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Abstract. Can access control be fully modularized as an aspect? Most propos-
als for aspect-oriented access control are limited to factoring out access control
checks, still relying on a non-modular and ad hoc infrastructure for permission
checking. Recently, an approach for modular access control was proposed, called
ModAC. ModAC successfully modularizes both the use of and the support for
access control by means of restriction aspects and scoping strategies. However,
ModAC is only informally described and therefore does not provide any for-
mal guarantee with respect to its effectiveness. In addition, like in many other
proposals for aspect-oriented access control, the presence of untrusted aspects
is not at all considered, thereby jeopardizing the practical applicability of such
approaches. This paper demonstrates that it is possible to fully modularize as-
pect control, even in the presence of untrusted aspects. It does so by describing
a self-protecting aspect that secures ModAC. We validate this result by describ-
ing a core calculus for AspectScript, an aspect-oriented extension of JavaScript,
and using this calculus to prove effectiveness and non-interference properties of
ModAC.

1 Introduction

Access control [24] is a cornerstone of every security architecture: it is the component
in charge of ensuring that sensitive resources are accessed only by authorized entities.

In modern runtime environments such as the JVM [15] and the CLR [4], access
control architectures rely on a fine-grained specification based on permissions. Permis-
sions represent the ability to access and use a particular resource (e.g. a file) in a certain
manner (e.g. read-only or read-write). Fine-grained access control in these architectures
allows one to assign different sets of permissions to different entities. Furthermore,
stack inspection [14] is used to dynamically examine if a sensitive operation can be
performed or not. This is known as basic permission checking.

The Java access control architecture also includes two other mechanisms: privileged
execution and permission contexts. Privileged execution allows a trusted entity to take
responsibility for a certain action. This makes it possible for untrusted entities to access
sensitive resources—such as the screen—in a controlled manner. Permission contexts
allow the programmer to capture the set of permissions at a certain point and restore it
later on, for instance to incrementally perform a long task—such as classloading—in
different threads safely.



While these three mechanisms together provide a very powerful access control sys-
tem, they also introduce modularity issues. Indeed, using basic permission checking is
a crosscutting concern: in order to trigger stack inspection, explicit calls to the access
control architecture are necessary. As a consequence, code related to permission check-
ing ends up scattered at each and every place where sensitive resources are accessed,
tangled with other concerns. In addition to the crosscutting nature of the use of access
control, the implementation of access control is itself non-modular. For instance, the
Java access control architecture is implemented in part in the Java libraries (the stack
inspection algorithm), and in part in the JVM (reification of permission contexts). This
native support in the VM is specific to (and can only be used for) access control enforce-
ment. This tends to suggest that access control needs to be supported as a primitive in
the language, and that therefore, access control is not something that can be plugged
into an existing language without having to modify its semantics.

Considering these modularity issues, and the fact that security has long been con-
sidered a typical aspect, this paper addresses the following research question:

Can access control be fully modularized as an aspect?

Here, we are concerned not only with modularizing the use of access control—a some-
what easy and well-explored problem [35,34,25,9,18,23,21]—, but with expressing the
whole access control infrastructure as an aspect, including the support for advanced
features ignored in the literature, like privileged execution and capturable permission
contexts. By “fully” modularizing access control, we refer to the question: is it possible
to leave the programming language semantics completely oblivious to the presence of
access control? If so, can we ensure that malicious code, including other aspects, do
not interfere with the access control aspect, and how? What are the requirements on the
underlying general-purpose aspect language?

A positive answer to these questions should also contribute the formulation of a
general-purpose aspect model that can be used to add access control to languages that
do not include any support for it, like JavaScript. Indeed, in previous work [31], we have
explored how it is possible to aspectize stack-based access control with support for priv-
ileged execution and capturable permission contexts. The approach, called ModAC (for
Modular Access Control) consists of expressing access control using restriction aspects
scoped with an appropriate scoping strategy [26]. Restriction aspects modularize the
use of access control whereas scoping strategies make it possible to modularly provide
basic permission checking, privileged execution, and capturable permission contexts.

The ModAC approach was instantiated in AspectScript, an aspect-oriented exten-
sion of JavaScript that supports scoping strategies [30]. The resulting implementation
(hereafter called ModAC/AS) was used to provide an extensible access control library
for JavaScript, called ZAC [33]. However, previous work on ModAC answers only part
of the above research question. First, the formulation of ModAC is only informal; its
actual effectiveness in controlling accesses to sensitive resources has not been proven.
Second, it leaves open the possibility for untrusted aspects to interfere with access con-
trol aspects, thereby ruining its effectiveness.

Contribution. This paper shows that it is indeed possible to fully modularize access
control as an aspect, even in the presence of untrusted aspects. The approach is based



on introducing a self-protecting restriction aspect that impedes untrusted aspects to in-
terfere with critical access control components (Sect. 3). In order to validate our ap-
proach formally, we develop λAS , a core calculus for AspectScript based on λJS [16]
(Sect. 4). λAS is general-purpose and therefore oblivious to access control; it is a major
side contribution of (and not restricted to) this work. We prove the desired effectiveness
and non-interference properties of an instantiation of ModAC in λAS , ModAC/λAS
(Sect. 5) and discuss the extension of the result to ModAC/AS (Sect.6).

Section 2 briefly introduces access control, and aspect-oriented approaches to it, in
particular ModAC. Section 7 describes related work and Section 8 concludes. The full
proofs of the results exposed in Section 5 are available online [32]. This work is fully
implemented in the ZAC library for AspectScript; also, the executable formal model of
λAS is implemented in PLT Redex [12].

2 Background & Motivation

We briefly introduce stack-based access control, illustrating its main features (Sec-
tion 2.1). We then describe aspect-oriented approaches to access control, including
ModAC (Section 2.2). Finally, Section 2.3 classifies various threats to modular access

2.1 Access control by example

In this section we describe the three access control features based on stack inspection:
basic permission checking, privileged execution, and permission contexts. We illustrate
each one with real-world examples from the JavaScript realm.

Basic permission checking. When a sensitive resource is about to be accessed, a call
to the access control infrastructure triggers a stack inspection algorithm [14], which
checks whether all the entities in the current stack of execution (starting from the top of
the stack) possess the necessary permission to access the resource. If not, an exception is
thrown. Stack inspection is triggered in Java by calling SecurityManager.checkPermission,
passing it the required permission; in C#, this is done by invoking Demand() on a per-
mission object. In both systems, the entities to which permissions are assigned to are
classes. In the following examples, permissions are assigned to individual objects, since
JavaScript is prototype based.

This basic behavior prevents the confused deputy problem [17] from happening: an
untrusted entity cannot lead a trusted one to access a sensitive resource on its behalf by
simply invoking a method, because the stack inspection algorithm will eventually notice
the presence of the untrusted entity on the stack. This is exemplified in the following
piece of code, in which accessing a sensitive resource—the network—is forbidden:

var trusted = {
newRequest: function(url){

return new XMLHttpRequest(url);
} };

var untrusted = {
m: function(){

var req = trusted.newRequest(”...”);
} };

untrusted.m();

XMLHttpRequest
create(url)

untrusted
m()
...

stack

stack
inspectiontrusted

newRequest(url)

(top)

CP



When the function m is executed, the untrusted object invokes newRequest on trusted
to create a new XMLHttpRequest object. Assuming that the stack inspection algorithm
is triggered as in Java with a call to checkPermission (signaled by the CP gray square
on the above figure), the instantiation is prevented by throwing an exception. This is so
because the stack inspection algorithm eventually checks the permissions of untrusted
and discovers that it does not hold the necessary permission to access the network.

Privileged execution. In some scenarios, it is necessary for an entity to access a sensitive
resource on behalf of another—possibly untrusted—entity. For this, the JVM supports
privileged execution. For instance, suppose that we want to provide a netService object
that allows any client to access the network, provided that the target site pertains to a
list of known sites. In this case, the creation of an XMLHttpRequest object should be
allowed even when there are untrusted objects participating in the current call stack.

var netService = {
newRequest: function(url){

if(/∗ url pertains to the known sites list ∗/){
return this.doPrivileged(function(){

return new XMLHttpRequest(url);
});
}
return null;
} };

var untrusted = {
m: function(){

var req = netService.newRequest(”...”);
} };

untrusted.m();

XMLHttpRequest
create(url)

untrusted
m()
...

stack

stack
inspection

netService
newRequest(url)

(top)

netService
doPrivileged(..)

anonymous fun

CP

A self call to doPrivileged initiates a privileged action1. Consequently, stack in-
spection only considers the permissions of objects on the stack corresponding to the
dynamic extent of the privileged action, including the initiator of the action; i.e. the
stack inspection algorithm stops at the frame of the initiator of the call to doPrivileged.

Permission contexts. When accessing a sensitive resource, it can be necessary for an
entity to use the permissions present at another point in the execution of the application.
The JVM provides the means to capture a permission context and restore it later on.

In JavaScript, this can be used to capture the permission context at the time a net-
work connection is initiated, and reinstall it when the response from the server is re-
ceived (asynchronously). This way, the response processing is performed with the same
permissions as the call, similarly to a synchronous communication. Note that since
JavaScript is a single-threaded language, this is the only way to correctly manage the
switch permissions.

2.2 Access control with aspects

Due to its inherently crosscutting nature, access control has been a repeated target for
applying aspects. We briefly explain these approaches in the following, and then dive
into a recent proposal for fully modularizing access control.

1 As opposed to Java, where a privileged action is started by calling the static doPrivileged
method of the AccessController class.



Permission aspects. The most obvious source of crosscutting due to access control is
the necessity of explicitly triggering stack inspection upon access to sensitive resources.
Many approaches based on aspects have been proposed in order to factor out these calls
into advices [35,34,25,9,18,23,21]. In all these approaches, aspects follow the same
pattern: their pointcuts match accesses to sensitive resources, and their advice triggers
access control. For example, the following aspect, declared in AspectScript [30], guards
the accesses to the network:

var netPermission = {
pointcut: function(jp){ return jp.kind == new && jp.fun === XMLHttpRequest; },
advice: function(jp){

checkPermission(new Permission(”network”)); //triggers stack inspection
return jp.proceed();
} };

This aspect2 successfully modularizes the triggering of basic permission checking for
network accesses. Aspects following this pattern are classified as permissions aspects
due to their use of the permissions infrastructure and the stack inspection algorithm [31].

Restriction aspects. While permission aspects modularize calls to check if the nec-
essary permissions are available, they do not fully modularize access control; indeed,
they rely on additional libraries and support from the runtime environment in order to
perform stack inspection. Recently, we described an approach for fully modular access
control, ModAC [31], based on restriction aspects and scoping strategies.

In contrast to permission aspects, restriction aspects do not rely on any permission
infrastructure or stack inspection algorithm. Instead, the scoping mechanisms of the as-
pect language are used to ensure proper resource protection. A restriction aspect works
by adhering to a different, dual pattern: the pointcut selects accesses to a sensitive re-
source (just like a permission aspect), but the advice immediately aborts the access by
not proceeding with the primitive operation; scoping strategies are used to ensure that
the aspect only sees forbidden accesses. Consider the following restriction aspect:

var netRestriction = {
pointcut : function(jp){ return jp.kind == new && jp.fun === XMLHttpRequest; },
advice: function(jp){ throw ”Cannot access the net.”; }
};

This aspect forbids the access to the network. Its pointcut identifies instantiations of
XMLHttpRequest objects, and the advice throws an exception with an informative mes-
sage. Another possibility is not to throw an exception but to silently abort the sensitive
resource access. For instance:

var alertRestriction = {
pointcut : function(jp){ return jp.kind == exec && jp.fun === alert; },
advice : function(jp){ /∗ do nothing ∗/ }
};

This restriction aspect simply annihilates the execution of the alert method, in order to
prevent the degradation of the user experience.

2 Aspects are plain objects in AspectScript. They have one pointcut and one advice, defined by
the pointcut and advice attributes respectively. Both pointcuts and advices receive a join point
as parameter. All advices are around advices.



The scoping strategy for access control. Restriction aspects are limited to see only
illegal resource accesses by means of scope control. However, scope control based on
control flow only, as provided by AspectJ, is insufficient to directly support features like
privileged execution and permission contexts [31]. For this reason, ModAC relies on a
more expressive scoping control mechanism, scoping strategies [26,29,27].

A scoping strategy permits fine-grained control over the scoping semantics of a de-
ployed aspect. A scoping strategy itself is specified by two propagation functions: a
call stack propagation function c specifies how an aspect propagates along with method
calls, and a delayed evaluation function d specifies whether or not an aspect is “cap-
tured” in objects when they are created3. Intuitively, the former allows controlling dy-
namic scoping of aspects, stopping propagation when a certain condition is met. The
latter allows an aspect to follow an object: the aspect sees all join points occurring lexi-
cally within all methods of the object (and may potentially propagate further in method
calls done by the object depending on the call stack propagation function). Propagation
functions are predicates over join points: the call stack propagation function matches
call join points for which the aspect should propagate, while the delayed evaluation
propagation function matches object creation join points.

Scoping strategies in AspectScript are provided as an (optional) first argument to
the aspect deployment constructs: deploy(s,asp,fun), which deploys the aspect asp on
the body of fun; and deployOn(s,asp,obj), which deploys asp on the object obj. In both
cases, s is a scoping strategy, and asp can be a single aspect or an array of aspects.

The scoping strategy for access control that supports basic permission checking,
privileged execution, and permission contexts is:
var acs = [ //access control strategy
function(jp){ return !(jp.fun === doPrivileged && jp.target === jp.context);},
function(jp){ return jp.target instanceof ACContext; }

];

The call stack propagation function expresses both basic permission checking and priv-
ileged execution. Essentially, it specifies that a restriction aspect always propagates on
the call stack, except on privileged calls. A privileged call is a self call to doPrivileged
(a self call occurs when jp.target, the target of the call, and jp.context, the currently ex-
ecuting object, are equal). This way, a restriction aspect propagating through the stack
stops its propagation upon a privileged call, and hence does not see resource accesses
that occur in the control flow of that call. Only considering self calls for privileged
execution permits to maintain the aspects of the object initiating the action.

The delayed evaluation propagation function expresses the capture of permission
contexts. It ensures that restriction aspects propagate to instances whose prototype is
ACContext; therefore, creating such an object is a means to take a snapshot of the re-
striction aspects present at that point in time. Later on, it is enough to include these
objects in the stack to restore the permission context. This is done by an overloaded
version of doPrivileged that accepts an ACContext as extra parameter—more details can
be found in [31].

Figure 1 depicts the propagation of an aspect asp deployed with the access control
strategy. If asp is currently deployed (i.e. it is in the current aspect environment), it prop-

3 Scoping strategies also include a third component, called activation function. Activation is not
used in this work, so we omit it.
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Fig. 1. Propagation of aspects with the access control strategy.

1 var Deployer = {
2 acs: ..., //access control strategy
3 pc: function(jp){ return jp.kind == new; }, // creation of objects
4 adv: function(jp){
5 var obj = jp.proceed();
6 var restrictions = getRestrictionsFor(obj);
7 deployOn(acs, restrictions, obj); //per−object deployment
8 return obj;
9 } };
10 deployOn([false,true],Deployer, function(){/∗ main program ∗/});

Fig. 2. Deployer aspect for deploying restriction aspects.

agates on calls to newRequest (jpnreq) but not on self-calls to doPrivileged (jppriv).
Therefore asp sees join points occurring during the execution of newRequest. Similarly,
asp gets captured in new ACContext objects (jpacc), and not in new XMLHttpRequest
objects (jpxhr). Hence, asp sees the subsequent activity of these ACContext objects.

ModAC fully modularizes aspect control, by relying only on the aspect language.
As a matter of fact, scoping strategies replace the need for an ad-hoc, VM-supported
mechanism specific to access control, as is the case of access control in the JVM and the
CLR. For sure, the aspect language must support scoping strategies; however, scoping
strategies are a general-purpose construct, with a wide range of applications beyond
access control (e.g. [26,29,27]).

Bootstrapping access control. Since access control is fully modularized, it is just one
more aspect. In order for it to be effective in a given system, it has to be activated.
In a language with dynamic aspect deployment, the only way is to do so explicitly
in the program (e.g. around the main method, around the loading of a script, etc.). In
a language with static deployment, access control must still be equivalently activated
(e.g. on the command line, in a configuration file, etc.).

In the case of ModAC/AS, the activation of access control is performed by wrapping
the main program in a deployment of the Deployer aspect (Figure 2). Deployer ensures
that the relevant parts of the activity of all objects are under control of restriction as-
pects. It does so by deploying these restriction aspects on newly-created objects with
the access control scoping strategy acs defined previously. Crucially, the deployment
of restriction aspects must be done exactly in between the creation of an object and
the beginning of its initialization. This way, when the object initiates computation, the
necessary restriction aspects are already deployed on it.



The Deployer aspect deploys restriction aspects on objects when they are created.
First, its pointcut matches all object creations (line 3). Then, the advice (lines 4-8)
deploys the corresponding restriction aspects on the newly-created object (line 5), using
deployOn (line 7) and specifying the access control scoping strategy (line 2). Finally, the
object is returned (line 8). The set of restriction aspects that corresponds to a particular
object is determined by the getRestrictionsFor method (line 6). This method abstracts
the process of determining the needed restrictions. A possible implementation is to
mimic the access control architecture of the JVM by returning the restriction aspects
that correspond to the permissions declared in a policy file. Another implementation is
to return restrictions based on dynamic conditions, such as the kind of user currently
interacting with the application, as in role-based access control [13]. Line 10 deploys
Deployer such that it propagates in all created objects (delayed evaluation is set to true);
this ensures that it sees all object creations.

2.3 Threats to modular access control

ModAC seems to be a proof by existence that access control can be fully modularized
using aspects, provided the aspect language supports sufficiently expressive scoping
mechanisms. However, our previous work does not provide any formal guarantee in
this respect. Most importantly, it does not consider the threats posed by the presence of
other, possibly untrusted, aspects.

Inhibition. De Borger et al. showed how easy it is to interfere with access control
by means of aspects [8]. For instance, this AspectJ aspect completely inhibits access
control in the JVM:
public aspect MaliciousAspect{

void around(): execution(void SecurityManager+.check∗(..)){ /∗ do nothing ∗/ }
}

As opposed to the JVM and the CLR, ModAC does not exhibit the previous vulnera-
bility, simply because there are no explicit calls to a stack inspection algorithm. How-
ever, there are other alternatives for untrusted aspects to inhibit access control, to which
ModAC is vulnerable: i.e. to prevent access control components—restriction aspects,
the access control strategy, and the Deployer aspect—from achieving their purpose.

We introduce the distinction between implicit and explicit inhibition. Implicit inhi-
bition is based on using the aspect weaving mechanism to inhibit access control, such
as in the above AspectJ example. Explicit inhibition consists of using other means pro-
vided by the base language (e.g. side effects) to prevent the different components of the
access control system to fulfill their role.

Explicit inhibition. There are many kinds of explicit inhibition, depending on the con-
sidered programming language. In a purely functional language, it is impossible to alter
a function or mutate existing bindings and data structures. But in a stateful world, risks
exist if the state of the access control components can be aliased and mutated. Such
risks are exacerbated in languages like JavaScript, where it is possible to dynamically
remove object members.



Fortunately, explicit inhibition requires the malicious entity to perform explicit ac-
tions, which can be observed and prevented by dedicated restriction aspects. For in-
stance, the following restriction forbids any action on netRestriction (e.g. modification
of its properties, invocation of its methods):
var metaNetRestriction = {
pointcut: function(jp){ return jp.target === netRestriction; }, //any action on netRestriction
advice: function(jp){ throw ”Cannot manipulate the netRestriction aspect”; }
};

For any kind of explicit inhibition, a dedicated restriction must be defined. This shows
how ModAC elegantly protects itself from explicit inhibition.

Implicit inhibition. Because explicit inhibition can be prevented by menans of restric-
tion aspects, this paper focuses on implicit inhibition. Indeed, implicit inhibition is pe-
culiar because it is directly enabled by the use of an aspect-oriented language; also,
implicit inhibition can be achieved in any aspect language, regardless of whether or not
the language is purely functional.

In the case of ModAC, there are three kinds of implicit inhibition: pointcut inhi-
bition, advice inhibition, and scoping strategy inhibition. Pointcut inhibition consists
in preventing the pointcut of an access control component from matching at relevant
join points. For instance, the following malicious aspect inhibits the pointcut pc of a
restriction aspect:
var maliciousAspect = {

pointcut: function(jp){ return jp.kind == pcexec && jp.fun === pc; },
advice : function(jp){ return false; }
};

The other kinds of inhibition follow a similar pattern: making a pointcut return false as
above, making an advice do nothing by matching its execution but never proceeding,
or impeding propagation of restriction aspects by making their propagation functions
return always false, etc.

3 R̊: One Aspect to Rule them All

In this section we present R̊ (pronounced “ring”), a self-protecting restriction aspect
that prevents untrusted aspects from inhibiting access control in ModAC. We first intro-
duce some terminology to discriminate different kinds of aspects (Section 3.1). We then
describe and justify our design goals for secure modular access control (Section 3.2),
and a general approach to control untrusted aspects (Section 3.3). We finally present R̊
and explain how it prevents inhibition of both access control and itself (Section 3.4).

3.1 Aspect classification

First, we call access control aspects all aspects that are part of ModAC: i.e. restriction
aspects and the Deployer aspect. We then make the distinction between trusted aspects,
which should be given unrestricted freedom; and untrusted aspects, which are poten-
tially trying to inhibit acces control. Classifying aspects as trusted or untrusted depends



on the access control policy of a given application. For example, a possible policy con-
sists in considering all aspects defined in local code as trusted, whereas aspects defined
in remote code are deemed untrusted.

In addition, we introduce a set of protected aspects. By definition, this set contains
all aspects whose inhibition must be prevented. In order to secure ModAC, this set must
include all access control aspects (but is not restricted to those aspects).

3.2 Securing ModAC: design goals

Our design goals for secure and modular access control are as follows:

G1 The base language must be completely oblivious to access control.
G2 Untrusted aspects must not inhibit protected aspects, but are free to see other join

points.
G3 Trusted aspects should see any join point.

The first goal (G1) is the raison d’être of ModAC as discussed previously. Fully
modularizing access control with aspects, beyond being an important validation for
AOP itself, allows access control to be added to other aspect languages, without re-
quiring ad hoc support for it. The two other design goals are concerned with securing
ModAC without restricting too much the programming model.

Design goal (G2) states that the non-inhibition property must be achieved without
simply ruling out untrusted aspects. Untrusted aspects must be able to do whatever their
access policies specify; the only strong requirement is that they do not inhibit protected
aspects. Design goal (G3) states that trusted aspects should be able to see any join point.
This goal discards a restrictive approach that prohibits any kind of weaving (trusted or
not) in certain core classes—thereby strongly coupling access control and weaving.

For instance, the Aspect-Oriented Permission System (AOPS) [8] ensures non-
inhibition by disallowing any kind of weaving at join points lexically located in ac-
cess control aspects and other sensitive components such as permission classes and
the PermissionManager class. Doing so impedes even trusted aspects to affect these
classes. In addition, it means that the weaver (and hence the aspect language semantics)
is specifically tailored to take access control into account, something that we discard as
of design goal (G1). Therefore, AOPS violates two of our design goals, (G1) and (G3).

3.3 Preventive inhibition

In order to reconcile goals (G2) and (G3)—i.e. preventing the inhibition of protected
aspects by untrusted aspects, while allowing trusted aspects to see any join point—we
introduce a simple technique: preventive inhibition. Preventive inhibition consists in
inhibiting untrusted aspects before they inhibit protected aspects.

To achieve preventive inhibition, it is sufficient to ensure that untrusted aspects do
not apply at join points occurring in the control flow of protected aspects. For restric-
tion aspects, this means that untrusted aspects cannot interfere with the identification of
resource accesses nor with the process of aborting these accesses. For the Deployer as-
pect, this means that untrusted aspects cannot interfere with the identification of object
creations nor with the calculation and deployment of restriction aspects.
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Fig. 3. Pointcut inhibition prevented by R̊.

How can preventive inhibition be achieved while maintaining (G1), i.e. without re-
quiring modifications to the aspect language semantics? A tentative answer is to slightly
update untrusted aspects by conjuncting their pointcuts with the following:
!cflow(function(jp){ return protectedAspects.contains(jp.target); });

This effectively makes the pointcuts of untrusted aspects evaluate to false for join points
that are in the control flow of join points whose target is in the set of protected aspects.

It is hard to reconcile this global transformation of all untrusted aspects with (G1).
Indeed, the required global transformation can be performed by means of general-
purpose constructs, such as the global pointcut proposed by the abc team [3]. How-
ever, identifying untrusted aspects may depend on knowledge only available at runtime,
especially in dynamic languages like JavaScript.

3.4 The R̊ restriction

Fortunately, there is a simple solution to reconcile all three design goals, and it does
not require any fundamental extension to ModAC; rather, it is just a pattern of ModAC.
The approach relies on using a specific restriction aspect, called R̊. R̊ is in charge of
preventive inhibition for all protected aspects, including itself, thereby fulfilling goals
(G2) and (G3). Because R̊ is a restriction like any other, goal (G1) is fulfilled as well.

Inhibition with R̊. R̊ is deployed on untrusted objects at creation time, just like other
restriction aspects. Its definition is:

var R̊ = {
pointcut: function(jp){

return jp.kind == pcexec && cflow(function(jp){ return protectedAspects.contains(jp.target); });
},
advice: function(jp){ return false; }
};

R̊ inhibits every pointcut execution it sees, provided that the execution is in the control
flow of a join point whose target is in the protected aspects set. In consequence, all
aspects in the protected aspects set cannot be inhibited by untrusted aspects, simply
because untrusted aspects do not even get a chance to see the join points they would
potentially affect. Note that R̊ is the first-class equivalent of the pointcut conjunction
discussed in the previous section. Making it a restriction aspect like any other is the key
to enforce this inhibition check without affecting the language semantics.



Illustration. Figure 3 illustrates how R̊ avoids pointcut inhibition by an untrusted as-
pect MPC on the netRestriction aspect presented before. When a new XMLHttpRequest
instance is created, a join point is generated. The netRestriction aspect observes this
creation, and therefore, its pointcut is evaluated. This generates a pointcut execution
join point (pcexec1), which is observed by MPC. Consequently, the MPC pointcut is
evaluated, which generates another pointcut execution join point (pcexec2). Since MPC
is untrusted, R̊ was deployed on it. Hence, the pointcut of R̊ sees pcexec2, and matches
it (it is a pointcut execution join point and a protected aspect, netRestriction, is in the
control flow). In consequence, R̊ inhibits the pointcut of MPC. Advice and scoping
strategies inhibitions are prevented in a similar way.

Self-protection. Crucially, R̊ can protect itself from inhibition by untrusted aspects,
following the exact same principle. To do so, R̊ is added to the protected set. Self-
protection of R̊ can be observed in the same Figure 3, by replacing the reference to
netRestriction on the figure with R̊. An untrusted aspect can try to inhibit R̊ as many
times as it wants in the same flow of execution. If the interaction is infinite, the program
does not terminate4. If the interaction is finite, R̊ eventually rules the untrusted aspect.
Self-protection of R̊ elegantly secures ModAC by not introducing any additional mech-
anism; R̊ is just a restriction aspect protecting access control aspects, including itself,
and other protected aspects, from inhibition by untrusted aspects.

Bootstrapping. R̊ uses the protectedAspects set to identify the aspects it must protect
from implicit inhibition. Naturally, untrusted entities must not be allowed to interfere
with this data structure. As discussed previously, inhibiting access control by interfering
with the protectedAspects set can either be done implicitly via weaving, or through
explicit manipulation. Implicit inhibition is already prevented by R̊ itself. As prescribed
previously, explicit inhibition is avoided by using a dedicated restriction aspect:
var paRestriction = {
pointcut: function(jp){ return jp.target === protectedAspects; }, //any action on protectedAspects
advice: function(jp){ throw ”Cannot manipulate the protected aspects set”; }
};

This restriction follows the same pattern as the metaNetRestriction presented before;
it forbids any action over protectedAspects. This restriction must be deployed on all
untrusted entities at creation time. Note that this restriction is just another restriction,
and therefore (G1) is still fulfilled.

4 A Core Calculus for AspectScript: λAS

The previous section has shown how ModAC can be made secure thanks to the R̊ re-
striction aspect. However, our descriptions of ModAC and the R̊ restriction aspect so
far are informal. First, ModAC itself has never been proven to be effective, even in the

4 Any untrusted piece of code is (a priori) given the power of the base language (which is
Turing-complete) and can therefore always provoke non-termination. Different mechanisms
(including restriction aspects!) can be used to avoid this misbehavior (e.g. timeout, limit on the
number of produced join points), but this is out of the scope of this work [33].



V alue v ::= c | fun(x · · ·){e} | o | l
Bool b ::= true | false
Const c ::= n | str | b | undefined | null
Object o ::= {str : v · · ·}
Expr e ::= x | v | let (x = e) e | e(e · · ·) | e[e] | e[e] = e | e = e | ref e | deref e
Store µ ::= ε | µ+ (l 7→ o)
n ∈ N , the set of numbers; str ∈ S , the set of strings; x ∈ X , the set of variable names;l ∈ L , the set of locations.

Fig. 4. Syntax of the λJS language (excerpt; slightly modified).

absence of untrusted aspects [31]. The fact that a working JavaScript library like ZAC
based on ModAC has been implemented [33], and has been extended to include R̊, does
not prove that the approach is correct. In order to do so, we focus on AspectScript and
establish a formal basis for it: the λAS calculus, described in this section. Section 5 then
states formally that ModAC/λAS , the implementation of ModAC in the λAS calculus,
is both correct and secure. Proofs and executable semantics are provided online [32].

λAS is a core calculus for AspectScript, developed as an extension of the λJS cal-
culus [16]. We first give a brief overview of λJS , and then describe its extension to
support aspect weaving with dynamic aspect deployment and scoping strategies.

4.1 Core JavaScript: λJS

Guha et al. designed λJS as a core subset of JavaScript to which JavaScript programs
are desugared. The interest of λJS is its compactness. We briefly describe the syntax of
λJS , the desugaring process, and a few reduction rules.

Syntax. Figure 4 shows part of the syntax of λJS . The language has primitive val-
ues such as numbers, strings, booleans, and two special values null and undefined, in
addition to functions (fun) and objects o. Objects are a series of attribute-value pairs en-
closed in curly braces. Expressions include identifiers, values, a let construct, function
application, property access, and property write. In order to support first-class mutable
references, values are augmented with store locations. Objects in the store are explicitly
referenced and dereferenced using ref and deref, respectively. λJS also includes typical
control operators and primitive n-ary operators; we omit these for brevity.

Desugaring. Several JavaScript constructs are left aside of λJS and are instead ex-
pressed via desugaring [16]. For example, the desugaring of function creation is:

desugarJ function(x· · ·){e} K = ref { ”code”: fun(this, fthis, x· · ·) { desugarJ e K },
”prototype”: ref {” proto ”: (deref Object)[”prototype”]}}

A function is desugared into an object (using the {...} notation) with two attributes: code
and prototype. The code attribute is the actual function (note that function is a JavaScript
term, and fun is a λJS term). Also, this is an ordinary identifier: it is the first formal
parameter of a desugared function. In JavaScript, a method is a function, which is a
value, and can be shared between objects; this refers to the currently-executing object.
For the sake of properly dealing with aspect environments in λAS , we slightly extend



λJS and pass a second parameter to every desugared function; the parameter, named
fthis, is bound to the function object thus created by the desugaring process. Note that
desugaring reveals some of JavaScript peculiarities: the prototype attribute of a function
object is an object whose prototype is the prototype attribute of Object.

The semantics of λJS is defined as a small-step reduction relation ↪→. A program
configuration 〈µ, e〉 consists of a store and an expression. The reduction relation is
standard. Evaluation contexts [12] are used to specify a call-by-value, left-to-right eval-
uation semantics. E.g., the reduction rule for object creation is:

〈µ,E[ref {str : v · · ·}]〉 ↪→ 〈µ′, E[l]〉 NEW
where l /∈ dom(µ) and µ′ = µ+ (l 7→ {str : v · · ·})

ref simply allocates a new location in the store and returns it. The function application
rule is the standard βv reduction:

〈µ,E[fun(x · · ·){e}(v · · ·)]〉 ↪→ 〈µ,E[e[v · · · /x · · ·]]〉 CALL

4.2 AspectScript Semantics

We now describe the syntax and operational semantics of λAS , a core calculus for
AspectScript based on λJS . Its operational semantics is defined via the reduction re-
lation ↪→: M ×A ×J × E →M ×A ×J × E .

We extend the λJS configuration with two additional elements: a λAS program
configuration 〈µ, α, J, e〉 consists of a store µ ∈ M , an aspect environment α ∈ A ,
a join point stack J ∈ J , and an expression e ∈ E . The stack aspect environment α
is used to maintain the aspects propagated through the stack by means of the call stack
propagation function5.

In the following we describe the semantics of join points, aspects and their deploy-
ment, as well as the weaving semantics. The formalism is inspired by the formalism
previously used by Tanter [28] (for an aspect-oriented variant of Scheme)6, itself based
on a combination of Clifton and Leavens’s work [6] (modeling of the join point stack)
and Dutchyn et al. [10] (weaving semantics). By convention, when we introduce new
user-visible syntax (e.g. the aspect deployment expression), we use bold font. Internal
terms added only for the sake of the semantics are written in typewriter font.

Join Points The join point stack J is a list of join point abstractions j, which are tuples
dk, lo, lf , pe (Figure 5). We introduce five kinds of join points: new for object creation,
call for function application/method invocation, and exec, pc-exec, adv-exec for
function, pointcut, and advice execution, respectively. Figure 6 describes the different
values for the components of join point abstractions, depending on their kind. For in-
stance, p is always the primitive operation (used to perform the original computation);

5 We also maintain the currently-executing object/function in the program configuration, omitted
here for simplicity. The online Redex model includes the full configuration.

6 λAS is novel in that it is tailored for λJS (including objects and mutable state), supports a more
complete join point model, and deals with execution levels in a simpler manner than [28]; it is
also the first formalization of (a restricted form of) scoping strategies for aspects.



J ::= ε | j + J
j ::= dk, lo, lf , pe
k ::= new | call | exec
| pc-exec | adv-exec

p ∈ T , the set of thunks
J ∈J , the set of join point stacks

Expr e ::= . . . | jp (j, α) | in-jp (e)
| c/asp k e e · · ·

EvalCtx E ::= . . . | in-jp (E) | c/asp k v · · · E e · · ·
v ::= . . . | J

Fig. 5. Join points

k new call / exec / pc-exec / adv-exec
lo object prototype target object
lf null target function
p primitive operation

Fig. 6. Join point abstraction attributes per kind.

lo denotes the prototype of the object being created in a new join point, and the target
object for call and the three execution join points.

In order to keep track of the join point stack in the semantics we introduce two inter-
nal expression forms. jp (j, α) introduces a join point j whose underlying computation
via proceed will be executed with aspect environment α. in-jp (e) keeps track of the
fact that execution of e is proceeding under a dynamic join point. The definition of
the evaluation context is updated accordingly (Figure 5).The expression c/asp (which
stands for “call/aspect”) is used later to treat similarly pointcut and advice execution
join points. It is a function application annotated with the kind of join point k that needs
to be created; this expression is generated by the weaver, discussed later on.

A join point abstraction captures the minimum context information necessary for
ModAC to work (target object and function), as well as to trigger its corresponding
computation when necessary (the p function). We write J to denote the reification of
the join point stack J as a λAS value. A number of introspection primitives are provided;
for instance, kind ( J ) is the λAS equivalent of jp.kind in AspectScript. Similarly, tobj
(resp. tfun) can be used to retrieve the (location of the) target object (resp. function).

Aspects and Deployment For the sake of conciseness and simplicity, we make the
three following simplifications to λJS in this paper: i) scoping strategies have constant
boolean components (instead of join point predicates); ii) only per-object deployment
(deployOn) is described; iii) we do not account for context exposure (i.e. pointcuts
simply return true if they match, instead of an environment). These simplifications do
not affect the validity of our results: constant propagation functions are enough to state
and prove the desired properties of ModAC, deployOn is strictly more expressive than
deploy [29], and context exposure is an orthogonal feature for this work.

As described on Figure 7, an aspect environment α is a list of tuples (bc, bd, l) where
l denotes the reference to the aspect, and the first two boolean values corresponds to the
c and d components of the scoping strategy specified at deployment time. An aspect can
be any object whose pointcut attribute is a function that takes a join point stack as input
and produces either true or false. To compensate for the absence of context exposure
from pointcuts, an advice function also receives as first argument the current join point
stack. An advice proceeds using the proceed ( J ) primitive.



Expr e ::= . . . | deployOn[e, e](e, e)
EvalCtx E ::= . . . | deployOn[E, e](e, e) | deployOn[b, E](e, e) |

deployOn[b, b](E, e) | deployOn[b, b](v, E)

AspectEnv α ::= α+ (bc, bd, l) | ε
Store µ ::= ε | µ+ (l 7→ oα)

asps(l) = α, where µ(l) = oα

〈µ, α, J, E[deployOn[bc, bd](lasp, lobj)]〉 ↪→ 〈µ′, α, J, E[lobj ]〉 DEPLOYON

where µ(lobj) = oα
′

and µ′ = µ(lobj 7→ oα
′+(bc,bd,lasp))

Fig. 7. Aspects and deployment.

〈µ, α, J, E[ref {str : v · · ·}]〉 ↪→ 〈µ, α, J, E[jp(dnew, proto, null, pe, α)]〉 NEW

where
proto = vi if stri = " proto "
α′ = (asps(cobj())⊕ asps(cfun())⊕ α)|d
p = fun(){ new/prim {str : v · · ·}α

′
}

〈µ, α, J, E[fun(x · · ·){e}(l0 l1 v · · ·)]〉 ↪→ 〈µ, α, J, E[jp(dcall, l0, l1, pce, α′)]〉 CALL
where
α′ = (asps(cobj())⊕ asps(cfun())⊕ α)|c
pe = fun(){ app/prim fun(x · · ·){e} l0 l1 v · · · }
pc = fun(){ app/prim fun(){jp(dexec, l0, l1, pee, α′)}}

〈µ, α, J, E[c/asp k fun(x · · ·){e} l0 l1 v · · ·]〉 ↪→ 〈µ, α, J, E[jp(dk, l0, l1, pe, α)]〉 C/ASP

where p = fun(){ app/prim fun(x · · ·){e} l0 l1 v · · · }

Fig. 8. Join point creation.

An aspect is deployed with deployOn. Because deployOn embeds an aspect within
an object, the stack aspect environment of the program configuration is not enough;
each object needs to have its own aspect environment as well. To do so, we annotate
an object o with its aspect environment α as oα. By construction, as will be described
below, an object is annotated with its aspect environment as soon as it is allocated in
the store (with ref). We therefore extend the definition of the store, and introduce an
internal function asps in order to access the aspects of an object in the store.

The DEPLOYON rule shows the semantics of per-object deployment: the aspect (at
location) lasp is added at the end of the aspect environment of the object (at location)
lobj , along with the specified scoping strategy components.

Join Point Creation & Disposal We change the NEW rule of λJS to account for the
creation of new join points (Figure 8). The join point abstraction components are filled
according to Figure 6. The primitive operation p is a thunk that returns a fresh reference
to the newly-created object. Actual object creation is done using new/prim, an inter-
nal expression that performs creation without generating any join point. Note that the
object value passed to new/prim is annotated with its initial aspect environment, α′.
This environment is calculated as the order-preserving union (⊕) of three aspect envi-
ronments: the ones deployed on the currently-executing object and function (obtained
with cobj () and cfun (), respectively); and the stack aspect environment. Only aspects
that propagate in newly-created objects are included in α′. The notation α|d refers to
the aspects in α whose d component is true.

To account for the creation of call and exec join points, we change the λJS eval-
uation rule for function application/method invocation as well. The new CALL rule



〈µ, α, j + J,E[in-jp (v)]〉 ↪→ 〈µ, α, J, E[v]〉 OUTJP

〈µ, α, j + J,E[in-jp (err v)]〉 ↪→ 〈µ, α, J, E[err v]〉 OUTJP-ERR

Fig. 9. Join point disposal.

〈µ, α, J, E[jp(dk, lo, lf , pe, αp]〉 ↪→ 〈µ, α, J ′, E[in-jp(swap(app/primW Jα′Kαp,J′ , ε))]〉 WEAVE

where
J′ = dk, lo, lf , pe+ J
αs = ε if k ∈ {pc-exec, adv-exec}, α otherwise
α′ = asps(cobj())⊕ asps(cfun())⊕ αs

W JεKα,dk,lo,lf ,pe+J = fun(){swap(app/prim p, α)}

W Jαw + (bc, bd, lasp)Kα,dk,lo,lf ,pe+J =

app/prim
fun(next){

let(pc = (deref lasp)[”pc”])
if(c/asp pc-exec (deref pc)[”code”] lasp pc jp + J ){
let(adv = (deref lasp)[”adv”])
fun(){ c/asp adv-exec (deref adv)[”code”] lasp adv ja + J }
}else{ next }
}
W JαwKα,dk,lo,lf ,pe+J,p

where ja = dk, lo, lf , fun(){app/prim next}e, and jp = dk, lo, lf , fun(){err ”pc cannot proceed”}e

Fig. 10. Aspect weaving.

generates a call join point whose components are filled according to Figure 6. The
primitive operation pc is a thunk that generates an exec join point when applied. The
primitive operation of this exec join point, pe, performs the actual function execution
by means of app/prim, another internal expression that does not generate join points.
Note that the jp expressions associated to both join points specify that the stack as-
pect environment must change to α′ when pc or pe are applied in order to reflect the
propagation of aspects through the stack. This aspect environment is determined by tak-
ing the order-preserving union of three aspects environments: the ones deployed on the
currently-executing object and function; and the stack aspect environment; and project-
ing the resulting environment along the c component (written α|c), which discriminates
which aspects should propagate on the call stack.

Rule C/ASP accounts for the creation of pc-exec and adv-exec join points. This
rule matches a function application/method invocation, but receives a first argument (k)
that specifies which join point must be generated. Since invocations of pointcuts and
advices are implicit, C/ASP does not generate call join points as rule CALL does. Join
point attributes are filled according to Figure 6; the primitive operation p performs the
pointcut/advice execution by means of app/prim, just like in the case of exec join
points.

Once the computation underlying a join point is reduced to a value, the OUTJP rule
gets rid of the join point and the in-jp expression (Figure 9). OUTJP-ERR does the
same in the case of an error.

Weaving We now turn to the semantics of aspect weaving, specified by the WEAVE rule
(Figure 10). A jp expression reduces to an in-jp expression (to signal the fact that the



Expr e ::= . . . | app/prim e e · · · | new/prim e
EvalCtx E ::= . . . | app/prim v · · · E e · · · | new/primE

〈µ, α, J, E[app/prim fun(x · · ·){e} v · · ·]〉 ↪→ 〈µ, α, J, E[e[v · · · /x · · ·]]〉 APPPRIM

〈µ, α′, J, E[new/prim oα]〉 ↪→ 〈µ′, α′, J, E[l]〉 NEWPRIM

where l /∈ dom(µ) and µ′ = µ+ (l 7→ oα)

Fig. 11. Primitive function application and object allocation.

upcoming computation is associated to a join point), and the join point is pushed onto
the stack (we discuss the use of swap and αs later below). The list of aspects in scope
α′ is calculated as the order-preserving union of the aspect environments of the object
and function in context, and the aspects propagated through the stack.

The weaving process is based on evaluating the function returned by the W meta-
function. W recurs on α′ and returns a composed procedure whose structure reflects
the way advice is going to be dispatched. The base case, W JεK, corresponds to the
execution of the primitive operation. Otherwise, for each aspect (bc, bd, lasp) in the en-
vironment, W first applies its pointcut to the current join point stack (which generates a
pc-exec join point using the c/asp construct). If the pointcut matches, thenW returns
a function that applies the advice of ladv (and generates an adv-exec join point). All
this process is parameterized by the function to proceed with, next. In order to allow an
advice to call proceed to trigger either the base computation or the next advice in the
chain, rule WEAVE creates an auxiliary join point ja whose p component is a thunk that
applies next. To be complete, an auxiliary join point jp is also created and passed to
the pointcut; its p component triggers an error if proceed is called. Finally, If an aspect
does not apply, then W simply returns next.

Primitive forms. The semantics of λAS use two internal primitive forms, app/prim and
new/prim, described in Figure 11. app/prim is an application that does not trigger a
join point: rule APPPRIM simply performs the classical βv reduction. app/prim is
used to perform the actual application of a function, as well as to hide “administrative”
application, i.e. the initial application of the composed aspect chain, and its recursive
applications. Similarly, new/prim allocates an object in the store and reduces to the
corresponding location without producing a join point7.

Execution levels. The weaving semantics explained previously is insufficient, because
any aspect language must take precautions with infinite regression. Indeed, if we omit-
ted the use of swap and αs in Figure 10, a λAS program would never terminate. Tanter
addressed this issue with execution levels [28], which ensure that pointcut and advice
computation by default always happen at a higher level than base computation, avoiding
infinite loops such as those due to pointcuts matching against themselves. Recall that

7 These primitive forms are necessary for the semantics to allow actual computation to happen.
The fact that they are internal means that it is not necessary to protect them from untrusted
aspects: they cannot be used by any user code, and cannot be advised since they do not produce
join points. Recall that in a higher-order aspect language, the use of execution levels is key to
supporting these primitive forms as internal only [28].



Expr e ::= . . . | swap(e, α) | in-swap(e, α)
EvalCtx E ::= . . . | in-swap(E,α)

〈µ, α, J, E[swap(e, α′)]〉 ↪→ 〈µ, α′, J, E[in-swap(e, α)]〉 IN-SWAP

〈µ, α′, J, E[in-swap(v, α)]〉 ↪→ 〈µ, α, J, E[v]〉 OUT-SWAP

〈µ, α′, J, E[in-swap((err v), α)]〉 ↪→ 〈µ, α, J, E[err v]〉 OUT-SWAP-ERR

Fig. 12. Swapping aspect environments.

in λAS , pointcuts and advices are standard functions. With execution levels, pointcuts
and advices are always evaluated at the level above the expression that generates a join
point. When the last advice in the chain proceeds, execution shifts back to the original
level in order to run the base computation8.

We introduce a simple modeling of execution levels, that does not require having
to explicitly track the current execution level in the program configuration. Instead, we
use the call stack with internal expressions so as to swap aspect environments and re-
store them when appropriate (Figure 12). Swapping per se is a very simple process:
given an expression e and an aspect environment α′, swap installs the aspect environ-
ment, and evaluates the expression (IN-SWAP). in-swap is used to restore the swapped
aspect environment α when the expression is fully reduced (OUT-SWAP). Addition-
ally, αs is used to remove aspects in the stack aspect environment from scope when
weaving pc-exec and adv-exec join points. This prevents the aspects deployed on
the currently-executing object/function from seeing their own activity. Note that this
approach does support multiple levels of execution.

Weaving (Figure 10) uses swap exactly where the original levels semantics [28] uses
up and down shifting. The whole weaving process is wrapped by a swap, so that the
current aspect environment is swapped with an empty environment ε that represents the
upper level environment . This environment is used to evaluate pointcuts and advices. Of
course, the fact that the stack aspect environment starts empty does not prevent aspects
that have been deployed in objects and functions to take effect. If the last advice pro-
ceeds (the base case of W ), aspect environments are swapped again, in order to restore
the original environment to evaluate the base computation. The environment in which
weaving is carried out is restored once the base computation has completed. Finally,
when the whole weaving is complete, the original aspect environment is restored.

5 Properties of Modular Access Control

In this section we state two theorems corresponding to the following properties of
ModAC:

Basic effectiveness. ModAC is effective in absence of untrusted aspects. This means
that restriction aspects are actually deployed on untrusted objects, see illegal re-
source accesses, and effectively prevent them.

8 Full-fledged execution levels include the possibility to explicitly shift execution up and down
if needed, as well as to define level-capturing functions [28]. We do not include these advanced
facilities in this work.



Non-inhibition. ModAC with R̊ is effective even in presence of untrusted aspects. This
means that R̊ effectively prevents untrusted aspects from inhibiting protected as-
pects.

More precisely, we show the results for ModAC/λAS . The proofs are provided on-
line [32]. First, we describe the three properties that define basic effectiveness.

Definition 1 (Basic effectiveness). A ModAC implementation is said to comply with
basic effectiveness if three properties are fulfilled:

– Restrictions deployment. Restrictions are deployed on all the corresponding ob-
jects before they can be used.

– Restrictions scope. A restriction aspect sees all the computation produced by the
objects it is deployed on.

– Restrictions effectiveness. A restriction aspect always prevents the resource ac-
cesses it identifies.

Theorem 1 (ModAC/λAS basic effectiveness). ModAC/λAS complies with basic ef-
fectiveness.

This theorem is a direct consequence of Lemmas 1, 2, and 3, exposed below, which
address each property of basic effectiveness separately.

Lemma 1 states that any aspect (referenced by ldepl), in particular Deployer, de-
ployed with scoping strategy (false,true) propagates to every new object in the store,
and does so in the first position in the aspect environment of these objects. This ensures
that ldepl sees all object creations in the application and gets a reference to these objects
before any other entity. The only prerequisite is that ldepl is already deployed in the first
position on all objects in a given point. This can be straightforwardly achieved in the
bootstrapping process by exhaustively deploying Deployer on every object.

Lemma 1 (Restrictions deployment). Let C = 〈µ, ·, ·, ·〉 be a program configuration
where ∀ (l 7→ oα) ∈ µ, α = (false, true, ldepl) + α′, for some α′, and ldepl ∈ dom(µ).
If C ↪→ 〈µ′, ·, ·, ·〉, then ∀ (l 7→ oα) ∈ µ′, α = (false, true, ldepl) + α′′, for some α′′.

Lemma 2 states that all aspects in the stack aspect environment deployed with
c = true, propagate through the stack if the same level of execution is considered; i.e. the
stack inspection algorithm is correctly implemented by means of scoping strategies.

Lemma 2 (Restrictions Scope). Let C = 〈·, α, ·, ·〉 be a program configuration where
αs = α|c. If C ↪→∗ 〈·, α′, ·, ·〉, and the sequence of reductions starts and ends at the
same execution level, then αs ⊆ α′.

Lemma 3 states that if a restriction aspect R matches a join point j and does not
proceed, then the primitive operation associated to j is not evaluated. Consequently a
restriction aspect fulfills its role no matter in which position it is woven at the illegal
resource access join point.



Lemma 3 (Restrictions effectiveness). Let C = 〈µ, ·, J, E[e]〉 be a program configu-
ration where J = d·, ·, ·, pe + J ′, for some J ′, e = app/primW JαK·,J , (·, ·, lR) ∈ α,
and lR is a valid aspect reference in µ to a restriction aspect that matches J and does
not proceed for J . If C ↪→∗ 〈·, ·, J, E[v]〉, for some v, then p is not applied in these
reductions.

Finally, we present the non-inhibition theorem. This theorem states that if the eval-
uation of a pointcut whose aspect has R̊ deployed on it reduces to a value, this value
is either false or (err ·). This holds whenever the join point stack contains a join point
whose target is in the set of protected aspects. Notice that the theorem implicitly permits
the existence of other untrusted aspects trying to inhibit R̊ itself.

Theorem 2 (Non-inhibition). If lasp is a valid aspect reference in µ, R̊ ∈ asps(lasp),
and d·, s, ·, ·e ∈ J; where s ∈ the set of protected aspects, then:
If 〈µ, α, J,E[jp(dpc-exec, lasp, ·, ·e, ·)]〉 ↪→∗ 〈·, α, J, E[v]〉, then v = false or v =
(err ·).

6 Discussion

We discuss how to extend our results from λAS to full-fledged AspectScript, and the
requirements for a general-purpose aspect language to securely support ModAC.

From λAS to AspectScript. Due to desugaring, results obtained in λJS do not imme-
diately apply to JavaScript [16]. This is because desugaring introduces new behavior
that was not present in the original code. When going from λAS to AspectScript, the
theorems remain valid because they are based on the aspect-oriented features of the
language, which have no relation to the desugaring process. However, access control
aspects can be led to behave incorrectly if they use “exploitable” features that introduce
holes upon desugaring. For example, consider a slight modification of the pointcut of
the netRestriction aspect in order to allow communication with safe.cl:
function(jp){ return /∗ same as before ∗/ && !(jp.args[0] == ”safe.cl”); }

The equality operator == forces both operands to be of the same type [19]. For this
reason, jp.args[0] is transformed to a string by an invocation of toString. The problem is
that this extra method call opens the opportunity for bypassing access control:
var req = netService.newRequest({ t: 0, toString: function(){return {0: ”safe.cl”, 1: ”evil.com”}[this.t++]}});

The toString method of the argument to newRequest returns ”safe.cl” the first time it is
invoked (in the pointcut of netRestriction) and ”evil.com” the second time (in the body
of newRequest).

In order to avoid such holes, the first possibility is to simply avoid using exploitable
features in the definition of restriction aspects. For instance, it is safe to use reference
equality === because it does not perform any kind of type conversion [19] (notice that
all restriction aspects defined in this work follow this guideline). A less drastic solution
is to permit the use of exploitable features, but to carefully examine access control
aspects in order to check if their particular usage of the feature is safe. For example,



the equality operator == is safe if both operands are of the same type! As detailed by
Guha et al., this checking can be automated by a specialized type system [16].

Finally, AspectScript uses a scoping strategy acs, which supports privileged execu-
tion and capturable permission contexts; acs is expressed with propagation functions, c
and d. We made a simplification in λAS by supporting only constant boolean propaga-
tion values. As we said in Section 4.2, this simplification does not affect our results. In
fact, supporting propagation functions only requires that R̊ prevents inhibition of these
functions; this is achieved by extending the pointcut of R̊:
function(jp){return ... || cflow(function(jp){return acs.contains(jp.fun);});}

This way, R̊ also inhibits untrusted aspects in the control flow of acs components. The-
orem 2 and its proof must be reformulated accordingly, but this is direct.

Aspect languages for secure ModAC. This paper focuses on JavaScript to be as close
as possible to our practical implementation, ZAC [33]. Still, both ModAC and the ap-
proach for securing it using R̊ are independent of AspectScript. They can be realized in
any aspect language, provided it meets certain key conditions. First of all, the language
must support scoping strategies, or an equivalently expressive scoping mechanism. Per-
object aspects are only necessary if one wants to provide per-object access control.
Execution levels are necessary to avoid infinite loops whenever pointcut and/or advice
execution join points are exposed to weaving; in order to control implicit inhibition, R̊
relies on matching pointcut execution join points.

A crucial point in ModAC that is directly informed by the formal framework and
explicitly used in Lemma 1 is related to aspect precedence: Deployer must always be
the aspect with least precedence in the aspect environment to be woven at a new join
point. This allows Deployer to deploy restriction aspects on objects before they get a
chance to execute any piece of code. The semantics of λAS ensures this premise be-
cause per-object aspects are “engrained” within the object following the semantics of
dynamically-deployed aspects in AspectScheme [10]. In AspectScheme this is a design
decision. Here, it is not; it is a requirement. If an aspect language uses a different ap-
proach to ordering aspects, or permits to undeploy aspects, then it must provide a mech-
anism to guarantee the above invariant related to the presence and position of Deployer.
For example, in AspectJ [20], aspects cannot be undeployed, but manual ordering is
provided. Therefore, some mechanism must be added, as in AOPS [8]. On a related
note, it is necessary that Deployer can deploy the restrictions on a newly-created object
before any code is run on behalf of this object. In λAS , this is obtained thanks to the
desugaring, which creates an empty object and then calls an initializer. In AspectJ, this
can be achieved thanks to the pre-initialization join points. If an aspect language does
not exhibit this specific event of an object life time, then it is not possible to guarantee
that restrictions see all the computation of untrusted objects.

7 Related Work

The relation between aspects and security has a long history. We now discuss a number
of related approaches. To the best of our knowledge, AOPS is the only approach that
supports untrusted aspects while preventing inhibitions of access control aspects.



Modularization of access control. There are several proposals that modularize (part of)
access control into aspects, particularly in Java [35,34,25,9,18,23,21]. However, these
solutions implicitly assume that no other entities can affect the behavior access control
aspects. This implies that access control is vulnerable to inhibition. Work on inlined ref-
erence monitors [11] is also related. These monitors are used to maintain access control
state in the application, executing security actions whenever certain events occur. Mon-
itors are inlined in the application code at appropriate places. Here again, it is assumed
that no further code transformations can change the semantics of the security policies.

Limiting the effects of advice. A number of static reasoning approaches deal with en-
suring that advice cannot have unwanted effect on the base program. A Harmless Ad-
vice [7] cannot change the value returned by a piece of code, but can produce non-
termination and perform I/O tasks. This is enforced by a type and effect system. In
EffectiveAdvice [22], the effects of advices are explicitly modeled using monads; the
Haskell type system can then enforce that advice does not have unintented effects. Both
approaches could be extended to prevent inhibition of access control aspects, but it
is hard to reconcile them with the fully dynamic nature of JavaScript. Augmenting
ModAC with some static reasoning is future work.

Treatment of permission contexts. Caromel and Vayssière addressed the issue of cor-
rectly handling permission contexts in the presence of metaobjects [5]. The issue is
to ensure that the permission context at the base level does not affect that of the met-
alevel, and vice-versa. The proposed solution relies on capturing the permission context
when jumping to the metalevel, and restoring it when going back to the base level. Be-
cause permission contexts are part of aspect environments in ModAC, we generalize
this approach to deal with aspect environments (using swap and in-swap); also, our
execution-level based approach properly deals with proceed.

Preventing access control inhibition. The aspect-oriented permission system (AOPS) [8]
is the most related approach. AOPS relies on history-based access control (HBAC) [1],
in which the decision of allowing access to a sensitive resource is taken based on all the
entities that have participated in the execution trace. This characteristic makes HBAC
a good alternative for discovering interferences produced by untrusted aspects. As dis-
cussed in Section 3.2, AOPS sacrifices two of our design goals: the aspect language
semantics is customized to prevent weaving of crucial elements of the access control
architecture (G1), thereby impeding even trusted aspects to apply at these points (G3).

8 Conclusion

Access control has been a recurrent target for aspect-oriented programming, mainly
because of the obvious crosscutting nature of basic permission checking. However, se-
curity is a delicate concern, and therefore a correct aspectization cannot take the liberty
of ignoring potentially malicious aspects. Can access control be fully modularized as
an aspect? The answer is yes.



In this paper we show how ModAC, our previous work on aspectizing access con-
trol, can be made secure in presence of untrusted aspects, while maintaining its modu-
lar definition. To do so, we first prove that ModAC complies with basic effectiveness,
i.e. that it actually works; a property only informally stated before. Then, we define R̊, a
self-protecting restriction aspect in charge of ensuring non-inhibition of access control,
and prove that its inclusion makes ModAC secure. We define λAS , a core calculus for
AspectScript, and use it as the base for stating and proving these properties.

In order to secure ModAC without imposing overly restrictive constraints, we define
three design goals: the aspect language must be oblivious to access control, untrusted
aspects must not inhibit access control, and trusted aspects should be able to see any
join point. Our solution fulfills all these goals. First, language obliviousness is achieved
because λAS is general-purpose and therefore unaware of access control. Second, un-
trusted aspects are controlled by R̊, that inhibits them before they can inhibit access
control. And third, trusted aspects are free to apply at any join point because R̊ is only
targeted at untrusted aspects. In conclusion, we make ModAC secure thanks to R̊; and
we keep it modular because R̊ is defined as a normal restriction aspect.
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