
Modeling Variability in Software Process Models∗

Jocelyn Simmonds
Departamento de Informática
Universidad Técnica Federico

Santa María
Santiago, Chile

jsimmond@inf.utfsm.cl

María Cecilia Bastarrica
Computer Science

Department
Universidad de Chile

Santiago, Chile
cecilia@dcc.uchile.cl

Luis Silvestre
Computer Science

Department
Universidad de Chile

Santiago, Chile
lsilvest@dcc.uchile.cl

Alcides Quispe
Computer Science

Department
Universidad de Chile

Santiago, Chile
aquispe@dcc.uchile.cl

ABSTRACT
Software process lines (SPrL) are families of highly related
processes that are built from a set of core process assets.
Software companies can use SPrLs to address the develop-
ment of different types of projects – development or main-
tenance, large or small, complex or simple – and therefore
reuse process knowledge in an organized way. This can be
achieved by either defining a series of processes, one for each
context, or by tailoring a general process to each context.
Both approaches have their disadvantages, and currently,
there are no conclusive proposals about how to manage pro-
cess variability. In this paper, we propose a combination of
notations and tools for formalizing software process models
including their variability, which enables automated SPrL
tailoring. We use the Eclipse Process Framework Composer
for specifying the general process itself, and SPLOT, a fea-
ture modeling tool, for specifying process variability. We
then use the Modisco/AMW tool to establish constraints
between both models, in order to ensure that only reason-
able variability is specified. Using an industrial case study,
we show how these tools are used to specify and analyze
software process models that include variability.

General Terms
Software processes, variability modeling

Keywords
software process lines, model-driven engineering, process as-
set reuse

∗This work has been partly funded by project Fondef
D09I1171, Chile.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Software processes are recognized as valuable means for

achieving productivity and quality in software development.
However, defining a single process is hard and expensive, and
it is not necessarily adequate for all kinds of projects, e.g., a
large and complex project probably requires a more sophis-
ticated process than a simple maintenance project. Software
process lines (SPrL) try to address this problem, advocating
the specification of a series of processes, one for each pos-
sible project context, ensuring that there is an appropriate
process for each context. However, it is hard and sometimes
even impossible to anticipate all eventual contexts and thus
the appropriate processes. An alternative is to use a soft-
ware process line (SPrl) by defining a general process that
includes potential variability, which is then tailored to the
characteristics of each project, resulting in a project-specific
process. However, this activity is only cost-effective if it can
be automated, and automation is only possible if models are
formally specified.

Formal software process specification enables different types
of automated processing and analysis, such as consistency
checking, evaluation, tailoring, project scheduling and plan-
ning, among others. In this context, we have defined the
ADAPTE project1 whose goal is to develop a technological
and methodological framework that helps small and medium
enterprises (SMEs) automatically tailor their software pro-
cesses, allowing them to improve their productivity, as well
as product quality. As part of this project, we have defined
an initial model-based tailoring approach [9], where basic
optionality was the only variability allowed. However, in
practice we have realized that more sophisticated kinds of
variation are necessary [24]. But there is still no standard
technical solution proposed for modeling software processes
along with their potential variability.

The ADAPTE framework is intended to be used by pro-
cess engineers at SMEs, and companies of this type tend to
use open source technology to reduce costs. Thus, a techni-
cal solution for these companies must satisfy the following
quality requirements: 1) it must be built on existing open-
source projects, so that there are little or no licensing costs;

1ADAPTE: Adaptable Domain And Process Transforma-
tion Engineering. http://www.adapte.cl

Figure 1: Overview of our approach.

2) it must be compliant with standard file formats so that
our framework can interact with existing SME tool sets; and
3) it must be user-friendly, since there are little resources to
be spent on training.

There are various languages specifically created for pro-
cess specification. We propose to use SPEM 2.0 which is
the OMG standard for software process specification [16].
Even though SPEM 2.0 includes primitives for specifying
variability, they are hardly understandable by process engi-
neers [14], and thus it is hard to validate processes specified
in this way. Taking into account these limitations, Martinez
et al. [13] have proposed vSPEM, a SPEM extension for
managing variability that incorporates some ideas from the
software product line community. However, the tool support
for this notation is still immature. In [24], we studied how
general variability modeling languages such as OVM and
feature models can also be used to specify process variabil-
ity. Notations that have proved to be powerful for specifying
variability in software product lines may not be necessarily
appropriate for process variability, mainly because not all
variants they allow are valid in the context of processes,
e.g., a process element such as a role may not be realized by
variants of a different type as a task.

In this paper we propose the use of a series of notations
and supporting tools for formally specifying software process
models along with their planned variability. The overview
of our approach is shown in Fig. 1: the general process and
its variability are modeled separately, these models are then
linked through integrity constraints so that it can be an-
alyzed for consistency. The final result is the basis of a
formally specified SPrL, which can be adapted to different
project contexts. The general process model is specified us-
ing the Eclipse Process Framework Composer (EPFC), since
this tool implements the SPEM 2.0 standard and it is freely
available. We choose to specify process variability using fea-
ture models, since there is a vast amount of existing work
on modeling variability with this formalism. Also, there
are various free and user-friendly tools for this notation,
like SPLOT, which also provides some built-in consistency
checks. However, feature models are highly expressive, and
since we are using an independent tool for specifying process
models’ variability, we could eventually allow the specifica-
tion of meaningless models, e.g., we could specify features
in SPLOT that are not part of the process, or fill a vari-

ation point with a process element of the wrong type. In
order to deal with these potential problems, our proposal
also includes a weaving model, which establishes a series of
consistency constraints between the process model and its
variability model; we specify this weaving model using the
Modisco/AMW tool.

To demonstrate the feasibility of our approach, we de-
scribe the application of the complete tool chain to the
process model of a medium-size Chilean software company.
The tools supporting the activities in Fig. 1 meet the first
two quality requirements of our framework: free tools and
standard formats. EPFC and SPLOT both also satisfy the
third requirement (user-friendliness). However, as the weav-
ing model is manually created by the process engineer, this
part of our approach is still cumbersome and not quite user-
friendly. We believe that as part of our future work, the
accidental complexity of the weaving model must be hidden
under an additional interface.

The paper is organized as follows. Section 2 describes the
SPEM 2.0 standard for formalizing software processes. Sec-
tion 3 presents the kinds of variability found in software pro-
cesses. The details about the modeling tools are presented
in Sect. 4. The application example is presented in Sect. 5,
desingcrib the general process in EPFC, its variability in
SPLOT, and its constraints in AMW. Some related work is
discussed in Sect. 6. Finally, we conclude in Sec. 7 with a
summary of the paper and suggestions for future work.

2. SPECIFYING PROCESS MODELS WITH
SPEM 2.0

SPEM 2.0 is the OMG standard notation for modeling
software and systems development processes and their com-
ponents. SPEM 2.0 is defined as a UML 2.0 profile, and
takes an object-oriented approach to process modeling. Di-
agrams are used to model two different views of a process:
a static view, where process components (tasks, work prod-
ucts and roles) are defined; and a dynamic view, where in-
teraction diagrams (like UML activity diagrams) are used to
model how process components interact in order to accom-
plish the goals of the modeled process.

2.1 Process Components
SPEM 2.0 encourages process asset reuse by making a dif-

ference between the definition of process building blocks and
their later use in (possibly more than one) processes. Process
components, like tasks, roles and work products, are defined
and stored in a Method Library, and these components are
then used to define processes. A process is a collection of
activities, where an activity is a “big-step” grouping of role,
work product and task uses. Roles perform activity tasks,
and work products serve as input/output artifacts for tasks.

Roles are used to define the expected behavior and re-
sponsibilities of the team members involved in a process.
For example, a role definition like “Analyst” is used to rep-
resent team members that gather input from stakeholders
and define requirements. Note that roles do not represent
individual team members, and that one team member may
take on several roles. Also, a single role may be responsible
for more than one work product, as well as modify multiple
work products.

Work products represent anything produced, consumed,
or modified by a process. Tangible work products are usu-

ally called “artifacts”, while intangible products are called
“outcomes”. Work products that will be handed off to inter-
nal or external parties are also classified as “deliverables”.
Documents, models, repositories, source code and binaries
are examples of artifacts and deliverables, while an event
like notifying a party that an activity has concluded is an
outcome. Formally, roles and work products are stereotyped
UML classes, «role» and «work product», respectively. As
such, generalization, aggregation and composition relation-
ships can be used to define more complex roles and work
products.

A task is a set of subtasks/steps that are performed by
possibly multiple roles, and involve the creation or modifi-
cation of one or more work products. Ideally, only one role is
responsible for a task. As such, a task definition is a stereo-
typed class diagram, where the roles that are responsible for
it and those that will perform the associated work are iden-
tified, as well as the input and output work products (which
can be tagged as mandatory or optional).

2.2 Process Behavior
After having defined the basic process components, we can

now specify how work products change state, how tasks are
grouped into activities, and finally, how previously defined
process components can be used to define processes.

A work product may go through different states during
its lifetime. As such, work products can have an associated
state model. Process engineers can use this model to specify
a work product’s states, as well as the permitted transitions
between these states. Ideally, such a model can be used to
determine how complete a work product is.

An activity is a logical grouping of task, role and work
product uses. Activity diagrams are used to model the work-
flow between activity tasks. A process is a set of activities,
where the relationship between these activities is also speci-
fied using an activity diagram. Task, role, work product and
activity definitions are recommendations made by a process
engineer, and can be overridden when creating a new pro-
cess, e.g., by adding/removing a work product from a task.

2.3 Variability
Variability is promoted in SPEM 2.0 by defining process

elements that are stored in the Method Library and can be
then combined in different ways to produce different pro-
cesses. However, this mechanism by itself does not provide
the process engineer with any guidance about recommended
process patterns and process modeling practices. SPEM 2.0
provides four indirect mechanisms for defining how process
elements vary: contributes, replaces, extends, and extends-
replaces. Their usage rules can be found in [16] even though
their practical usage is not widespread.

3. SOFTWARE PROCESS VARIABILITY
In this section, we first describe the types of process vari-

ability we have encountered in practice. We then present
our methodological approach for modeling process variabil-
ity including the consistency rules needed to make sure that
we only specify correct variability models.

3.1 Software Process Lines
Companies tend to use similar processes to develop differ-

ent types of projects (e.g., new development, maintenance,
extension, etc.). Given a set of similar processes, a family

of processes can be defined by identifying the common as-
pects of these processes, as well as how they vary according
to the type of project being developed. Thus, a software
proceses line (or family) consists of two things: a general
model of the process, as well as a specification of what pro-
cess elements vary and how, corresponding to the analysis
and design stages of the SEI’s domain engineering, and indi-
vidual process definitions that are created by resolving the
variability in the general model, allowing the tailoring of
specific process definitions that can be applied to each new
project, as in the application (process) engineering.

Processes are formed by different types of process ele-
ments, and how these elements vary determines how the
process varies.

3.1.1 Optionality
A task may be optional when it is not always required.

That means that the process may still be valid if a certain
task is not executed in certain contexts. For example, in any
development, the “Architectural Design” document may be
mandatory, since it guides the implementation, but the task
“Approve Architectural Design” task may not be necessary
for an in-house development. When a task is optional, all the
work products that it generates should generally be optional
as well. In the case of the former example, the“Architectural
Design Approaval”would be an optional outcome that would
only exist if the “Approve Architectural Design” is executed.

A work product may also be optional. There are two situ-
ations where this happens: (1) when the task that generates
the work product is also optional, and (2) when the task
that generates the work product has two alternatives, one
that generates the work product and another that does not.
Similarly, a role may be optional if the task it is associated
to has two alternatives, one requiring the role and another
one that does not require it.

3.1.2 Alternatives
A task may be realized by any one of a series of concrete,

alternative tasks – when the process engineer defines the
process, he/she needs to pick one of these alternatives. This
is the case where different techniques may be applied for
realizing a particular task, or, depending on the complexity
of the project at hand, tasks of different complexity may be
executed. A work product may also have alternatives, but
these are generally related to alternative implementations
of the tasks that generate them. Alternative roles are also
related to task alternatives; e.g., a complex task may require
a more competent person in charge than a simple task.

3.2 Our Approach
We propose a combined approach for specifying the analy-

sis and design stages of the SPrL: first, the process engineer
specifies the general process and its variability using separate
models; we must then determine whether these two models
are consistent with each other (by checking if a set of con-
straints holds on both models). This approach is shown in
Fig. 2.

In order to start the tailoring process, i.e. generating par-
ticular processes for specific projects, the variability model
must be consistent with the general process model. If the
models are not consistent with each other, we should be able
to give the user feedback about which rules were broken so
that he/she can fix the input models. We have identified

Figure 2: Elements of our approach as a process line.

an initial set of constraints that must hold for any process
model specified along with its variability:

Rule 1: All process elements in the variability model must
be defined in the general process’s Method Library.

Rule 2: The variants of a process element must be the same
type as the variation point.

Rule 3: Roles and work products which are only associated
to optional tasks in the general model, must be marked
as optional in the variability model.

For example, if the general process includes both the “Ar-
chitectural Design” document and the “Approve Architec-
tural Design” task, then both process elements must appear
in the variability model and viceversa (Rule 1). If there are
two alternative ways of specifying the“Architectural Design”
document, e.g., “Informal Architectural Design” (box-and-
line diagrams) and “Formal Architectural Design” (compo-
nent diagrams), then both alternatives must also be defined
as work products in the Method Library (Rule 2). If the
“Approve Architectural Design” is an optional task and it
is associated to the “Client Architect” role in the general
model, and this role is not associated to any other process
element, then “Client Architect” must be also marked as op-
tional in the variability model (Rule 3).

4. TOOL SUPPORT
In this section, we give an overview of existing tool support

for specifying the general process and its variability, and we
present our tool proposal. Since we are modeling variability
separate from the general process, we also give an overview
and a recommendation of weaving tools, which are used to
establish constraints between two models.

4.1 General Process Modeling
The Eclipse Process Framework Composer (EPFC) [6] is

a tool that allows the specification of SPEM-like2 software
processes, supporting a broad variety of project types and
development styles. In EPFC, the process is shown as a
tree of process elements, where the connections between the
elements are entered and shown using a form-based inter-
face. Process engineers maintain a general library of pro-
cess patterns, which can then be reused in different process
definitions. Users of the tool can also “publish” a process,
which generates a set of HTML pages that document the
process, including graphical depictions of the process work-
flows. EPFC is an active project, it is freely available online.

2Internally, the EPFC uses its own metamodel, and not the
SPEM 2.0 UML profile defined in the OMG standard.

4.2 Variability Modeling
In [24], we analyzed four different notations for specify-

ing software process model variability: SPEM primitives,
vSPEM [13], OVM [17], and Feature Models [10]. All four
formalisms proved expressive enough to capture variability
in process models, so the decision of which formalism to use
rested on available tool support and usability, since process
engineers at SMEs must be able to use the tool chain with
little training.

We compared eight tools that supported these formalisms
w.r.t. six criteria: supported file formats, underlying formal-
ism, supported analyses, type of interface, availability and
usability. The SPEM 2.0 variability modeling primitives are
difficult to understand and use, and supporting tools like
EPFC use basic form-based interfaces and provide limited
analysis of the resulting models.

We also found that, while it was clear and compact to
model process variability with vSPEM, its tool support is
still immature [13]. The FaMa-OVM [21] tool provides au-
tomated analyses for orthogonal variability models, but uses
non-standard input and output formats, which are not yet
well documented. On the other hand, the VEdit [15] tool
allows the graphical definition of OVMs, but does not offer
any of the model analyses available in FaMa-OVM. Thus, for
the time being, we have decided not to adopt either notation
for modeling variability.

Feature models, on the other hand, have rich tool support;
however, since feature models are a general purpose formal-
ism, they can be used to express certain configurations that
are meaningless for software processes. For example, we can
express that a variant work product may be realized by two
different variant roles, because the process model elements
are indistinguishable as all features are of the same type.
This situation makes it error-prone to use general purpose
notations for modeling variability in software processes.

The Clafer (class, feature, reference) [3] language can be
used to specify feature models, but lacks a native analysis
component; currently, models must be translated into Alloy
for analysis. The Feature Modeling Plug-in (fmp) [12], Hy-
dra [23] and XFeatures [19] are all feature modeling tools
available as Eclipse plug-ins, while SPLOT (Software Prod-
uct Lines Online Tools) [11] is a web-based application. These
tools rely on various external reasoning engines to analyze
feature models; however, the fmp tool is no longer sup-
ported, and the interface for specifying cross-tree constraints
in the Hydra and XFeatures tools can be difficult to use. On
the other hand, the SPLOT tool has an easy-to-use inter-
face, includes various built-in interactive analyses, and mod-
els can be exported as XML files. For these reasons, we have
decided to use SPLOT.

4.3 Weaving
If we use a separate model to specify process variability as

is the case of feature models, we need some way of checking
whether the modeled variability is consistent with the gen-
eral process model. One way of doing this is to use a general
purpose weaving tool: we have two models, the general pro-
cess model and the variability model, which when weaved
together, must produce a consistent model.

The C-SAW [7] tool is a general-purpose model trans-
formation engine, which takes as input models specified in
ECL (a variant of OCL). Weaving is done in an automated
manner: programmers write aspects that encapsulate cross-

Figure 3: Tool chain.

cutting constraints, and these are automatically applied at
the appropriate point-cuts of the base program. The C-SAW
tool does not maintain a weaving model, instead, it applies
transversal changes consistently and efficiently in large mod-
els.

The XWeave [8] toolkit is a set of Eclipse-based tools for
model weaving. This toolkit takes as input models that
comply with the EMF Ecore [5] metamodel. XWeave can
be used to create weaving models, where point-cut expres-
sions and element names are used to define weaving rules.
This toolkit is still in the prototype stage, and its authors
are currently extending its variability support, including in-
tegration with pure variants [18], as well as support for sym-
metric weaving models.

The Atlas Model Weaver (AMW) [4] is a tool for establish-
ing relationships between two or more input models. These
relationships (or “links”) are stored in a weaving model.
Links can be established in a manual or semi-automated
fashion, since the AMW tool includes an interactive inter-
face for building the weaving model. The weaving model
can then be used to generate model transformations that
combine the input models. This tool is compatible with the
Eclipse Modeling Tools framework, which makes it easy to
integrate with tailoring transformations specified in ATL.
For this reason, we choose to work with the AMW tool.

4.4 Our Tool Chain
Our tool chain is shown in Fig. 3. The general process is

specified using the EPFC tool, while variability is modeled
using using SPLOT. We then use the AMW tool to inter-
actively establish consistency: this tool takes as input the
general process model and the variability model, as well as
a set of constraints according to the rules defined in Sec-
tion 3.2. If both models are consistent, then AMW (op-
tionally) produces a weaved model that takes into account
the constraints; otherwise, the tool indicates which rules are
not valid. The process engineer can define additional rules
as needed. Since AMW has an interactive weaving model
editor, the process engineer can check the effect of each rule
as he/she adds it to the weaving model. The weaved model
can then be visualized using the EPFC tool.

5. CASE STUDY: RHISCOM
We have been working in supporting Rhiscom, a medium-

sized software company in Chile, in formalizing its software
process [22]. This company develops software for the retail
industry. It has steadily grown in the last five years, these
days counting with about 70 employees, and also having af-
filiate offices in Peru, Bolivia and Ecuador. Rhiscom has
defined a software process that has been applied and im-
proved for a couple of years, and only recently it has been
formalized using SPEM 2.0.

5.1 General Process
The Rhiscom general process model has been specified us-

ing the EPFC tool. In the corresponding figures, we have
manually highlighted variation points, which we define in
the next section. The EPFC tool saves process models in
its own XMI format, which is conformant with the UMA
metamodel. Since AMW takes as input ECORE-compliant
models, we have defined an ECORE metamodel for the rele-
vant parts of the UMA metamodel 3, which is automatically
extracted from the files generated by the EPFC tool.

Figure 4 shows the general development process used at
Rhiscom, which consists of five major activities, carried out
in sequence. We have marked two activities as optional:
“Requirements” and “Design”. SPEM 2.0 does not have a
stereotype to visually indicate optionality, so the notation
in Fig. 4 is not standard.

Figure 5 shows the detailed workflow of the “Require-
ments” activity at Rhiscom. Each task is associated to
various roles and work products, which are not shown in
Fig. 5 to increase legibility. The activity has a simple work-
flow, built using existing tasks. The outcome of two tasks
(“Verify requirements” and “Validate requirements”) affect
control, since negative results return the activity to earlier
tasks. Two tasks (“Specify requirements” and “Establish re-
quirements baseline”) are marked as“Has alternatives”. This
is not SPEM 2.0 notation, but it simply means that there
are various ways of realizing a generic task.

The class diagram in Fig. 6a shows the task definition of
the “Establish Requirements Baseline without Test Cases”
task, which is one of alternative ways of realizing the“Estab-
lish requirements baseline” task. This task definition is as-
sociated to one role and one work product, “Analyst” («per-
forms») and “Final SRS” («mandatory» and «output»), re-
spectively. This means that a team member with an analyst
profile should be in charge of this task, and that this task
has one mandatory output work product, the final version
of the “Software Requirements Specification”.

The state machine for the “Final SRS” document previ-
ously mentioned can be seen in Fig. 6b. This state machine
has three states: “initial”, “validated” and “approved”. The
“initial” state represents an empty document, whereas the
“validated” state indicates that the contents of the docu-
ment have been validated by the Analyst, but the document
is not necessarily complete. The final state, “approved”, is
used to indicate that the document is complete and that the
client has signed off on the document. These work product
states can also be used as guards in task definitions.

5.2 Variability
3Available at http://www.adapte.cl/models/ecore/uma.
ecore

Figure 4: Rhiscom’s general development process

Figure 5: Detailed specification of Rhiscom’s “Re-
quirements” activity.

Currently, Rhiscom manually tailors the general process
when starting new projects. Table 1 lists all the variabil-
ity found in this process. Eight modeling elements (column
one) were identified as variation points in this process; the
type of each modeling element is described in the“Type”col-
umn; the place in the process where the modeling element
is located is indicated in the “Location” column; whether
the modeling element is optional or has some alternatives
is specified in the last column. We now explain a couple of
examples.

Two activities in Fig. 4 are marked as optional – “Re-
quirements”and“Design”– which are either kept or removed
depending on the type of project. Since Rhiscom develops
for a niche market, it does not always carry out the “De-
sign” phase because new products are sometimes similar to
already-developed products. In the case of larger projects,
or those where there is some uncertainty, Rhiscom carries
out both phases. Maintenance projects usually skip both
phases, since the client has already specified the required
improvements in the “Commercial” activity.

Two tasks in Fig. 5 are marked as having alternatives:

“Specify Requirements” and “Establish Requirements Base-
line”. The first task can be realized by one of two alterna-
tives, “Specify Requirements in plain text” or “Specify Re-
quirements in Use Cases”; the second one can also be realized
by one of two alternatives, “Establish Requirements Baseline
without Test Cases” or “Establish Requirements Baseline &
Test Cases”.

The feature model shown in Fig. 7 models the variability of
this process. The root feature has three subfeatures: Activ-
ities, Work Products and Roles, used to group the different
types of process elements (tasks appear under the Activi-
ties). For example, the “Requirements” activity has seven
mandatory tasks, which are modeled as mandatory features
(which are preceeded by the symbol in Fig. 7). The two
tasks that can be realized in more than one way (labeled
“Has alternatives” in Fig. 5) are decomposed into additional
subfeatures using an alternative relationship (indicated by

the symbol in Fig. 7), where alternatives are preceeded
by the symbol.

There are constraints between the variation points of the
process. For example, the “Specify Requirements in plain
text”task must be realized by the role“Analyst tester”, while
the “Specify Requirements in Use Cases” task must be re-
alized by the “Analyst with Use Case skills”. Addtionally,
the “Final SRS” work product is generated by the “Establish
Requirements Baseline without Test Cases” task, while the
“Final SRS & test cases”work products are generated by the
“Establish Requirements Baseline & Test Cases”task. These
constraints are modeled as cross-tree constaints (shown in
Fig. 7). Again, in order to later use the AMW tool, we cre-
ated an ECORE metamodel of the SPLOT output format 4.

5.3 Weaving
Figure 8 shows a screenshot of the AMW tool, where the

feature model is the source model (far left) and the process
model is the target model (far right). The center panel con-
tains the weaving model created for these two models. In the
Rhiscom example, this weaving model consists of five sets of
constraints, one for each activity in Rhiscom’s general de-
velopment process (see Fig. 4). Selecting a constraint (or
constraint set) in the weaving model highlights the relevant
model elements in both the source and target models.

The following are some of the weaving constraints that
Rhiscom’s process engineer must add to their weaving model:
1) the variants “Specify Requirements in plain text” and
“Specify Requirements in Use Cases” must be defined in
Rhiscom’s Method Library (Rule 1); 2) additionally, both
of these elements must be defined as tasks if they are to
replace the “Specify Requirements” task (Rule 2); 3) the
“Analyst” role is only associated to optional tasks in the op-
tional “Requirements” activity, so this role is also optional
(Rule 3). For example, Fig. 8 shows the constraint set for
the “Requirements” activity: the “One To One” constraints

4Available at http://www.adapte.cl/models/ecore/
splot_sfxm.ecore

(a) (b)

Figure 6: (a) SPEM 2.0 task example: “Establish Requirements Baseline without Test Cases”, and (b) state
machine associated to “Final SRS” work product.

Table 1: Types of variability encountered in practice.
Modeling Element Type Location Optional or Alternative
Requirements Activity General process Optional
Design Activity General process Optional
Specify Requirements Task Requirements Workflow

• Alt1: Specify Requirements in plain text
• Alt2: Specify Requirements in Use Cases

Establish Requirements
Baseline

Task Requirements Workflow
• Alt1: Establish Requirements Baseline without Test Cases
• Alt2: Establish Requirements Baseline & Test Cases

Meet for integration
agreements

Task Design Workflow Optional

Execute Test Cases Task Construction Workflow Optional
SRS Baseline Work product Establish Requirements

Baseline Task • Alt1: Final SRS
• Alt2: SRS & Test Cases

Analyst Role Requirements Workflow
• Alt1: Analyst Tester
• Alt2: Analyst with Use Case skills

enforce Rule 1.
Since AMW has an interactive weaving model editor, the

process engineer can check the effect of each rule as he/she
adds it to the weaving model. In our example, the pro-
cess engineer initially made a spelling mistake in the feature
model, specifying a “Verity Requirements” task under the
“Requirements” activity instead of “Verify Requirements”.
This resulted in a “One To One” constraint violation, since
there is no “Verity Requirements” task in Rhiscom’s Method
Library. The AMW tool immediately notified the engineer
about the violation, and he changed it to “Verify Require-
ments”.

Another problem we detected using the AMW tool is that
there were process elements of different types, but with the
same name. For example, the “Design Architecture” task
had two alternatives: “Informal Design Architecture” and
“Formal Architectural Design”, of differing complexity. The
associated work product, “Architectural Design” had two al-
ternatives: “Informal Architectural Design”(box and line di-
agrams) and “Formal Architectural Design” (component di-
agrams). The AMW tool warned the process engineer that
Rule 2 was being violated (twice), as the name clash be-
tween the task and the work product definition meant that
the “Design Architecture” task had a work product alterna-
tive, while the “Architectural Design” work product had a
task alternative.

6. RELATED WORK
In this section, we give an overview of additional work on

modeling software process variability. Currently, there are
several proposed techniques and tools for addressing vari-
ability modeling in SPL; however few techniques and tools
have been proposed to specifically address variability mod-
eling in software processes. To the best of our knowledge,
SPEM 2.0 [16] including its variability modeling primitives,
vSPEM [13] and V-Modell XT [20] seem to be the only
systematic efforts toward specifically addressing variability
modeling in software processes. However, beyond the set
of techniques they propose, it provides significantly better
benefits to have a comparative analysis of such techniques.
As was described above, there are several efforts that try
to identify the most suitable techniques and tools for ad-
dressing variability modeling in SPL; however it seems that
the software process community has not addressed this topic
extensively yet. Since most of the concepts of SPL can be
transferred to software processes [2][20][25] and that there
is an analogy between software processes and business pro-
cesses, it seems reasonable to expect that the existing tools
and techniques for modeling variability in SPL could be also
useful for variability modeling in software processes. The
question that arises is now, what notations, tools and tech-
niques available for variability modeling in SPL could be
appropriate for modeling variability in software processes?
This research work is an effort to propose a tool chain that
allows modeling processes including their variability consid-
ering characteristics such as understandability, expressive-
ness, use of standards, tool availability, and the possibility
of analyzing the specification for consistency.

Figure 7: Screenshot of the SPLOT tool.

7. SUMMARY AND FUTURE WORK
In this paper, we have described a methodological and

technological approach for modeling software process mod-
els, along with their potential variability. In this approach,
the process engineer models the general process separately
from its variability, and we ensure that only reasonable vari-
ability is specified by analyzing the mapping between these
two models. Process models are specified in SPEM 2.0, a
standard process specification language, while process vari-
ability is specified using feature models, which are expressive
enough to model the process variability that we encountered
in practice. The mapping between the two models is man-
aged using a weaving model.

Our tool chain consists of three tools: the general pro-
cess model is specified using the EPFC tool, variability is
expressed using the SPLOT toolkit, and finally, the weaving
model is created using the Modisco/AMW tool. The result-
ing process model, which includes variability, can now be
tailored to a specific project context (the next phase of the
ADAPTE project). These tools are all open-source, and we
use standard file formats to exchange data in our framework,

thus meeting our first two quality requirements. However,
our tool chain stills requires some duplication of work in
writting the process and the feature models, which reduces
its overall usability. We aim to improve this aspect in future
work.

Our initial experience with an industrial case study shows
that our tool chain can be used to successfully specify a soft-
ware process model and its variability. The separation of
concerns we achieved by modeling variability separate from
the general process dramatically improved the process engi-
neer’s understanding of the process specificacion. Moreover,
the warnings produced by the weaving tool were useful for
diagnosing limitations of the original process model.
Future Work. We would like to streamline the creation
of the variability model. The SPLOT tool is easy to use,
but for large processes without much variability, it is time-
consuming to make the process engineer create the feature
model from scratch. Another advantage of generating this
feature model is that we can ensure some of the weaving
constraints by construction. We believe that we can use the
results from [1] to generate an initial feature model from the

general process model.
The rules for defining weaving constraints (described in

Section 3.2) are actually at the metamodel level, since they
talk about relationships between types of process elements.
We believe that, in future, these weaving constraints can be
automatically generated. In this case, the process engineer
would only have to revise the warnings produced by the
Modisco/AMW tool.

8. REFERENCES
[1] Mathieu Acher, Anthony Cleve, Gilles Perrouin,

Patrick Heymans, Charles Vanbeneden, Philippe
Collet, and Philippe Lahire. On Extracting Feature
Models From Product Descriptions. In Proceedings of
the Sixth International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS ’12),
pages 45–54, 2012.

[2] Ove Armbrust, Masafumi Katahira, Yuko Miyamoto,
Jürgen Münch, Haruka Nakao, and Alexis Ocampo.
Scoping software process lines. Software Process:
Improvement and Practice, 14(3):181–197, 2009.

[3] Kacper B ↪ak, Krzysztof Czarnecki, and Andrzej
W ↪asowski. Feature and Meta-Models in Clafer:
Mixed, Specialized, and Coupled. In 3rd International
Conference on Software Language Engineering,
Eindhoven, The Netherlands, October 2010.

[4] Eclipse Foundation. Atlas Model Weaver website.
http://www.eclipse.org/gmt/amw, Accessed
February 2012.

[5] Eclipse Foundation. Eclipse Modeling Framework.
http://www.eclipse.org/emf, Accessed February
2012.

[6] Eclipse Foundation. Eclipse Process Framework
Project. http://www.eclipse.org/epf/, Accessed
February 2012.

[7] Jeff Gray, Yuehua Lin, and Jing Zhang. C-SAW
website.
http://www.cs.ua.edu/~gray/Research/C-SAW,
Accessed February 2012.

[8] Iris Groher and Markus Voelter. XWeave: Models and
Aspects in Concert. In Proceedings of the 10th
International Workshop on Aspect-Oriented Modeling,
AOM ’07, pages 35–40, New York, NY, USA, 2007.
ACM.

[9] Julio Ariel Hurtado Alegria, M. Cecilia Bastarrica,
Alcides Quispe, and Sergio F. Ochoa. An MDE
Approach to Software Process Tailoring. In
International Conference on Software and Systems
Processes, ICSSP 2011, Hawaii, USA, May 21-22,
2011. Proceedings, pages 43–52. ACM, 2011.

[10] Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-21,
Carnegie Mellon University, November 1990.

[11] Computer Systems Group / Generative
Software Development Lab. SPLOT - Software
Product Line Online Tools.
http://www.splot-research.org/, Accessed
February 2012.

[12] Generative Software Development Lab. Feature
Modeling and Model Templates. http://gsd.

uwaterloo.ca/featureModelingAndModelTemplates,
Accessed February 2012.

[13] Tomás Mart́ınez-Ruiz, Félix Garćıa, Mario Piattini,
and Jürgen Münch. Modelling software process
variability: an empirical study. IET Software,
5(2):172–187, 2011.

[14] Tomás Mart́ınez-Ruiz, Jürgen Münch, Félix Garćıa,
and Mario Piattini. Requirements and constructors for
tailoring software processes: a systematic literature
review. Software Quality Journal, (1):229–260, March
2012.

[15] Software Systems Engineering Research
Group/ University of Duisburg-Essen.
VARMOD-PRIME Tool-Environment.
http://www.sse.uni-due.de/wms/de/?go=256,
Accessed February 2012.

[16] OMG. Software and Systems Process Engineering
Metamodel specification (SPEM) Version 2.0.
http://www.omg.org/spec/SPEM/2.0, Accessed
February 2012.

[17] Klaus Pohl, Frank van der Linden, and Andreas
Metzger. Software Product Line Variability
Management. In Software Product Lines, 10th
International Conference, SPLC 2006, Baltimore,
Maryland, USA, Proceedings, page 219, August 2006.

[18] pure-systems GmbH. Pure::variants Variant
Management Tool website.
http://www.pure-systems.com/3.0.html, Accessed
February 2012.

[19] O. Rohlik and A. Pasetti. XFeature Modeling Tool.
Automatic Control Laboratory, ETH Zürich, Accessed
February 2012.
http://www.pnp-software.com/XFeature/Home.html.

[20] H. Dieter Rombach. Integrated software process and
product lines. In Mingshu Li, Barry W. Boehm, and
Leon J. Osterweil, editors, International Software
Process Workshop, Unifying the Software Process
Spectrum, SPW 2005, volume 3840 of Lecture Notes in
Computer Science, pages 83–90. Springer, 2005.

[21] Fabricia Roos-Frantz, David Benavides,
A. Ruiz-Cortés, André Heuer, and Kim Lauenroth.
Quality-aware analysis in product line engineering
with the orthogonal variability model. To appear in
Software Quality Journal Special Issue on Quality
Engineering for Software Product Lines, August 2011.

[22] Pablo Ruiz, Alcides Quispe, Maŕıa Cecilia Bastarrica,
and Julio Ariel Hurtado Alegŕıa. Formalizing the
Software Process in Small Companies. Technical
Report TR/DCC-2012-2, Computer Science
Department, Universidad de Chile, January 2012.

[23] José R. Salazar. Herramienta para el modelado y
configuración de modelos de caracteŕısticas, (in
Spanish). http://caosd.lcc.uma.es/spl/hydra/,
Accessed February 2012. Universidad de Málaga.

[24] Jocelyn Simmonds, Maŕıa Cecilia Bastarrica, Luis
Silvestre, and Alcides Quispe. Analyzing
Methodologies and Tools for Specifying Variability in
Software Processes. Technical Report
TR/DCC-2011-12, Universidad de Chile,
Departamento de Ciencias de la Computación,
November 2011.

[25] Thomas Ternité. Process Lines: A Product Line

Approach Designed for Process Model Development.
In 35th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2009,
pages 173–180. IEEE Computer Society, 2009.

Figure 8: Screenshot of the AMW tool.

