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Introduction

This report presents the Social Networks Query Language (SNQL) the query
and transformation language of the Social Networks Data Model (SNDM).

The SNDM is a database model for the management of social networks
data. This model provides a data structure to represent and store social
networks, and a language to query and transform social networks (SNQL).

SNQL is inspired in data management practices from social networks
analysis (SNA) practice, and from the needs that arise in the management
of complex and big data from online social networks. We show that these
operations can be expressed in SNQL and evaluated under reasonable com-
plexity bounds (NLOGSPACE).

SNQL is a pattern matching and production language. Its design pro-
vides both a textual and a graphical syntax. The semantics of the language
is defined in terms of GraphLog and second order tuple-generating depen-
dencies.

This technical report is organized in two chapters. The first chapter
briefly review the SNDM and describes the elements required to present
its query language, in particular, the data structure. The second chapter
presents the current version of the language in detail: its syntax, seman-
tics, evaluation process and main properties (regarding expressiveness and
complexity).
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Chapter 1

Preliminaries: The Data
Structure of the SNDM

The data structure is the component of the data model that defines how the
storage requirements are resolved. The data structure must be the simplest
structure so that: all objects in the domain could be represented at the
proper level of abstraction, provides support to and does not hinder the
performance of query language, and satisfy the additional requisites such
that scalability and portability.

Accordingly, the data structure of the SNDM must be able to represent
all possible social networks in terms of actors, relations, and attributes.
In addition, it must support, for instance, data sharing and reuse. The
requisites point to a graph-like semi-structured data model.

In this chapter, we briefly recall the main features of the data structure
that are required to present the current version of query language.

1.1 Data Structure Elements

Actors, relations, and attributes are the elements whose interconnections
form a social network [28].

1. Actors have a unique id and a set of attributes, and can participate in
any number of relations.

2. Relations have an unique id, a set of attributes, and a number of
participant actors. The number of participants can be one o more, and
it may change without affecting the other properties of the relation.
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3. Attributes have an associated meaning and a literal value. One at-
tribute is identified by the id of the object to which it is attached
(actor or relation), by its meaning, and by its literal value. The type
(or family) of the object is a special kind of attribute (called below
family).

Thus social networks are sets of actors, relations, and attributes. Sharing
and reuse requires metadata at the network level to record, for instance,
provenance of the data sets.

1.2 Data Structure Definition (Triples)

We present in this section the triples version of data structure. Note that
depart from the classical strategy, even though the structure is still a graph,
the relations are represented as nodes and the attributes are part of the net-
work structure. We briefly introduce here a graphical syntax used to depict
social networks in the following sections. We will use this notation because it
is better suited to the definition and study of the query and transformation
language, and also provides a better framework for implementation.

Definition 1 (Social Network Triple Representation [28]) Consider the
vocabulary Σ = A ∪ T ∪ C ∪ F ∪ {isa, isr} ∪ LAT ∪ LM , where A is the set
of actor oids, T is the set of relations oids, C is the set of literal values, F
is the set of families of actors and relations, LAT the set of labels of partici-
pations roles of actors in relations, and LM = LAC ∪LTC is the set of label
of attributes (meanings). Then define the following sets of triples:

1. Nodes and their Family Belonging:

N ⊆ (A× {isa} × F ) ∪ (T × {isr} × F )

2. Participation roles of actors in relations:

R ⊆ A× LAT × T

3. Meanings (attributes):

M ⊆ (A ∪ T )× LM × C

From the definitions above it is not difficult to show:

Lemma 1 A social network G = (V,E) can be represented by three sets of
triples (N,R,M) as described above.
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Table 1.1: Friendship network (Fig. 1.2) represented as sets of triples .
N : Typing R: Roles M : Attributes

a1 isa ‘person’ a1 friend r1 a1 name ‘Mary’
a2 isa ‘person’ a2 friend r1 a2 name ‘John’
a3 isa ‘person’ a3 introducer r1 a3 name ‘Ann’
a4 isa ‘city’ a2 inhabitant r2 a4 name ‘Capital
a5 isa ‘city’ a4 place r2 City’
r1 isr ‘friendship’ a1 inhabitant r3 a5 name ‘Central
r2 isr ‘lives-in’ a5 place r3 City’
r3 isr ‘lives-in’ a3 inhabitant r4
r4 isr ‘lives-in’ a5 place r4

Proof. It is possible to map the set of nodes and the set of edges of G to a
subset of the vocabulary of the triples and to the sets of triples respectively.
Each triple in can represent a labeled arc: triples in M represents edges in
EAC ∪ ETC with their labels assigned by l, triples in R represents edges in
EAT with their labels assigned by l.

• If A = VA, T = VT , C = VC the set of nodes of the social network
graph can be expressed as V = A ∪ T ∪ C

• Each triple in M can be expressed as (a, b, c) where a ∈ A ∪ T, c ∈ C,
and b = l(e), e ∈ EAC ∪ ETC

• Each triple in R can be expressed as (a, b, c) where a ∈ A, c ∈ T , and
b = l(e), e ∈ EAT

• N represents the families of actors and relations. Note that the triple
representation is more general, as it supports multiple families for each
object.

Table 1.1 shows the triple representation of friendship network depicted
in Figure 1.2 (see equivalence between graphical syntax and triples in Figure
1.1).

Graphical Syntax. Along with the data structure we define a graphical
syntax to depict social networks (see Figure 1.1). It has four building blocks:
actors with its family labels, relations with its family labels, participation
roles of actors in relations, and attributes on actors and relations. Actors
are represented by circles with their id inside, and a grey label indicating
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Data Structure Elements

Actor a of family f: (a, isa, f)

Relation r of family f: (r, isr, f)  

Attribute m with literal value l: 
(a, m, l) and (r, m, l)

Participation role p of a in r:
(a, p, r)  

f
a

f
r

m la rp a

m lr

Figure 1.1: Social Network Graphical Syntax. Form left to right, the four
graphical building blocks of a social network: an actor (above) and its family
label, a relation and its family label, a participation role of an actor in a
relation, and attributes on an actor and a relation. For each block it is also
shown the equivalent triple representation.

Mary

person

a1 name

friendship
r1

friend
John

person

a2
name

friend

Ann
person

a3 name

introducer
city

a4

lives-in
r2 place

Capital
City

name

inhabitant

city

a5

lives-in
r3

place

Central
City

name

inhabitant

lives-in
r4

place

inhabitant

Figure 1.2: Friendship Network. A social network representing the friendship
relation (square node) between Mary and John, who were introduced by
Ann (actors as round nodes, and attribute values as grey dots). The cities
of residence are also represented as actors.

their type. Accordingly, relations are represented by rectangles with their
id inside, and a grey label indicating their type. Participation roles are
represented by directed lines departing from the participating actor to the
relation. Line labels differentiates participation roles.

Attributes links an actor or relation to a literal value represented by a
gray dot. Line labels represent the meaning of the attribute.

Figure 1.2 depicts a small social network with two types of actors: cities
and persons, both with attribute names. There are also two types of re-
lations: lives-in linking persons and cities, friendship linking persons. For
instance, it could be read “Mary lives in Central City”, and “Mary and John
participate as friends in r1, and Ann as ‘̀ıntroducer”.
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Chapter 2

SNQL: Query and
Transformation Language

In a data model, the query language is the set of data-manipulation oper-
ations designed to access the information in a database defined under that
model, that is, using the corresponding data structure. The expressiveness
of the query language is the set of all queries that can be expressed in the
language. A practical query language must offer an appropriate trade-off
between its expressiveness and a feasible query-evaluation complexity in or-
der to solve the actual data management problem while scaling adequately.
Additionally, to actually improve users productivity, the language should be
accessible and appealing to the users in the application domain.

A strategy that fulfills these conditions is pattern matching and produc-
tion, whose graphical representation could be easily understood by users
familiar with social networks and SNA. Thus, in a naive approach, a user
could specify a basic query by drawing a pair of patterns: a motif to be
searched, and a pattern to be constructed each time the motif is found. In
fact, this basic strategy covers most of the basic data management needs. It
is possible to show that it is equivalent to relational algebra without aggre-
gation, and consequently to an affordable subset of Datalog [1]. However,
there are requirements that are not expressible in terms of local patterns,
and which require also to produce summaries and new values. To improve
the expressiveness of the query language, while keeping its complexity un-
der a practical bound (NLOGSPACE), we extended the naive approach with
three elements: complex patterns (using logical combination of patterns),
production of new values and object ids (using aggregate functions and sec-
ond order tuple-generating dependencies), and inflationary patterns like the
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subnetwork reachable from a given actor (using transitive closure). This
design decision leaves out some borderline cases, like maximal and recur-
sive cohesive subgroups (e.g. k-cores and k-plexes [32]), whose identification
algorithms push the complexity over the bound stated above [7, 11]

The resulting language, SNQL, has a textual and graphical syntax, and
covers all the requirements fulfilled by queries computable under the given
complexity bound, which also covers all real world SN practice.

In this chapter, we present the definition of SNQL and study its prop-
erties. First, we present an overview of the language and its properties.
After that, we present the theoretical background regarding Datalog and
second order tuple-generating dependencies. We continue with the formal
definition of the query and transformation language, and the study of its
expressiveness and complexity. Finally, we briefly discuss related work on
query languages for network structured data.

2.1 Query and Transformation Language Design

What is a “good” query language for the requirements given above? Al-
though nobody has yet proposed a set of primitives, flexible and expressive
enough, to represent the full diversity of queries implied by these require-
ments [5], the good news for SN is that the required set of functionalities
seems to be small, and most of them (not all) computable by reasonable
graph algorithms (paths, connectedness, etc.).

From a social networks practice point of view, we distinguish two types of
operations: data management operations (i.e. queries and transformations)
that return social networks, and structural measures operations that return
values or sets of values for structural properties, such as centrality. SNQL
concentrates on the first type, data management operations that produces
networks from networks, and allows the composition of queries. As for the
second group, still there are at least two ways to access structural measures
at the implementation level: via import/export facilities in the DBMS from
and to structural analysis tools, for instance well known SNA tools like
Pajek, network and sna R packages, and UCINET; or by implementing an
extension to the DBMS, a set of structural analysis functions and made
them available to the query language, without the need of express them in
the language itself.
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2.1.1 Main Design Issues

Database queries are mappings from instances of a source schema S to in-
stances of a target schema T . In the case of SNQL, both schemas must
describe social networks.

The evaluation of a query can be seen as a two step process: first the rel-
evant data is identified in the source instance; the resulting network is built
using the identified data. It is worth noting the following issues regarding
complexity and practical computational costs:

• The actual evaluation process does not need to proceed in two sepa-
rate steps collecting first all relevant data in an intermediate structure
and then producing the result. If a locality principle holds, it will be
possible to produce a portion of the result from each selected portion
of the source, thus avoiding the materialization of the intermediate
data.

• Abiteboul and Vianu [2,8] show that adding value invention to Datalog
makes it capable of expressing all computable queries at the expense
of pushing its complexity bound over PSPACE.

• The complexity of these queries also depends on the nature of the
selected and produced structures. Consens and Mendelzon [11] show
that selecting and reporting whole paths, path summarizations and
aggregation requires exponential time.

Consequently, to achieve a practical complexity bound, we need to nar-
row the set of queries in SNQL, leaving outside the language queries defined
in terms of whole paths or paths summarization, such as the selection of
maximal cohesive subgroups defined in terms of minimum mutual distances,
e.g. k-kores and k-plexes [32]. Additionally we must consider a less powerful
alternative to value invention with a feasible complexity.

The following running example introduces a friendship network along
with two other networks that are defined by SNQL queries over the first.
The actual queries are presented in detail later, after defining the syntax of
the language.

Example 1 Consider a SN of friendship relations among people, including
some other person, if any, who introduced them; this implies having relations
of variable arity (solved by representing relations as nodes). People are
described by the attributes ‘name’ and ‘city’ (see Fig. 2.1(a)). To study the
relevance of city of residence to friendship might require promoting cities to
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person
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person

a2
name
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introducer
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a4

lives-in
r2 place

Capital
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name

inhabitant

city

a5

lives-in
r3

place

Central
City

name

inhabitant

lives-in
r4

place
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b) Friendship Network among Persons (Cities Promoted from Attributes to Actors)

citycity friendships
_between_

cities

2

a5

inhabitants

r5friends

Central
City

name

1

a4

inhabitants

friends

Capital
City

name

c) Friendship Network between Cities 

number

Figure 2.1: Friendship Network and Simple Queries Results. a) A social
network representing the friendship relation (square node) between Mary
and John, who were introduced by Ann (actors as round nodes, and at-
tribute values as gray dots). b) The same social network after promoting
city attributes to actors. c) The social network result after grouping persons
by city and computing aggregate attributes: inhabitants of each city, and
number of friendships between cities.

actors and linking people and cities with a new type of relation, e.g. ‘lives-
in’ (see Fig. 2.1(b)). Another type of transformation would be to group
people by city of residence, thus defining a network of cities, where relations
summarize friendships among residents of cities. Additionally, one might
like to describe in the network the population (person count) of each city,
and label the relations between them with the number of friendship-relations
between people (see Fig. 2.1(c)).

In the remaining of this section we present SNQL and contrast its fea-
tures with the previously identified requirements and concrete examples.

2.1.2 Query Language Design

Following the requirements and general issues presented above we propose a
query language composed by single query operation that collects data from
the source network via pattern matching, and with this data produces the
result using a second pattern as a template. Queries can be composed to
form all the needed variants.
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Result 
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Data Collection (Pattern Matching) Result Construction (Pattern Production)
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Figure 2.2: Querying SNDM data. The main components of a query are:
an extraction pattern PE , and a construction pattern PC . Each query pro-
ceeds as shown in the figure: (1) PE is matched again the source network,
(2) only the subnetworks that match are extracted, and grouped if needed
for aggregation, (3) values bound to elements of PE are used to populate
elements of PC and, possibly, to create new values, (4) and finally the result
network is constructed as the union of all instances of PC .

Each query in the language is defined by two patterns elements (see
Figure 2.2):

• An extraction pattern PE is a basic SNDM network pattern, i.e. a
SNDM social network (usually small) labeled with variables and con-
stants. Constants restrict the matching of PE , and variables are bound
to the corresponding values in the source network. Each match of PE

produces a tuple of variable bindings. The basic pattern is extended
with logical operations between patterns (AND, OR, AND-NOT), aggre-
gating functions, and transitive closur (TC).

• A construction pattern PC is a basic SNDM network pattern labeled
with variables. The PC is a template to produce subnetworks of the
query result. Each subnetwork is produced with one tuple from the
data collection process. PC variables get their values directly from
values bound to variables of PE , or from functions that create new
values or compute values using the value bound to variables from PE

The evaluation process follows the sequence shown in Figure 2.2. First,
PE is matched against the source social network, each match produces a tu-
ple where each variable of PE is bound to the corresponding value found in
the instance. If aggregation is specified, this collection of tuples is grouped
and aggregated as needed. For each of the resulting tuples, one instance of
the PC is produced: each variable is replaced by the corresponding value,
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L1
city

person friendship

L2

A1
name

R1P1
city

A2
lives-in

R2place

L1
name inhabitant

Extraction Pattern: EP Contruction Pattern: CP

person friendship

L2

A1
name

R1P1

Figure 2.3: Graphical representation of an SNQL query. This is the graphi-
cal representation of PE and PC for the query that promotes city attributes
to actors producing the network depicted in Figure 2.1.b from the network
depicted in Figure 2.1.a. The correspondence between variables from PE and
PC is indicated using the same names in both patterns. A2 and R2 represent
new oids created with functions: A2 = g(L1) and R2 = f(A1, A2).

either from a tuple variable or a predefined function, e.g.: arithmetic func-
tions, string concatenation, value invention, etc. Finally the result is the
union of all the subnetworks produced from PE .

Example 2 Consider the SN of friendship relations among people presented
in Example 1, and the query to promote city attributes of persons to ac-
tors, graphically represented in Figure 2.3. First, PE is matched against
the friendship network: the structure and constants (attributes meanings,
and family labels) must match. Each match generates a tuple of values for
variables A1, R1, P1, L1, and L2. In turn each of these tuples is used to
produce an instance defined by PC : each value is directly used where the
same variable name is indicated. New values are functionally created for
new variables:A2 = g(L1) and R2 = f(A1, A2). (These assignments are
usually expressed in the text of the query, which will be discussed in detail
after the formal definition of the syntax).

2.2 Theoretical Framework

To provide formal semantics and to study the expressiveness and complexity
of SNQL, we use two known database languages: Datalog and second order
tuple-generating dependencies (SO tgds).

Datalog is a query language based on formal logics that has been exten-
sively studied, providing a good framework to characterize SNQL.

SO tgds are database formalisms to specify compositions of schema map-
pings. We use them to provide value invention to SNQL.
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2.2.1 Datalog and GraphLog

There exist many variants of Datalog. In the presentation below we fo-
cus on the characteristics and properties useful to the study of SNQL. A
specially interesting subset of Datalog is Graphlog which additionally pro-
vides a graphical syntax whose semantics is described in Datalog. Graphlog
provides several features on the lines of SNQL.

Definition 2 (Datalog) We will briefly review Datalog (for further details
and proofs see [1]).

A term is either a variable or a constant. An atom is either a predicate
formula p(x1, ..., xn), where p is a predicate name and each xi is a term, or
an equality formula t1 = t2 where t1 and t2 are terms. A literal is either
an atom (a positive literal L) or the negation of an atom (a negative literal
¬L).

A Datalog rule is an expression H ← B where H is a positive literal
called the head1 of the rule and B is a set of literals called the body. A rule
is ground if it does not have any variables. A ground rule with an empty
body is called a fact.

A Datalog program Π is a finite set of Datalog rules. The set of facts
occurring in Π, denoted facts(Π), is called the initial database of Π. A
predicate is extensional in Π if it occurs only in facts(Π), otherwise it is
called intensional.

A Datalog program is non-recursive and safe if it does not contain any
predicate that is recursive in the program and it can only generate a finite
number of answers. In what follows, we only consider non-recursive and
safe programs.

A substitution θ is a set of assignments {x1/t1, . . . , xn/tn}, where each
xi is a variable and each ti is a term. Given a rule r, we denote by θ(r) the
rule resulting from substituting the variable xi for the term ti in each literal
of r.

The meaning of a Datalog program Π, denoted facts∗(Π) , is the database
resulting from adding to the initial database of Π as many new facts of the
form θ(L) as possible, where θ is a substitution that makes a rule r in Π true
and L is the head of r. Then the rules are applied repeatedly and new facts
are added to the database until this iteration stabilizes, i.e., until a fixpoint
is reached.

1We may assume that all heads of rules have only variables by adding the corresponding
equality formula to its body.
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A Datalog query Q is a pair (Π, L) where Π is a Datalog program and L
is a positive (goal) literal. The answer to Q over database D = facts(Π) , de-
noted ansd(Q,D) is defined as the set of substitutions {θ | θ(L) ∈ facts∗(Π)}.

Definition 3 (Graphlog Query Graph) A query graph [10] Gp is a di-
rected labeled multigraph with a distinguished edge

(N,E,LN , LE , ι, ν, ε, e, Le)

where: N is a finite set of nodes, E is a finite set of edges, LN is a set
of sequences of variables, LE is a set of literals and closure literals (literals
followed by the positive closure operator), ι the incidence function, ν the
node labeling function, ε the edge labeling function, e is the distinguished
edge, and Le is a set of positive literals; there are no isolated nodes. Edges
may be labeled with literals, closure literals or path expressions, except for the
distinguished edge which must be labeled with a positive non-closure literal.
The distinguished edge denotes the result of the query graph when the rest
of the graph matches the data source.

Definition 4 (GraphLog) GraphLog [10] is the query language defined by
the set of graphical queries (finite sets of query graphs) G, whose query graphs
do not form cyclic dependencies. There is a dependence between two query
graphs if one references the distinguished edge of the other. The meaning of
a graphical query G can be expressed using stratified Datalog.

GraphLog was a seminal query language for graph data, designed to
be expressive while at the same time having low computational complexity.
Apart from standard features, it includes aggregation and transitive closure
making it suitable for many SN queries. However, GraphLog does not pro-
vide functionality to create new objects/actors, a crucial requirement for
SN.

2.2.2 Second Order tgd’s

Second-order tuple-generating dependencies (SO tgd’s) are a type of database
constraint formalism introduced to specify composition of schema map-
pings [15].

We use SOtgds to formalize the semantics of the construction stage of
evaluation of SNQL queries. Recall that this stage requires value creation, a
feature that SOtgds may provide while keeping complexity below acceptable
bounds, as in the case of Datalog.
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First, we define a simpler formalism which is not enough for the re-
quirements of the language, but it is the base of SO tgds: source-to-target
tuple-generating dependency.

Definition 5 (Source-to-target tgd) Let S be a source schema and T a
target schema. A source-to-target tgd is a first-order formula of the form

∀x(φS(x)→ ∃yψT (x, y)),

where φS(x) is a conjunction of atomic formulas over S and ψT (x, y) is a
conjunction of atomic formulas over T . Note that x, y are tuples/sets of
variables. We assume that every variable in x appears in φS.

Definition 6 (Full source-to-target tgd) A full source-to-target tgd is a
source-to-target tgd of the form

∀x(φS(x)→ ψT (x)),

where φS(x) is a conjunction of atomic formulas over S and ψT (x, y) is a
conjunction of atomic formulas over T . We again assume that every variable
in x apperas in φS.

Source-to-target tgds have been used to formalize data exchange. More-
over, they have been used in data integration scenarios under the name of
GLAV assertions.

Example 3 Consider the following three schemas S1, S2 and S3. Schema
S1 consists of a single binary relation symbol Takes, that associates student
names with the courses they take. Schema S2 consists of a similar binary
relation symbol Takes1 and of an additional binary relation symbol Student
that associates each student name with a student id. Schema S3 consists
of one binary relation symbol Enrollment that associates student ids with
the courses the students take. Consider now the schema mappings M12 =
(S1, S2,Σ12) and M12 = (S2, S3,Σ23), where

Σ12 = {∀n∀c(Takes(n, c)→ Takes1(n, c)),

∀n∀c(Takes(n, c)→ ∃sStudent(n, s))}

Σ23 = {∀n∀s∀c(Student(n, s) ∧ Takes1(n, c)→ Enrollment(s, c))}

These three formulas are source-to-target tgds. The second formula in Σ12

is an example of a source-to-target tgd that is not full, while the other two
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formulas are full source-to- target tgds. The first mapping, associated with
the set Σ12 of formulas, requires that copies of the tuples in Takes must
exist in Takes1 and, moreover, that each student name must be associated
with some student id (s) in Student. The second mapping, associated with
the formula in Σ23, requires that pairs of student id and course must exist
in the relation Enrollment, provided that they are associated with the same
student name.

SNQL requires the functional creation of values; source-to-target tgds
are not enough. A slight extension with existential second-order features,
Second-Order tgds, which are source-to-target tgds extended with existen-
tially quantified functions and equalities. A particular case of SO tgds with
predefined functions provides the required functionality.

Definition 7 (SO tgd) Let x be a collection of variables and f be a collec-
tion of function symbols. A term is defined a follows: every variable in x is
a term, and if f is a k-ary function symbol in f and t1, . . . , tk are terms, then
f(t1, . . . , tk) is a term. Let S be a source schema and T a target schema.
A second order tuple-generating dependency (SO tgd) is a formula of the
form:

∃f((∀x1(φ1 → ψ1)) ∧ . . . ∧ (∀xn(φn → ψn)))

1. Each member of f is a function symbol.

2. Each φi is a conjunction of

• atomic formulas of the form R(y1, . . . , yk), where R is a k-ary
relation symbol of schema S and y1, . . . , yk are variables in xi,
not necessarily distinct,
and

• equalities of the form t = t′ where t and t′ are terms based on xi

and f .

3. Each ψi is a conjunction of atomic formulas S(t1, . . . , tl) where S is
an l-ary relation symbol of schema T and t1, . . . , tl are terms based on
xi and f .

4. Each variable in xi is a safe term with respect to φi and f . A safe term
with respect to φi and f is defined recursively as one of the following:
(a) a variable x occurring in a relational atomic formula of φi, (b) a
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variable x occurring in an equality term of the form x = t or t = x
of φi, where t is a safe term with respect to φi and f , or (c) a term
f(t1, . . . , tk) where f is in f and t1, . . . , tk are safe terms with respect
to φi and f .

The fourth condition is a“safety” assumption –not to be confused with
the safe condition in Datalog– that makes the second-order tgds domain
independent (so that their truth does not depend on any underlying domain,
but only on the “active domain” of elements that appear in tuples in the
source). In the case of first-order tgds, where equalities are not present,
this condition becomes a simpler one by requiring that every universally
quantified variable appear in one of the relational atomic formulas in the
left-hand side of the tgd. This condition is not always made explicit in the
literature in the definition of first-order tgds, although it should be.

The following formula is a valid example of a second-order tgd where all
universally quantified variables are safe:

∃f∀x∀y∀z(R(x) ∧ (y = f(z)) ∧ (z = x)→ S(x, y, z))

Example 4 Consider the following three schemas S1, S2 and S3. Schema
S1 consists of a single unary relation symbol Emp of employees. Schema S2
consists of one binary relation symbol Mgr1, that associates each employee
with a manager. Schema S3 consists of a similar binary relation symbol Mgr
and an additional unary relation symbol SelfMgr, intended to store employees
who are their own managers. Consider now the schema mappings M12 =
(S1, S2,Σ12) and M23 = (S2, S3,Σ23), where

Σ12 = {∀e(Emp(e)→ ∃mMgr1(e,m))}

Σ12 = {∀e∀m(Mgr1(e,m)→ Mgr(e,m)),

{∀e(Mgr1(e, e)→ SelfMgr(e))}

It is easy to verify that the composition of M12 and M23 is M13, where
Σ13 is the following SO tgd:

∃f(∀e(Emp(e)→ Mgr(e, f(e))) ∧ ∀e(Emp(e) ∧ (e = f(e))→ SelfMgr(e)))
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Figure 2.4: The evaluation process of a SNQL query. Evaluation process
occurs in two stages: (1) a Datalog program equivalent to <extract-patt>

is evaluated over the data source network D producing intermediate tables
of variable bindings; (2) partial results are produced from the obtained tu-
ples (a table for each distinguished predicate) using the SO tgd equivalent
to <construct-patt>. All partial results are gathered in the final result
network D′.

2.3 Syntax and Semantics

SNQL is inspired by two earlier languages: GraphLog [10] and second-order
tuple-generating dependencies (SO tgds) [15]. Its evaluation process is syn-
tactically and conceptually built in two modules (see Figure 2.4), SN match-
ing and SN construction, which essentially are GraphLog and SO tgds re-
spectively.

We formally define SNQL specifying its syntax and semantics. SNQL
syntax has two versions: a text syntax that follows the lines of SQL and
other similar languages, and a graphical syntax for patterns that extends
the graphical syntax of SNDM instances to represent variables and complex
extraction patterns. We define the semantics of SNQL following its two
stages. The collection of relevant data from the source networks is defined
in terms of Datalog, and the building of the resulting network is defined
using SOtgds. This formal framework allows to study the complexity and
expressiveness of the SNQL.
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2.3.1 Query and Transformation Language: Syntax

The transformation and query language should be friendly enough for both
the lay-user and the programmer. For the first, a visual language close to
the SN graphical representation is ideal: in the simpler cases, one extraction
pattern and one construction pattern cover many use cases; in the general
case, the extraction pattern should resemble the DAG of query graphs that
exists in GraphLog [10]. For the programer, an SQL-like language would
be familiar to developers and advanced database users (for searching text,
writing, pasting, debugging, etc.) Thus, our language has both syntaxes.

At the abstract level, and for the purpose of formally studying and an-
alyzing its semantics and complexity, we use a translation to a more formal
representation, based on Datalog/GraphLog [1, 10] and SOtgds [15].

Definition 8 (SNQL Query) An SNQL query Q follows the standard SELECT|CONSTRUCT
– WHERE – FROM structure of languages like SQL and SPARQL. It re-
ceives social networks as input (the FROM clause), extracts information
using patterns (the WHERE clause), and outputs a new social network, pos-
sibly with new values, using the CONSTRUCT clause.

Q ::= CONSTRUCT <list-of-construct-patt>

WHERE <extract-patt>

FROM <list-of-social-networks>

Each construction pattern in <list-of-construct-patt> is a collection of
<list-of-patt-triples> (set of triples including variables) possibly con-
strained by a list of equalities:

<construct-patt> ::= <list-of-patt-triples>

[IF <expr> = <expr>[ AND <expr> = <expr>]*] [AS <sn-id>]

The <extract-patt> is either a basic pattern <list-of-patt-triples>

(to be matched against one of the social networks listed in the FROM clause),
or a complex pattern built using operations between patterns:

<extract-patt> ::= <list-of-patt-triples> [MATCH <sn-id>]

| <extract-patt> AND <extract-patt>

| <extract-patt> OR <extract-patt>

| <extract-patt> AND-NOT <extract-patt>

| <extract-patt> FILTER <condition>

| TC(<startV>, <endV>, <extract-patt>) WITH <start-condition>

| AGG(<group-vars>, <aggr-func>, <extract-patt>)
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where TC denotes transitive closure and AGG denotes aggregation, both ex-
plained further below. Finally <list-of-social-networks> is a list of
sources (social networks) with aliases.

<list-of-social-networks> ::= <social-network> [AS <sn-id>

[, <social-network> AS <sn-id>]*]

Let’s recall that a social network is a collection of triples composed from
object identifiers and constant literals. See the complete syntax in Figure
2.5.

Example 5 Consider again the SN from Example 1. The following SNQL
query produces the network depicted in Fig. 2.1(b) from that in Fig. 2.1(a)
by promoting the ‘city’ attribute to a new type of actor ( city) and producing
a new type of relation ( lives-in) to associate people with cities.

CONSTRUCT CP IF R2 = f(A1, A2) AND A2 = g(L1)

WHERE EP

FROM FriendshipNetwork

Patterns EP and CP, depicted in Fig. 2.3, denote an extraction pattern and
a construction pattern, respectively. FriendshipNetwork is the SN shown
in Fig. 2.1(a).

Note that it is also possible to represent both patterns directly in the text:

CONSTRUCT {(A1, isa, person), (A2, isa, city), (R1, isr, friendship),

(R2, isr, lives-in), (A1, inhabitant, R2), (A1, P1, R1),

(A1, name, L2), (A2, place, R2), (A2, name, L1)}

IF R2=f(A1, A2) AND A2=g(L1)

WHERE {(A1, isa, person), (R1, isr, friendship),

(A1, city, L1), (A1, P1, R1), (A1, name, L2)}

FROM FriendshipNetwork

Note that in the result, cities become hubs that connect all people living
in each of them, and that the new actors require creation of new ids from
the data: the oids of cities are produced by applying a function g to the
literal values bound to variable L1. Similarly, new relation identifiers for
the ‘lives-in’ relation are created, one for each (person,city) pair matched by
(A1,A2).

The following should be noted with regard to the syntax:

• <condition> is a Boolean expression over pattern variables and con-
stants.
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<SN-expression> ::= <SN-query> | <social-network>

<SN-query> ::= CONSTRUCT <list-of-construct-patt>

WHERE <extract-patt>

FROM <list-of-social-networks>

<list-of-construct-patt> ::= <construct-patt>[ AS <sn-id>

[, <construct-patt> AS <sn-id>]*]

<construct-patt> ::= <list-of-pattern-triples>

[IF <list-of-equalities>]

<list-of-equalities> ::= <expr> = <expr>

[AND <expr> = <expr>]*

<extract-patt> ::= <list-of-pattern-triples>

[MATCH <sn-id>]

| <extract-patt> AND <extract-patt>

| <extract-patt> OR <extract-patt>

| <extract-patt> AND-NOT

<extract-patt>

| <extract-patt> FILTER <condition>

| TC(<startV>,<endV>,<extract-patt>)

WITH <start-condition>

| AGG(<group-vars>,<aggr-func>,

<extract-patt>)

<list-of-pattern-triples> ::= {<pattern-triple>

[, (<pattern-triple>)]*}

<pattern-triple> ::= (term, term, term)

<list-of-social-networks> ::= <social-network>[ AS <sn-id>

[, <social-network> AS <sn-id>]*]

<social-network> ::= <sn-id>

| <list-of-instance-triples>

<list-of-instance-triples> ::= {<instance-triple>

[, (<instance-triple>)]*}

<instance-triple> ::= <n-triple>

| <r-triple>

| <m-triple>

<n-triple> ::= (<oid>, <constant>, <constant>)

<p-triple> ::= (<oid>, <constant>, <oid>)

<m-triple> ::= (<oid>, <constant>, <constant>)

<constant> ::= <object-id> | <literal>

<condition> ::= <logic-expression>

<term> ::= <variable> | <constant>

| <expr> AS <alias>

<expr> ::= <variable> | <constant>

| <function>(<expr>[, <expr> ]*)

<alias> ::= <variable> | <null>

Figure 2.5: SNQL Syntax.
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• For TC the variables <startV> and <endV> must appear in <extract-patt>.
Then TC returns the transitive closure of the binary relation formed by
all instantiations of <startV> and <endV> when matching <extract-patt>.
TC allows the specification of an additional condition <start-condition>

that is applied only to be able to initially locate the first match of the
recurrent pattern.

• AGG returns a tuple of values comprising each distinct instantiation
of the variables in <group-vars> along with the result of applying
<aggr-func> to the remaining variables in <extract-patt>.

Much like in SQL, the language allows to work with multiple source
social networks which, in turn, may allow to express some set theoretical
operations with these queries (see Section ??).

It is worth mentioning a straightforward extension of SNQL: to produce
tables instead of networks. In this case, each instance of the construction
pattern in the output could be treated as a tuple; producing a table instead
of a network as a result (as in SPARQL SELECT queries). This extension
is not pursued in this work given the emphasis in to allow the composition
of queries.

Extending the graphical syntax for network instances, allowing variables
as labels and introducing elements to represent complex patterns, it is pos-
sible to graphically represent both extraction and construction patterns (see
Figure 2.6).

2.3.2 Query and Transformation Language: Semantics

An SNQL query maps social networks into social networks. At the abstract
level, the semantics of the SNQL query (CONSTRUCT <T> WHERE <PATT> FROM <S>)

can be considered as comprising two steps: (1) generate an intermediate ta-
ble Temp formed from the results of matching of pattern PATT against the
network S, (2) construct a network, using the triples in T instantiated with
the values in the table Temp.

Let D be a social network, Q an SNQL query, and Q(D) the result of
applying Q to D. For a set of variables X, let x be the tuple comprising all
variables in X.

Extraction Semantics An extraction pattern is recursively decomposed
and simulated by a Datalog program as follows: let PATT be the pattern
to be simulated by predicate p and assume that patterns PATT1 and PATT2
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0. Each triple t of the form (A,B,C) is translated as t(A,B,C).

1. A list of triples (basic pattern) { t1, ..., tn }:
p(z)←

∧
i∈1..n ti(Ai, Bi, Ci).

2. PATT1 AND PATT2: p(z)← p1(x), p2(y)

3. PATT1 OR PATT2: p(z)← p1(x)
p(z)← p2(y)

4. PATT1 AND-NOT PATT2: p(z)← p1(x),¬p2(y).
(We cannot enforce safe negation, hence we rely on closed world assump-
tion to ensure tractability.)

5. PATT1 FILTER C: p(z)← p1(x), c(x)
(assuming condition C is simulated by predicate c)

6. TC (Vs, Vt, PATT1) WITH <start-condition>:
p(U, V )← p1(. . . U . . . V . . . ), start cond(. . . U . . . V . . . )
p(U, V )← p1(. . . U . . .W . . . ), p(W,V )

(assuming variable Vs corresponds to variable U and Vt to variable V of
p1(x))

7. AGG(VList, AggF, PATT1) : p(z,A(y))← p1(z, y)
(assuming Vlist is the set of variables Z, Y = X − Z and AggF is the
aggregate function A)

Figure 2.7: Translation of Extraction Pattern to Datalog.

are simulated by p1 and p2, respectively. Let z, x, and y contain the pro-
jected variables of PATT, PATT1 and PATT2, respectively. Depending on the
structure of PATT, the translation is as shown in Figure 2.7.

Construction Semantics The predicate p, obtained from pattern PATT

in the previous translation, is now used to produce the query result. Here
the list of triples <list-of-pattern-triples> of the CONSTRUCT clause
along with the corresponding lists of equalities <expr> = <expr> play a
central role. The equalities are of two types. One type defines each variable:
vi = termi, 1 ≤ i ≤ k; the other is of the form termi = terml, where each
term may contain variables (from p), constants and functions.

For a given CONSTRUCT trList IF eqList, the construction process
takes the result of the extraction process, the p(z) predicate, plus the list of
equalities eqList translated as ∧jeqj to produce the following rule:

24



person
A1

person friendship

L2

A2

city

R1friend

city
A4

L1
name

Extraction Pattern 1: EP1 Extraction Pattern 2: EP2

Contruction Pattern 1: CP1 Contruction Pattern 2: CP2

L1city
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city

friend

L4inhabitants
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between cities

A5 R2friend
city

A6friend

L5

number

Figure 2.8: Grouping and Aggregation. Patterns EP1 and CP1 group people
by ‘city’ and count the number of inhabitants in each city. Patterns EP2 and
CP2 group and count friendship relations between pairs of cities.

construct(v1, . . . , vk)← p(z) ∧
∧
j

eqj . (2.1)

Finally, the resulting social network SN is the set of instantiations of
each triple t in the list of triples in the CONSTRUCT using the values in the
construct predicate:

SN =
⋃{

t(u1, u2, u3) : ∃(..u1..u2..u3..) ∈ construct,

and t in trList
}
. (2.2)

In practice, the evaluation process may proceed more efficiently by avoid-
ing intermediate materialization: each match of the extraction pattern pro-
duces a collection of tuples corresponding to Datalog predicates, and this
collection of tuples is processed by the construction pattern to produce a
subnetwork of the output.

Example 6 (Grouping and Aggregation) The following SNQL query Q pro-
duces the network depicted in Fig. 2.1(c) from that in Fig. 2.1(a), grouping
people by city and counting friendship relations between cities.

CONSTRUCT CP1 IF A4 = f(L1) AS SN1

WHERE AGG({L1}, COUNT AS L4, EP1)
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output-n(A4,isa,city) :- construct1(A4,L1,L4)

output-m(A4,name,L1) :- construct1(A4,L1,L4)

output-m(A4,inhabitants,L4) :- construct1(A4,L1,L4)

output-n(A5,isa,city) :- construct2(A5,R2,A6,L5)

output-n(R2,isr,

friendship-between-cities) :- construct2(A5,R2,A6,L5)

output-n(A6,isa,city) :- construct2(A5,R2,A6,L5)

output-r(A5 friend,R2) :- construct2(A5,R2,A6,L5)

output-r(A6,friend,R2) :- construct2(A5,R2,A6,L5)

output-m(R2,number,L5) :- construct2(A5,R2,A6,L5)

construct1(A4,L1,L4) :- ag1(L1,N), A4=f(L1), L4=N

ag1(L1,count(A1)) :- ep1(A1,L1)

ep1(A1,L1) :- n(A1,isa,person), m(A1,city,L1)

construct2(A5,R2,A6,L5) :- ag2(L2,L3,M), A5=f(L2), A6=f(L3),

R2=g(A5,A6), L5=M

ag2(L2,L3,count(A2,R1,A3)) :- ep2(A2,A3,R1,L2,L3)

ep2(A2,A3,R1,L2,L3) :- n(A2,isa, person),

n(R1,isr,friendship),

n(A3,isa,person), r(A2,friend,R1),

r(A3,friend,R1), m(A2,city,L2),

m(A3,city,L3), L2 != L3

Figure 2.9: Translation of query in Example 6 to Datalog.

FROM FriendshipNetwork

UNION

CONSTRUCT CP2 IF A5 = f(L2) AND A6 = f(L3) AND R2 = g(A5, A6) AS SN2

WHERE AGG({L2,L3}, COUNT AS L5, EP2 FILTER (L2 != L3))

FROM FriendshipNetwork

Patterns EP1, EP2, CP1, and CP2 are depicted in Fig. 2.8. Note that each
new group (actor) requires a new oid functionally produced from the value
of attribute ‘city’. Also the number of inhabitants bound to L4 and the
number of friendship-between-cities bound to L5 must be computed with the
aggregate function COUNT. The first argument of AGG is the set of grouping
variables; the second is the aggregation function required; and the third is
an extraction pattern. The results of the two construct queries are combined
using UNION to produce the desired result.

The translation of Q to Datalog is shown in Figure 2.9.
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2.4 Expressiveness and Complexity

2.4.1 Expressiveness

SNQL is composed of two modules: one for extracting of information and
another for constructing a new network. In the design, consideration has
been given to providing the maximum expressiveness possible, while keep-
ing the complexity of processing within reasonable bounds. First, for ex-
traction stage, we considered GraphLog (possibly with summarization func-
tions), which is a graph query language designed to be simple, graphical,
oriented to graphs, and be as expressive as possible while staying within
the LOGSPACE complexity bound [10]. Second, for the construction mod-
ule, whose main purpose is the creation of new identifiers in the process
of creating the new network, the language is modeled after second-order
tuple-generating dependencies, which are known to be a family of transfor-
mations between tables of tuples with the “right” expressiveness/complexity
tradeoff [15].

Knowing this, it comes as no surprise that SNQL covers all use cases
we identified as being used in current practice by SN researchers. (There
are still some queries defined theoretically by SN scientists which are not
covered by SNQL; but, it can be proved that they fall out of the scope of
a reasonably efficient complexity bound. A typical example is the cohesive
subgroups defined in terms shortest paths lengths between members, for
instance k-cores.)

Formally stated, this result can be presented as follows:

Claim: SNQL solves all use cases presented in SN practice that fall in
the NLOGSPACE complexity bound.

A formal proof of this claim relies on the list of use cases in current
practice. The column “Required Query Features” of Table ?? collects the
features needed for the classical use cases from the SN community. All of
them, except induced subgraph, are incorporated directly in the language.

As for the expressive power as compared to classical databases languages,
we can prove the following two results:

Theorem 1 The SNQL extraction module has the same expressive power
as GraphLog.

Proof. From the semantics of the translation to Datalog presented (see
Figure 2.7), it is clear that every <extract-patt> can be expressed in
GraphLog.
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The interesting part to show is that all GraphLog graphical queries can
be simulated by an <extract-patt>. The semantics of a GraphLog query
graph are also defined by translation to Datalog, producing rules very sim-
ilar to those in Figure 2.7. Hence, for such rules, it is not difficult to see
that they can be expressed as patterns by considering the translation given
in Figure 2.7 in the reverse direction. A GraphLog graphical query is a
set of query graphs whose dependence graph is acyclic. For simulating a
GraphLog graphical query, the intuitive idea is: <extract-patt> can simu-
late all dependency trees of patterns by un-threading the acyclic graph and
transforming it into a tree.

Theorem 2 The construction module can be specified by one SOtgd of the
form:
∃f1 . . . fm(∀x1(φ1 → ψ1) ∧ . . . ∧ ∀xn(φn → ψn)),

where each (φi → ψi) has the form:

(p(x) ∧
∧
k

eqk)→ (t1 ∧ . . . ∧ tr), (2.3)

where p(x) and eqk follow the notations of equations (2.1) and (2.2), that
is, predicate p(x) is the result of the processing of the extraction pattern,
and the tj and eqk are predicates resulting from the translation of the triples
and equations in the CONSTRUCT clause, and each tuple xi includes all
variables in p and in the eqk’s.

Proof. Note that from their semantics it follows that the evaluation
of each expression <list-of-triples> IF (<exp> = <exp>)* over the re-
sults of <extract-patt>, can be simulated by a formula of the form (φi →
ψi) (see eq. (2.3)) where p(x) corresponds to the translation of the pattern
as in the previous theorem. Hence the conjunction of these formulas can
simulate the whole CONSTRUCT expression. This is precisely a SO tgd. (Note
that SNQL uses predefined functions in the CONSTRUCT clause, while SO
tgds allow existential functions.)

2.4.2 Complexity

A naive implementation of the semantics presented in Figure 2.7 (see also
Fig. 2.4) would materialize intermediate results. This can be avoided by
using the algorithm in Figure 2.10.

Lemma 2 The Evaluation Algorithm is correct—it preserves SNQL seman-
tics.
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(a) For an expression

CONSTRUCT trList1 IF eqList1;

...

trListn IF eqListn;

translated in the form of eq. (2.3), define n clauses:

auxj(xj)← p(x) ∧
∧

k eqk, j = 1, . . . , n.

(b) For each clause trListj IF eqListj; and each triple (x,y,z) in
trListj, define a rule

t(x, y, z)← auxj(xj).

(c) Add the clauses generated by (a) and (b) to the original GraphLog Pro-
gram generated from the extract module.

(d) Obtain the values of the triples to be generated by running the new pro-
gram.

Figure 2.10: Evaluation Algorithm.

Proof. First, note that the resulting program is a Datalog program.
(The clauses added are simply predicates plus equalities.) Hence, it follows
that this evaluation procedure gives the correct result (given by the original
semantics). This is only possible, though, because of a subtle point: each
clause φj → ψj in the SO tgd can be evaluated independently because we
have fixed functions. (If not, the rules would not be independent. For
example, assume a = f(x) is in eqList1 and b = f(x) in eqList2 for a
given variable function f . Then, if a given value of x fires rule 1, then it
should not fire rule 2.)

We will show that, from a database perspective, the above evaluation
computes queries efficiently. As is customary when studying the complexity
of the evaluation problem for a query language [31], we consider its associ-
ated decision problem. We denote this problem by Evaluation and define
it as follows.

INPUT : A Social Network S, a query Q and a triple t = (a, b, c).
QUESTION : Is t ∈ [[Q]]D?

Theorem 3 The complexity of Evaluation is in NLOGSPACE.
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Proof. Note that adding the clauses in (a) and (b) of the Evaluation
Algorithm to the GraphLog program L produces a Datalog program, and
the size of that program stays in the bounds of the original query. Hence to
check if a given triple t is in [[Q]]D, we just have to instantiate each t in (b),
hence in auxj . Then, check the recursive equations in (a). Now check if p(x)
is in the GraphLog program left (note that it has no functional equations
now). It is known that GraphLog can be evaluated in NLOGSPACE [10].

2.5 Related Work

The three most similar proposals, that we are aware of, oriented to social
networks and with a related aim and scope are: BiQL [13], SocialScope [4],
and SoQL [27].

BiQL is an SQL-like language design with a set of features that shares
the motivation of providing database support for SN and interoperation with
analysis tools; however the authors do not provide an implementation, nor a
study of its complexity properties. From our point of view, a major drawback
is the choice of the data structure. Although, at a low level the underlying
graph is represented with a set of tables similar to the ones used in SNDM;
these low level structures are exposed through the query language to the
users, which is avoided by design in SNDM. It is worth mentioning that this
model allows the creation of links among links –in this proposal there is no
distinction between nodes and edges–, which is intentionally forbidden in
SNDM. BiQL query language works selecting data using path expressions,
and building collections of nodes and links, called domains –one of the low
level structures we refer above. SNQL patterns are more general structures,
consequently, SNQL can express all the BiQL examples and cases discussed
by the authors. Given the stated similitudes, it is a reasonable assumption
that BiQL complexity should be similar or lower than the complexity of
SNQL.

SoQL is also an SQL-like query language design for SN; it is focused on
identifying paths and groups. In this model a SN is composed by actors
and binary relations. SoQL defines three types of queries SELECT FROM
PATH, SELECT FROM GROUP, and CONNECT USING PATH/GROUP.
In each case the key feature is the ability to find paths and groups that fulfill
given predicates. The syntax support multiple aggregation levels and return-
ing whole paths and summaries, which does not even ensure the practical
tractability of computing complete answers of queries [11]. Although the
authors seem aware of the complexity problems posed by their design, they
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do not provide any complexity assessment, they only suggest the use of de-
ployment parameters to ensure the practicability of SoQL query evaluation
(e.g. the maximal time to be spent on a single query evaluation).

SocialScope is a logical architecture for discovering, integrating, and
managing social information in social content sites; thus, its scope goes be-
yond data management for this particular context. It comprises three layers:
content management, information discovery, and information presentation.
SocialScope framework includes an algebraic language for manipulation of
social content graphs (which are vey large social networks that includes a
rich variety of objects); its main objective is to enable uniform data manip-
ulation of social content graphs. The algebraic language includes selection
and set theoretical operations, along with binary operations to combine net-
works and aggregation.

We think that, from the three proposals discussed here, SocialScope is
the closely related to SNDM/SNQL. SocialScope is strongly founded on
a practical problem (examples come from Y!Travel service), and provides –
among other features– a query language for its data managing requirements.
We produced a translation of SocialScope query language to SNQL, and we
found that SNQL covers the query language of SocialScope.

There exists data management support in several fields which deal with
networks [9, 16, 20], however to the best of our knowledge there is no sys-
tematization of data models for social networks. Jensen and Neville [21]
propose Proximity, a data mining tool that supports statistical models over
network data, which in turn uses MonetDB, a DBMS able to store networks,
but lacking the abstraction level for SNA use. Proximity uses a graph query
language called QGraph [6]. In the context of SNA, QGraph suffers from two
major drawbacks: the results of the queries are collections of subgraphs (not
a new consolidated network), and it models relations as links. Furthermore,
as far as we know there is no implementation of network transformations
in Proximity. Among the works which are more related to our proposal is
that of Güting [17], which concentrates on query capabilities, as opposed
to ours which also considers transformation issues. To get a broader view
of the developments in this area, the reader can consult a survey on graph
databases [5]. In [28] the authors show how to use RDF and SPARQL to
query and transform SN in the semantic web. That work presents a three
layered language based on SPARQL. In the present work we define an ab-
stract language, with enhanced flexibility and expressive power (including
creation of values and transitive closure), using developments and results of
classical databases like GraphLog [10,11] and second order tuple-generating
dependencies [15].
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There are several SNA software tools. A good example is Pajek [12],
which offers an environment for exploratory graphical SNA along with a
complete set of analysis algorithms. It includes basic elements of data
manipulation, for instance to filter nodes and edges based on attributes.
However, as with other SNA tools, data management is limited by a stor-
age system based on text files containing edge lists or adjacency matrices.
Additionally, low-level representation restrictions are exposed to the user
complicating data manipulation unnecessarily. For instance, Pajek requires
that in every network actor identifiers be consecutive integers starting at
1, which transfers to the user the burden of keeping track of actor identity
when working with imported data, and when, for instance, a series of data
manipulation operations eliminates some actors and changes the identifiers
of all remaining actors.

The R statistical software also deals with network data [19]. Here too,
data files are used to provide persistence for main memory data structures,
not to support data management operations. The aim of the Network Work-
bench project2 is to build and support the infrastructure to provide access
to a repository of data and algorithms related to large-scale network ana-
lysis. They plan to provide tools to facilitate interoperation, but they do
not contemplate the definition of a specialized data model. There are many
custom-made applications that solve specific problems, for instance Klink
et al. [24] use explicit social network data to improve DBLP (Digital Bib-
liography and Library Project) navigation experience by including social
network structures in a search interface. Tsvetovat et al. [29] propose a
specific application based on the relational data model, and also propose
DyNetML [30], an XML based format, to store rich social network data. No
query or transformation issues are addressed in these works.

The problem of integrating and standardizing SN applications at a rea-
sonable level of abstraction remains an open question [18]. Mika [26, ch.
5] discusses representation models, tools and standards from the SNA, and
Semantic Web communities, and reaches the same conclusion that current
tools and data formats do not solve data representation and aggregation
requirements. He proposes a solution based on ontologies and automated
reasoning. Erétéo et al. [14] present a framework for “semantic aware so-
cial network analysis”. Also Jung and Euzenat [22] propose a model to
represent and extract information from social networks. From a data man-
agement point of view, none of these models cope with the requirements.
There are many works that extract, model, manipulate, and analyze social

2http://nwb.slis.indiana.edu/
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networks in the Semantic Web for specific applications, for example, that
by Aleman-Meza et al. [3] (semantic web application for conflict of inter-
est detection in the context scientific peer review), Kinsella et al. [23], and
Mika [25].
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