, which did not directly focus on static type
systems compared seven different programming languages
[19]. Although the focus was not explicitly on static or dy-
namic type systems, one finding was that programs writ-
ten in scripting languages (Perl, Python, Rexx, or Tcl), took
half— or less—time to write than equivalent programs writ-
ten in C, C++, or Java. However, it should be emphasized
that this experiment had considerable methodological flaws,
including: 1) the development times for the scripting lan-
guages —as explicitly emphasized by the author— were not
directly measured on subjects (which was the case for the
languages C, C++, and Java), 2) the subjects were permitted
to use tools of their choice (e.g., IDE, testing tools), and 3)
the programs subjects wrote were not of equivalent length.
As such, that study was not a controlled experiment and even
it the results are ultimately correct is difficult to replicate.
Despite the potential methodological issues, Prechelt con-
cluded that humans writing in programming languages with
a dynamic type system (the scripting languages) were af-
forded faster development times.

Our studies. The study presented here is part of a larger
experiment series that analyzes the impact of static type
systems on software development (see [12]). We performed
four other experiments ([10, 15, 26, 27]).2

The study by Hanenberg studied the impact of statically
and dynamically typed programming languages to imple-
ment two programming tasks within approximately 27 hours

2 The work by Steinberg and Hanenberg is not yet published [26].



[10]. Forty-nine students were divided in two groups, one
solving programming tasks using a statically typed language
and the other a dynamically typed language. Subjects us-
ing the dynamically typed programming language had a sig-
nificant positive time benefit for a smaller task, while no
significant difference could be measured for a larger task.
However, the experiment did not reveal a possible explana-
tion for the benefit of the dynamically typed group for the
smaller task. The object-oriented programming languages
being used were artificially designed for the experiment.

In a different experiment, Stuchlik and Hanenberg ana-
lyzed to what extent type casts, which are a language feature
required by languages with a static type system, influenced
the development of simple programming tasks [27]. Twenty-
one subjects divided into two groups, took part in a within-
subjects design—participants complete two tasks, once with
static typing and once with dynamic typing. It turned out that
type casts do influence the development time of rather trivial
programming tasks in a negative way, while code longer than
eleven lines of code showed no significant difference. The
programming languages being used were Java (for the stati-
cally typed language) and Groovy (where Groovy was only
used as a dynamically typed Java without using Groovy’s
additional language features).

A further experiment performed by Steinberg and Hanen-
berg analyzed to what extent static type systems help to iden-
tify and fix type errors as well as semantic errors in an appli-
cation [26]. The study was based on 31 subjects (again based
on a two-group within-subject design). The result of the ex-
periment was that static type systems have a positive impact
on the time required to fix type errors (in comparison to the
time for fixing equivalent no-such-method exceptions). With
respect to the time required to fix semantic errors, the exper-
iment did not reveal any significant differences between the
statically and dynamically typed languages. Again, the pro-
gramming languages Java and Groovy were used.

Finally, Kleinschmager et al. performed an experiment on
33 subjects which combined repetitions of previous exper-
iments (with Java and Groovy as languages) [15]. Among
other tested hypotheses, it was confirmed that fixing type er-
rors in a statically typed language is faster than correspond-
ing fixes in a dynamically typed language, while no differ-
ences for fixing semantic errors was measured. As we see
from our literature review, there is not yet an empirically
rigorous consensus amongst the few studies we are aware of.
As such, further experiments—like this one—are needed.

3. Experiment Description
We begin by stating the underlying hypotheses of our exper-
iment and then discuss initial considerations when running
such studies. After introducing issues such as which pro-
gramming languages, programming environments, and APIs
we used, we describe our programming tasks in detail. Then,
we state our expectations about the performance of the de-

velopers in the two groups, the experimental design, and why
we chose that design. Finally, as all experiments have limi-
tations, we discuss the threats to validity.

3.1 Hypotheses
Our experiment tests the belief that a static type system helps
developers use an undocumented API. By “helping”, we
mean that a static type system either requires less effort in
comparison to a dynamic type system in order to fulfill the
same programming tasks, or, with the same effort, that more
programming tasks can be fulfilled with the aid of static type
systems. The second perspective differs from the first one in
that the effort is fixed, while it is variable in the first one.
In our experiment, we decided to use development time as a
variable, as it is easier to measure the time required to ful-
fill a certain task than determining how much work has been
accomplished within a given amount of time; Development
time is a common measurement for effort in pure program-
ming experiments (see [8, 13, 19–21, 24, 28]).

Hence, the first hypothesis to be tested is:

• Null Hypothesis 1: The development time for complet-
ing a programming tasks in an undocumented API is
equivalent when using either a static type system or a dy-
namic type system.

Given that our first null hypothesis only takes into account
the design of an undocumented API as a whole, it is de-
sirable to formulate a second null hypothesis that potential
confounding factors into account. For example, it seems rea-
sonable that given a larger undocumented API, static type
information may help the user more than a similar task us-
ing a smaller API, where using the API may be more obvious
because there are less classes or methods3.

Accordingly, we formulate a second null hypothesis as
follows:

• Null Hypothesis 2: There is no difference in respect to
development time between static and dynamic type sys-
tems, despite the number and complexity of type decla-
rations in an undocumented API.

Note that the second hypothesis only takes a different num-
ber of classes and types into account but does not try to ex-
plain the relationship between the number of types and de-
velopment time. Finally, both hypotheses focus on the de-
velopment time of programming tasks. Hence, if either of
these hypotheses can be rejected through standard statistical
inference techniques, we may gain insight into the relative
benefits or consequences of static and dynamic typing.

3 According to programming languages such as Java or C++ we assume a
close connection between class hierarchy and type hierarchy. Furthermore,
we assume here that the dynamically typed API does not contain any type
annotations.



3.2 Initial considerations for the experiment
In order to build an experiment that tests the previously
defined hypotheses, it was necessary to find:

• Two comparable languages (with a static and a dynamic
type system);

• An undocumented piece of software that should be used
within the experiment;

• Appropriate programming tasks that should be fulfilled
by the subjects; and

• A reasonable experimental design.

At the time the experiment was planned, we knew that volun-
teers from the University of Duisburg-Essen, Germany, and
the University of Chile would participate as subjects in the
experiment. In order to obtain participation from these vol-
unteers, we agreed that that the experiment should last for
no more than one day. Further, we estimated upfront that the
number of subjects would be around thirty. Hence, the exper-
imental setup and the experimental design should take into
account that the expected effect size should be measurable
for a rather small sample size.

3.3 Programming languages and environment
The broad goal for our experiment was to compare two dif-
ferent languages—one with a static type system (which re-
quires type annotations in the code) and one with a dynamic
type system (without any type annotations). In order to ad-
dress the problem that different languages have different lan-
guage features and that consequently differences in an ex-
periment cannot be reduced to the factor type system, it is
necessary to find two very similar languages.

According to previous experiments (see [26, 27]) we de-
cided to use Java and Groovy [16]. While Groovy has a num-
ber of language features in addition to Java, it can also be
used as a “dynamically typed Java”: all type declarations of
variables, fields and parameters can be annotated with the
keyword def (without referring to the corresponding nomi-
nal type). In this case, Groovy does not perform any static
type checking on these elements but dynamically performs
the type check at runtime. Consequently, a pure reduction of
Groovy on the language features of Java permitted us to have
two similar languages which only differ with respect to the
type system.

One further argument for using Java and Groovy was
that the subjects already had some programming skills in
Java. Consequently, it was not necessary to perform any
exhaustive training for the subjects. This implies that we
did not intent to introduce Groovy as a new programming
language. Instead, we only introduced Groovy as “a Java
version where the declarations of variables, parameters, etc.
only required the keyword def.”

To maximize the similarity of the two experimental set-
tings, it was necessary to exclude another language feature:

Method overloading. When the overloaded and overload-
ing methods have the same number of parameters, param-
eter types must be explicit in order to distinguish between
the methods. Hence, if no static types are available, method
overloading cannot be used. An alternative would have been
to use in the dynamically typed version methods with differ-
ent names, where the caller of the method is responsible for
choosing the right one. However, it was unclear whether this
alternative would introduce other experimental confounds,
as the two APIs would be different. Thus we decided to ig-
nore method overloading in the experiment.

For the programming environment used by the subjects,
our intention was (again) to provide a comparable situation
for both Java and Groovy. While at first glance IDEs such as
Eclipse provide tool support for Java as well as Groovy, Java
tool support in Eclipse is much more mature than that of
Groovy. Consequently, using Eclipse would probably have
been an advantage for Java developers and would have con-
founded the measurements: the intention of the experiment
was to measure the impact of the language feature type sys-
tem, not the maturity level of tool support. Hence, we de-
cided to use a plain text editor, as has been done in previ-
ous experiments [15, 26]). This custom editor permitted the
user to compile programs, run applications, and execute test
cases. This simple IDE also logged data for the experiment
such as when subjects were about to run their code, or when
they fulfilled a given programming task.

3.4 Experimental design—two groups within-subject
design

The experiment was designed as a 2-group within-subject
design (see [13, 20, 28] for a more detailed introduction
into such kinds of experiments) where the subjects were
randomly assigned to one of both groups. The groups should
be balanced with respect to the number of subjects, i.e. both
groups should have a comparable number of subjects. Each
group solved the programming tasks in both languages, i.e.
in Java as well as in Groovy. Both groups differ with respect
to the ordering of both languages: While the first group
(group A) solved all programming tasks in Groovy and then
solved all programming tasks in Java, the other group (group
B) did it the other way around. The main motivation for
this kind of design is, that the problem of deviation among
different subjects is reduced (see section A.1 for a more
detailed discussion).

Obviously, learning effects are a potential problem in ex-
perimental designs that have subjects complete more than
one task. Once a programming task is solved using lan-
guage A, it becomes easier to solve the same program-
ming task with language B (if both languages are simi-
lar). Consequently, it seems obvious—at first—that a within-
subject measurement, where each subject solves a program-
ming task twice cannot lead to valid results. However, apart
from the fact that this experimental design has been already
successfully applied (see for example [27]), there are several



valid statistical approaches for fairly analyzing data in such
studies. Here we just roughly discuss the design – a more
detailed description and discussion can be found in the ap-
pendix (section A.1).

learning
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Accumulated Language and Learning Effect 

(Groovy first)
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Figure 1. Impact of within-subject design on experiment
results (taken with adaptations from [27])

Figure 1 illustrates the assumed effect on both groups
– the first measurement and then the second measurement
which includes the learning effect as well as the language
effect. As the figure shows, the second measurement is still
able to reveal the effect of the language, if the learning ef-
fect is smaller than the language effect (in the lower part of
Figure 1 the second measurement is still larger then the first
measurement). It is even acceptable if the learning effect is
similar to the language effect (which means that no differ-
ence between the first and the second measurement is found
for group B)– but the design fails, if the learning effect is
larger than the language effect (see section A.1 for a more
detailed discussion).

3.5 Description of the APIs
API Design Considerations. Our aim was to provide two
versions of an undocumented API—one Java version and
one Groovy version—as similar as possible. The only dif-
ference should be that the pure Java version makes use of
static types while the Groovy version does not. Similarly,
we the API should be simple enough to understand how to
use it in a relatively small amount of time. However, the API
must not be so trivial that all subjects immediately finish the
tasks (a ceiling effect). Since the time difference between
static and dynamic type systems potentially depends on the

searching for the right types or reading source code in dif-
ferent files, the source code should be large enough that a
difference could be measured.

Finally, we needed to take the previously described
within-subject design into account. Since this design poten-
tially suffers from learning effects, it is desirable to consider
some precautions against it. For example, we would gener-
ally expect that subjects using the API a second time would
be better at doing so. As such, our statistical procedures must
take this into account by conducting comparisons across first
time users of both static and dynamic typing, in addition to
secondary use.

Structurally identical APIs. With these factors in mind,
we provided two structurally identical APIs, where the sec-
ond one derived from the first by renaming classes, meth-
ods, variables, etc. This was done in a manner that ensured
the two APIs, despite having the same complexity, seemed to
address two entirely different problems. We designed an API
consisting of 35 classes, in four packages, having 1279 lines
of code. One version of the API handled the implementation
of UI tree views, the other version handled SQL queries (as
trees of SQL elements) and results. The tree view API was
built first and from it we derived the SQL API.

3.6 Description of programming tasks
The programming tasks should directly reflect on the hy-
potheses as introduced in section 3.1. In order to do so, we
decided to design programming tasks that differ with respect
to whether the API is statically or dynamically typed (hy-
pothesis 1). They also should differ with respect to the com-
plexity of type declarations needed in order to fulfill the pro-
gramming tasks (hypothesis 2).

Task complexity. Since we are interested in the effect of
typing on APIs, we wish to measure the difference with re-
spect to typing and not the possible influence of type systems
on different language constructs, or on the complexity of the
code to write. While complexity measurements such as lines
of code, Halstead, or cyclomatic complexity are often used
[7], we decided to use a different approach. In order to max-
imize the effect of using the API, and reduce the effect of
the complexity of the programming task itself, we kept the
complexity of the code snippets subjects have to write are
similar. The programs that use the APIs should only con-
sists of single methods which do not make use of non-trivial
constructs such as loops or conditions. Instead, the intention
was to use only assignments, variable reads, method calls
and object creation operators. The complexity in the tasks
only stems from the number of types to identify and the re-
lationships between the tasks.

Task completion. We instructed the subjects to move to
the next task only when they successfully completed the cur-
rent task. For each task, we defined several tests that verify
that the task has been indeed completed. These were Unit
Tests run, run each time the code snippet is compiled suc-
cessfully. Only when all the tests passed were the subjects



allowed to go to the next task. The subjects did not have ac-
cess to the tests.

Warm-up task. We included a simple warm-up task so
that the subjects would have time to familiarize themselves
with the development environment, the testing process to de-
termine correctness, and the Groovy programming language.
We asked that subjects solve three vary basic programming
tasks (e.g., summing a list of numbers). This task was not
included in the analysis and is not described below.

Task description. In the following section, we describe
the programming tasks from the following perspectives: (1)
what the expected solution of the task is; (2) what the char-
acteristics of the programming tasks are; and (3) how many
unique types are required in order to fulfill the program-
ming tasks. We show the solution from the first API—UI
tree views—the subsequent ones have similar solutions.

3.6.1 Task 1 (easy, one class to identify)
In the first programming task, developers were asked to re-
turn an instance of a certain class (AbstractTreeFactory).
In order to do so, they were told the name of the abstract su-
perclass, but not the name of the concrete subclass (where
only one such concrete subclass exists in the project).

Hence, on both cases (dynamically and statically typed)
it was necessary to identify one type (which corresponds to
only one class AbstractTreeViewFactory) in the project.
The code consists of a single line, which returns the object
being created (see Figure 2).

3.6.2 Task 2 (easy, three classes to identify)
In the second programming task, developers were required
to create an initialized TreeView object with the name
sampletree. This object is created by invoking a method
in the previously described factory. Additionally, an initial-
izer needed to be passed to the factory. This initializer itself
required a Configuration object which contains the title
of the tree (an instance of class Title); altogether, subjects
had to identify Initializer, Configuration and Title.

p u b l i c s t a t i c A b s t r a c t T r e e V i e w F a c t o r y t a s k 1 ( ) {
re turn new TreeViewFac to ry ( ) ;

}

p u b l i c s t a t i c TreeView t a s k 2 ( ) {
A b s t r a c t T r e e V i e w F a c t o r y s t v ;
I n i t i a l i z e r i n i t = new I n i t i a l i z e r ( ) ;
C o n f i g u r a t i o n con f = new C o n f i g u r a t i o n ( ) ;
T i t l e t = new T i t l e ( ) ;
t . setName ( " s a m p l e t r e e " ) ;
con f . s e t T i t l e ( t ) ;
i n i t . s e t C o n f i g ( con f ) ;
s t v = new TreeViewFac to ry ( i n i t ) ;
re turn s t v . c r e a t e T r e e ( ) ;

}

Figure 2. Example solutions for programming tasks 1 & 2

3.6.3 Task 3 (medium, three classes to identify)
The third task required developers to create a transformer
of the tree view. A corresponding class Transformer was
given within the API which performs such a transformation.
However, it was necessary to create first a graph from the tree
view and pass it to the transformer. Then, a walker must be
created and passed to the transformer. Finally, a start node
for the transformation (the tree’s root node) is provided; it
needs to be extracted by converting it into a TreeViewNode
(by sending a corresponding message to the graph object).
Figure 3 illustrates a possible solution for the task. Alto-
gether, the types Graph, Walker and TreeViewNode needed
to be identified.

3.6.4 Task 4 (difficult, three classes to identify)
The fourth task required developers to add a new node
(with name sampletreenode) to a graph which can be ac-
complished by parameterizing an initializer correctly. The
problem with this task is that the design of the initial-
izer object is not trivial. The initializer must be parame-
terized with instances of an IdentifiedSequence. This
sequence contains a tree node identifier (the node’s name)
and a sequence of pairs consisting of an identifier and an
IdentifiedSequence—each child of a tree node itself is
identified by a corresponding identifier. In that way, it is
possible to parameterize the initializer already with a tree of
identifiers.

Again, three classes need to be identified: Identified-
Sequence, TreeNodeIdentifier, and Pair. Due to the
underlying recursive definition of the items, we suspected
this code to be rather difficult to understand (if no static type
system directly reveals the underlying design of the API).

3.6.5 Task 5 (easy, six classes to identify)
For the final task, a menu with a corresponding command
should be created for the tree view. A command, represented
by a String, is passed to the method. It should be added to a
corresponding Command object (which needs to be created).
The command object needs to be passed to the menu. Further
objects (LayoutPolicy, BackgroundImage, Font) should
also be passed to the menu object in order to fully specify
the command.

The task required six classes to be identified: Menu,
MenuItem, SingleCommand, LayoutPolicy, Background-
Image, Font. We suspected that this task might be simpler
than others, since the relations between the types is much
more straightforward than the preceding task.

3.7 Assumed Disadvantage of Dynamic Type Systems
The programming tasks were designed in a way that we as-
sumed that for all tasks (except task 1) the static type system
would show a measurable positive impact; we explain the
assumed reasons for this and the assumed behavior of devel-
opers in the following. We use “DT developers” to describe



p u b l i c s t a t i c Trans fo rmer <TreeViewNode >
t a s k 3 ( TreeView t v ) {

G r a p h F a c t o r y g f = new G r a p h F a c t o r y ( ) ;
Graph <TreeViewNode , Edge <TreeViewNode >> g =

gf . c rea teGraphFromTreeView ( t v ) ;
T rans fo rmer <TreeViewNode > t =

new Trans fo rmer <TreeViewNode > ( ) ;
t . s e t T r a n s f o r m a b l e S t r u c t u r e ( g ) ;

Walker w = new Walker ( ) ;
t . s e t W a l k e r (w ) ;
TreeViewNode s =

g . ge tNodeFromContent ( t v . getRootNode ( ) ) ;
t . s e t S t a r t N o d e ( s ) ;
t . d o T r a n s f o r m a t i o n ( ) ;
re turn t ;

}

p u b l i c s t a t i c vo id t a s k 4 ( I n i t i a l i z e r i n i t ) {
I d e n t i f i e d S e q u e n c e < T r e e N o d e I d e n t i f i e r > z =

new I d e n t i f i e d S e q u e n c e < T r e e N o d e I d e n t i f i e r > ( ) ;
T r e e N o d e I d e n t i f i e r t = new T r e e N o d e I d e n t i f i e r ( ) ;
t . setName ( " s a m p l e r o o t n o d e " ) ;

P a i r < T r e e N o d e I d e n t i f i e r ,
I d e n t i f i e d S e q u e n c e <

T r e e N o d e I d e n t i f i e r >> p =
new P a i r < T r e e N o d e I d e n t i f i e r ,
I d e n t i f i e d S e q u e n c e < T r e e N o d e I d e n t i f i e r > > ( ) ;

p . s e t F i r s t ( t ) ;
p . s e t S e c o n d ( new I d e n t i f i e d S e q u e n c e <

T r e e N o d e I d e n t i f i e r > ( ) ) ;
z . add ( p ) ;
i n i t . s e t I t e m s ( z ) ;

}

Figure 3. Example solutions for programming tasks 3 & 4

p u b l i c s t a t i c Menu t a s k 5 ( S t r i n g cmd ) {
Menu m = new Menu ( ) ;
MenuItem mi = new MenuItem ( ) ;
mi . s e t T i t l e ( " samplecommand " ) ;
m. add ( mi ) ;
SingleCommand cc = new SingleCommand ( ) ;
mi . setCmd ( cc ) ;
cc . setCommand ( cmd ) ;
L a y o u t P o l i c y l = new L a y o u t P o l i c y ( ) ;
BackgroundImage bg = new BackgroundImage ( ) ;
Font f = new Font ( " A r i a l " , 12 , Font . S t y l e . DEFAULT ) ;
m. s e t L a y o u t ( l ) ;
l . se tBgImage ( bg ) ;
l . s e t F o n t ( f ) ;
re turn m;

}

Figure 4. Example solution for programming tasks 5

those developers that use the dynamically typed API, and
“ST developers” for those using the statically typed API.

3.7.1 Task 1
For the first task, DT developers as well as ST developers
have the same problem: they need to become aware that the

class mentioned in the task description is abstract. In both
cases, developers need to scan the code in order to find a
concrete class that implements the mentioned one. As such,
we expected no significant difference between the groups.

3.7.2 Task 2
For programming task 2 we suppose that DT developers
have a disadvantage in comparison to ST developers. We as-
sumed that developers first will have to investigate the class
TreeViewFactory in order to determine how a new tree
view can be created. DT developers then find a parameter
named init in the constructor (which is then passed to an
instance variable named init). DT developers should need
additional time in order to determine that an Initializer

instance is required here. Then, the type Initializer

needs to be understood. While the ST developers directly
can see in the code that a type Configuration is required,
DT developers only see that there is a field named config.
Again, DT developers might assume that the tree name
should be assigned to config. Finally, while ST developers
directly get the information that a Configuration object
requires a Title object (which contains the String object
representing the tree’s name), DT developers need to find it
out on their own—perhaps assuming that they can directly
pass the String to the config object.

3.7.3 Task 3
Task 3 is slightly harder to solve than task 2. The main
difference lies in the way the API can be read. In task 2,
it was possible to study a class in order to determine what
needs to be done next. In task 3, DT developers only know
that they need a Transformer object, but no TreeView is
permitted as parameter. Here, developers need to detect that
a different class GraphFactory converts the tree view into a
graph which then can be passed to the transformer. The same
is true for the start node, which needs to be returned from the
graph in order to be passed to the transformer. We assume
that the relationships between these different tasks are harder
to detect for DT developers, advantaging ST developers.

3.7.4 Task 4
Task four is the hardest task for the DT developers. We think
that developers easily become aware that the items need to
be set in the Initializer object. For the ST developers,
the method directly reveals the required (generic) type which
guides developers to type IdentifiedSequence. From the
types, ST developers see that a TreeNodeIdentifier is re-
quired and that an object of type Pair needs to be added to
the sequence. Hence, the static type system directly docu-
ments the recursive definition of IdentifiedSequence. In
contrast, DT developers have to discover this either by read-
ing the API’s source code or by interpreting the error mes-
sages when they used the wrong classes in their code. We
think that this is a very time consuming task and expect that
DT developers will require more than ST developers.



3.7.5 Task 5
We suspected that Task 5 would be less difficult to under-
stand (no recursive type definition, etc.), even though it had
the largest number of classes that have to be identified. We
assume that ST developers have an advantage over DT de-
velopers due to the number of identified classes (and not, as
in task 4, the complexity of the type definitions).

3.8 Summary of the programming tasks
The programming tasks are trivial code, algorithmically
speaking: no loops, conditions, or advanced language fea-
tures are used. This is intentional; instead the tasks construct
data structures. Each task requires the developer to identify
the classes to instantiate and to pass them to other classes.

However, the tasks have different levels of difficulty.
While tasks 1, 2, and 5, are relatively trivial programming
tasks, tasks 3 and 4 are slightly more complex. For task 3, the
conversion of some objects need to be understood and task
4 requires the understanding of a recursive data structure.
Both tasks make use of generic types in Java, but from our
point of view, task 4 is more complex, as the the recursive
data definition is directly documented by the generic types
for ST developers. In sum, we designed our tasks such that
there was a variety of different complexity levels. In doing
so, we attempted to provide insight into how this character-
istic might influence our goal of learning the pros and cons
of static and dynamic type systems.

3.9 Experiment Execution / Subjects
We recruited 33 subjects for our experiment. All subjects
were (undergraduate as well as graduate) students from the
the University of Duisburg Essen, Germany or the University
of Chile – all of the students were trained as part of their
studies in the programming language Java. Three subjects
did not complete the programming tasks and abandoned the
experiment (two starting with Groovy first, one starting with
Java first); their results were excluded from the analysis.

Another subject was removed from the experiment, be-
cause after watching the measurements, it was revealed that
the student spent a very large amount of time in reading
the complete source code while working on task 2 and then
solved the tasks 3 and 4 quickly – the subject confirmed in
a following interview that he worked like that. We removed
the subject because we considered our measurement method
(time until a programming task was completed) to be insuf-
ficient in this situation. This is because it was not possible to
determine how time should be now considered for the differ-
ent tasks. For similar reasons, we removed two further sub-
jects from the experiment, because they abandoned one task,
switched then to another one and then came back to the orig-
inal one. We finally considered 27 subject for the analysis –
fifteen from Duisburg-Essen and twelve from Chile.

3.10 Threats to validity
As in any experiment, there is a number of threats to va-
lidity. Most of the threats are in common with previous ex-
periments [10, 27] (such as chosen subjects, background of
subjects, etc.) and will not be discussed here.

Internal Threat: Experimental Design. As already
mentioned before, a general threat is that the underlying
design assumes that the (possible) main effect (the effect of
the type system) is larger than the possible learning effect
in the within-subject measurement. If, however, the learning
effect is very large, it potentially invalidates the main effect.

Internal Threat: Measurement. The chosen program-
ming tasks largely depend on the underlying system. It might
be the case that the underlying system is very simple so
that the effect “undocumented API” does not play any role.
We tried to avoid this problem by using an implementation
which is from our subjective point of view complex enough
– although we cannot argue exactly what “complex enough”
means. For example, we may have chosen tasks that are ei-
ther too simple or too hard. While this is true, we have care-
fully documented the tasks we used so that other research
groups can reproduce them, modify them, or at least com-
pare them to future work.

External Threat: Dynamically Typed API. The under-
lying system is created by creating a statically typed system
first and then by removing the type annotations (i.e. replac-
ing the type annotations with the keyword def and by remov-
ing interfaces and implements declarations). Consequently,
the system does not make use of any possible features of
dynamically typed languages. It could be possible that the
existence of the dynamic type system would have a large im-
pact of the overall system’s architecture. From our point of
view, the dynamically type system still represents a reason-
able design—we do not think that the dynamic type system
would have had any impact of the resulting structure.

External Threat: Artificiality of the tasks. At first
glance, some tasks may seem to be intentionally complex, to
the point of being artificial. However, we have found similar
examples in the field. For instance, using the XML DOM
API to write a document to a file, one must instantiate a
DocumentBuilderFactory—catch various exceptions in
the process—, then create a Transformer (through a sec-
ond factory), and finally get a NodeList of elements of
interest wrapped inside a NodeSource that is passed to the
Transformer. Similar tasks to ours may happen in the field;
we do not regard the tasks we designed as artificial.4

4. Experiment Results
This section illustrates the analysis of the experiment data.
In order to ease the reading of the paper, we decided to
shift parts of the analysis to the appendix. This choice was

4 The full example is available at:
http://docs.oracle.com/javaee/1.4/tutorial/doc/JAXPXSLT4.html



made to focus on the most important parts of the analysis—
which is otherwise quite systematic and long—and on the
results themselves. In this section, we focus only on the time
taken to solve the tasks. As the subjects did switch tasks
only when they successfully passed a task, we do not need
to analyze the correctness of the tasks; the solutions are by
definition correct. Subjects unable to complete some tasks
were discarded from the analysis (see section 3.9).

Structure of the results. We first give an overview of
the results with descriptive statistics of the data (Section
4.1). We then conduct a between-subject analysis, which
concludes that the results are significantly influenced by the
tasks (Section 4.2). Given the variability of performance be-
tween subjects and tasks, the between-subject analysis does
not find a main effect of the type systems. This is however
the goal of the following within-subject analysis, which as-
certains which language (and by extension type system) is
better performing on a task-by-task basis (Section 4.3). We
continue the analysis to conclude whether the number and
complexity of the types to identify has a relationship with
the difference we observe between the tasks (Section 4.4).
We finally wrap up the results with a discussion motivating
the need for a further exploratory analysis (Section 4.5).

4.1 Measurements and descriptive statistics
We start with a high-level analysis of the measurements of
task completion time. A first view on the boxplot (see Figure
5) representing the measured data (see appendix A.2) seems
to support the following statements: while for task one, four
and five there is a tendency that the Groovy solutions re-
quired more time, task three (and to a certain extent, task
two) required more time in Java.
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Figure 5. Boxplot for all measured data (combined round 1
and round 2) grouped by tasks

However, the raw data, the descriptive statistics and the
visual representation only give a rough overview of the mea-
surements. For instance, the boxplot does not consider that
each subject is measured twice. To understand whether there

is a significant difference, it is necessary to apply appropriate
statistical tests (see [9, 22] for an introduction).

4.2 Repeated measures ANOVA
We start our analysis by running two repeated measures
ANOVAs. The first was run on tasks 1-5 for the groups that
used static or dynamic typing for the first time. The sec-
ond ANOVA compared the groups that had “switched” from
static to dynamic, or vice versa, for tasks 1-5 again. This
analysis does not benefit from the within-subject measure-
ment of each individual task; i.e., it cannot detect the effect
of the static or dynamic type system on each subject for a
given task. As explained above, this analysis is also sensi-
ble to the variability of the performance between subjects; it
can, however, detect differences in performance due to the
tasks themselves. Figures 6 and 7 show the boxplots for the
first—respectively second—round where we group the re-
sults by the programming tasks.

We perform a repeated measures ANOVA on program-
ming tasks and programming language. This analysis con-
siders programming task and programming language as in-
dependent variables while we have the development times
as dependent variable. The different programming tasks are
considered within-subject, i.e. each individual’s difference
in development times for different tasks is considered.
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Figure 6. Boxplot for first round (no repeated measurement
of same tasks)

We first observe that, in both the first and the second
round, the dependent variable programming time is differ-
ent for the different programming tasks—the ANOVA re-
veals a significant impact of the factor programming task for
the first round (p<0.0015, partial η2=.354) as well as for the
second round (p<0.001, partial η2=.396). An interesting ob-
servation here is, that the partial η2 values are very similar
(which indicates that the impact of the task on the variance
of the corresponding development time is similar). As a first

5 The Greenhouse-Geisser was applied since the sphericity test turned out
to be significant with p<0.02.



Task

Task5Task4Task3Task2Task1

T
im

e
s

6000

5000

4000

3000

2000

1000

0

Java

Groovy

Lang

Figure 7. Boxplot for second round (no repeated measure-
ment of same tasks)

conclusion, we can say that the individual task has a strong
influence on the development time; this finding is in accor-
dance with the existing literature [10, 21, 27].

A second observation is that there is a significant inter-
action between the factor task and programming language
(in the first round p<0.025, partial η2=.167; in the second
round p<0.001, partial η2=.195). This corresponds to our ex-
pectations: the experimental design assumes that the impact
of the type system is different for the different tasks, since
their complexity varies. With regard to the factor program-
ming language, the first round did not reveal a significant
impact (not even any tendency, since p>0.90!) while the sec-
ond round reveals a close to significant difference (p<0.06).
Consider what this means in plain English.

At first glance, it appears that we cannot reject our
Null Hypothesis 1. Since no significant effect has been
demonstrated, it seems that the impact of the programming
language—if any—is so small that it is hidden by the de-
viation amongst tasks, developers, or any other confounds
we have not considered here. This is however a weakness
of this particular analysis, in cases—such as programming
experiments—where the between-subject variability is high.
This is the case here: as shown in the appendix, the stan-
dard deviation of the task completion time is comparable to
the median—a common occurrence in programming exper-
iments. Hence, the between-subject analysis is not able to
take into account the (possible) effect of the programming
language on each individual; as argued in our experimen-
tal design, we go on in the analysis with a within-subject
analysis.

4.3 Analysis of groups and tasks: Null hypothesis 1
We now study the tasks and the groups in isolation, and
combine the results of the analyses afterwards. Such a sepa-
rated analysis means that we study, for each task, the differ-
ences between the Java and the Groovy development times
for group A (Groovy first), and group B (Java first). Accord-

ing to section 3.4 we then combine the results of the tasks
where one group reveals a significant difference while the
other one either shows the same or no significant difference.
In case both groups show contradicting differences for one
task, it is not possible to interpret the result for this task.

The complete analysis of the separate groups is in ap-
pendix A.3. The combination of the analyses shows a signif-
icant difference for each task. For no task, the significance
test revealed the same results, i.e., for no task did group A
have the same positive impact of one language as group B.
Additionally, no contradiction between the results appeared,
i.e., for no task did one group have a different significant
result than the other group.

Table 1 shows the results of the analysis for null hypothe-
sis 1—that development time for completing a programming
tasks in an undocumented API is equivalent when using ei-
ther a static or a dynamic type system—and the correspond-
ing p-values (see section A.3). For tasks 1, 4, and 5 we find
a positive impact of Java; however, we find a positive impact
of Groovy for tasks 2 and 3. Consequently, we reject the null
hypothesis in all cases, but for tasks 2 and 3, the dominating
language is contrary to our expectations.

Task Task 1 Task 2 Task 3 Task 4 Task 5
P-values

Group A 0.00 0.93 0.45 0.03 0.00
Group B 0.35 0.01 0.01 0.34 0.86

Dominating
language Java Groovy Groovy Java Java

Table 1. Experiment results for hypothesis 1 – Combination
of both analysis for both groups

4.4 Analysis of complexity: Null hypothesis 2
Given the results from our task by task analysis, we fail to
reject our second Null hypothesis:

• For the “easy” tasks (task one, two, and five) we find that
the dynamic type system had a positive impact for task
two, while it had a negative impact for tasks one and five.
This contradicts our hypothesis that the number of types
to identify is the main factor, since task two, where the
dynamic type system prevailed, required to identify more
types than task one, and less than task five.

• For tasks three and four—with the same number of types
to be identified but with a different complexity—we ob-
served another result that contradicts our hypothesis,
since the dynamic type system prevailed in a task of
“medium” difficulty (and did not prevail in all the “easy”
tasks).

Consequently, a pure reduction of the programming tasks to
the number and the difficulty of the types to be identified
cannot be a main effect on the difference between static and
dynamic typing; there are clearly other factors at work.



4.5 Discussion
The results show that the chosen experimental design was
appropriate for the research question and the given task: the
learning effect did compensate the main effect for the group
starting with Java (no significant differences for task 1, 4
and 5) but it did not lead to contradictory results (such as
one group showing positive effects for one language, while
the other shows a positive effect for the other).

However, the study revealed unexpected results: While
there was a significant positive impact of the static type
system for tasks one, four, and five, there was a significant
positive impact of the dynamic type system on tasks two and
three. This result is surprising in several ways.

First, it is unclear why there should be a significant differ-
ence for task one: the task was only to instantiate a class—
no parameters needed to be sent, nor anything that seems to
be related to the question of type system seems to be rel-
evant here. The subjects (which were mainly familiar with
Java) could have been slightly surprised by seeing the key-
word def in the code snippet. Following this argumentation
leads to the conclusion that the Java solutions had a benefit
in comparison to the Groovy solutions, possibly due to the
subjects being more accustomed to Java than Groovy, de-
spite the presence of the warmup task.

We were not surprised to see a positive impact of Java in
tasks four and five: For task four, the static type system ex-
plicitely documents the recursive type definition and gives in
that way developers a benefit in comparison to the dynami-
cally typed version where this information was missing. For
task five, a large set of types were necessary in order to ini-
tialize the required Menu object. While developers having the
annotations of the static type system could directly see from
the class definitions which objects needed to be instantiated,
developers with the dynamic type system need to find out on
their own which classes possibly match.

However, tasks two and three revealed a completely dif-
ferent picture: in both cases the developers with the dynamic
type system were faster. Since our IDE gathers more infor-
mation than the completion time of the tasks, we conducted
an exploratory stury to better understand this result.

5. Exploratory Study
For some tasks the impact of the static or dynamic type
system is contrary to our intuitions; we investigated whether
this contrary effect might be explained by other factors.

A possible influencing factor is the number of builds and
test runs that were performed during the implementation
of each task. Assuming that people with the dynamically
typed solutions need to explore on their own what kind of
objects are required by the API, they would require more
compilations and test runs in order to situate themselves.

Another influencing factor is the number of files devel-
opers were watching while working on a solution. People
working on the dynamically typed solutions probably have

to spend more time on different class definitions in order to
find out what types might be expected by the corresponding
API. A third—and related—data point is the number of file
switches that occur during the session.

These data points are recorded by our IDE; we study
them in turn. First, we analyze how often people built and
ran the code. Second, we analyze the number of files that
were consulted for each task. Finally, we analyze how much
developers have navigated between files.

As we did previously, we shifted parts of the analysis to
the appendix in order to ease the reading of the paper (see
appendix A.4, A.5, and A.6).

5.1 Number of Builds and Test Runs
The numbers of builds and test runs we count here is not
only the number of test runs on code that compiles, but the
number of times a developer pressed the start-button from
the IDE; this involved compiling and running the test cases.
For statically typed solutions this test run also implies the
type check, which potentially fails. The potential difference
between such test runs could mean that people working on
the statically typed solutions gain more information about
the expected types than the people using the dynamically
typed solutions. In contrast, the users of the dynamic type
system need to explore on their own which types are required
by the API, possibly leading to more run-time errors.

Task Task 1 Task 2 Task 3 Task 4 Task 5
P-Values
Group A 0.23 0.70 0.03 0.01 0.81
Group B 0.23 0.03 0.78 0.48 0.68

Less test runs - Groovy Java Java -

Table 2. Wilcoxon tests for number of test runs

We apply the same analysis as in the previous section by
studying the tasks and groups in separation (see appendix
A.4). The result is in Table 2, which shows the language
which had less builds and test runs. While the result is
similar to the comparison of the development times for tasks
two and four, no significant difference was found for tasks
one and five. The result for task three is the opposite of the
development time analysis: although task three required less
test runs using Java, the development time was still higher.

At first glance, it seems that the number of test runs
do not provide an appropriate explanation for the measured
development time; we will elaborate on this in the general
discussion.

5.2 Number of Watched Files
Next, we analyze the number of files being viewed by the
developer. The number of watched files might be an indi-
cator of the quantity of source code one has to read before
one solves the task. A reason for differences would be that
developers using a dynamic type systems are more likely to
look into sources which are not related to the current task. If



one assumes that dynamically typed language do not directly
guide developers to those types which are needed by the API,
many different files are opened by the developer—the more
files are opened, the larger the number of files which are not
related to a given task.

Performing a separate analysis for the tasks and the lan-
guage (see appendix A.5) reveals the results which are sum-
marized in Figure 3: for all tasks (with the exception of task
two) the number of watched files is higher for the dynami-
cally typed solutions; for task two, it is the opposite.

Task Task 1 Task 2 Task 3 Task 4 Task 5
P-Values

Group A 0.02 0.35 0.05 0.01 0.00
Group B 0.67 0.01 0.85 0.04 0.05

Less watched files Java Groovy Java Java Java

Table 3. Wilcoxon tests for number of watched files

Hence, it looks like that the number of watched files
seems to provide similar results as the development time
measurement, with the exception of task 3, where Groovy
users watched more files than Java users, despite taking less
time overall.

5.3 Number of File Switches
The number of file switches determines how often a devel-
oper switches between different files; the first opening of a
file is already considered as a file switch. If for a given task
a developer has only one file switch, then this means that
he has solved the tasked without switching to another file.
We can see the number of file switches as a measure of the
amount of exploration that a developer has to perform in or-
der to solve a task. The underlying assumption from the task
design was that the use of the dynamically typed language
would cause the developer to switch more often between dif-
ferent files as he or she needs to consult more code in order
to decide which types are needed.

The difference between the number of file switches and
the (previously analyzed) number of watched files is, that in
the previous analysis each file that is opened more than once
is only counted as one watched file.

Performing a separate analysis for the tasks and the lan-
guage reveals the results shown in Table 4 (see appendix A.6
for the details of the analysis).

Task Task 1 Task 2 Task 3 Task 4 Task 5
P-Values

Group A 0.0 0.78 0.55 0.01 0.00
Group B 0.48 0.01 0.02 0.17 0.36

Less switches Java Groovy Groovy Java Java

Table 4. Wilcoxon tests for number of file switches

The result of this analysis directly corresponds to the
analysis of the development times (again, see Table 1):
For task one, four and five the developers require less file

switches for the statically typed solutions; they require more
file switches for task two and three. What’s even more inter-
esting, the p-values for the different groups are quite similar.

Hence, the number of file switches seem to be a plausible
indicator for the resulting development time. We will inves-
tigate the reasons for this in the discussion.

6. Discussion
We start with a summary of our findings in the main exper-
iment and the exploratory analysis. Table 5 reports on all
results of the measurements we investigated.

Aspect Task 1 Task 2 Task 3 Task 4 Task 5
Less Development Time Java Groovy Groovy Java Java
Less Builds/Runs — Groovy Java Java —
Less Files watched Java Groovy Java Java Java
Less File switches Java Groovy Groovy Java Java

Our Expectations — Java Java Java Java

Table 5. Summary of measurements we performed, and
our expectations before carrying out the experiment. Unex-
pected results are shown in bold.

A priori expectations. Initially, we expected to see de-
velopers using the static type system (Java users) perform
the tasks faster, with the exception of task one, where a neg-
ligible difference would be seen. Similarly, we expected sub-
jects using the static type sytem to hold an advantage for
tasks two to five, in all other metrics: number of builds and
runs—indicator of ad-hoc explorations and trial-and-error;
number of file switches—indicator of the amount of explo-
ration; and number of files watched—indicator of quantity
of code read to finish the task.

Results. As shown above, we found some surprising re-
sults: task 1 shows an unexpected advantage to Java; task 2,
an unexpected and consistent advantage to Groovy; task 3,
a time advantage to Groovy, reflected in file switches, but
not in build and runs and files watched. On the other hand,
task 4 yields consistently expected results, and task 5 yields
expected results (except in builds and runs where there is
no clear advantage to Java). We continue with a task-based
discussion of the possible reasons for the results we observe.

Task 1. We measured a positive effect of the static type
system although one would expect that typing hardly plays
any role for such a simple task. A possible explantion would
be the background of the subjects, who all had experience
with Java, but not with Groovy. We included a warm-up task
to alleviate this effect, but it still could be present.

Task 2. In all cases the results were better for the dynami-
cally typed solutions (time, build and runs, file switches, and
files watched). This is even more surprising if one accepts
the argument put forward for task one—that the subjects had,
because of their background, some advantage in Java.

A possible reason for the unexpected result is that the task
is simple enough that types hinders more than they help.



The design of the API—having an Initializer object
and additionally having a Configuration object which
receives a string—may be intuitive; people can simply use
it correctly without committing any obvious error.

In case this is not quite sufficient, the message-not-
understood exception for the dynamically typed solutions
may easily guide developers to the correct class; the error
specifies which message is not understood, hinting at the
correct class. In contrast, the subjects using the statically
typed solution may be enticed to browse the classes they
know they will use, in order to get more familiar with their
API, even if the full API of these classes will not be used.

Hence, instead of trying to understand the class defini-
tion in detail, trial-and-error seems like a reasonable way of
solving the task—and in simple cases, it may be efficient for
developers to behave that way, instead of consistently read-
ing class definitions.

Task 3. Contrary to task two, Groovy developers indeed
watched more files than Java developers, even if they spent
less time to solve the task. The Java developers also had less
build and runs, and less files watched.

This finding is consistent with the interpretation of task
two: Java developers spend more time reading API classes
but read less API classes. They read these files with more
attention, covering more of the API than Groovy developers.
In contrast, Groovy developers seem to “jump around the
system”, more frequently compiling and running the system,
and browsing more files in the process (including files less
relevant to the task).

Hence, it is possible that the same “trial and error”, and
partial program comprehension approach that worked for
task 2 still works for task 3. We already see the limits of the
approach, as the “slow but deliberate” approach used in the
Java solutions ends up requiring less builds and runs—less
runtime errors—, and less investigation of unrelated files.

The task may also be simple enough that subjects easily
know where to start: From the task definition, subjects were
already aware that some kind of transformation is needed;
the initialization of the tranformer object, and the construc-
tion of the graph may be intuitive enough for the “trial and
error” approach to work.

On the other hand, Java users may have been confused by
the presence of the generic types. Although they had the ben-
efit that they can read directly from the Transformer’s class
definition that a graph object is required, they possibly spent
more time on the definition of the generic types without a
significant benefit.

Task 4. The argument that complex types reveal more
about the structure of the program, but are harder to interpret
would also explain the difference (pro Java) for task four.

Generic types were also required; while the generic type
definitions reveals an important characteristic—the recursive
type definitions—which directly help to understand the de-
sign of the underlying class. this was not the case in task

three. In task three, it might have been helpful to see that
an object of type Graph is required, but the additional type
parameters may have reduced—even negated—the possible
positive impact of the static type system.

In contrast, in task four, the recursive type definition is
hard to understand without type information. Groovy users
hence needed to read more files, more file switches, more
builds and runs, and more time overall. According to our
theory, the trial-and-error approach, appropriate for simple
types, clearly shows its limit for complex types.

Task 5. Task five is also interesting in constrast to task
two. Task five required more types to be identified, but the
types to identify were of a similar complexity. Thus one
could conclude that the more types need to be found, the
more the statically typed solution is advantageous; less file
browing is necessary, and less file switches as well. There
are no differences in builds and runs, however. This could be
due to the simplicity of the type definitions themselves (in
comparison to task four).

Summary. Analyzing the tasks through the various met-
rics, we built a working theory of why we saw the results
we observed: The difference in task one could be due to the
experience of the subjects with Java.

For tasks two onwards, simple type definition may be eas-
ier to understand through trial-and-error than through static
typing. Static typing encourages subjects to consult the class
definition that are mentioned, whereas the users of the dy-
namic type system employ a more partial and less system-
atic program comprehension process. This approach shows
its limits for more complex tasks, when more types, or more
complex types are identified. These need more browing, file
switches, and program runs (especially for complex type
definitions), than the statically typed version.

This is only a working theory; it needs to be confirmed
by other controlled experiments, and qualitative and quanti-
tative program comprehension studies. Further, we are cur-
rently not able to formulate this theory more precisely: Al-
though we suspect that, for example, task two and four differ
with respect to their complexity, and although we think that
the type system in task four documents better the design of
the underlying classes, we cannot describe this in a way that
we could determine to what extent this documentation is bet-
ter. Likewise, the apparent correlation between file switches
and development time warrants further investigation.

However, this working theory is a first step towards for-
mulating a theory that describes differences in developer per-
formance in statically and dynamically typed programs.

7. Conclusion
This paper described an experiment comparing static and dy-
namic type systems for programming tasks in an undocu-
mented API. We gave 27 subjects five programming tasks
and found that the type systems had a significant impact on
the development time: for three of five tasks me measured a



positive impact of the static type system, for two tasks we
measured a positive impact of the dynamic type system.

Based on the previous discussion, our overall conclusions
for the use of static/dynamic type systems in undocumented
APIs are the following:

1. There is no simple answer to the static vs. dynamic
typing question: The question of whether or not static
types are helpful for developers cannot be generally an-
swered without taking the programming tasks into ac-
count. In fact, this is completely consistent with the
results of previous experiments, such as Prechelt and
Tichy’s [21], or our own experiments[10, 27].

2. The type system has an influence on the development
time: The choice of the static or dynamic type system had
an influence on the development time for all program-
ming tasks in the experiment. Again, this is consistent
with previous experiments (such as [11, 21, 27]).

3. Dynamic type systems potentially reduce develop-
ment times for easier tasks: Although we are currently
not aware of how to determine exactly what “easy” and
“hard” means, it seems that if a dynamic type systems
has a positive impact, this is rather the case for easier
tasks (which is consistent with the experiments described
in [10, 27]). Although there was one counter example in
the experiment (task 1), we think that the result for this
task is rather a consequence of the chosen subjects’ low
familiarity with the dynamic language, Groovy (despite
the presence of a warmup task).

4. Static type systems reduce development times if

(a) the type annotations explicitely document design de-
cisions, or

(b) the number of classes in the programming tasks are
relatively high.

We argued for a) based on the fourth programming task
(also in comparison to task two and three) and for b)
based on the fifth programming task (in comparison to
taks two and three). However, we also showed that a
pure reduction of the number of classes is not valid (see
section 4.4).

Comparison to related work. The experiment by Klein-
schmager et al. [15] should also be taken into account; there,
for no single task a positive impact of the dynamic type sys-
tem could be shown. Comparing the tasks of the experiment
presented here and the one in [15], we think that (again) the
difference lies in the complexity of the programming tasks.
While the programming tasks here require to instantiate an
configure objects, the programming tasks in [15] required
more interactions between the objects. We think that it is
necessary in future experiments not only to think about com-
plexity from the perspective of “number of unknown arte-
facts that should be used” but also from the perspective of

“complexity of the required interaction between the devel-
oper and the API classes”.

Future work. While there is already some strong evi-
dence for our first two conclusions (as they agree with sev-
eral previous experiments in the literature), we think that
much more research is required in order to give more ev-
idence for the conclusions three and four. We plan to do
so in subsequent studies. Rather than closing the issues, we
see this experiment as starting point that opens a number of
questions for following experiments.

Our discussions (and even the original research question)
were strongly related to the idea that the static type system
has a positive impact on the documentation. In fact, this is
related to the kind of static type system as provided by pro-
gramming languages—such as Java—where the type system
also implies the existence of corresponding type annotations
in the code.

In a follow up experiment, we will study if the positive
impact of the static type system, as shown in the program-
ming tasks four and five, can also be achieved only with type
annotations in the code—without static type checks. This ex-
periment is currently planned and will be executed in the
very near future. A related experiment would be to evaluate
the benefits of a statically typed language using type infer-
ence instead of annotations (such as Haskell or ML).

Another question is to what extent the type system plays
a role if the API is well documented. A good documentation
may reduce the effect of the (static or dynamic) type system
on the developer performance. Works such as [14, 23] pro-
vide additional insights about other possible influencing fac-
tors for the use of APIs, which might have a larger effect than
the type system of the underlying programming language.

Strong empirical evidence is needed to back the argu-
ments in favor of static or dynamic type systems. From that
perspective, we consider this experiment as a valuable con-
tribution. We also think that much more experimentation is
needed in order to strengthen the evidence—the current state
of experimentation in the area of programming languages,
and type systems in particular, is weak. We hope that more
experiments and replications will be performed by the pro-
gramming language community at large.
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A. Appendix
A.1 Experimental Design
A general question when designing an experiment is whether
it should be done as a between-subject (without repeated
measurement) or a within-subject (with repeated measure-
ment on each subject) experiment. The main reason for
choosing a within-subject design is that programming tasks
are typically quite complex. The subjects do not only have
to manage the intellectual effort of the programming tasks,
they must additionally be able to handle a development en-
vironment such as an editor, understand compiler or run-
time exceptions, etc. We are far from ideal situations, such
as measuring reaction times to simple stimuli. As a con-
sequence, programming tasks have a large deviation (see
for example [5, 17] for a more detailed discussion on this)
that potentiallys hide the main effect that should be stud-
ied in the experiment. This does not happens because there
is no main effect; this happens because the individual dif-
ferences among subjects are much larger than the main ef-



fect. Within-subject design help to overcome this problem
(see [3])—although the potential problem of learning effects
needs to be considered.

We assumed for the experiment a (positive) impact of the
static type system on the measured results, but we also as-
sumed a positive impact of the learning effect. Consequently,
the repeated measurement for each subject contains both, the
learning effect as well as the type system effect.

Figure 1 in section 3.4 illustrates the implications of
the within-subject design – whose measurement implies the
learning as well as the language effect – in more detail: the
upper and the lower part of the figure represents two (very
similar) subjects in the two different groups. The figure con-
tains the first as well as the second measurement. For group
one (Groovy first) this means that the first measurement is
the development time for the Groovy solution, while for the
second group (Java first) the first measurement is the de-
velopment time required for the Java solution. The second
measurement (and hence the difference between the first and
the second measurement) represents the development time
required for the second language. The second measurement
also contains the learning effect, which in both cases reduces
the development time of the first measurement.

Under the assumption that the static type system reduces
the development time, the second measurement for a sub-
ject in the group starting with Groovy must be much smaller
than the first measurement, because learning effect as well
as the language effect reduce the development time. Under
the assumption that the learning effect is smaller than the
language effect, the second measurement for a subject in the
group starting with Java is higher than the first measurement.
Hence, if for each subject in the sample the first and the sec-
ond measurements are similar to the ones shown in Figure
1, it can be concluded that the development time using the
static type system in Java requires less time than the devel-
opment time using the dynamic type system in Groovy.

Keep in mind that the resulting analysis is performed on a
sample; it is not necessary that the assumptions hold for each
subject in the sample, they should hold only in the average.

The experimental design would fail if the learning effect
is much larger than the effect of the type system. In such
a situation, the experiment would reveal for both groups a
significant decrease of development times. Figure 8 illus-
trates this potential problem: In both cases the language ef-
fect is rather small in comparison to the learning effect, i.e.
the learning effect dominates the language effect. Conse-
quently, for the subjects in both groups the second measure-
ment would be lower than the first measurement. In such
a situation the experiment would not reveal anything with
respect to type systems – in both situations the second mea-
surement is lower than the first measurement. Because of the
above mentioned large deviations, the differences between
the first and the second measurements will probably not be
significant. Hence, it would only be possible to conclude that
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Figure 8. Potential problem in the experimental design:
large learning effect

subjects who perform a programming tasks for the second
time, are quicker in the second round – which is irrelevant
for the research question followed by the experiment.

Importantly, the design does not require the learning ef-
fect to be much smaller than the language effect. It is valid if
both effects have a comparable size. In such a situation, the
group with the accumulated effects will show (significant)
differences between the first and the second measurement
while the group with the abrogated effects does not.

A.2 Measured Development Time and Descriptive
Statistics

Table 6 contains all measured data for all 27 subjects in
the experiment. In addition to the raw data we also include
the differences for each subject and each task in the table
(Groovy times - Java times), i.e. a negative value means that
the subject required more time using Java than using Groovy.
Table 7 shows the descriptive statistics for the measure-
ments. It turns out, that the standard deviation for the differ-
ent tasks is quite large (in most cases comparable to the me-
dian) – a phenomenon that can be often found in program-
ming experiments – which from our point of view strength-
ens the experimental design based in a within-subject com-
parison (see sections 3.4, A.1 and 3.10).

For task one 19 subjects required more time for the
Groovy solution than for the Java solution. For task two and
three, just 10 subjects required more time for the Groovy
solution, for task four 22 subjects required more time for the
Groovy solution, and finally 20 subjects required for task 5
more time for Groovy than for Java. For task one, four and
five a majority required more time using the dynamic type
system while for task two and three it is the opposite.
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1 B 897 124 -773 793 1336 543 2362 1390 -972 3079 2225 -854 1113 941 -172 8244 6016 -2228
2 B 179 58 -121 1152 373 -779 817 1703 886 1307 2414 1107 949 1342 393 4404 5890 1486
3 B 175 944 769 2868 1210 -1658 2447 1271 -1176 1887 1834 -53 1669 1399 -270 9046 6658 -2388
4 B 196 110 -86 1451 644 -807 4823 607 -4216 899 1554 655 1148 1220 72 8517 4135 -4382
5 B 89 60 -29 596 691 95 2191 278 -1913 1877 824 -1053 605 1126 521 5358 2979 -2379
6 B 366 121 -245 2842 2708 -134 1348 1234 -114 1761 2942 1181 2296 1120 -1176 8613 8125 -488
7 B 122 139 17 1021 310 -711 2444 805 -1639 886 2942 2056 893 887 -6 5366 5083 -283
8 B 82 69 -13 454 633 179 845 1419 574 2817 3113 296 890 607 -283 5088 5841 753
9 A 86 448 362 2429 1977 -452 1108 924 -184 1054 2238 1184 1326 1484 158 6003 7071 1068

10 A 58 228 170 348 492 144 634 518 -116 455 1671 1216 644 1025 381 2139 3934 1795
11 A 105 144 39 461 345 -116 621 805 184 382 1144 762 532 548 16 2101 2986 885
12 A 45 225 180 1380 951 -429 1134 1604 470 652 2625 1973 577 1774 1197 3788 7179 3391
13 A 63 539 476 404 358 -46 917 477 -440 738 2473 1735 387 2705 2318 2509 6552 4043
14 A 83 248 165 944 2190 1246 515 1247 732 1514 4359 2845 862 1652 790 3918 9696 5778
15 A 62 177 115 374 1266 892 338 515 177 697 3714 3017 435 759 324 1906 6431 4525
16 B 139 181 42 648 362 -286 1558 328 -1230 1557 4179 2622 988 615 -373 4890 5665 775
17 B 904 76 -828 4644 437 -4207 4963 1378 -3585 5795 2663 -3132 1296 1078 -218 17602 5632 -11970
18 B 483 730 247 4787 608 -4179 5747 768 -4979 2801 4614 1813 1238 5953 4715 15056 12673 -2383
19 B 183 243 60 1673 683 -990 2344 500 -1844 1848 2012 164 709 812 103 6757 4250 -2507
20 B 255 155 -100 2298 1449 -849 2398 1472 -926 2144 2649 505 1236 2142 906 8331 7867 -464
21 A 44 144 100 1097 1775 678 225 1059 834 272 8042 7770 407 2955 2548 2045 13975 11930
22 A 273 1195 922 1602 847 -755 527 866 339 1392 5185 3793 1170 2310 1140 4964 10403 5439
23 A 107 6411 6304 4081 147 -3934 1088 1388 300 1001 1682 681 897 1596 699 7174 11224 4050
24 A 169 190 21 408 1060 652 1040 936 -104 4107 1555 -2552 517 813 296 6241 4554 -1687
25 A 234 1011 777 2449 665 -1784 2955 1564 -1391 1296 3558 2262 1235 2612 1377 8169 9410 1241
26 A 288 610 322 789 1180 391 2015 6676 4661 1559 6341 4782 567 1387 820 5218 16194 10976
27 A 75 216 141 473 1059 586 3534 2399 -1135 1292 3190 1898 645 735 90 6019 7599 1580

x

Table 6. Development times for all 27 subjects; times in seconds, differences are Groovy times - Java times; Group A =
Groovy first; Group B = Java first
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min 44,0 58,0 -828,0 348,0 147,0 -4207,0 225,0 278,0 -4979,0 272,0 824,0 -3132,0 387,0 548,0 -1176,0
max 904,0 6411,0 6304,0 4787,0 2708,0 1246,0 5747,0 6676,0 4661,0 5795,0 8042,0 7770,0 2296,0 5953,0 4715,0

mean 213,4 548,0 334,6 1572,8 953,9 -618,9 1886,6 1264,1 -622,5 1669,2 3027,5 1358,3 934,5 1540,6 606,1
median 139,0 190,0 100,0 1097,0 691,0 -286,0 1348,0 1059,0 -184,0 1392,0 2649,0 1184,0 893,0 1220,0 324,0

std. dev. 224,1 1212,8 1252,7 1314,5 634,6 1452,5 1473,2 1189,4 1834,0 1215,4 1622,4 2153,1 431,9 1106,5 1143,1

Table 7. Descriptive statistics for development time (time in seconds for all but standard deviation)

A.3 Within-Subject Analysis
Figure 9 illustrates the boxplot for the within-subject mea-
surement of group A (the group that started first with the
dynamically typed tasks). The differences to the between-
subject measurement from Figure 10 are obvious: tasks four
and five reveal differences, task one and three show potential
differences and task two probably does not reveal any differ-
ence in the development time of Groovy and Java. Further-
more, the differences correspond to the expectations: in all
cases the median of the Groovy development times is larger
than the median of the Java development times. As argued in
section 3.4 this difference consists not only of the difference
between the type systems but also of the learning effect.

The significance tests confirm the previous impressions
concerning differences for the five tasks. Because the data
is now based on a within-subject measurement, the Java and
Groovy development times should not be tested for normal-
ity separately. Instead, the differences should be checked
(see [2]). Table 8 shows the results for the Shapiro-Wilk-test
in order to check the normality assumption, and the corre-
sponding p-values for the Wilcoxon-test and t-test. For task
1, 4 and 5, the differences are significant

Figure 10 is the boxplot for the group B. For task 1 and 2,
there is a potential benefit for Groovy; for task 3, the Groovy
benefit is obvious; for task 4 and 5, a potential advantage to
Java. We perform the same analysis as before: we check the
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Figure 9. Boxplot for the within-subject comparison of
Group A (Groovy first)

Task Task 1 Task 2 Task 3 Task 4 Task 5
Shapiro-Wilk p-value 0.00 0.01 0.00 0.29 0.05

Applied test Wilcoxon Wilcoxon Wilcoxon t-Test Wilcoxon
p-value 0.00 0.93 0.45 0.03 0.00

dominating language Java - - Java Java

Table 8. Significance tests for the within-subject compari-
son of Group A (Groovy first)

Task

54321

D
e

v
e

lo
p

m
e

n
t 

T
im

e
 (

in
 s

e
c

o
n

d
s

)

5000

4000

3000

2000

1000

0

58

10

1

36
30

68

76

84

115

130

Java

Groovy

Language

Figure 10. Boxplot for within-subject comparison of Group
B (Java first)

differences in measurements for normality, then we perform
either the Wilcoxon-test or the t-test (Table 9).

Task Task 1 Task 2 Task 3 Task 4 Task 5
Shapiro-Wilk p-value 0.08 0.00 0.43 0.60 0.00

Applied test t-Test Wilcoxon t-Test t-Test Wilcoxon
p-value 0.35 0.01 0.01 0.34 0.86

dominating language - Groovy Groovy - -

Table 9. Significance tests for the within-subject compari-
son of Group B (Java first)

A.4 Test Runs
Table 10 contains the descriptive statistics for the number
of test runs, and Figure 11 shows the boxplot. It seems as
if the boxplot (which does not take into account that each
subject is measured twice) already indicates that there is no
general tendency with respect to the number of test-runs:
for task one, three, and four there seems to be a tendency
that the number of test runs is higher for the dynamically
typed solutions. For task two and five it is unclear whether
there is a difference between the number of test runs for the
dynamically typed or the statically typed solutions.
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Figure 11. Boxplot for test runs

Performing a repeated measures ANOVA on the test runs
reveals a first interesting characteristic. For the first round,
with p<.01 and η2=.142 there is a significant impact of the
programming tasks. However, the interaction between the
factor task and programming language is only close to sig-
nificant (p<.07 and η2=.092). Again, the factor program-
ming language is not significant (p>.99). This is similar to
the results for the measured development time. However,
the second round reveals different results. Neither the fac-
tor programming task nor the interaction between task and
programming language are significant (p=.101, respectively
p=0.188). Instead, the factor programming language turns
out to be significant (p<.01, η2=.30). A non-parametric test
shows significant differences for tasks 2, 3, and 4 (Table 11).

Group A (Groovy first)
Task Task 1 Task 2 Task 3 Task 4 Task 5

p-value 0.23 0.70 0.03 0.01 0.81
less test runs - - Java Java -

Group B (Java first)
p-value 0.23 0.03 0.78 0.48 0.68

less test runs - Groovy - - -

Table 11. Wilcoxon tests for number of test runs

A.5 Watched Files
The repeated measures ANOVA on the number of watched
files reveals for the second round a significant factor of pro-
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min 1 1 0 4 2 -2 1 3 2 2 8 6 4 1 -3
max 44 70 26 51 24 -27 66 57 -9 72 83 11 49 63 14

mean 7.67 12.15 4.48 16.78 10.63 -6.15 12.33 20.81 8.48 15.67 25.89 10.22 12.48 11.48 -1.00
median 4 10 6 11 10 -1 4 19 15 13 20 7 10 6 -4

std. dev. 9.17 13.99 4.82 13.96 6.04 -7.92 18.14 14.64 -3.51 14.37 16.68 2.31 9.80 14.25 4.45

Table 10. Descriptive statistics for number of test runs

gramming task (p=.0 and η2=.31), a significant interaction
between the programming task and the group (p<.02 and
η2=.116) and non-significant factor group (p=.19). For the
second round, the factor programming task is significant
(p=.0 and η2=.367) the interaction is significant (p<.01 and
η2=.176) as well as the factor group (p=.0 and η2=.35). The
results of the Wilcoxon-test for both groups is in Table 12.

Group A (Groovy first)
Task Task 1 Task 2 Task 3 Task 4 Task 5

p-value 0.02 0.35 0.05 0.01 0.00
more files Groovy - Groovy Groovy Groovy

Group B (Java first)
p-value 0.67 0.01 0.85 0.04 0.05

more files - Java - Groovy Groovy

Table 12. Wilcoxon tests for number of watched files
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Figure 12. Boxplot for file switches

A.6 File Switches
Table 13 contains the descriptive statistics for the number
of test runs, and Figure 12 shows the boxplot. The boxplot
shows that the number of file switches is comparable to the
development time.

The repeated measures ANOVA reveals for the first round
a significant factor of programming task (p=.0 and η2=.36),
significant interaction between the programming task and
the group (p<.01 and η2=.173) and a non-significant fac-
tor group (p>.75). For the second round, the factor program-
ming task is significant (p=.0 and η2=.412) the interaction is

significant (p<.01 and η2=.157) and the factor group is close
to significant (p<.06). The Wilcoxon-test on both groups is
shown in Table 14.

Group A (Groovy first)
Task Task 1 Task 2 Task 3 Task 4 Task 5
p-value 0.0 0.78 0.55 0.01 0.00
more switches Groovy - - Groovy Groovy

Group B (Java first)
p-value 0.48 0.01 0.02 0.17 0.36
more switches - Java Java - -

Table 14. Wilcoxon tests for number of file switches



Task 1 Task2 Task3 Task4 Task5
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min 1 1 26 1 -25 24 30 6 27 57 30 35 31 -4
max 29 202 173 366 162 -204 412 285 -127 444 375 -69 201 299 98

mean 9.67 23.63 13.96 90.33 52.96 -37.37 113.33 80.41 -32.93 91.59 156.37 64.78 71.74 102.07 30.33
median 8 11 3 73 43 -30 73 60 -13 71 156 85 64 91 27

std. dev. 7.13 40.36 33.23 75.43 35.94 -39.49 93.14 65.10 -28.04 82.28 76.41 -5.86 32.81 60.69 27.88

Table 13. Descriptive statistics for number of file switches


