
Analyzing Methodologies and Tools for Specifying
Variability in Software Processes∗

Jocelyn Simmonds
Departamento de Informática
Universidad Técnica Federico

Santa María
Valparaiso, Chile

jsimmond@inf.utfsm.cl

María Cecilia Bastarrica
Computer Science

Department
Universidad de Chile

Santiago, Chile
cecilia@dcc.uchile.cl

Luis Silvestre
Computer Science

Department
Universidad de Chile

Santiago, Chile
lsilvest@dcc.uchile.cl

Alcides Quispe
Computer Science

Department
Universidad de Chile

Santiago, Chile
aquispe@dcc.uchile.cl

ABSTRACT
Software process lines (SPrL) are families of highly related
processes that are built from a set of core process assets in a
prestablished fashion. Software companies may take advan-
tage of SPrL in order to deal with different kinds of projects
–development or maintenance, large or small, complex or
simple– just defining a general process and modeling vari-
ability so that the general process can be adapted accord-
ingly in each case. Formally specifying variability enables
automatic tailoring. However, and provided that SPrL is
quite a recent research area, there is no established method-
ology or notation for modeling process variability. In this
paper we present the kinds of variability we have found to
be relevant for processes, and we investigate the appropriate-
ness of different approaches for modeling process variability
such as SPEM 2.0 primitives and vSPEM, and other general
notations for modeling variability such as OVM and feature
models. We make an analysis based on the expresiveness
of each notation for dealing with the required variability, as
well as the understandability of the specification, adherence
to standard formats and the tool support availability. We il-
lustrate each option specifying the variability of the process
of a medium size Chilean software company.

1. INTRODUCTION
Software processes are recognized as valuable for achieving
productivity and quality in software development. However,
defining a unique process is hard and expensive, and it is not

∗This work has been partly funded by project Fondef
D09I1171, Chile

necessarily adequate for all kinds of projects, e.g., a large
and complex project probably requires a more sophisticated
process than a simple maintenance project. Software process
lines seem to be a good option for this problem. Therefore,
the company defines an organizational process including the
potential variability, and this process is tailored according
to the characteristics of each project in order to achieve a
project adapted process.

Formal software process specification enables different kinds
of automatic processing and analysis, such as tailoring, sched-
uling and planning, among others. There are some languages
specifically created for process specification. In this work we
use SPEM 2.0, the OMG standard for software process spec-
ification. However, there is no standard notation for defining
variability in SPrL. Notations that have proved to be power-
full for software product lines may not be necessarily appro-
priate for this context. Moreover, there is a large variety of
notations that have been proposed, ranging from native con-
structs of SPEM 2.0, to extensions to this language such as
vSPEM, to more general variability modeling languages such
as OVM or feature models. Different formalisms require dif-
ferent methodologies for variability specification within the
software process domain engineering.

We survey different ways of specifying variability in SPrL,
and we analyze them from a methodological point of view, as
well as the availabity of appropriate and mature supporting
tools so that they can be incorporated within a tool chain
for automating software process tailoring.

The paper is organized as follows. Section 2 provides some
background on software process modeling both, from a struc-
tural and from a behavioral point of view. In Sect. 3 we
describe the ways a software process may vary and their
methodological implications. Available notations for model-
ing process variability are presented in Sect. 4, and they are
analyzed in Sect. 5. Section 6 discusses some related work.
Finally, Sect. 7 draws some conclusions and presents some
further work.



(a) (b)

Figure 1: (a) SPEM 2.0 task example: “Establish Requirements Baseline without Test Cases”, and (b) state
machine associated to “Final SRS” work product.

2. SOFTWARE PROCESS MODELING
The Software and Systems Process Engineering Meta-Model
(SPEM 2.0) [34] is the OMG standard notation for model-
ing software and systems development processes and their
components. SPEM 2.0 is defined as a UML 2.0 profile,
and takes an object-oriented approach to process modeling.
SPEM diagrams are used to model two different views of
a process: a static view, where process components (tasks,
work products and roles) are defined; and a dynamic view,
where interaction diagrams (like UML activity diagrams) are
used to model how process components interact in order to
accomplish the goals of the modeled process.

We have been working in supporting Rhiscom, a medium size
software company in Chile. This company develops software
for the retail industry. It has grown steadily in the last five
years counting these days on around 70 employees and also
having affiliate offices in Peru, Bolivia and Ecuador. Rhis-
com has defined a software process that has been applied ad
improved for a couple of years, and only recently it has been
formalized in SPEM 2.0 using the EPF Composer1.

In this section, we give a brief overview of the SPEM 2.0
concepts and notation, using Rhiscom’s development process
as a running example.

2.1 Process Components
We use SPEM 2.0 to specify processes because this notation
gives process engineers mechanisms for managing families of
processes. In order to encourage process maintenance and
reuse, SPEM 2.0 makes a difference between the definition of
process building blocks and their later use in (possibly more
than one) processes. Process components, like tasks, roles
and work products, are defined and stored in a Method Li-
brary. These definitions can later be reused in multiple pro-
cess definitions. A process is a collection of activities, where
an activity is a“big-step”grouping of role, work product and
task uses. Roles perform activity tasks, and work products
serve as input/output artifacts for tasks.

Roles are used to define the expected behavior and respon-
sibilities of the team members involved in a process. For
example, a role definition like “Analyst” is used to repre-
sent team members that gather input from stakeholders and
define requirements. Note that roles do not represent in-
dividual team members, and that one team member may

1http://www.eclipse.org/epf/

take on several roles. Also, a single role may be responsible
for more than one work product, as well as modify multiple
work products.

Work products represent anything produced, consumed, or
modified by a process. Tangible work products are usually
called “artifacts”, while intangible products are called “out-
comes”. Work products that will be handed off to internal
or external parties are also classified as “deliverables”. Doc-
uments, models, repositories, source code and binaries are
examples of artifacts and deliverables, while an event like
notifying a party that an activity has concluded is an out-
come. Formally, roles and work products are stereotyped
UML classes, «role» and «work product», respectively. As
such, generalization, aggregation and composition relation-
ships can be used to define more complex roles and work
products.

A task is a set of subtasks/steps that are performed by possi-
bly multiple roles, and involve the creation or modification of
one or more work products. Ideally, only one role is respon-
sible for the task. As such, a task definition is a stereotyped
class diagram, where the roles that are responsible for it and
those that will perform the associated work are identified,
as well as the input and output work products (which can
be tagged as mandatory or optional).

For example, the class diagram in Figure 1a shows the task
definition of the “Establish Requirements Baseline without
Test Cases” task, which occurs during the RE phase of the
Rhiscom development process. This task definition is asso-
ciated to one role and one work product, “Analyst” («per-
forms») and “Final SRS” («mandatory» and «output»), re-
spectively. This means that a team member with an analyst
profile should be in charge of this task, and that this task
has one mandatory output work product, the final version
of the Software Requirements Specification. Task definitions
can also include tool definitions and guidance, but we have
omitted these elements from this paper in order to simplify
presentation.

2.2 Process Behavior
After having defined the basic process components, we can
now specify how work products change state, how tasks are
grouped into activities, and finally, how previously defined
process components are used to define processes.

A work product may go through different states during its



Figure 2: Detailed specification of Rhiscom’s “Re-
quirements” activity.

lifetime. As such, work products can have an associated
state model. Process engineers can use this model to specify
a work product’s states, as well as the permitted transitions
between these states. Ideally, such a model can be used to
determine how complete a work product is. For example, the
state machine for the “Final SRS” document mentioned in
the previous section can be seen in Figure 1b. This state ma-
chine has three states: “initial”, “validated” and “approved”.
The “initial” state represents an empty document, whereas
the “validated” state indicates that the contents of the docu-
ment have been validated by the Analyst, but the document
is not necessarily complete. The final state, “approved”, is
used to indicate that the document is complete and that the
client has signed off on the document. These work product
states can also be used as guards in task definitions.

An activity is a logical grouping of task, role and work prod-
uct uses. Activity diagrams are used to model the workflow
between activity tasks. For example, Figure 2 shows the de-
tailed workflow of the “Requirements” activity at Rhiscom.
Each task can be associated to various predefined roles and
work products (not shown in Figure 2 to increase legibil-
ity). The activity has a simple workflow, built using exist-
ing tasks. The outcome of two tasks (“Verify requirements”
and “Validate requirements”) affect control, since negative
results return the activity to earlier tasks. Two tasks (“Spec-
ify requirements” and “Establish requirements baseline”) are
marked as “Has alternatives”. This is not SPEM 2.0 nota-
tion, but it simply means that there are various ways of re-

alizing a generic task. For example, the “Establish Require-
ments Baseline without Test Cases” task described before is
one way of realizing the “Establish Requirements Baseline”
task that appears in Figure 2. We will continue to discuss
this variability example in the next section.

Finally, we can specify a process by using the element def-
initions we have previously described. A process is a set of
activities, where the relationship between these activities is
also specified using an activity diagram. Task, role, work
product and activity definitions are recommendations made
by a process engineer, so they can be overridden when creat-
ing a new process, e.g., by adding/removing a work product
from a task. For example, Figure 3 shows the general de-
velopment process used at Rhiscom, which consists of five
major activities (where the “Requirements” activity is the
one detailed in Figure 2), carried out in sequence. We have
marked two activities are optional: “Requirements”and“De-
sign”. SPEM 2.0 does not have a stereotype to visually indi-
cate optionality, so the notation in Figure 3 is not standard.

3. SOFTWARE PROCESS VARIABILITY MOD-
ELING

In this section, we first discuss variability in the context of
software process lines, as well as identify various examples
of variability in our running example. We then discuss a
general methodology for identifying and specifying software
process variability.

Companies tend to use similar processes to develop different
types of projects (e.g., new development, maintenance, ex-
tension, etc.). Given a set of similar processes, we can create
a family of processes by identifying the common aspects of
these processes, as well as how these vary according to the
type of project being developed. Thus, a software process
line (or family) consists of two things: a general model of the
process, as well as a specification of what process elements
vary, and how. Individual process definitions are created by
removing variability from the general model, allowing the
generation of process definitions that can be specifically tai-
lored to each new project.

Now we can continue explaining the “Requirements” activity
example presented Figure 2. This activity is a general work-
flow of RE tasks that must be carried out as part of the RE
phase of Rhiscom’s development process. The diagram in
Figure 2 includes two types of tasks: concrete (non-variable)
tasks, like“Hold First Meeting”, and generic (variable) tasks,
like “Specify Requirements”. In this example, “Specify Re-
quirements in plain text” and “Specify Requirements in Use
Cases” are valid alternatives to the “Specify Requirements”
task, while the “Establish Requirements Baseline” task can
be replaced by the “Establish Requirements Baseline with-
out Test Cases” or “Establish Requirements Baseline & Test
Cases” tasks. All configurations of the “Requirements” ac-
tivity share the same concrete tasks, only varying in their
instatiation of the generic tasks. Note that all sources of
variability must be removed when configuring the activity.

The general development process shown in Figure 3 exhibits
another form of variability. In this case, two activities (“Re-
quirements” and “Design”) have been marked as optional.
Since Rhiscom develops for a niche market, it does not al-



Figure 3: Rhiscom’s general development process

Figure 4: Overview of our methodology for specify-
ing software process lines.

ways carry out the “Design” phase because new products are
similar to already-developed products. In the case of larger
projects, or those where there is some uncertainty, Rhis-
com carries out both phases. Maintenance projects usually
skip both phases, since the client has already specified the
required improvements in the “Commercial” phase. Again,
the variable elements of the model must be removed through
a configuration step before the process can be enancted and
applied to a project.

In Table 1, we have listed the different instances of vari-
ability that we encountered when formalizing Rhiscom’s de-
velopment process. Eight modeling elements (column one)
were identified as variation elements in this process; the type
of each modeling element is described in the “Type” col-
umn; the place in the process where the modeling element
is located is indicated in the “Location” column; whether
the modeling element is optional or has some alternatives is
specified in the last column. As seen in Table 1, we identi-
fied several types of variable elements: two activities, four
tasks, one work product and one role; and variable elements
were either optional, or had alternatives (these are listed in
the table).

During the process of formalizing Rhiscom’s development
process, we identified a set of necessary steps for extracting
a software process line from a collection of existing processes.
The overview of this methodology is given in Figure 3. First,
Rhiscom’s employees informally described the development
processes they use in practice. Given that these processes
had common elements and workflows, we started by for-
malizing the shared parts of these processes (correspond-
ing to the “Specify General Process Model” step). We then
identified necessary variation points of the general process,
i.e., process elements that vary amongst the input processes

(the “Identify Variable Elements” step). After identifying
the variable elements of the process, we specified how these
elements vary (the “Specify Variability” step).

The final step of our methodology, “Check Process Model
Validity”, is optional. Whether or not this step is required
depends on the type of formalism used to specify variabil-
ity. As discussed in Section 1, there are two families of vari-
ability specification formalisms: domain-specific and general
variability modeling formalisms. SPEM 2.0 and vSPEM are
examples of domain-specific variability modeling formalisms,
while feature models and OVM are examples of general vari-
ability modeling formalisms. When using the second class of
formalisms, we must be careful to ensure that the resulting
specification actually corresponds to a valid process model,
and thus the extra step is required in this case. The end re-
sult is a formally specified software process line, which can
now be configured to each new project.

4. FORMALISMS FOR MODELING VARI-
ABILITY IN SOFTWARE PROCESSES

In this section, we give an overview of various formalisms
that can be used to specify software process variability. In
Sections 4.1 and 4.2, we discuss two domain-specific ap-
proaches that have been specifically designed for modeling
process line variability, and in Sections 4.3 and 4.4 we dis-
cuss how more general variability modeling formalisms can
also be used to specify software process variability.

4.1 SPEM Primitives
The SPEM 2.0 standard defines four indirect variability re-
lationships, which must be specified between two variability
elements2 of the same type (e.g., between two work prod-
ucts, between two roles, etc.):

1. Contributes: a source variability element «contributes»
its properties to the target variability element without di-
rectly altering any of the target element’s properties. The
target element takes on any extra attributes and associations
defined by the source element, except for those already de-
fined by the target element.

2. Replaces: a source variability element «replaces» its tar-
get variability element. In this case, only the incoming as-
sociations of the target element are preserved, both the tar-
get’s attributes and outgoing associations are replaced by
the source element’s. The target of multiple «replaces» re-
lations can only be replaced by one source element in a con-
figuration.

3. Extends: a source variability element «extends» the def-
inition of its target variability element, possibly overriding
the target’s attributes and associations.
2In this work, we restrict ourselves to the following variabil-
ity elements: tasks, roles and work products.



Table 1: Types of variability encountered in practice.
Modeling Element Type Location Optional or Alternative
Requirements Activity General process Optional
Design Activity General process Optional
Specify Requirements Task Requirements Workflow • Alt1: Specify Requirements in plain text

• Alt2: Specify Requirements in Use Cases
Establish Requirements
Baseline

Task Requirements Workflow • Alt1: Establish Requirements Baseline without Test Cases

• Alt2: Establish Requirements Baseline Test Cases
Meet for integration
agreements

Task Design Workflow Optional

Execute Test Cases Task Construction Workflow Optional
SRS Baseline Work product Establish Requirements

Baseline Task
• Alt1: Final SRS

• Alt2: SRS & Test Cases
Analyst Role Requirements Workflow • Alt1: Analyst Tester

• Alt2: Analyst with Use Case skills

(a) (b)

Figure 5: (a) SPEM 2.0 specification of the variability associated to the “Specify requirements” task, and (b)
a valid configuration of this model

4. Extends-Replaces: in this relationship, a source variabil-
ity element first «extends» its target variability element, and
then «replaces» it.

Instances of these relations may override each other, so vari-
ability relations must be resolved in a predetermined order
(first «contributes», then «replaces», then «extends» and fi-
nally «extends-replaces»). The process tailoring step is suc-
cessful if the process engineer can resolve away all variability
(in a non-conflicting manner). A priori, it is hard to predict
how variability relations interact with each other, which is
why the SPEM 2.0 variability mechanism is classified as an
indirect variability specification mechanism.

In Figure 5a, we used the SPEM 2.0 primitives to model
the variability associated to the “Specify requirements” task
(which is part of the “Requirements” activity). The figure
shows three variability relations: the task “Develop Non-
functional Requirements” contributes to task “Define Use
Cases”, the task “Define Use Cases” replaces “Define Re-
quirements” and the role “Analyst with Use Case skills” ex-
tends “Functional Analyst”. In order to remove variability
from this model, we must first resolve the «contributes» re-
lation between the two tasks: task “Define Use Cases” ac-
quires two associations, an incoming one from “Architect”

and an outgoing one to “NonFunctional Requirements”. The
next step is to resolve the «replaces» relation between the
two tasks: “Define Use Cases” replaces “Define Require-
ments”, while keeping its own incoming and outgoing associ-
ations. Finally, “Functional Analyst” inherits “Analyst with
Use Case skills”’s link to “Define Use Cases”. The resulting
SPEM model (without variability) is shown in Figure 5b.

Even in this small model, it was difficult to foresee the results
of the tailoring step. Regular process models can get much
larger, involving dozens of tasks and even hundreds of work
products, so the overall effect of the modeled variability is
not always clear. Also, deciding how and where to include
variability is a time-consuming, non-replicable and people-
dependent process.

4.2 vSPEM
Taking into account the limitations of the existing SPEM
2.0 variability mechanisms mainly from the understandabil-
ity point of view, Martinez et al. [31] have proposed vSPEM,
a SPEM 2.0 extension that allows the direct specification of
process variability. In this proposal, the process engineer
defines process variation points (called VarPoints), as well
as variants that can fill the variation points. In other words,
the relationship between a variation point and its variants



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6: (a) – (d) VarPoint icons, and (e) – (h)
Variant icons.

is a SPEM 2.0 «replaces» relation, and during the process
tailoring step, each variation point is replaced by exactly
one variant (which must be of the same type). Also, varia-
tion is now specified at the “use” level instead of the process
component “definition” level, i.e., activities, role uses, work
product uses and task uses are valid variation points.

vSPEM introduces new icons to represent variation points
and variants: the VarPoint icons are shown in Figures 6a –
6d, and the variant icons are shown in Figures 6e – 6h. In
Figure 7, we show a partial vSPEM specification of the vari-
ability modeled in Figure 5a. This model has two variation
points, “Define Requirements” and “Analyst”. The “Define
Requirements” variation point models the «replaces» vari-
ability relation in Figure 5a, and as such, has only one vari-
ant, “Define Use Cases”. On the other hand, SPEM 2.0
indirect variability relations («contributes», «extends» and
«extends-replaces») must be modeled by introducing new
variants that already include extra associations required by
the definition of the corresponding variability relation. For
example, the “Analyst” variation point has two variants,
“Functional Analyst”and“Functional Analyst with Use Case
skills”, which model the two possible instantiations of the
«extends» relation in Figure 5a. The first variant represents
the base role, a functional analyst, and the second variant
is the extended role, which is a functional analyst that can
also specify use cases.

The tailoring step is now much simpler: since each variation
point is associated to one or more variants, a valid configu-
ration includes exactly one variant for each variation point
in the process model. Also, since the indirect variability re-
lations have been made explicit by including new variants,
it is also much clearer as to which associations are involved
in the final model. For example, if the configuration of the
process model includes the “Define Use Cases” task, then
the roles and work products associated to this task must be
included in the configured model, information that may be
obfuscated in a larger SPEM model.

According to the empirical studies carried out by the authors
in [31], the vSPEM notation was much more intuitive and
easy to use than the SPEM 2.0 variability mechanism. Users
also found that the results of the process tailoring step were
more akin to their idea of the modeled variability when using
the new notation.

4.3 Feature Models
Basic Feature Models [24] (BFM) are frequently used to
model variability in product line engineering [13]. In a BFM,
features are organized hierarchically, with edges represent-

Figure 7: vSPEM specification of two variation
points associated to the “Specify Requirements”
task.

ing parent-child relationships between features. A set of
cross-tree constraints is also used to indicate relationships
between non-directly related features.

BFMs allow the following parent-child relationships:

• Mandatory (man): the child feature must be included in
all configurations in which the parent feature appears.

• Optional (opt): the child feature can be included in any
configuration in which the parent feature appears.

• Alternative (alt): exactly one child feature can be in-
cluded in any configuration in which the parent feature ap-
pears.

• Or (or): one or more child features can be included in any
configuration in which the parent feature appears.

Cross-tree constraints are simple boolean formulas between
nodes of the BFM. In this work, we consider the following
two types of cross-tree constraints:

• Requires: m →
∧

i=1...k ni, i.e., feature m requires the
inclusion of features n1, n2 . . . nk.

• Excludes: m →
∧

i=1...k ¬ni, i.e., feature m requires the
exclusion of features n1, n2 . . . nk.

For example, the feature model shown in Figure 8 models
both the common and variable elements of the “Require-
ments”activity (see Figure 2). This activity has seven manda-
tory tasks, which are modeled as mandatory features (which

are preceeded by the symbol in Figure 8). The two tasks
that can be realized in more than one way (labeled “Has al-
ternatives” in Figure 2) are decomposed into additional sub-
features using an alternative relationship (indicated by the

symbol in Figure 8), where alternatives are preceeded
by the symbol. This model does not have any cross-tree
constraints.

A configuration of a BFM is a subset of its nodes. A valid
configuration of a feature model satisfies the specified parent-
child relationships, as well as the model’s cross-tree con-
straints. For example, a valid configuration of the feature
model in Figure 8 includes all the mandatory features listed
under “Requirements Workflow”, including exactly one al-
ternative for each feature involved in an alternative relation



Figure 8: Screenshot of the fmp tool.

(e.g., “Define Use Cases” and “Establish Requirements Base-
line & Test Cases”).

Cardinality-based Feature Models [15] (CFM) are an exten-
sion to BFMs, where UML-like multiplicities (so-called car-
dinalities) have been added to certain elements of the model:

• Feature cardinality ([m..n]): specify the number of in-
stances of the feature that can be part of the final config-
uration, where m and n are the lower and upper bounds,
respectively.

• Group cardinality (< m..n >): specify the number of child
features that can be selected when its parent feature is se-
lected, where m and n are the lower and upper bounds,
respectively.

Feature cardinalities can be used to indicate how many team
members that meet a given profile are needed to carry out
the tailored process. For example, by adding the feature car-
dinality [1..2] to the feature representing “Functional Ana-
lyst”, we are indicating that one to two team members that
meet the “Functional Analyst” profile are needed to carry
out the “Define Requirements” task in the “Specify Require-
ments” activity. Group cardinalities affect how many vari-
ants can replace a variation point. By definition, variation
points must be replaced by one variant, so we have not used
this notation in our modeling experiments.

Finally, Extended Feature Models [24] (EFM) are an exten-
sion to BFMs, where additional information about features
is available. This is usually accomplished by adding feature
attributes [8, 9, 25]. There is no consensus on a notation to
define attributes. However, most proposals agree that an at-
tribute should at least have a name, domain and value. For
example, we have annotated the features in Figure 8 with
their SPEM type, in this case, all features are tasks. Note

that feature models specifying process variability can also
include roles and work products, but we have not included
them in this example.

4.4 Orthogonal Variability Modeling
Orthogonal Variability Models [36, 37] (OVM) is another
notation used to model product line variability. The main
difference between OVMs and feature models is that OVMs
only document the variabilities present in a product line,
whereas feature models model both the common aspects of
a product line and its variability. Thus, OVM elements are
either variation points or variants: variation points indicate
elements that may vary, while variants represent different
possible realizations of a variation point.

Each variation point must be related to at least one variant,
which is called a “dependency” in OVM (and corresponds to
the BFM concept of relations). OVM defines three types of
dependencies: mandatory, optional, and alternative, which
are interpreted just like their BFM counterparts. Group car-
dinalities can be defined for alternative dependencies. Ad-
ditionally, each variant must be related to one and only one
variation point. Finally, OVMs also allow requires and ex-
cludes constraints between modeled elements, these can be
defined between two variants or two variation points, or be-
tween a variation point and a non-dependent variant. An-
other difference with feature models is that OVMs elements
are not hierarchical, since each variation point is orthogo-
nal to the rest (hence the name of the modeling notation);
however, this hierarchy can be modeled using constraints.

Figure 9 shows how we modeled the variability in the “Re-
quirements” activity using VEdit, an OVM graphical model-
ing tool. Since OVM focuses on variability, we only included
the variable elements of Figure 2 in this model (unlike the
feature model in Figure 8, which included both common and
variable elements). The “Requirements” activity has two
variation points, “Specify Requirements” and “Establish Re-



Figure 9: Screenshot of the VEdit tool.

quirements Baseline”, each of which has two variants. This
model does not have any additional contraints. Just like fea-
ture models, we can talk about valid OVM configurations.
A valid configuration of an OVM is a subset of its variants
such that its dependencies and constraints are satisfied.

4.5 Discussion
The SPEM 2.0 standard advocates the specification of a sin-
gle process model that includes variability, where the mech-
anisms for specifying variability are quite expressive. Ide-
ally, such a general process specification language would al-
low the definition of highly reusable processes; however, in
practice, too much generality has its disadvantages. In this
case, since both the process and its variability are defined to-
gether, and variability is specified indirectly, it is hard to de-
termine whether process variability was modeled correctly.
The vSPEM proposal tries to address these concerns by do-
ing two things: 1) specifying variability independently from
the process, and 2) simplifying the variability specification
mechanisms. The authors of the proposal carried out some
preliminary usability studies [31], which indicate that users
effectively found it easier to work with vSPEM rather than
SPEM 2.0. Finally, we also studied how process variabil-
ity can be specified using popular product line formalisms:
different types of feature models (Section 4.3) and orthog-
onal variability models (Section 4.4). Since these are gen-
eral variability modeling languages, we must always check
whether models specified in these languages correspond to
valid SPEM 2.0 models. In our (limited) experience, we did
not need the full expressiveness of these languages to formal-
ize process variability, as processes seem to vary less than
products. Thus, the decision about which formalism to use
comes down to a question of available tool support, which
we discuss in the next section.

5. TOOL SUPPORT EVALUATION
One of the main advantages of formalizing variability mod-
els is that we can analyze these models using automated
techniques. For example, by mapping a feature model into a
propositional formula [32], an off-the-shelf SAT solver can be
used to determine whether a feature model is consistent or
not (i.e., it has at least one valid configuration), or whether
a given configuration is valid. By formalizing variability, we
can apply these same analyses to process variability models.

For example, we can check that the modeled variability is
consistent, and also determine valid configurations that can
be used to automatically tailor the corresponding process.

Table 2 summarizes some of the main features of eight tools
that support process variability modeling. In this table, col-
umn“Supported Formats”lists which standard input/output
file formats are supported by the tool; “Underlying Formal-
ism” indicates which formalism from Section 4 is used by the
tool; “Supported Analyses” lists the relevant analysis tasks
offered by the tool; “Interface” lists the types of user inter-
faces the tool has; “Availability” indicates the state of the
tool and how it is made available. We used these tools to
model the variability identified in Table 1, and we indicate
the degree of usability of each tool in column “Usability”
(values explained below).

Clafer. Clafer (class, feature, reference) [7] is a concept
modeling language for specification and analysis of software
product lines. Clafer provides first-class support for fea-
ture modeling, including feature modeling extensions like
cardinality-based feature modeling. The authors have de-
veloped a first version of a Clafer to Alloy [23], which en-
ables model analysis through the use of the Alloy Analyzer.
The Alloy Analyzer supports various analyses, like checking
model consistency and generating valid configurations. The
authors also provide a SPLOT to Clafer translator, as well
as a Clafer parser in Java (available at [27]). We assigned
this language a Low usability score because it does not have
its own IDE.

EPF Composer. The Eclipse Process Framework (EPF)
Composer [19] aims at producing a customizable software
process enginering framework. The Process Framework Project
has two goals: to provide an extensible framework and ex-
emplary tools for software process engineering - method and
process authoring, library management, configuring and pub-
lishing a process, and to provide exemplary and extensible
process content for a range of software development and
management processes supporting iterative, agile, and in-
cremental development, and applicable to a broad set of
development platforms and applications. Its usability was



Table 2: Available tool support.
Tool Supported

Formats
Underlying
Formalism

Supported Analyses Interface Availability Usability

Clafer [7] xml and ecore FM Check model consistency,
and generate valid configura-
tions

Text-based Clafer to Alloy
parser available

Low

EPF Com-
poser [19]

xmi SPEM 2.0 Check metamodel consis-
tency

Form-based Open source,
available online

Medium

FaMa-OVM [44] xml OVM Check metamodel and model
consistency, and generate all
valid configurations

Text-based Preliminar pro-
totype available,
new version un-
der construction

Low

fmp [28] xml and uml FM Check model consistency,
generate valid configura-
tions, and check partial
configurations

Form-based Eclipse plu-
gin, no longer
supported

Medium

Hydra [17] xml FM Check model consistency Graphical
Editor

Prototype tool,
research thesis

Medium

SPLOT [26] xmi and xsml FM Check model consistency,
generate valid configura-
tions, and find the number
of common and dead fea-
tures

Form-based Available online Medium

VEdit [33] xml OVM Syntax check (based on
OVM metamodel)

Graphical
Editor and
Form-based

Prototype re-
search, available
Eclipse plugin

Medium

XFeatures [41] xml and xmi FM Check metamodel consis-
tency and validate feature
model

Graphical
Editor

Open source,
available Eclipse
plugin

Medium

evaluated to Medium because it provides a form-based user
interface, but its underlying variability concepts are com-
plex. Nevertheless, and considering that it is a domain-
specific environment, the “Chech Process Model Validity”
stage of the methodology is not required because it only
allows syntactically correct process variability specification.

FaMa-OVM. FaMa-OVM [44] provides automated anal-
yses for orthogonal variability models. This tool offers ba-
sic analyses, like checking consistency and generating valid
configurations, but also focuses on verifying user-specified
quality conditions, allowing the generation of an optimal
configuration as well as the most representative one. This
tool is still in the prototype stage, and is available at [43].
We have assigned this tool a Low usability score because its
input format has not yet been documented, and it only offers
a limited text-based console to carry out model analysis.

fmp. The Feature Modeling Plug-in (fmp) [28] is an Eclipse
plug-in for editing and configuring cardinality-based feature
models. Fmp can be used standalone in Eclipse or together
with fmp2rsm plug-in in Rational Software Modeler (RSM)
or Rational Software Architect (RSA). fmp2rsm integrates
fmp with RSM and enables product line modeling in UML.
This tool is mainly used to check feature model consistency,
as well as to generate valid configurations and to check the
validity of partial configurations. The project has been com-
pleted, so the tool is no longer maintained by its original
developers; however, the project is now open-source, and
the code is available on SourceForge. A screenshot of the
tool, showing the feature model from Section 4.3, is shown
in Figure 8. We assigned this tool a Medium usability score
because it only works on older versions of Eclipse, and cross-
tree constraints are not shown explicitly.

Hydra. Hydra [17] offers a full graphical interface (copy,
paste, zoom, etc.) for specifying feature models. This tool
also allows the specification of cross-tree constraints, using
the CSP solver Choco [14] to check these constraints. Hy-
dra is implemented as a plug-in for Eclipse and is based on
de facto standards within the modeling community, such as
Ecore [49] and GMF [40], which promotes interoperabil-
ity with other tools. A screenshot of the tool, showing the
feature model from Section 4.3, is shown in Figure 10. We
assigned this tool a Medium usability score because cross-
tree constraints must be expressed directly in the syntax
that the Choco tool takes as input.

SPLOT. SPLOT (Software Product Lines Online Tools) [26]
is a collection of interactive online tools for editing, con-
figuring, and analyzing feature models. SPLOT is also a
feature model repository. SPLOT supports basic feature
models (i.e., no cardinality) and offers basic model analyses,
like those described at the beginning of this section, as well
as some more advanced analyses like finding the number of
common and dead features (common features appear in ev-
ery model configuration, while dead features do not appear
in any configuration). A screenshot of the tool, showing the
feature model from Section 4.3, is shown in Figure 11. We
assigned this tool a Medium usability score because models
are shown as simple trees, and cross-tree constraints must
be entered directly as boolean formulas.

VEdit. The VEdit [33] (VARMOD-EDITOR) is part of the
VARMOD-Tool-Environment. VEdit supports the specifi-
cation of product line variability models using Orthogonal
Variability Models. This tool offers a graphical model edi-
tor, supporting the definition of variation points and vari-
ants, variability constraints and constraint dependencies (re-
quires, excludes). A screenshot of the tool, showing the



Figure 10: Screenshot of the Hydra tool.

Figure 11: Screenshot of the SPLOT tool.

OVM from Section 4.4, is shown in Figure 9. We assigned
this tool a Medium usability score because, even though
models can be edited both graphically and in text-mode, this
tool does not offer any of the model analyses made available
by other OVM-based tools like FaMa-OVM.

XFeatures. XFeatures [41] is a graphical feature model edit-
ing tool. This tool checks for dependency and cross-tree
constraint consistency, but does not generate valid config-
urations. XFeatures is an active, open source project (al-
though the latest version of the tool dates from 2005), and
is available as a plug-in for Eclipse. A screenshot of the
tool, showing the feature model from Section 4.3, is shown
in Figure 12. We assigned this tool a Medium usability score
because, even though the feature models are shown graphi-
cally, it uses an unusual color convention and its cross-tree
constraint editor is quite poor.

6. RELATED WORK
Providing a detailed comparative analysis to show the rel-
ative advantages and disadvantages of different variability

Figure 12: Screenshot of the XFeatures tool.

modeling approaches would provide guidance for selecting
a particular approach in a specific context and would offer
practitioners a qualified portfolio of available techniques [12].
This idea was widely developed in the Software Product Line
(SPL) and Business Process Management (BPM) commu-
nities; however it has been poorly addressed by the SPrL
community yet.

6.1 Software Product Lines (SPL)
Several authors within the SPL community have reported
comparisons among different existing variability modeling
methods. Sinnema et al. [47] discuss the commonalities
and differences between six variability modeling techniques:
VSL [10], ConIPF [22], CBMF [15], COVAMOF [48], Koal-
ish [5], and Pure::Variants [39]. The authors use an example
product family in the domain of license plate recognition
on handhelds, such as PDAs, to illustrate the different ap-
proaches. The methods are also evaluated using a framework
focused on two major aspects: how variability information



is represented (representing choices and products, using ab-
stractions to manage complexity) and tool support (views,
active specification, configuration guidance, inference, effec-
tuation).

Djebbi et al. [18] evaluated some Product Lines Manage-
ment Tools: XFeature [41], Pure::Variant [39], and Requi-
Line [52] to determine to what extent such tools address the
set of thirteen criteria whose definition is based on technical
and scientific industrial expectations. After the evaluation,
Pure::Variant and RequiLine were the tools that best satis-
fied the defined criteria.

Asikainen [4] presents a technical report that discusses SPL
variability. The core part of his discussion consists of an
analysis and comparison of methods for modeling variabil-
ity. The evaluated methods fall in three categories: feature-
based, architecture-based, and other methods. In order to
give each modeling method a uniform treatment, the au-
thor used the following criteria for the evaluation: a) What
is being tried to achieve?; b) What is the knowledge being
represented and reasoned about?; c) What is the seman-
tics given to the knowledge?; d) What kind of tool sup-
port is provided or suggested to supportting approach?; and
e) How has the method been evaluated?. The evaluated
methods were: CONSUL [11], RequiLine [52], Mannion [30],
Koala [51], and COVAMOF [48].

6.2 Business Process Management (BPM)
In the world of BPM, there are also some authors that
have reported evaluations of existing tools and techniques
for managing variability in process models. Aiello et al. [2]
reported the evaluation of existing tools and frameworks for
variability management. Such evaluation was made consid-
ering five requirements: a) those that deal with the expres-
sive power for specifying variability; b) techniques supported
to derive variability expressions; c) requirements for service-
based processes with variability; d) run-time requirements
connected with consistency and fault handling; and e) re-
quirements stemming from the need of managing evolution
of processes with variability. The tools and frameworks in-
volved in the evaluation were: the Process Variants by Op-
tions (PROVOP) [21], the Variability extension to Business
Process Execution Language (VxBPEL) [1]; ADEPT [16];
the configurable workflow models (CWM) [20]; the DECLARE
framework [35]; the Business Process Constraint Network
(BPCN) [29]; and the Process Variant Repository (PVR) [46].
The authors conclude that none of the existing frameworks
addresses all or even most of the five requirements. There-
fore, there is space for extensive research and development
in the area of frameworks for the explicit management of
variability.

Ayora et al. [6] reported the results of the application of Con-
figurable Event-driven Process Chain (C-EPC) [45], Variant-
Rich Process Models (within the PESOA) [38] and PROVOP [21]
to manage the process variability in three case studies: a)
a vehicle repair process; b) a healthcare process; and c) an
e-business shop. In order to evaluate how well such ap-
proaches deal with business process variability modeling,
the authors defined twenty-two criteria to measure if the
approaches provide the mechanisms that allow the speci-
fication dealing with variability concepts and if they have

any other desirable quality factors to ensure their success-
ful adoption. After analyzing the selected approaches, the
PROVOP approach achieved almost all of the twenty-two
requirements needed when dealing with variability.

6.3 Software Process Variability
Currently, there are several proposed techniques and tools
for addressing variability modeling in SPL and BPM; how-
ever few techniques and tools have been proposed to specif-
ically address variability modeling in software processes. To
the best of our knowledge, SPEM 2.0 [34], vSPEM [31]
and the German V-Modell XT (an existing example for a
software process line) [42] seem to be the only systematic
efforts toward addressing variability modeling in software
processes. However, beyond having a set of techniques, it
provides significantly better benefits to have a comparative
analysis of such techniques. As was described above, there
are several efforts that try to identify the most suitable tech-
niques and tools for addressing variability modeling in SPL
and BPM; however it seems that the software process com-
munity has not addressed this topic extensively yet. Since
most of the concepts of SPL can be transferred to software
processes [42][3][50] and that there is an analogy between
software processes and business processes, it seems reason-
able to expect that the existing tools and techniques for
modeling variability in SPL and BPM could be also useful
for variability modeling in software processes. The question
that arises is now, what tools and techniques available for
variability modeling in SPL or BPM could be appropriate
for modeling variability in software processes? This research
work is a first effort to analyze SPEM 2.0, vSPEM and some
SPL tools and techniques for variability modeling in order to
investigate the suitability of such approaches for variability
modeling in software process.

7. CONCLUSIONS
All four notations that have been analyzed for specifying
software process model variability have the expressive power
for capturing all kinds of relevant variability. However, those
general purpose languages -feature models and OVM- are
more powerful, so they may allow to express certain con-
ditions that are meaningless for software processes, e.g. a
variant work product that may be realized by two different
variant roles, because all process model elements are indis-
tinguishable. This situation makes it error prone to use gen-
eral purpose notations for modeling variability in software
processes.

SPEM 2.0 counts on a series of native constructs for model-
ing variability. Moreover, the EPF Composer supports the
specification of all of them providing an integrated environ-
ment for modeling the process and its variability. However,
the understandability of the specification has been proved
to be very low. Building and evolving these process models
in highly difficult and almost unpredictable.

vSPEM improves understandability of SPEM 2.0 constructs
allowing the specification of process variability. This nota-
tion is highly promising because it includes variability forms
captured in feature models but restricted to what is relevant
for processes. Nevertheless, there are still no supporting
tools for vSPEM, and thus we cannot incorporate variability



specification in vSPEM in our tool chain for implementing
automatic process tailoring, that was our initial goal.

Feature models are the most mature and widespread nota-
tion for specifying variability. As such, there are several
good supporting tools, but there is still there the difficulty
of having a notation that allows specifying situations that
are meaningless.

OVM is a very promising notation because it has all the
power of feature models but it is much more compact since
it is not necessary to specify commonalities and these are
most of the modeling elements in the process model domain.
Supporting tools for OVM are still immature: they provide a
nice simple visualization, but the output of the specification
does not comply with any standard, and this makes it very
unconvenient to incorporate these tools in the tool chain.

As a conclusion, we will be using feature models for the mo-
ment being careful about what we specify. The SPLOT tool
will be our best option for the moment because it provides a
robust user interface, it generates standard xml output, and
it provides a rich set of analyses. In a near future we will
still need to reevaluate the possibility of using either vSPEM
or OVM as their tools get more mature.

8. REFERENCES
[1] Chang ai Sun and Marco Aiello. Towards Variable

Service Compositions Using VxBPEL. In Hong Mei,
editor, High Confidence Software Reuse in Large
Systems, 10th International Conference on Software
Reuse, ICSR 2008, volume 5030 of Lecture Notes in
Computer Science, pages 257–261. Springer, 2008.

[2] M. Aiello, P. Bulanov, and H. Groefsema.
Requirements and Tools for Variability Management.
In 34th Annual IEEE Computer Software and
Applications Conference Workshops, COMPSACW,
pages 245–250, 2010.

[3] Ove Armbrust, Masafumi Katahira, Yuko Miyamoto,
Jürgen Münch, Haruka Nakao, and Alexis Ocampo.
Scoping software process lines. Software Process:
Improvement and Practice, 14(3):181–197, 2009.

[4] Timo Asikainen. Modelling Methods for Managing
Variability of Configurable Software Product Families.
PhD thesis, Helsinki University of Technology,
Department of Computer Science and Engineering,
2004.

[5] Timo Asikainen, Timo Soininen, and Tomi Männistö.
A Koala-Based Approach for Modelling and Deploying
Configurable Software Product Families. In Frank
van der Linden, editor, 5th International Workshop on
Software Product-Family Engineering, PFE 2003,
volume 3014 of Lecture Notes in Computer Science,
pages 225–249. Springer, 2003.

[6] Clara Ayora, Victoria Torres, and Vicente Pelechano.
Dealing with Variability in Business Process Models:
An Evaluation Framework. Technical Report
PROS-TR-2011-05, Universitat Politécnica de
Valéncia, Centro de Investigación en Métodos de
Producción de Software, 2011.

[7] Kacper B ↪ak, Krzysztof Czarnecki, and Andrzej
W ↪asowski. Feature and Meta-Models in Clafer:

Mixed, Specialized, and Coupled. In 3rd International
Conference on Software Language Engineering,
Eindhoven, The Netherlands, 10/2010 2010.

[8] Don S. Batory. Feature Models, Grammars, and
Propositional Formulas. In Software Product Lines,
9th International Conference, SPLC 2005, Rennes,
France, September 26-29, 2005, Proceedings, pages
7–20, 2005.

[9] Don S. Batory, David Benavides, and Antonio Ruiz
Cortés. Automated analysis of feature models:
challenges ahead. Commun. ACM, 49(12):45–47, 2006.

[10] Martin Becker. Towards a general model of variability
in product families. In Jan Bosch Jilles van Gurp,
editor, Workshop on Software Variability
Management, pages 19–27, 2003.

[11] Danilo Beuche, Holger Papajewski, and Wolfgang
Schröder-Preikschat. Variability Management with
Feature Models. Science of Computer Programming,
53(3):333–352, 2004.

[12] Lianping Chen, Muhammad Ali Babar, and Nour Ali.
Variability management in software product lines: a
systematic review. In Dirk Muthig and John D.
McGregor, editors, 13th International Conference on
Software Product Lines, SPLC 2009, volume 446 of
ACM International Conference Proceeding Series,
pages 81–90. ACM, 2009.

[13] Paul Clements and Linda Northrop. Software Product
Lines: Practices and Patterns. Addison-Wesley
Professional, third edition, August 2001.

[14] EMN Constraint. Choco Solver.
http://http://www.emn.fr/z-info/choco-solver/,
Accessed September 2011.

[15] Krzysztof Czarnecki, Simon Helsen, and Ulrich W.
Eisenecker. Formalizing cardinality-based feature
models and their specialization. Software Process:
Improvement and Practice, 10(1):7–29, 2005.

[16] Peter Dadam and Manfred Reichert. The ADEPT
Project: A Decade of Research and Development for
Robust and Flexible Process Support. Computer
Science-Research and Development, 23(2):81–97, 2009.

[17] Salazar Jose R. / Universidad de Málaga. Herramienta
para el modelado y configuración de modelos de
caracteŕısticas, in Spanish.
http://caosd.lcc.uma.es/spl/hydra/, Accessed
October 2011.

[18] Olfa Djebbi, Camille Salinesi, and Gauthier Fanmuy.
Industry Survey of Product Lines Management Tools:
Requirements, Qualities and Open Issues. In 15th
IEEE International Requirements Engineering
Conference, RE 2007, pages 301–306. IEEE, 2007.

[19] Eclipse Foundation. Eclipse Process Framework
Project. http://www.eclipse.org/epf/, Accessed
October 2011.

[20] Florian Gottschalk, Wil M. P. van der Aalst,
Monique H. Jansen-Vullers, and Marcello La Rosa.
Configurable Workflow Models. International Journal
of Cooperative Information Systems, 17(2):177–221,
2008.

[21] Alena Hallerbach, Thomas Bauer, and Manfred
Reichert. Managing Process Variants in the Process
Life Cycle. In José Cordeiro and Joaquim Filipe,
editors, ICEIS 2008 - Proceedings of the Tenth



International Conference on Enterprise Information
Systems, Volume ISAS-2, pages 154–161, 2008.

[22] Lothar Hotz, Katharina Wolter, Thorsten Krebs,
Sybren Deelstra, Marco Sinnema, Jos Nijhuis, and
John MacGregor. Configuration in Industrial Product
Families: The ConIPF Methodology. IOS Press, 2006.

[23] Daniel Jackson. Software Abstractions: Logic,
Language, and Analysis. The MIT Press, 2006.

[24] Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson.
Feature-oriented domain analysis (foda) feasibility
study. Technical Report CMU/SEI-90-TR-21,
Carnegie Mellon University, November 1990.

[25] Kyo C. Kang, Sajoong Kim, Jaejoon Lee, Kijoo Kim,
Euiseob Shin, and Moonhang Huh. FORM: A
feature-oriented reuse method with domain-specific
reference architectures. Ann. Softw. Eng., 5:143–168,
January 1998.

[26] Computer Systems Group / Generative
Software Development Lab. SPLOT - Software
Product Line Online Tools.
http://www.splot-research.org/, Accessed
September 2011.

[27] Generative Software Development Lab. Clafer.
http://gsd.uwaterloo.ca/clafer, Accessed
September 2011.

[28] Generative Software Development Lab. Feature
Modeling and Model Templates. http://gsd.
uwaterloo.ca/featureModelingAndModelTemplates,
Accessed September 2011.

[29] Ruopeng Lu, Shazia Wasim Sadiq, and Guido
Governatori. On managing business processes variants.
Data & Knowledge Engineering, 68(7):642–664, 2009.

[30] Mike Mannion. Using First-Order Logic for Product
Line Model Validation. In Gary J. Chastek, editor,
Software Product Lines, Second International
Conference, SPLC, volume 2379 of Lecture Notes in
Computer Science, pages 176–187. Springer, 2002.

[31] Tomás Mart́ınez-Ruiz, Félix Garćıa, Mario Piattini,
and Jürgen Münch. Modelling software process
variability: an empirical study. IET Software,
5(2):172–187, 2011.

[32] Marćılio Mendonça, Andrzej Wasowski, and Krzysztof
Czarnecki. SAT-based Analysis of Feature Models is
Easy. In Software Product Lines, 13th International
Conference, SPLC 2009, San Francisco, California,
USA, August 24-28, 2009, Proceedings, pages 231–240,
2009.

[33] Software Systems Engineering Research
Group/ University of Duisburg-Essen.
VARMOD-PRIME Tool-Environment.
http://www.sse.uni-due.de/wms/de/?go=256,
Accessed October 2011.

[34] OMG. Software and Systems Process Engineering
Metamodel specification (SPEM) Version 2.0.
http://www.omg.org/spec/SPEM/2.0, Accessed June
2011.

[35] Maja Pesic, M. H. Schonenberg, Natalia Sidorova, and
Wil M. P. van der Aalst. Constraint-Based Workflow
Models: Change Made Easy. In Robert Meersman and
Zahir Tari, editors, On the Move to Meaningful
Internet Systems 2007: CoopIS, DOA, ODBASE,

GADA, and IS, OTM Confederated International
Conferences CoopIS, DOA, ODBASE, GADA, and IS
2007, volume 4803 of Lecture Notes in Computer
Science, pages 77–94. Springer, 2007.

[36] Klaus Pohl, Günter Böckle, and Frank J. van der
Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer,
November 2010.

[37] Klaus Pohl, Frank van der Linden, and Andreas
Metzger. Software Product Line Variability
Management. In Software Product Lines, 10th
International Conference, SPLC 2006, Baltimore,
Maryland, USA, August 21-24, 2006, Proceedings,
page 219, 2006.

[38] Frank Puhlmann, Arnd Schnieders, Jens Weiland, and
Mathias Weske. Variability mechanisms for process
models. Technical Report TR 17/2005, PESOA:
Process Engineering in Service-Oriented Applications,
2005.

[39] PV. Pure systems, 2011.
http://www.pure-systems.com/.

[40] C.G. Richard. Eclipse modeling project: A
domain-specific language (dsl) toolkit, 2009.

[41] O. Rohlik and A. Pasetti. XFeature Modeling Tool.
Automatic Control Laboratory, ETH Zürich, Accessed
October 2011.
http://www.pnp-software.com/XFeature/Home.html.

[42] H. Dieter Rombach. Integrated software process and
product lines. In Mingshu Li, Barry W. Boehm, and
Leon J. Osterweil, editors, International Software
Process Workshop, Unifying the Software Process
Spectrum, SPW 2005, volume 3840 of Lecture Notes in
Computer Science, pages 83–90. Springer, 2005.

[43] Fabricia Roos-Frantz, David Benavides,
A. Ruiz-Cortés, André Heuer, and Kim Lauenroth.
Complementary material.
http://www.lsi.us.es/~dbc/material/SofQualJ11/,
Accessed September 2011.

[44] Fabricia Roos-Frantz, David Benavides,
A. Ruiz-Cortés, André Heuer, and Kim Lauenroth.
Quality-aware analysis in product line engineering
with the orthogonal variability model. Software
Quality Journal Special Issue on Quality Engineering
for Software Product Lines, 2011.

[45] Michael Rosemann and Wil M. P. van der Aalst. A
configurable reference modelling language.
Information Systems, 32(1):1–23, 2007.

[46] Shazia Wasim Sadiq, Maria E. Orlowska, and Wasim
Sadiq. Specification and validation of process
constraints for flexible workflows* 1. Information
Systems, 30(5):349–378, 2005.

[47] Marco Sinnema and Sybren Deelstra. Classifying
variability modeling techniques. Information and
Software Technology, 49(7):717–739, 2007.

[48] Marco Sinnema, Sybren Deelstra, Jos Nijhuis, and Jan
Bosch. Covamof: A Framework for Modeling
Variability in Software Product Families. In Robert L.
Nord, editor, Third International Conference on
Software Product Lines, SPLC 2004, volume 3154 of
Lecture Notes in Computer Science, pages 197–213.
Springer, 2004.

[49] D. Steinberg, F. Budinsky, M. Paternostro, and



E. Merks. EMF: Eclipse Modeling Framework.
Addison-Wesley Professional, 2008.

[50] Thomas Ternité. Process Lines: A Product Line
Approach Designed for Process Model Development.
In 35th Euromicro Conference on Software
Engineering and Advanced Applications, SEAA 2009,
pages 173–180. IEEE Computer Society, 2009.

[51] Rob C. van Ommering. Building product populations
with sofware components. In Proceedings of the 22rd
International Conference on Software Engineering,
ICSE 2002, pages 255–265. ACM, 2002.

[52] Thomas von der Maßen and Horst Lichter. RequiLine:
A Requirements Engineering Tool for Software
Product Lines. In Frank van der Linden, editor, 5th
International Workshop on Software Product-Family
Engineering, PFE 2003, volume 3014 of Lecture Notes
in Computer Science, pages 168–180. Springer, 2003.


