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Abstract. Software process lines (SPrL) are families of related processes, built from a set of adminis-
trated software process elements in a prestablished fashion, similar to how software product lines (SPL)
are built with software assets. In SPLs, variability is usually speci�ed using feature models. As SPrLs
manage particular kinds of process elements, namely tasks, roles and work products, we explore the
feasibility and applicability of feature and orthogonal variability models for specifying variability in
SPrLs. In this paper, we present the kinds of variabilities that are relevant in the context of SPrLs and
we show how they may be speci�ed with feature models and orthogonal variability models. We use use
a simple requirements engineering process as a means for illustrating each issue.

1 Introduction

Our group has spent the last �ve years helping Chilean software development companies rigorously de�ne
their software development processes. For companies with a more mature development process, this included
formalizing their software processes using SPEM 2.0 [18]. This formalization facilitates the automated anal-
ysis of software processes, and in [1, 3], we present some techniques for analyzing SPEM 2.0 models. In
our experience, the feedback provided by these analyses e�ectively helped companies improve their software
processes.

Even though the exercise of formalizing software processes was successful, we realized that a company
cannot apply the same software process to all its projects. For example, when involved in two projects,
one a large development project involving a team of highly quali�ed people, and another a simple software
evolution, a company will probably follow a more sophisticated software process for the larger project.
However, manually de�ning and maintaining di�erent software processes for each possible project context is
not only expensive, but also error prone.

One solution to this problem is to de�ne a software process line: a considerable amount of e�ort is put
into formalizing a general development process, which is later con�gured for di�erent project contexts. The
advantage of this approach is that the formalization e�ort is only done once. SPEM 2.0 provides various
variability mechanisms, allowing the de�nition of con�gurable processes. However, since process models can
get quite large involving dozens of tasks and even hundreds of work products, and variability mechanisms
can override each other, the overall e�ect of the modeled variablity is not always clear. Also, deciding how
and where to include variability is a time consuming, non-replicable and people dependent process.

To address this problem, in previous work [2] we have studied the feasibility of modeling process variability
separately from the process de�nition. This is akin to the idea of creating product lines [8], where feature
models [9, 11] or other formalisms [19] are used to model product variability separately from the rest of the
product models. This separation of concerns has shown to be quite bene�cial. The process model evolves at
a di�erent pace than the variability model. Also, consistency of model con�gurations can be checked using
the tools associated with feature models.

In [2], we studied the feasibility of automatically tailoring software process lines, where the only variability
we considered was work product optionality. For example, identifying the requirements providers was not
necessary for requirements understanding whenever we had an evolution project, but it was mandatory for
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Fig. 1. SPEM 2.0 icons: (a) role de�nition, (b) work product de�nition, (c) task de�nition, (d) role use, (e) work
product use, (f) task use, and (g) activity.

any new project. However, variability relationships can be more complex than this, e.g., one work product
may be considered a satisfactory alternative to another work product. For example, all projects may need
a mision de�nition but for new projects this work product needs to be a comprehensive document while in
evolution projects it just needs to de�ne the project's scope and its relationship with what already exists.
Additionally, software process lines manage three types of process elements (tasks, roles and work products),
and important variability constraints may involve elements of all three types. The roles that are involved in
a project may depend on the amount of resources available and thus the roles responsible for each task may
vary.

In this paper, we present the variabilities that may appear in software process formal speci�cation. We
discuss the available notations and tools, and we make recommendations about them. We illustrate the
application of our choice specifying a simple yet interesting requirements engineering process.

2 Modeling Software Process Lines

The Software and Systems Process Engineering Meta-Model (SPEM 2.0) [18] is a standard notation for
modeling software and systems development processes and their components. SPEM 2.0 is de�ned as a UML
2.0 pro�le, and takes an object-oriented approach to process modeling. SPEM diagrams are used to model
two di�erent views of a process: a static view, where process components (tasks, work products and roles)
are de�ned; and a dynamic view, where interaction diagrams (like UML activity diagrams) are used to model
how process components interact in order to accomplish the goals of the modeled process.

2.1 Process Components

One of the goals of using a language like SPEM 2.0 to specify processes is that it gives process engineers
mechanisms with which to manage families of processes. In order to encourage process maintenance and
reuse, SPEM 2.0 makes a di�erence between the de�nition of process building blocks and their latter use in
(possibly more than one) processes. Process components, like tasks, roles and work products, are de�ned and
stored in a Method Library. These de�nitions can later be reused in multiple process de�nitions. A process
is a collection of activities, where an activity is a �big-step� grouping of role, work product and task uses.
Roles perform activity tasks, and work products serve as input/output artifacts for tasks. The icons for these
SPEM 2.0 elements are shown in Figure 1.

Roles are used to de�ne the expected behavior and responsibilities of the team members involved in a
process. For example, a role de�nition like �Developer� is used to represent team members that will develop
parts of the system, and can carry out design, implementation and testing tasks. Note that roles do not
represent individual team members, and that one team member may take on several roles at the same time.
Also, a single role may be responsible for more than one work product, as well as modify multiple work
products.

Work products represent anything produced, consumed, or modi�ed by a process. Tangible work products
are usually called �artifacts�, while intangible products are called �outcomes�. Work products that will be
handed o� to internal or external parties are also classi�ed as �deliverables�. Documents, models, repositories,
source code and binaries are examples of artifacts and deliverables, while an event like notifying a party
that an activity has concluded is an outcome. Formally, roles and work products are stereotyped UML
classes, �role� and �work product�, respectively. As such, generalization, aggregation and composition
relationships can be used to de�ne more complex roles and work products.
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Fig. 2. SPEM 2.0 task example: �Elicit requirements�.

Fig. 3. State machine associated to �Requirements Document� work product.

A task is a set of subtasks/steps that are performed by possibly multiple roles, and involve the creation or
modi�cation of one or more work products. Ideally, only one role is responsible for the task. As such, a task
de�nition is a stereotyped class diagram, where the roles that are responsible for it and those that will perform
the associated work are identi�ed, as well as the input and output work products (which can be tagged as
mandatory or optional). For example, the class diagram in Figure 2 shows the task de�nition of the typical
RE task �Elicit requirements�. This task de�nition is associated to two roles: �Analyst� (�responsible�)
and �Client Liaison� (�performs�). This means that a team member with an analyst pro�le should be in
charge of this task, but that we also require somebody from the client's sta� to act as stakeholder during the
elicitation process. This task has one mandatory output work product, a �Requirements Document�. Task
de�nitions can also include tool de�nitions and guidance, but we have omitted these elements for now.

2.2 Process Behavior

After having de�ned the basic process components, we can now specify how work products change state, how
tasks are divided into subtasks, and �nally, how to put everything together and specify a process (without
variability).

A work product may go through di�erent states during its lifetime. As such, work products can have an
associated state model. Process engineers can use this model to specify a work product's states, as well as the
permitted transitions between these states. Ideally, such a model can be used to determine how complete a
work product is. For example, the state machine for the �Requirements Document� mentioned in the previous
section can be seen in Figure 3. This state machine has three states: �initial�, �validated� and �approved�. The
�initial� state represents an empty document, whereas the �validated� state indicates that the contents of the
document have been validated by both the Analyst and Client Liaison, but the document is not complete.
The �nal state, �approved�, is used to indicate that the document is complete and that the Client Liaison
has signed o� on the document. These work product states can also be used as guards in task de�nitions.

Tasks can be broken down into smaller tasks, modeled using an activity diagram. For example, the
task �Elicit requirements� has three steps: 1) �gather requirements�, 2) �formalize requirements�, 3) �validate
requirements�, where there is a feedback loop between �validate� and �gather� (shown in Figure 4). In other
words, the intended work�ow for this task is the following: the Analyst meets with the Client Liaison and
gathers an initial set of requirements; the Analyst formalizes these requirements (documenting them in the
requirements document) and validates them with Client Liaison. This process continues until the Client
Liaison is satis�ed with the set of requirements gathered, as well as their formalization.

Finally, we can specify a process by using the element de�nitions we have previously described. Task, role
and work product de�nitions are recommended de�nitions, we must now specify which de�nitions will be
used in the process. Note that these de�nitions are only recommendations made by the process engineer, and
can be overridden when instantiated, e.g., by adding/removing a work product from a task. Task, role and
work product uses are grouped into high-level activities, and a process is a set of these activities, along with
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Fig. 4. Detailed view of the �Elicit requirements� task.

Fig. 5. A General Requirements Engineering Process

structural and sequencing information. For example, Figure 5 shows a process model of a general require-
ments engineering process. It consists of three activities: �Exploration�, �User Requirements Speci�cation
& Validation�, and �Software Requirements Speci�cation & Validation�, and a bad result in the �nal step
may take us back to a previous step. The �Elicit Requirements� task described before was used in the �User
Requirements Speci�cation & Validation� activity.

3 Modeling Process Variability

It takes a considerable e�ort to formalize a process in a language like SPEM 2.0, and we do not want re-do
this work when formalizing other similar processes. With this in mind, the authors of SPEM 2.0 introduced a
set of variability mechanisms, allowing the de�nition of tailorable processes. In other words, process engineers
are expected to de�ne a common process, and then use the provided variability mechanisms to indicate how
to con�gure the process to individual projects. For example, the General Requirements Engineering Process
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Fig. 6. Simple SPEM 2.0 variability example: (a) con�gurable model, and (b) a valid con�guration of this model.

from Section 2 could be an instantiation of a more general process, where the �Exploration� activity is only
required if the project is set in a new problem domain.

In this section, we �rst describe the SPEM 2.0 variability mechanism, which provide an indirect manner
for specifying variation, and then the vSPEM proposal [16], which focuses on the direct speci�cation of
variability, through the de�nition of variation points and variants.

3.1 SPEM 2.0 Variability Mechanism

The SPEM 2.0 standard de�nes four indirect variability relationships, which must be speci�ed between two
variability elements 3 of the same type (e.g., between two work products, between two roles, etc.):

1. Contributes: a source variability element �contributes� its properties to the target variability element
without directly altering any of the target element's properties. In other words, the target element takes
on any extra attributes and associations de�ned by source element, except for those already de�ned by
the target element.

2. Replaces: a source variability element �replaces� its target variability element. In this case, only the
incoming associations of the target element are preserved, both the target's attributes and outgoing
associations are replaced by the source element's. The target of multiple �replaces� relations can only
be replaced by one source element in a con�guration.

3. Extends: a source variability element�extends� the de�nition of its target variability element, possibly
overriding the target's attributes and associations.

4. Extends-Replaces: in this relationship, a source variability element �rst�extends� its target variability
element, and then �replaces� it.

Instances of these relations may override each other, so variability relations must be resolved in a predeter-
mined order (�rst �contributes�, then �replaces�, then �extends� and �nally �extends-replaces�).
The process tailoring step is successful if the process engineer can resolve away all variability (in a non-
con�icting manner). A priori, it is hard to predict how variability relations interact with each other, which
is why the SPEM 2.0 variability mechanism is classi�ed as indirect.

For example, the model in Figure 6a has the following variability relations: the task �create UML model�
contributes to task �formalize requirements�, work product �UML Use Case Model� replaces �Requirements
Document� and role �UML Modeler� extends �Analyst�, where the �formalize requirements� task is one of the
subtasks of the �Elicit Requirements� task described in the previous section. In order to remove variability
from this model, we must �rst resolve the �contributes� relation between the two tasks: task �formalize
requirements� acquires two outgoing associations, one to �UML Modeler� and another to �UML Use Case
Model�. The next step is to resolve the�replaces� relation between the two work products: �UML Use Case
Model� replaces �Requirements Document� in the association with �formalize requirements� (while keeping

3 In this work, we restrict ourselves to the following variability elements: tasks, roles and work products.
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Fig. 7. (a) � (d) VarPoint icons, and (e) � (h) Variant icons.

(a) (b)

Fig. 8. Simple vSPEM variability example: (a) con�gurable model, and (b) a valid con�guration of this model.

its own incoming and outgoing associations). Finally, �Analyst� inherits �UML Modeler� 's link to �UML Use
Case Model�. The resulting SPEM model (without variability) is shown in Figure 6b.

Even in this small model, it was di�cult to foresee the results of the tailoring step. Regular process
models can get much larger, involving dozens of tasks and even hundreds of work products, so the overall
e�ect of the modeled variability is not always clear. Also, deciding how and where to include variability is a
time-consuming, non-replicable and people-dependent process.

3.2 vSPEM

Taking into account the limitations of the existing SPEM 2.0 variability mechanisms, Martinez et al. [16]
proposed and validated vSPEM, a direct variability mechanism for SPEM 2.0. In this proposal, the process
engineer de�nes process variation points (called VarPoints), as well as variants that can �ll the variation
points. In other words, the relationship between a variation point and its variants is a SPEM 2.0�replaces�
relation, and during the process tailoring step, each variation point is replaced by exactly one variant (which
must be of the same type). Also, variation is now speci�ed at the �use� level instead of the process component
�de�nition� level, i.e., activities, role uses, work product uses and task uses are valid variation points.

In order to simplify variability modeling, the authors introduced new SPEM icons: the VarPoint icons are
shown in Figures 7a � 7d, and the variant icons are shown in Figures 7e � 7h. In Figure 8a, we show a partial
vSPEM speci�cation of the variability modeled in Figure 6a. This model has two variation points, �formalize
requirements� and �Requirements Documents�, and two variants, �formalize requirements using UML� and
�UML Use Case Model�. In vSPEM, indirect variability relations, i.e., �contributes�, �extends� and
�extends-replaces�, are modeled by introducing new variants. For example, the task variant �formalize
requirements using UML� represents the �contributes� relation in Figure 6a. The tailoring step is now
much simpler: since each variation point in this example has exactly one variant, the tailored model is
the one shown in Figure 8b. It is also much clearer in Figure 8b that the �nal version of the �formalize
requirements� task includes the creation of a UML model, information that may be obfuscated in a larger
SPEM model.

According to the empirical studies carried out by the authors in [16], the vSPEM notation was much
more intuitive and easy to use than the SPEM 2.0 variability mechanism. Users also found that the results
of the process tailoring step were more akin to their idea of the modeled variability when using the new
notation. For these reasons, we have adopted this notation in the remainder of this work. In the next section,
we discuss possible formalizations of this language.

6



Fig. 9. Example of a basic feature model (from [7]).

4 Formalizing Variability

As discussed in Section 1, the idea of modeling process variability separately from the process de�nition is
quite bene�cial [2]. In this section, we give an overview of various formalisms currently used in product line
analysis [7], and discuss how each one can be used to model vSPEM process variability.

4.1 Basic Feature Models

Basic Feature Models [11] (BFM) are frequently used to model variability in product line engineering [8].
In a BFM, features are organized hierarchically, with edges representing parent-child relationships between
features. A set of cross-tree constraints is used to indicate relationships between non-directly related features.

De�nition 1 (Basic Feature Model). (adapted from [17]) A BFM is a 4-tuple V = (N,E, r, C), where
N is a set of nodes representing features, E is a set of edges between nodes, r ∈ N is the single root node
representing the domain concept being modeled by the BFM, and C is a set of cross-tree constraints.

A con�guration of a BFM V is a subset of its nodes. A valid con�guration M of a feature model is
con�guration such that r ∈M , M satis�es the parent-child relationships speci�ed in E, and M also satis�es
the cross-tree constraints de�ned in C.

BFMs have the following types of edge relationships:

• Mandatory (man): a mandatory relationship between a parent and child feature means that the child
feature must be included in all con�gurations in which the parent feature appears.

• Optional (opt): an optional relationship between a parent and child feature means that the child feature
can be included in any con�guration in which the parent feature appears.

• Alternative (alt): a set of child features have an alternative relationship with their parent when exactly
one child feature can be included in any con�guration in which the parent feature appears.

• Or (or): a set of child features have an or-relationship with their parent when one or more child features
can be included in any con�guration in which the parent feature appears.

Thus, an edge e ∈ E is of the form (p, etype, c), where p, c ∈ N (p and c are the parent and child nodes,
respectively) and etype ∈ {man, opt, alt, or}. Figure 9 (from [7]) shows the graphical notation for BFMs.
In this model, �Mobile Phone� is the root node, which has two optional sub-features (�GPS� and �Media�),
and two mandatory sub-features (�Calls� and �Screen�). �Screen� is further decomposed using an alternative
relation, so a �Screen� has to be one of the following types:�Basic�, �Color� or �High resolution�; whereas the
�Media� feature is decomposed using an or-relationship, so a �Mobile Phone� that includes �Media� can have
any of its sub-features.
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Fig. 10. BFM template for modeling vSPEM variability.

Cross-tree constraints are simple boolean formulas between nodes of the BFM. In this work, we consider
the following two types of cross-tree constraints:

• Requires: m→
∧

i=1...k ni, i.e., feature m requires the inclusion of features n1, n2 . . . nk.
• Excludes: m→

∧
i=1...k ¬ni, i.e., feature m requires the exclusion of features n1, n2 . . . nk.

For example, the BFM in Figure 9 has two cross-tree constraints: 1) a requires constraint from �Camera�
to �High resolution�, indicating that a phone that has a camera must have a high resolution screen; and 2) an
excludes constraint between �GPS� and �Basic�, indicating that a phone with a basic screen cannot have GPS
capabilities, and vice versa. Taking all these constraints into account, this BFM has various valid con�gu-
rations, like {Mobile Phone, Calls, GPS, Screen, High resolution} and {Mobile Phone, Calls, Screen, Media,
High resolution, Camera, MP3}.
Modeling vSPEM variability using BFMs. Since BFMs talk about features, it makes sense to model
both variation points and variants as features. However, since BFMs only identify nodes by label, the modeler
must encode the node type (variation point or variant), as well as the variability element type (activity, role
use, work product use, or task use) in the node label. Also, since there is no obvious candidate root node, a
dummy root node must be added to the BFM (e.g., �Variability Pro�le�). Variation points and variants are
organized under this root node.

We must impose several restrictions on E in order to preserve the semantics of vSPEM:

1. vSPEM does not allow nesting of variation points nor variants, which means that the BFM corresponding
to a vSPEM variability pro�le cannot have edges between two features representing variation points (same
for variants).

2. In vSPEM, a variant can only be related to a variation point of the same type (e.g., a task use variant can
only replace a task use variation point), so the corresponding BFM cannot have edges between features
of di�erent types.

3. Another condition for producing a valid vSPEM variability pro�le is that each variation point should be
related to at least one variant.

4. In vSPEM, each variation point can only be replaced by one variant once the variability pro�le has been
con�gured. To ensure this condition, a variation point that has multiple variants should be related to
these through an alternative relation. If a variation point has only one variant, this variant is mandatory.

5. Finally, since variation points are variability elements themselves, a variation point can be optional.

In Figure 10, we show a basic feature model template for modeling vSPEM variability. Since BFMs only
identify nodes by label, it is up to the modeler to manually enforce the additional restrictions on E. In
this model, the modeled �Variability Pro�le� (root node) has n variation points, which can be mandatory
(like �VarPoint1�) or optional (like �VarPoint2�). This pro�le is also associated to m variants, which are
associated to the n variation points through either mandatory or alternative relations, depending on the
amount of variants that a variation point has: a variant is mandatory if it is the only variant associated
to a VarPoint (like �VarPoint1� in Figure 10); otherwise, variants are alternatives). We have not included
cross-tree constraints in Figure 10, but such a BFM can also have cross-tree constraints between its nodes.

Theorem 1. If a BFM meets all the conditions de�ned above, then all valid con�gurations of this BFM are
valid vSPEM con�gurations.
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(a) (b)

Fig. 11. (a) BFM corresponding to the variability example presented in Section 3, and (b) extending the BFM in (a)
with feature cardinality, indicating that the tailored process requires 1�2 �UML Modelers�.

Proof by construction. ut
For example, the BFM in Figure 11a models the variability example discussed in Section 3. This model

has three mandatory variation points: �formalize requirements�, �Requirements Document� and �Analyst�.
We have included vSPEM icons in order to visually di�erentiate between variation points and variants,
as well as labeled the nodes of the model. The �formalize requirements� variation point is related to two
variants: �formalize requirements using scenarios� and �formalize requirements using UML� (which appeared
in Figure 8a). The �Requirements Document� node has been similarly decomposed. There is only one possible
variant for the �Analyst� variation point, �UML Modeler�. This model also has two cross-tree constraints:
the task variant �formalizing requirements using UML� requires the work product �UML Use Case Model�,
which in turn requires a team member that is a �UML Modeler�.

This model has three valid con�gurations: M1 = {0, 1, 2, 3, 5, 7, 8}, M2 = {0, 1, 2, 3, 4, 6, 8}, and M3 =
{0, 1, 2, 3, 4, 7, 8}. M1 represents the con�guration where the variant �formalizing requirements using UML�
is selected, which means that variants �UML Use Case Model� and �UML Modeler� must also be selected,
because of the cross-tree constraints. On the other hand, if the variant �formalizing requirements using
scenarios� is selected, both variants for �Requirements Document� are valid, corresponding to con�gurations
M2 and M3. The variant �UML Modeler� is present in all con�gurations because it is a mandatory variant.

4.2 Cardinality-based Feature Models

Cardinality-based Feature Models [9] (CFM) are an extension to BFMs, where UML-like multiplicities (so-
called cardinalities) have been added to certain elements of the model:

• Feature cardinality ([m..n]): used to indicate the number of instances of the feature that can be part of
the �nal con�guration, where m and n are the lower and upper bounds, respectively.

• Group cardinality (< m..n >): used to indicate the number of child features that can be selected when
its parent feature is selected, where m and n are the lower and upper bounds, respectively.

Figure 11b shows how feature cardinality was added to a part of the BFM in Figure 11a. By adding the
feature cardinality [1..2] to �UML Modeler�, we are indicating that the tailored process requires one to two
team members that meet the �UML Modeler� pro�le.

Group cardinality a�ects alternative and or-relationships. In our translation of vSPEM to BFM, we only
used the alternative relation, in order to model the relationship between a parent variation point and its
children variants (modeling that just one variant may be selected per variation point). Thus, we do not have
any use for this modeling concept.
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Fig. 12. Using feature attributes to expand the information available about the �Analyst� node.

Fig. 13. Example of an orthogonal variability model (from [23]).

4.3 Extended Feature Models

Extended Feature Models [11] (EFM) are an extension to BFMs, where additional information about features
is available. This is usually accomplished by adding feature attributes [12, 5, 6]. There is no consensus on
a notation to de�ne attributes. However, most proposals agree that an attribute should at least have a
name, domain and value. For example, Figure 12 shows an example of how feature attributes can be used to
better document the nodes of the BFM in Figure 11a. Instead of informally adding extra labels and icons,
the �Analyst� node now has three attributes, �featureType�, �id� and �elementType�, where �FeatureTypes�
={�root�, �VarPoint�, �Variant�} and �ElementTypes� = {�Activity�, �Role Use�, �Work Product Use�, �Task
Use�}.

4.4 Orthogonal Variability Model

Orthogonal Variability Models [20, 19] (OVM) is another notation used to model product line variability. The
main di�erence between OVMs and feature models is that OVMs only document the variabilities present in
a product line, whereas feature models model both the common aspects of a product line and its variability.
Thus, OVM elements are either variation points or variants: variation points indicate elements that may
vary, while variants represent di�erent possible realizations of a variation point.

Each variation point must be related to a least one variant, which is called a �dependency� in OVM (and
corresponds to the BFM concept of relations). OVM de�nes three types of dependencies: mandatory, optional,
and alternative, which are interpreted just like their BFM counterparts. Group cardinalities can be de�ned
for alternative dependencies. Additionally, each variant must be related to one and only one variation point.
Finally, OVMs also allow requires and excludes constraints between modeled elements, these can be de�ned
between two variants or two variation points, or between a variation point and a non-dependent variant.
Another di�erence with feature models is that OVMs elements are not hierarchical, since each variation
point is orthogonal to the rest (hence the name of the modeling notation); however, this hierarchy can be
modeled using constraints.

Figure 13 (from [23]) shows the graphical notation for OVMs. In this variability model of a cellular
phone product line, �Messaging�, �Utility Functions� and �OS� are three mandatory variation points.In this
example, the variation point �Messaging� has two variants, �SMS� and �MMS�, related through an alternative
dependency relation with a [1..2] cardinality. This means that valid con�gurations of this model must contain
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Fig. 14. OVM corresponding to the variability example presented in Section 3.

at least one of the two variants (or both). The �OS� variation point has a similar decomposition using an
alternative relation, but no cardinality is explicitly modeled. This means that the default [1..1] cardinality
applies to this relation and valid con�gurations of this model must contain exactly one variant associated
to the �OS� node. The �Utility Functions� variation point has two optional dependents, valid con�gurations
of this model can contain none, one or both of the related variants. Finally, there is a requires constraint
from �Currency Exchange� to �Calculator�, indicating that valid con�gurations of the model that include
�Currency Exchange� must also include a �Calculator�. Just like feature models, we can talk about valid
OVM con�gurations. A valid con�guration of an OVM is a subset of its variants such that its dependencies
and constraints are satis�ed

Modeling vSPEM variability using OVMs. vSPEM and OVMs have similar modeling constructs and
semantics, so the mapping from vSPEM to OVM is direct. The main di�erence between the two is that
vSPEM does not allow general group cardinalities on alternatives, so we must restrict ourselves to OVM
without cardinalities when modeling vSPEM variability. Figure 14 shows an OVM that models the variability
example discussed in Section 3. This model is equivalent to the BFM version in Figure 11a, since there is a
one-to-one mapping between the valid con�gurations of both models. This is because there is a one-to-one
mapping between the modeled elements (except for the dummy root feature) and equivalent constraints exist
in both models.

This result was not surprising, as it con�rms the results obtained by Roos-Frantz et al. [23]. In [23], the
authors present a BFM to OVM translation algorithm, indicating speci�c cases were special care needed to
be taken in order to preserve the semantics of the original BFM. Since we used a reduced subset of BFM
to represent vSPEM variability, we did not encounter the problems described in [23], and there is a direct
mapping between a BFM and an OVM modeled using our restricted subsets of these notations.

4.5 Discussion

As discussed in the previous section, the SPEM standard advocates for a single process model that includes
variability, whereas vSPEM focuses on a separate speci�cation of common and variable process elements.
Empirical studies [16] seem to favor the latter approach, so in this section, we studied how to formalize
vSPEM variability using popular product line formalisms: di�erent types of feature models (Sections 4.1 �
4.3) and orthogonal variability models (Section 4.4). We found that we did not need the full expressiveness
of feature models to formalize vSPEM, since this notation only focuses on variability. We also found that
we could directly formalize vSPEM using OVM, since both notations share core concepts. Finally, we found
that there is a direct mapping between a FM representing vSPEM variability and the corresponding OVM,
a conclusion supported by the results in [23]. Thus, the decision about which formalism to use comes down
to a question of available tool support, which we discuss in the next section.
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5 Tool Support for Feature Models and Orthogonal Variability Models

The main advantage of formalizing models is that we can analyze these models using automated techniques.
For example, by mapping a feature model into a propositional formula [17], an o�-the-shelf SAT solver can be
used to determine whether a feature model is consistent or not (i.e., it has at least one valid con�guration),
or whether a given con�guration is a valid. By formalizing variability, we can apply these same analyses to
variability models. For example, we can check that the modeled variability is consistent, and also determine
valid con�gurations that can be used to automatically tailor the corresponding process.

A more complete list of feature model analysis operations, as well as di�erent underlying formalisms,
can be found in [7]. On the other hand, the analysis of orthogonal variability models has up till recently
been done in an ad-hoc manner [19], but recent work [22] has focused on the use of constaint programming
to analyze OVMs. In this section, we give an overview of various publicly available FM and OVM analysis
tools.

5.1 fmp

The Feature Modeling Plug-in (fmp) [15] is an Eclipse plug-in for editing and con�guring cardinality-based
feature models. Fmp can be used standalone in Eclipse or together with fmp2rsm plug-in in Rational Software
Modeler (RSM) or Rational Software Architect (RSA). fmp2rsm integrates fmp with RSM and enables
product line modeling in UML. This tool is mainly used to check feature model consistency, as well as
to generate valid con�gurations and to check the validity of partial con�gurations. The project has been
completed, so the tool is no longer maintained by its original developers; however, the project is now open-
source, and the code is available on SourceForge.

5.2 Clafer

Clafer (class, feature, reference) [4] is a concept modeling language for speci�cation and analysis of software
product lines. Clafer provides �rst-class support for feature modeling, including feature modeling extensions
like cardinality-based feature modeling. The authors have developed a �rst version of a Clafer to Alloy [10],
which enables model analysis through the use of the Alloy Analyzer. The Alloy Analyzer supports various
analyses, like checking model consistency and generating valid con�gurations. The authors also provide a
SPLOT (see next subsection) to Clafer translator, as well as a Clafer parser in Java. These tools are available
at [14].

5.3 SPLOT

SPLOT (Software Product Lines Online Tools) [13] is a collection of interactive online tools for editing,
con�guring, and analysing feature models. SPLOT is also a feature model repository. SPLOT supports basic
feature models (i.e., no cardinality) and o�ers basic model analyses, like those described at the beginning
of this section, as well as some more advanced analyses like �nding the number of common and dead
features (common features appear in every model con�guration, while dead features do not appear in any
con�gurations).

5.4 FaMa-OVM

FaMa-OVM[22] provides automated analyses for orthogonal variability models. This tool o�ers basic analyses,
like checking consistency and generating valid con�gurations, but also focuses on verifying user-speci�ed
quality conditions, allowing the generation of an optimal con�guration as well as the most representative
one. This tool is still in the prototype stage, and is available at [21].
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6 Summary and Conclusions

Software process lines (SPrL) are families of related processes, built from a set of administrated software
process elements in a preestablished fashion, similar to how software product lines (SPL) are built with
software assets. In SPLs, variability is usually speci�ed using feature models and orthogonal variability
models. In this paper, we explored the feasibility of using these modeling formalisms for specifying SPrL
variability, using a simple requirements engineering process as a running example.

Process line variability can be speci�ed in two ways: 1) using the SPEM 2.0 variability mechanisms, which
provide an indirect manner for specifying variation, and 2) using the vSPEM, which focuses on the direct
speci�cation of variability, through the de�nition of variation points and variants. As discussed in Section 3,
we focused on the vSPEM notation for modeling process variability, where variability is modeled separately
from the process de�nition. The reason for this choice is that vSPEM is more intuitive and easy to use in
practice [16].

We studied how to formalize vSPEM variability using popular product line formalisms: di�erent types
of feature models (Sections 4.1 � 4.3) and orthogonal variability models (Section 4.4). The main results of
this report is that both feature models and orthogonal variability models can be used to formalize vSPEM
process variability, and that we did not need to use the full expressiveness of either formalism to do it. Also,
cardinality may be useful in the speci�cation of variability, but we must study more examples to determine
whether it is really needed.

Thus, the decision about which formalism to use comes down to a question of available tool support.
The surveyed tools all o�ered two basic analyses: checking whether a model is consistent (i.e., it has at least
one valid con�guration) and generating valid con�gurations. If we need to model cardinality, then we have
to use tools that support CFMs, like fmp or Clafer. Otherwise, SPLOT and FaMa-OVM o�ered additional
analyses that may be interesting in practice.

Finally, in order to better understand variability and its formalization, we propose to carry out a more
extensive case study. This will allow us to get a better sense of what kinds of variability exist �in-the-wild�,
which will give us a better idea of how expressive the underlying formalism needs to be in practice, and what
types of automated analyses are available.
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