
1

Technical Report TR/DCC-2011-14

Computer Science Department, FCFM, University of Chile

December 23, 2011.

Available at: http://www.dcc.uchile.cl/TR/2011/TR_DCC-20111223-014.pdf

http://www.dcc.uchile.cl/TR/2011/TR_DCC-20111223-014.pdf

2

A Context Modeling Language to Support Tailoring of Software Processes

Julio Ariel Hurtado
1,2

, Sergio F. Ochoa
1
, Alcides Quispe

1
, Cecilia Bastarrica

1

{jhurtado, sochoa, aquispe, cecilia}@dcc.uchile.cl

1 Computer Science Department – Universidad de Chile - Chile

2 IDIS Research Group – Universidad del Cauca - Colombia

Abstract. The suitability of a software process model depends on the specific project context where it is applied.
When software process models are tailored, enacted or simulated, unstructured information about a particular project
context is required. Therefore it is natural to consider the context model related to a software process as a key element
to generate suitable software processes. This paper presents a survey of context modeling approaches for tailoring
software processes. It also analyses the stages of the software process engineering for which the modeling approaches
are useful. The main objective of such analysis is to identify useful constructs of a context meta-model, which can be
used to represent specific project contexts. Based on these constructs a Software Project Context Modeling Language
(SPCML) has been proposed. The SPCML constructs and a canonical example are presented and discussed.

Keywords: Software process context, project specific context, software process tailoring, model driven engineering.

1 Introduction

Software processes have been recognized as a critical piece for developing software systems [Hum89].

However, defining and applying suitable software processes demands a great effort. Since there is no a

unique software process able to deal with various organizational, project and product characteristics, an

adaptable process model is required. Typically the organizational characteristics are considered in its

general software process, therefore they do not need to be considered for each particular project.

However the project and the product features must be considered in every development, because they

usually change with the project. Considering these particularities the general software process should

therefore tell us both, how the process varies and when it varies depending on the project and product

features.

Each development has its own characteristics and requires a particular range of techniques and practices

to be performed [LN04]. In this scenario, selecting a set of process constructs and integrating them into a

coherent process is almost mandatory. The resulting development process model must be aligned with

the organizational business context [CMKC09].

Each project context should dictate the definition of the process that best fits it. In a variety of process

models, contextualized information normally is used to make decisions about how to choose or adapt a

software process model to specific situations. Computable contextual representations are typically

required to automatically perform this tailoring and also to reduce the uncertainty and effort related to

this activity. This reduction is particularly relevant for small and medium sized software organizations

because they usually count on few time and economical resources to perform such activity. Therefore

counting on a context computable model would facilitate and make automatable the software process

tailoring.

The context models are subject of research, because a well designed model is the key to establish the

most suitable software process at hand. These models typically take into account a project specific

variable, e.g. the business or technological risk, the technological support, the skills of the development

team, or any other variable affecting the development process. Moreover, these models mainly address

3

the context modeling considering just one specific process; typically the one defined as organizational

process. In contrast with such approach this work intends to define a generic context model (or meta-

model) that allow us to address several software process models.

The literature reports various approaches to guide the selection of a process according to a given project

context. These works deal with different kinds of context factors characterizing situations. However, to

the best of our knowledge, and with the exception of our previous works, the context model has not been

formalized in an intentional way; particularly, to support process tailoring via model transformations.

This work defines a language for representing context models and facilitates thus its uses in the

ADAPTE project1.

Next section briefly introduces the concepts behind the software process engineering and the related

works. Section 3 presents a study on context modeling based on an exhaustive literature review. Section

4 proposes a domain specific language to define project context models. Such language was named

Software Project Context Modeling Language (SPCML), and it is intended for describing software

project contexts. Section 5 presents the conclusions and the future work.

2 Process Engineering

Process engineering is the software engineering area involved in defining practices to represent, apply,

improve and evolve software process [FH93]. Model-driven engineering (MDE) [Sch06] is a software

development approach in which abstract models are defined and systematically transformed into more

concrete models, and eventually into source code. MDE has been used in software process engineering

[BB01], particularly using transformations as instantiation strategies [KSPGS09]. In such

transformations the contextual information of a particular project becomes vital to determine how to

tailor an organizational software process to become it suitable for such project.

Figure 1 shows the general MDE strategy proposed in ADAPTE to perform software process

engineering. The tailoring process uses two components as input: (1) the organizational software

process model and (2) the specific context model. The first one represents the general strategy defined by

the software company to address their projects, and the second one capture the context characterization

of the project to address (e.g. complexity, duration and risk level). Both components must be specified in

computable representations since the tailoring process would be as automatic as possible. It allows the

tailoring process to be predictable, repeatable and low-cost [HBQ11].

Figure 1. Software process model transformation

1 http://www.adapte.cl/

http://www.adapte.cl/

4

The software process model transformation component uses the two previously mentioned inputs to

perform the tailoring process using a set of tailoring rules. The tailoring rules were defined by the

software organization according to previous experiences or recognized best practices. The outcome of

the software process model transformation is the target software process model, also known as the

tailored process.

Context process modeling might full fit particular requirements to achieve the target process models

from the source process model, for instance the formality level of such process. Additionally, at each

stage of the process engineering, context information is about different concerns; e.g. at tailoring, project

specific information could be required, at enactment, physical environment information could be need

and at simulation statistical information could be required.

3 Study of the Context Modeling

The literature reports a several definitions for context in computer science [BP99, ZLO07]. In case of

software development we define the project context as the set of attributes instances that characterizes

the project, the product to be developed, the participating resources, the tools to be used and the

environmental conditions. Context is the element under which the process variability makes sense. An

adaptable software process model is insufficient if a context-based mechanism is not used in the

adaptation. This section presents an exhaustive literature review that tries to identify context constructs

and stages of the process engineering where these constructs are used. Next section describes the

framework used to classify these proposals, and then the results of the literature study are presented and

discussed.

3.1 Classification criteria of proposals for context modeling

In order to classify the different approaches for using context information in software process

engineering, we have defined a set of classification criteria, which are shown Table 1. These criteria has

been defined taking into account one of the goals to be reached in the ADAPTE project; i.e. the

automatic tailoring of software processes based on project contextual information.

Table 1. Classification criteria for using software projects contextual information

Criterion Description Set of the values

Stage Time point of the process engineering when the context

information is used.

{Refinement, Tailoring, Enactment,

Analysis, Customization,

Simulation, Definition}

Formality Level of the formality used to define the specific situation. {High, Medium, Low}

Dimensions If the concerns taken in count for the situation specification

have been grouped by relevant categories.

Yes/No

Utility Which is the goal to be reached when using the contextual

situational information: selecting a process pattern, learning

about previous decisions, deriving or configuring a new

process model.

{Selection, Analysis, Derivation,

Configuration}.

Constructs Base elements used to specify the situations. Strings

Representation It represents the format in which the context model is

specified. Such representations go from text to a Domain

Specific Language (DSL).

{Text, List, Table, Tree, Graph, DSL}

5

Next we briefly present the meaning of the non-trivial values that can be assumed by the proposed

criteria. It will help understand the analysis presented in sections 3.2 and 3.3. As was indicated in Table

1, the stage criterion can take the following values:

- Refinement: This stage refers to the stage where a process engineer requires detailing a part of (or

the whole) software process model.

- Tailoring: It refers to the stage when a software process model must be adapted to be applied to a

specific situation.

- Enactment: During enactment the software process model is instantiated to a specific development

project.

- Analysis: This stage refers to the examination of the software process model in order to asses, study

or improve its quality.

- Customization: During customization the process engineer reuses and adapts a generic or

commercial process model in order to make it suitable for a specific organization.

- Simulation: This stage represents the execution of a process model on a simulated scenario in order

to analyze the process behavior.

- Definition: During this stage the specification of an organizational process model is performed.

The level of formality of a contextual representation can be:

- High: High formality refers to formal specification such as languages, metamodels and ontologies,

or any other type of unambiguous representations able to be computed automatically by a software

system.

- Medium: This category refers to semi-formal specifications, such as data structures and tables.

- Low: These are informal specifications, such as textual specifications, which probably will be

ambiguous and unable to be processed automatically by a software system.

In order to facilitate the understanding of the values that can be assumed by the construct criterion, we

will explain more in detail this criterion in the next section using the results of the literature review. The

utility criterion refers to the use of the context information as support of a certain activity. The values

that can be assigned to the utility criterion are the following ones:

- Selection: In this case the context information is used for selecting a process model from a set of

alternatives.

- Analysis: In this case the context information is used for analyzing the suitability of a process model

to a specific situation.

- Derivation: In derivation the context information is used for deriving a context-specific process

model from a general software process model.

- Building: In this case the context information is used for selecting fragments of a software process

model, while the software process model is being built.

- Configuration: In this case the context information is used for defining a specific configuration of a

configurable process model.

6

The type of representation refers to the specific mechanisms to specify context information. The

contextual information can assume the following values:

- Text: The representation attribute is set as text when the context information is expressed using

natural language.

- List: The representation is labeled as list when it is expressed using a list of typified values,

normally pairs <context attribute, value>

- Table: The representation is labeled as table when it involves the use of tables with context

attributes and possible values.

- Tree: A value of tree is used when the context information is organized by hierarchies, where

usually the last level corresponds to values of context attributes.

- Graph: Here the context information is organized as graphs, where each context construct is defined

as a node and the relationships between these constructs are defined as edges.

- DSL: Here the context information is defined as an instance of a context domain specific language

(Context DSL) using formally the constructs defined in that language.

Using these criteria and also the results of an exhaustive literature review, we have classified the several

proposals. The obtained result is shown in sections 3.2 and 3.3.

3.2 Literature review in software project context information

The context of a process varies according to the values assumed by, e.g., different project, team and

environmental variables. Due these characteristics are defined (or at least known) for every

development, it enables us to automatically transform a software process model from a stage to another.

In order to analyze how context information has been represented in previous proposals, we have

reviewed and classified the proposals according to the criteria defined in the previous section.

As a starting point we have conducted an incremental literature review about how the context

information is used in the stages of the process engineering. This review has allows us to understand

different aspects of the context information required at specific decision points. The obtained results are

presented in the Table 2.

Table 2. Classification of related works based on the process engineering stages

Proposal Stage Formality Dimensions Utility Constructs Representation

[HWBBK05] Customization Low No Selecting Characteristic, Project Capability Text

[RC99] Definition,

Tailoring and

Simulation

Medium Yes Selecting,

Derivation

Factor, Value Table

[BCHWMS95] Enactment

(Estimation)

Low Yes Other

(Planning)

Scale Factor, Feature Text

[MW06] Tailoring High No Selecting

Factor, Value List

[Xu05] Tailoring Low Yes Selecting,
Derivation

Challenge Category, Evaluation
Question

Text

[WSW07] Definition,

Refining

Low No Refining Characteristic Text

7

Proposal Stage Formality Dimensions Utility Constructs Representation

[KL05] Tailoring Low No Selecting Project Problem, Failure Factor Text

[KSPBKL08] Tailoring Medium Yes Derivation Category, Value, Multiplicity Table

[ST06] Analysis Low No Selecting Organization Detail Table

[GWJAR09] Enactment Low No Configuration Question, Answer Text
(Questionnaire)

[MKSPM08] Customization Low No Selecting Decision Card (Agile) Text

[MD07] Customization Low No Selecting Project Parameter Table

[BK05] Analysis,
Customization

Low No Analysis,
Selecting

Focus, Time-dependent Goal Text

[HB09] Definition,

Tailoring

Medium Yes Derivation Context Dimension, Attribute, Value,

Priority

Context DSL

[KSPGS09] Enactment Low No Derivation Constraint List

[RF09] Tailoring Medium No Building Context Situation, Intention Process DSL

[ZFH05] Customization Low No Selecting,

Building

Organizational Needs Text

[He02] Customization Low No Selecting,
Building

- Text

[AKMMO9] Analysis,

Definition,

Tailoring

High Yes Building,

Analysis

Scope, Attribute, Value, Priority,

Features, Map

List

[FMZ06] Enactment - - Derivation - List (of rules)

[BR87] Tailoring Low Yes Building Goal, Sub Goal, Question Text

[Lo96] Tailoring Low Yes Building Project Requirement Text

[KB10] Tailoring Medium Yes Selecting Driver, Relevance Table

[PNS06] Tailoring Medium No Derivation Project Environment, Parameter List

[MPDG06] Tailoring Low No Selecting,
Building

Criteria Text

[RK00] Simulation Low No Analysis Condition Text

In this literature analysis we have grouped the values of the criterion constructs according to the

software process context meta-model SPCM proposed by Hurtado et al. [HB09]. Such proposal

considers several granularities for the contextual information: context dimensions, attributes, and

attribute values and priorities. Next we define each one, from the coarsest to the finest of such

information.

─ Context dimensions: It represents a group of the related contextual attributes. The research works

presented in Table 2 have called to these contextual dimensions with several names, such as

categories and scale factors.

─ Context Attribute: It represents a particular contextual element inside a dimension. Similar to the

context dimension element, the authors of the reviewed articles have assigned various names to

these context attributes, e.g. characteristic, factor, driver, question, criteria and constraint.

─ Context Attribute Value: It express a specific value to be assumed by a context attribute. The values

of an attribute have been called factor value, criteria value and answer.

8

─ Priority: It defines a possible priority level to each context attribute. Relevance is a possible

synonym of priority. Driver could be also used instead of priority, if a driver is the strongest context

attribute.

There are also relevant constructs that do not have been identified in Hurtado et al. proposal [HB09], and

that have been found in the literature review. This is the case of goals, intention, multiplicity and

mapping, which represent interesting concepts to specify project contexts. The project goals and

intention could give higher level information to make decisions at tailoring time. Multiplicity could help

us to express replication of process elements at enacting time. Mapping could help determinate the

relationships between context attributes, in order to establish priorities, identify drivers and define

abstract transformation rules. Of course there are values for the criterion constructs that are absolutely

ad hoc for a particular situation or projects niche. That is the case of constructs with values such as

project requirement, condition, or organization detail. Next subsections present some statistics

indicating, from the literature review, the percentage of proposals focused in a certain process stage,

goal (or activity to be supported) and formalism level.

3.2.1. Software context representations according to the process engineering stages

Each stage in which the contextual information is used has its own concerns; however a unique meta-

model could have sufficient expressive power to deal with them. At each stage the transformations

require specific information to create a possible target model.

The activity more demanding for contextual information is the tailoring (Figure 2). However

customization from Commercial Off-The-Shelf Process (COTS Process) has also an important

relevance, particularly for selecting a process from a set of commercial options for an organization or

specific project.

Figure 2. Use of context information by stage of the process engineering

The use of contextual information is also important as support of the software process definition and

enactment. However during the process enactment in real projects, little context information is used by

people in charge of such activity.

9

3.2.2. Software context representations by activity to be supported

The Figure 3 presents how the context information is used according to the literature review. Most

works use contextualized information for selecting a process model or a software process pattern.

However, an important number of works show that such information is also frequently used for deriving

and building a software process model. In these cases the definition of the project context is typically

more formal than the specifications used for selecting a process model. Just few works report the use of

contextual information for configuring, analyzing and refining software processes.

Figure 3. Use of context information by utility criterion

3.2.3. Software context representations by formalism level

Context requires formalization if we want to use it as input for automatic transformations of a software

process. Considering the performed literature review, Figure 4 shows the percentage of mechanisms

used to represent context information. Only a 7,7% of these representations, i.e. those using a DSL

specification, are useful to conduct a MDE approach. Lists and tables are representations near the ideal

representation; i.e. these mechanisms could be rich enough to be re-written in a context meta-model.

Figure 4. Context Representation

The 53,8% of the proposals use natural language; i.e. text. This type of representation is hard understand

not only by people but also by MDE applications, and therefore it is not recommended as input to define

a unified meta-model, although it offers rich information about the possible constructs (or synonymous)

10

to give a rich semantic to the meta-model, for instance: criteria, driver, characteristic, question, goal,

attribute, factor, feature to define a specific aspect in the context and value, answer, and factor value to

specify specific values in a specific situation. Additionally, appear keywords as priority when all the

aspects do not have the same weight, challenge as goal to achieve, condition to specify restrictions and

maps to related these aspects.

3.3 Languages for Context Modeling

Context models are transversal components, therefore they have been applied to several areas [BD05]. A

software process could be specified as a context-aware system, because it is necessary to adjust its

definition or behavior in the time, for instance, when the process is tailored to a specific project context.

Strang and Linnhoff-Popien [SL04] present a classification of proposals according to the data structures

they use to exchange contextual information in context-aware systems. Based on such work, next we

briefly explain some of the most relevant proposals.

Key-value pair model: This is the most simple data structure for modeling contextual information.

Already Schilit et al. [SAW94] used key-value pairs to model the context by providing the value of

context information to an application as an environment variable. In particular, key-value pairs are easy

to manage, but it does not have capabilities for sophisticated structuring that enable to use efficient

context retrieval algorithms.

Markup scheme models: Similar to most markup scheme modeling approaches, this one involves a

hierarchical data structure consisting of markup tags with attributes and content. In particular, the

content of the markup tags is usually recursively defined by other markup tags. Typical representatives

of this kind of context modeling approaches are profiles. They are usually based on a serialization of a

derivative of Standard Generic Markup Language (SGML).

Graphical models: A well-known general purpose modeling language is the Unified Modeling

Language (UML) which has strong graphical components (UML diagrams). Due to its generic structure,

UML is also appropriate to model the contexts. Particularly, in Object-Role Modeling (ORM), the basic

modeling concept is the fact, and the modeling of a domain using ORM involves identifying appropriate

fact types and the roles that entity types play in these. Henricksen extended ORM [HJM05] to allow fact

types to be categorized, according to their persistence and source, either as static (facts that remain

unchanged as long as the entities they describe persist) or as dynamic. The latter ones are further

distinguished depending on the source of the facts as either profiled, sensed or derived types. Another

quality indicator introduced by Henricksen is a history fact type to cover a time-aspect of the context.

The last extension to ORM made by Henricksen for context modeling purposes are fact dependencies,

which represent a special type of relationship between facts, where a change in one fact leads

automatically to a change in another fact: the dependsOn relation.

Object-Oriented Model: Similar to other object-oriented context modeling approaches, this one also

intends to use the construct provided by this paradigm, e.g. encapsulation and reusability, to cover parts

of the problems arising from the dynamics of the context. The details of the context processing are

encapsulated into an objects level, and thus such processing is kept hidden to other components. Access

to contextual information is provided through specified interfaces only. The context is modeled as an

abstraction level on top of the available objects, providing contextual information through their

interfaces, hiding the details of determining the output values.

11

Logic-Based Model: Logic defines the conditions on which a concluding expression or fact may be

derived (a process known as reasoning or inference) from a set of other expressions or facts. In order to

describe these conditions in a set of rules, a formal system is used. In a logic based context model, the

context is consequently defined as facts, expressions and rules. Usually contextual information is added

to, updated in and deleted from a logic based system in terms of facts or inferred from the rules in the

system respectively.

Some approaches for context modeling has been identified in the SiME - Situational Method

Engineering area [KDC10]. Next we describe the most important ones.

Reuse frame: A set of the criteria allows specifying a context of method fragments reuse for

searching or comparing in order to find an alternative fragment to a used one. The frame includes a

reuse situation organized into three dimensions (i.e. organizational, technical and human) and reuse

intention.

Interface: A method fragment has associated an interface including context information, such as a

situation and an intention. The situation defines as the method fragment could be used (work

products associated) and the intention defines the goal that the method fragment helps to achieve.

Method Service Context: Aims at describing the suitable situation to a project development for a

method service (it includes de service proposal). This model includes domain characteristics (e.g.

project nature, and project domain) and human (actor), process and product ontologies.

Contingency factors: Context characteristics are described as contingency factors. These factors

are used for describing specific projects by assigning values to them.

Development situation: Situations are used to characterize the specific projects and to select

configuration packages (methods fragments). The situation model includes a set of the

characteristics.

For software processes, the context of a project may vary according to different project variables such

as: product size, project duration, product complexity, team size, application domain knowledge, and

familiarity with the involved technology, among others. The study case of Perez et al. [PEM96] defines

the characteristics of a software process model and its environment, and determines how congruent the

process model is in the given environment using project information of a specific organization.

On the other hand, COCOMO II [BCHWMS95] defines a cost model for projects based on situational

information. This information is defined as a fix set of factors and their scaling factors. The context

dimension is introduced by Mirbel & Ralylte [MR05] as a way to separate context concerns in a

matching strategy for selecting chunks in a roadmap approach to SiME.

In the work of Bucher et al. [BKW06] a context engineering method is proposed where context factors

are identified and analyzed to enable the engineering of contextual methods. Royce [Roy98] presents an

approach to tailor the Unified Process based on two dimensions of characteristics (technical and

management complexities). The characteristics in the literature cited above are discriminating factors

12

such as scale, stakeholder cohesion or contention, process flexibility or rigor, process maturity,

architectural risk and domain experience.

According to Aharoni & Reinhartz-Berger [AR08] a specific context can be defined as a vector of

characteristics that relate to the organization, the project, the developing team, the customer, etc.

However, defining the context as a formal model enables us to automatically tailor the organizational

process according to it.

3.4 Contextual variables to be considered in a project context

There are few proposals indicating the context dimensions and variables that can be used to adapt

software processes. Antunes et al [ACG10] propose a context model that identifies four dimensions:

domain, organization, project and personal. However, the proposal does not include a description of the

variables and the values of those variables for such context dimensions.

Araujo et al propose a set of context dimensions and attributes to be considered when defining or

adapting software processes [ASRB04]: domain, organization, project, task, team, roles, product,

business domain, client/user. Provided that these dimension were not proposed for Small and Medium-

sized Enterprises (SME), the number of context dimension overcome the numbers that can be handled

by small organizations. In addition, the granularity of the context dimensions is heterogeneous; therefore

it is complex to use them as input for process tailoring rules.

Maffin proposes a contextual framework that influence the software development life cycle [Ma98]. It is

composed of four context dimensions (project, organization, product and personnel) and fifteen context

variables (Figure 5.a). Although the size and scope of the context framework seems to be appropriate for

a SME, the context variables are still coarse-grained. It means these variables must be derived in several

fine-grain definitions to be used as input of process tailoring rules. Once done this task, final list of

variables would probably be too long to be used by SME.

Figure 5.a. Context variables influencing the development

process [Ma98]

Figure 5.b. Relationships between the 2 sets of

factors [Kru09]

13

Kruchten identifies two sets of factors that make up the context: the organizational-level factors and the

project-level factors (Figure 5.b.) [Kru09]. Typically organization-level factors influence the project-

level factors, which in turn should drive the process and practices used in each project. Kruchten also

mentions that “in small organizations, with few software development projects, this distinction does not

apply and all factors are on the same level”.

Other researchers have also identified a quite similar set of context dimensions/variables. For example

Boehm and Turner have identified 5 factors to contrast software process/methods: size, criticality,

personnel (particularly skills, know-how), dynamism (rate of change) and culture (of the team) [BT03].

Cockburn have identified that the project size, its criticality and team skills are drivers for selecting

particular processes from the Crystal family of processes [Coc01]. Ambler has identified eight scaling

factors (context variables) that must be considered when define, select or adapt a software process.

These factors are the following ones: team size, geographical distribution, regulatory compliance,

domain complexity, organizational distribution, technical complexity, organizational complexity, and

enterprise discipline. Similar to the previous cases, they need a more detailed definition to be used for

tailoring software processes. Moreover, these context attributes were not defined thinking in SME,

therefore their suitability for that work scenario must be evaluated.

4 A Domain Specific Language to define Project Context Models

This section presents the definition and implementation of a DSL for software project context modeling.

The proposal is explained in detail in the next subsections.

4.1 Language Definition

We have developed a canonical specification for introducing the Software Project Context Modeling

Language (SPCML). The SPCML proposal has been obtained from empirical experience of the authors

and consultants in software process improvement and definition. In order to do that we have considered

the relevant factors for adapting the software process in the practice in SME – Small and Medium

Enterprises. Next we present the structure and main components of the proposed language.

4.1.1. Language basic components

The language is composed of two basic components: context attributes and links between these

attributes. The meaning of each context attribute (i.e. its definition) is available in the Annex A. The

attributes considered in SPCML were grouped in four context dimensions: project, team, product and

process. Next we briefly describe such dimensions, the context attributes involved in such categories,

and the set of values that can be assigned to the attributes.

 Software Development Project Context CanonicalCase

 Dimension Project

ProjectType: {newDevelopment, extension, maintenance}

Duration: {short, medium, large}

ClientInvolvement: {high, medium, low, known}

Problem Knowledge: {clear, ambiguous, unclear}

14

TimeConstraints: {veryConstrained, typical, unconstrained}

BudgetConstraints: {veryConstrained, typical, unconstrained}

 Dimension Team

TeamSize: {veryRestricted, typical, unrestricted}

TeamExpertise: {high, regular, low}

BussinesKnowledge: {know, affordable, unknown}

ProductKnowledge: {know, affordable, unknown}

 Dimension Product

TechnicalComplexity: {high, medium, low}

QualityRelevance: {high, regular, minimum}

 Dimension Process

ProcessFocus: {finalProduct, everyProduct}

These dimensions and their attributes have been identified based on the literature review, the experience

of the authors and participants in the ADAPTE project. Moreover, in this definition was also considered

the particularities of the development scenario that is present in a typical SME. Although in Section 3.4

we have shown a long list of variables (or context attributes) that can be used as part of a project context,

just some of them (those included in SPCML) are relevant to tailor or select process models in a SME

scenario.

Concerning the links considered in SPCML, all of them establish a relationship between two context

attributes. The language defines three types of link: priority link, peer-to-peer link and no relationship.

A priority link is represented with an arrow that goes from a source attribute to a destination one. In that

case any decision made for tailoring or selecting a software process must assign priority to the source

attribute over the destination attribute. In other words, the priority link establishes a hierarchical

relevance between two context attributes.

The peer-to-peer links indicate that two context attributes are related, but there is no hierarchical

relationship between them. Finally, when there is no link between two attributes it means they are

independent and therefore can be considered separately to conduct a selection or tailoring process. This

information about the links of a project context model eases the decision making during a tailoring

process.

Finally the language considers the configurations, also known as Project Specific Contexts, which are

particular instances of the project context model for specific development projects. A Project Specific

Context is a collection of attributes, which are set to one of the possible values indicated by the Context

Model. An example of a Project Specific Context for a small project context is specified below. Such

configuration, named small project, refers to a short and typical extension project. As we can see in the

example, the configuration just includes the context attributes (with the respective value) that are

relevant for that project context.

ProjectSpecificContext SmallProject

{ProjectType = extension, Duration = short, TimeSizeRestrictions = typical}

15

4.1.2. SPCML graphical representation

Table 3 presents the graphical representation of the elements considered in SPCML.

Table 3. Graphical elements of SPCML

Graphical Element Meaning

ContextAttributeName

ContextAttributeValue

Context attribute. Each context attribute has a name and a current value

which must be set when a configuration is defined. If a context attribute is set

as “null”, it means that such attribute does not have to be considered in such

configuration.

Priority link. The link indicates that the two context attributes involved in the

relationship must be considered together. In case of priority links, any

decision (or rule) related to the source attribute has priority over the decisions

(or rules) made for the target attribute.

Peer-to-peer link. This link is similar to the priority link, however in this case

there is not priority to apply the decisions (or rules) defined for the involved

attributes.

4.1.3. SPCML conceptual structure

Figure 6 shows the conceptual structure of SPCML, which involves three key concepts:

ContextAttribute, Dimension and ProjectSpecificAttribute. As was previously mentioned, a

ContextAttribute represents a relevant characteristic of the project context that may be required for

tailoring. An example of a Context Attribute is the Project Type. A ContextAttribute can take one of a set

of values defined as ContextAttributeValue. A Context Attribute Value represents a specific value for

qualifying a Context Attribute. Examples of Context Attribute Values for the Project Type Context

Attribute include newDevelopment, extension and maintenance.

Figure 6. Basic concepts used in SPCML

16

A Context Dimension represents a collection of related Context Attributes. A Dimension eases the

separation of concerns applied to Context Attributes. An example of Dimension is Team Dimension,

referring to team attributes such as TeamSizeRestrictions, TeamExpertise BussinesKnowledge and

Product Knowledge. A Context is represented as a collection of Dimensions. A Context represents the

whole context model. In order to represent possible specific project contexts (also known as

configurations), a Project Specific Context has be included into the language. A Project Specific

Attribute is linked to a Context Attribute, which is also linked to a unique Context Attribute Value. Next

section shows the implementation of the SPCML specification.

4.2 Language Implementation

SPCML has been implemented as a meta-model, since the context information manipulation must be

done via model transformations, as proposed in the ADAPTE project. Particularly ATL – Atlas

Transformation Language– [ATL05] was used as inputs, and the outputs models were defined in XMI

(XML Metadata Interchange) format.

The meta-model has been implemented in Ecore, the meta-meta model of Eclipse Modeling Framework,

which is presented in Figure 7. This figure shows the above defined context elements, but in this case

the relationships between the elements have been detailed.

Figure 7. SPCML Meta-model

A canonical definition of the Project Context Model can be specified as a tree using SPCML (Figure 8)

and also using a XMI representation (Annex B).

17

Figure 8. The canonical example represented as a tree

5 Conclusions and Further Work

Dorr et al. [DEE08] suggest that the right set of practices for a project can be better found if we

understand the context of the company. Several other researchers such as Stetter [Ste00], Maffin [Ma08]

Kruchten [Kru09], Cockburn [Coc01] and Ambler [Amb09] states that the organizational software

process have to be adapted to suit the boundary conditions (context) of the specific development project.

In this document we have started reporting the revision and classification of proposals reported by the

literature in order to establish a state of the art on the use of context information for engineering

software processes. In order to do that we have defined the evaluation criteria to establish the same

perspective for the proposals comparison. The results of the literature review indicate that the most

frequent use of context information is for tailoring software processes. Particularly, the information is

used to determine which process is the most appropriate to guide a certain software development project;

i.e. it is for selecting a software process. Most context representations involve textual information or

various other types of informal specifications. Just few proposals present a more formal specification,

e.g. a Domain Specific Language, which allows us to automatically derive a software process model

from other process model.

Provided that in model driven engineering the information is typically specified through models, we

have identified the need to define a meta-model to express the project context information. The literature

review reported in this work allows us to identify some relevant constructs to define rich context models

with a high expressiveness level. Based on these constructs and considering the work scenario that is

present in most SME, we have proposed an expressive language named SPCML (Software Project

Context Modeling Language) to specify project context. Thus we try to facilitate the application of MDE

18

strategies in each stage of software process engineering. In this language definition we have used the

authors experience and some process engineers involved in the ADAPTE project. The language

definition also includes the visual representation of its components and also its implementation in a

computable language (i.e. XMI).

A canonical context model for a SME has been defined. The next step is to apply it to some of the SME

that are participating in the ADAPTE project. Moreover, a usable graphical interface will be developed

for hiding the complexity of the meta-model and the markup language. It will facilitate the context

definition to both, process engineers and software engineers.

6 Acknowledgements

This work has been partly funded by project Fondef D09I1171 of Conicyt, Chile.

7 References

[AKMMNO9] Armbrust, O., Katahira, M., Miyamoto, Y., Münch, J., Nakao, H. & Ocampo, A. Scoping software

process lines. Software Process: Improvement and Practice, 14, 181-197. 2009.

[ACG10] Antunes, B., Correia, F., Gomes, P. Context Capture in Software Development. Proc. of the 3rd

Artificial Intelligence Techniques in Software Engineering Workshop. Larnaca, Cyprus. October 7, 2010.

[Amb09] Ambler, S. The Agile Scaling Model (ASM): Adapting Agile Methods for Complex Environments.

White paper. IBM Rational Software. December 2009.

[AR08] Aharoni, A. & Reinhartz-Berger, I. A domain engineering approach for situational method engineering.

Proceedings of the International Conference on Software Engineering Advances (In ICSEA '08), pp. 455-

468. 2008.

[ASRB04] Araujo, R. M., Santoro, F. M., Rosa, M.G.P., Brézillon, P. Context Models for Managing

Collaborative Software Development Knowledge. Proc. of the International Workshop on Modeling and

Retrieval of Context (MRC), 61-72, 2004.

[ATL05] ATLAS group. ATL: Atlas Transformation Language ATL Starter’s Guide. Version 0.1. LINA &

INRIA. December 2005.

[BB01] Breton, E., & Bézivin, J. Model driven process engineering. In Proc. of the Computer Software and

Applications Conference, pages 225-230, 2001.

[BCHWMS95] Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R. & Selby, R. Cost Models for

Future Software Life Cycle Processes: COCOMO 2.0. 1995.

[BD05] Bradley N.A., & Dunlop, M.D. Toward a multidisciplinary model of context to support context-aware

computing. Human-Computer Interactions 20 (4), 403-446. December 2005.

[BK05] Bustard, D. W. & Keenan, F. Strategies for Systems Analysis: Groundwork for Process Tailoring.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-

Based Systems (ECBS'05), IEEE Computer Society, 357-362. 2005.

[BKW06] Bucher, T., Klesse, M. & Winter, R. Contextual method engineering. Working paper, University of St.

Gallen. 2006.

[BP99] Brézillon, P., Pomerol, J.-C. Contextual Knowledge Sharing and Cooperation in Intelligent Assistant

Systems. Le Travail Humain, PUF, Paris, 62, 3, 223-246. 1999.

[BR87] Basili, V. R. & Rombach, H. D. Tailoring the software process to project goals and environments.

Proceedings of the 9th international conference on Software Engineering, IEEE Computer Society Press,

345-357. 1987.

[BT03] Boehm, B. & Turner, R. Balancing agility and discipline. Addison-Wesley Professional, 2003.

[CMKC09] Cusumano, M.A. MacCormack, A., Kemerer, C. F. & Crandall, W. B. Critical Decisions in Software

Development: Updating the State of the Practice. IEEE Software, 26(5):84-87, 2009.

19

[Coc01] Cockburn, A. Agile Software Development. Addison-Wesley, 2001.

[DEE08] Dörr, J. Adam, S., Eisenbarth M., & Ehresmann M. Implementing Requirements Engineering Processes:

Using Cooperative Self-Assessment and Improvement. IEEE Software, 25(3):71-77, 2008.

[FH93] Feiler, P. H. & Humphrey, W. S. Software Process Development and Enactment: Concepts and

Definitions. Proc. of the International Conference of Software Process (ICSP’93), IEEE Computer Society,

28-40. 1993.

[FMZ06] Feng, Y., Mingshu, L. & Zhigang, W. SPEM2XPDL: Towards SPEM Model Enactment, 2006.

[FWT11] Fernandes, P., Werner, C. & Teixeira, E. An Approach for Feature Modeling of Context-Aware

Software Product Line. Journal of Universal Computer Science, 17, 5, 807-829. 2011.

[GWJAR09] Gottschalk, F., Wagemakers, T. A., Jansen-Vullers, M. H., Aalst, W. M. & Rosa, M. Configurable

Process Models: Experiences from a Municipality Case Study. Proceedings of the 21st International

Conference on Advanced Information Systems Engineering, Springer-Verlag, 486-500. 2009.

[HB09] Hurtado, J. A. & Bastarrica, C. Process Model Tailoring as a Mean for Process Knowledge Reuse. 2nd

Workshop on Knowledge Reuse (KREUSE’09), 2009.

[HBQ11] Julio A. Hurtado Alegría, María Cecilia Bastarrica, Alcides Quispe, Sergio F. Ochoa. An MDE

Approach to Software Process Tailoring. Proc. of International Conference on Software and system

Processes (ICSSP’11), co-located with ICSE 2011. Honolulu, Hawaii, USA. May 21-22, 2011.

[He02] Henderson-Sellers, B. Process Meta-modeling and Process Construction: Examples Using the OPEN

Process Framework (OPF) .Ann. Software Engineering, J. C. Baltzer AG, Science Publishers, 14, 341-362.

2002.

[HJM05] Henricksen, K., Indulska, J., McFadden, T. Modelling Context Information with ORM. Proc. of the On

the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops. LNCS vol. 3762, pp. 626-635,

Springer Berlin/Heidelberg. 2005.

[Hum89] Humphrey, W. S. The software process. Addison-Wesley Longman Publishing Co., Inc., 1989.

[HWBBK05] Hanssen, G. K., Westerheim, H. & Bjørnson, F. O. Bomarius, F. & Komi-Sirviö, S. (Eds.) Tailoring

RUP to a Defined Project Type: A Case Study. Product Focused Software Process Improvement. Proc. of

the 6th International Conference (PROFES’05), LNCS 3547, 314-327, Springer. Oulu, Finland, June 13-15,

2005.

[KB10] Koolmanojwong, S. & Boehm, B. The incremental commitment model process patterns for rapid-fielding

projects. Proceedings of the 2010 international conference on New modeling concepts for today's software

processes: software process, Springer-Verlag, 150-162. 2010.

[KDC10] E. Kornyshova, R. Deneckère, & B. Claudepierre. Contextualization of method components.

International Conference on Research Challenges in Information Science (RCIS), Nice, France, May 2010.

[KL05] Kettunen, P. & Laanti, M. How to steer an embedded software project: tactics for selecting the software

process model. Information and Software Technology, 47, 587 – 608. 2005.

[Kru09] Kruchten, P. The Context of Software Development. Kruchten Engineering Services: Weblog. July 22,

2009. URL: http://philippe.kruchten.com/2009/07/22/the-context-of-software-development/. Last visit:

Oct., 2011.

[KSPBKL08] Kang, D., Song, I.-G., Park, S., Bae, D.-H., Kim, H.-K. & Lee, N. A Case Retrieval Method for

Knowledge-Based Software Process Tailoring Using Structural Similarity. Proc of the 15th Asia-Pacific

Software Engineering Conference (APSEC '08), 51-58. 2008.

[KSPGS09] Killisperger, P., Stumptner, M., Peters, G., Grossmann, G. & Stückl, T. Meta Model Based

Architecture for Software. Process Instantiation International Conference on Software Process, 63-74.

2009.

[LN04] Laplante, P.A. & Neill, C.J. Opinion: The Demise of the Waterfall Model Is Imminent. ACM 10-15,

2004.

[Lo96] Lobsitz, R. M. A Method for Assembling a Project-Specific Software Process Definition. Proc. of the 29th

Hawaii International Conference on System Sciences Volume 1: Software Technology and Architecture,

IEEE Computer Society, 1996.

[Ma98] Maffin, D. J. Engineering Design Models: Context, Theory and Practice. Journal of Engineering Design,

9, 4, 315-327. 1998.

20

[MD07] Mnkandla, E. & Dwolatzky, B. Agile Methodologies Selection Toolbox. Proceedings of the International

Conference on Software Engineering Advances, IEEE Computer Society, 2007.

[MKSPM08] Mirakhorli, M., Khanipour Rad, A., Shams, F., Pazoki, M. & Mirakhorli, A. RDP technique: a

practice to customize XP. Proceedings of the 2008 international workshop on Scrutinizing agile practices or

shoot-out at the agile corral, ACM, 23-32. 2008.

[MPDG06] Mendoza, L. E., Pérez, M. A., Díaz-Antón, G. & Grimán, A. Tailoring RUP for LMS Selection: A

Case Study. CLEI Electronic Journal, 2006.

[MR05] Mirbel, I. & Ralye, J. Situational method engineering: Combining assembly-based and roadmap-driven

approaches. Vol. 11, pp. 58-78, Springer-Verlag. 2005.

[MW06] Ma, J. & Wang, Y. A Quantitive Context Model of Software Process Patterns and Its Application

Method. Proceedings of the 6th International Conference on Quality Software, IEEE Computer Society,

243-250. 2006.

[PEM96] Perez, G., El Emam, K. & Madhavji, N. Evaluating the congruence of a software process model in a

given environment. Proceedings of the Fourth International Conference on the Software Process (ICSP '96),

pp. 49-62. 1996.

[PNS06] Park, S., Na, H. & Sugumaran, V. A semi-automated filtering technique for software process tailoring

using neural network. Expert Systems with Applications, 30, 179-189. 2006.

[RC99] Rus, I. & Collofello, J. S. A Decision Support System for Software Reliability Engineering Strategy.

Selection 23rd International Computer Software and Applications Conference (COMPSAC '99), 27-19

October 1999, Phoenix, AZ, USA, 376-384. 1999.

[RF09] Rolland, C. & Fujita, H. About Strategies to Engineer Situational Methods. Proceeding of the 2009

conference on New Trends in Software Methodologies, Tools and Techniques: Proc. of the 8th SoMeT’09,

IOS Press, 22-38. 2009.

[RK00] Raffo, D. M. & Kellner, M. I. Empirical analysis in software process simulation modeling. Journal in

Systems and Software. Elsevier Science Inc., 53, 31-41. 2000.

[Roy98] Royce, W. Software Project Management: A Unified Framework. Addison-Wesley, Boston, MA, USA.

1998.

[SAW94] Schilit, B. N., Adams, N. L., & Want, R. Context-aware computing applications. In IEEE Workshop on

Mobile Computing Systems and Applications, Santa Cruz, CA, US, 1994.

[Sch06] Schmidt, D.C. Model-Driven Engineering. IEEE Computer 39, 2, 25-31, 2006.

[SL04] Strang, T., Linnhoff-Popien, C. A context modeling survey. Proc. UbiComp 1st International Workshop

on Advanced Context Modeling, Reasoning and Management, Nottingham, 34-41, 2004.

[Ste00] Stetter, R. Method Implementation in Integrated Product Development. PhD Thesis, TU München,

Germany, 2000.

[ST06] Strode, D. & Tretiakov, A. An Investigation of the Target Environment for Agile Methods Information

Systems Technology and its Applications. Proc. of the 5th International Conference ISTA'2006, May 30-

31, 2006, Klagenfurt, Austria, 39-50. 2006.

[WSW07] Wang, Y.-S., Shi, L. & Wang, F.J. A Process Pattern Language for Agile Methods. Proceedings of the

14th Asia-Pacific Software Engineering Conference, IEEE Computer Society, 374-381. 2007.

[Xu05] Xu, P. Knowledge Support in Software Process Tailoring. Proc. of the 38th Annual Hawaii International

Conference on System Sciences, 2005.

[ZFH05] Zowghi, D., Firesmith, D.G., Henderson-Sellers, B.: Using the OPEN Process Framework to Produce a

Situation-Specific Requirements Engineering Method. In Proceedings of the First International Workshop

on Situational Requirements Engineering Processes (SREP'05), Paris France, August 2005.

[ZLO07] Zimmermann, A., Lorenz, A., Oppermann, R. An Operational Definition of Context. in Kokinov et al.

(Eds.): Proc. of CONTEXT 2007, LNAI 4635, pp. 558–571, 2007.

21

Annex A. Definition of the SPCML components

As was mentioned in section 4.1.1, the SPCML language is composed of two basic components: context

attributes and links between the attributes, and these attributes were grouped in four context dimensions:

project, team, product and process. Next sections define these dimensions, the context attributes to be

considered in each of them, and the values that can be assumed by those attributes.

A.1. Project context dimension

The project dimension represents the main features characterizing the project itself, which are also

useful to tailor or select a software process for such context. This dimension involves the following

context variables (or context attributes):

Project type: This feature indicates if the project is a new development, an extension, or a

maintenance (i.e. replace/re-implement components).

Duration: This variable indicates the current project duration according to the reference values

established by each software organization. The values that can be assigned to this project attribute are

the following ones: short, medium, large.

Client involvement: This attribute indicates the involvement level of the client (and eventually also

the users) in the development project. This involvement level must be quantified considering useful

time assigned by the client (and eventually users) to the project. The values that can be assigned to

this attribute are: high, regular, low, unknown.

Problem Knowledge: This attribute indicates how clear and delimited is the problem to address in a

software project. The values that can be assumed by this attribute are: clear (the problem is identified,

validated and its scope is delimited), ambiguous (the problem seems to be identified, but it must be

validated and its scope must be delimited), and unclear (the problem to address and its scope must be

identified).

Time Restrictions: This attribute indicates how tight is the project schedule considering the resources

assigned for its development. The values that can be assigned to this attribute are: very constrained,

typical, unconstrained.

Budget Restrictions: This attribute indicates how tight is the project budget, considering the

resources required for its development. The values that can be assigned to this attribute are: very

constrained, typical, unconstrained.

A.2. Team context dimension

The team dimension tries to characterize the task force assigned to a development project. Next we

present the attributes that are part of this dimension.

Team size: This attribute indicates how suitable is the task force assigned to the project. The values

that can be assigned to team size are: very restricted (i.e. the team is minimal for such project),

22

typical (there is a small room to perform non-mandatory activities), unrestricted (there is room to

perform non-mandatory activities).

Team expertise: This variable represents the expertise level of the team, considering to the skills

required to run the project. The values that can be assigned to team expertise are: high (highly

appropriated for the project), regular (appropriated for the project), low (the team has weaknesses to

run the project).

Business knowledge: This variable indicates how much does the team knows about the business

niche involved in the project. The values that can be assumed by this variable are the following ones:

known (i.e. the business aspects are under control), affordable (the team knows about the business

niche, but it has some uncertainty), unknown (the team has to learn about the business niche).

Product knowledge: This attribute indicates how much does the team assigned to the project knows

about the software product to be developed/extended. This attribute can be: high (if e.g. the assigned

team –or part of it- was in charge of developing/extending the existing solution or other very similar

to that), medium (if e.g. the team –or part of it- have access to people having the know-how of the

product to be developed/extended), unknown (if the team have to learn about the product features,

structure and services).

A.3. Product context dimension

This dimension characterizes the product to be developed/extended/maintained through a project. The

attributes involved in this dimension are the following ones:

Technical complexity: This variable indicates the technical complexity involved in the activity of

developing/extending/maintaining the product committed in a software project. The values that can

be assumed by this variable are the following ones: high (the functionality is hard to develop, or the

involved technology in the project is unknown for the team or immature), medium (there is some

technical uncertainty on few components), low (the development activity and the technology to be

used are under control).

Quality relevance: This attribute indicates the relevance that the product quality has in a project. The

values that can be assigned are: high (product quality is highly relevant in this project), regular (the

quality is as relevant as in any other project), low (quality is not matter of concerns in this

development).

A.4. Process context dimension

This dimension determines the relevance of counting on a formal development process in a certain

project. This dimension has just one attribute, which is explained next.

Process focus: According to deliverables that must be given to the client, this attribute determine the

focus of the process required for a certain project. The values that can be assigned to this attribute are

the following ones: product final (if the final product is the only (or almost the only) important

deliverable of the project), process (if the project involves various important deliverables, such as

requirements and design documents, and also the final product).

23

Annex B. Example of an XMI representation of a software project

Next XMI code identifies project dimensions, attributes belonging to such dimensions and a set of

values that can be assigned to the attributes.

