
A Quasi-Parallel GPU-Based Algorithm for Delaunay Edge-Flips∗

Cristobal A. Navarro
Informatics Institute, Austral University of Chile, Valdivia, Chile

e-mail:cnavarro@cecs.cl

Nancy Hitschfeld-Kahler
Department of Computer Science, FCFM, University of Chile, Santiago, Chile

e-mail:nancy@dcc.uchile.cl

Eliana Scheihing
Informatics Institute, Austral University of Chile, Valdivia, Chile

e-mail:eliana.scheihing@gmail.com

February 28, 2011

Abstract

The Delaunay edge-flip algorithm is a practical
method for transforming any existing triangular mesh
S into a mesh T (S) that satisfies the Delaunay condi-
tion. Although several implementations of this algo-
rithm are known, to the best of our knowledge no par-
allel GPU-based implementation has been reported
yet. In the present work, we propose a quadriphasic
and iterative GPU-based algorithm that transforms
2D triangulations and 3D triangular surface meshes
into Delaunay triangulations and improves strongly
the performance with respect to a sequential CPU-
implementation in large meshes. For 3D surface tri-
angulations, we use a threshold value to prevent edge-
flips in triangles that could deform the original geom-
etry. On each phase, we address the main challenges
that arise when adapting the problem to a parallel ar-
chitecture and we present a GPU-based solution for
each high CPU-consuming time step, reducing dras-
tically the number sequential operations needed.

∗Sent to the ACMTog journal, August 2010

1 Introduction

Delaunay triangulations are widely used in several
applications because they have several good proper-
ties, that make them very useful in 2D and 3D simu-
lations. In particular, a 2D Delaunay triangulation of
a point set P maximizes the size of its smallest angle
over all the possible triangulations for this point set
P . Thus, this type of triangulation is composed by
triangles that are more close to the equilateral ones
than the triangles of the other triangulations.

Triangulations are present in different applications
such as video-games, physic simulations, terrain ren-
dering and medical 3D reconstruction among others.
Delaunay triangulations can be achieved in two ways:
(a) create it from an input geometry or a set of points,
or (b) transform an already generated triangulation
into one that satisfies the Delaunay condition. For
the first case, there is already a considerable amount
of work done, both for CPU [1, 2] and GPU archi-
tectures [3, 4, 5]. The second case appears when a
triangulation was generated with some triangulation
method or a triangulation (Delaunay or not) was de-
formed by applying some transformation to the mesh
points, and a user wants to transform it in a Delaunay

1

mesh. The well known edge-flip algorithm becomes
a practical candidate to transform any triangulation
to a Delaunay one because of its simplicity.
With the high processing power of todays GPUs, it
becomes natural to design a GPU implementation of
the edge-flip algorithm and test if the performance of
the known recursive CPU-based algorithm [2] can be
improved. To our knowledge no such algorithm and
its implementation has been reported yet. By solving
the different challenges for a GPU parallel implemen-
tation of the edge-flip algorithm, we found out that
the solution was not as straightforward as it looked
initially. This is why flipped edges compromise the
state of their neighbors, therefore the algorithm can-
not flip all edges at the same time. Then, it is nec-
essary to select a subset of them, where each one of
these edges can be processed independently.
The contribution of this work consists on proposing
a new quadriphasic-iterative GPU-based algorithm
for transforming a given 2D triangulation or sur-
face triangulation S into a Delaunay triangulation
T (S). The four phases are: (1) ”Labeling”, where
the edges that can be flipped are marked, (2) ”Selec-
tion”, where a subset of edges that can be processed
in parallel is selected, (3) ”Processing”, where the
selected edges are flipped and, (4) ”Update”, where
some inconsistency links are repaired. Phases (1), (3)
and (4) are completely performed by the GPU, while
the CPU is in charge of the ”Selection” phase, be-
cause we can not decide in parallel which edges can
be selected and which ones cannot.

The rest of the paper is organized as follows: Sec-
tion (2) describes prior work done on the subject, as
well as what can still be done as a contribution on this
topic. Section 3 describes the designed data struc-
tures and how they are related among them. Sec-
tions 4 and 5 cover the algorithm and implementa-
tion respectively. In section 6 we present quantitative
results from different tests, to finally discuss and con-
clude our work in section 7. Section 8 includes the
code of the proposed algorithm.

2 Related Work

In the last two decades there has been a consider-
able amount of work done on the subject of comput-
ing Delaunay triangulations, from different sequential
implementations [1, 2] to recently parallel [6], and in
particular, GPU-based methods [5]. However, most
of these works belong to the case when a Delaunay
triangulation needs to be created from a given set
of points and not from an existing triangulation. In
the other hand, transformation methods have relied
on the edge-flip technique applied recursively over a
mesh, transforming an existing mesh S intro T (S).
The edge flip method was first introduced by Lawson
[7] and originally oriented for 2D triangulations, but
by using the proper conditions, it can be applied to
3D surface triangulations as well. Though the con-
cept of the edge-flip is simple and the implementa-
tion is straightforward, the order of the algorithm is
O(n2) in the worst case [8, 9] where n is the num-
ber of points of the triangulation. For a large num-
ber of edge flips, the algorithm can be quite slow at
processing it sequentially. The idea of adapting the
problem to a parallel architecture, where each exe-
cution thread can process independent edges, is not
free of challenges. Neighbor dependency, data con-
sistency, and adequate edge selection are some of the
main difficulties when creating a GPU-based parallel
solution.

3 Involved data structures

Proper data structures have been defined to repre-
sent a triangulation and neighborhood relationships
in order to use as efficiently as possible the GPU’s
architecture. Figure 1 illustrates how we represent
the most important mesh components: Vertices, tri-
angles and edges.
Vertices are handled via the Vertices array where each
element contains a position (x, y) for a 2D triangu-
lation or (x, y, z) for a 3D surface triangulation, plus
any other additional information needed (normal vec-
tor, color, etc). The Triangles array is a set of indices
to the Vertices array where each three consecutive
indices corresponds to a triangle. For each edge, the

2

Figure 1: Data structures used for mesh representa-
tion.

Edges array contains a pair of vertex indices v1, v2
to the Vertices array and a pair of references ta, tb
to the triangles that share this edge (for boundary
edges, tb remains unused). Both, ta and tb are de-
fined by a pair of indices that point to the exact po-
sitions in the Triangles array where this edge can be
found. In other words, each edge can access its ver-
tex data by using the indices provided by v1, v2 or by
going through the references ta, tb. This redundant
information becomes very useful to efficiently check if
the edge information is still consistent after an edge
flip was performed. This data model was designed
so that it could be naturally implemented and inte-
grated with the OpenGL API and, at the same time,
could be fully and efficiently implementable on the
CUDA [10] architecture.

4 Algorithm Overview

The flip-edge algorithm is divided into four phases
that work together in the following order:

• Phase 1: Labeling.

• Phase 2: Selection.

• Phase 3: Processing.

• Phase 4: Update.

4.1 Labeling

On the labeling phase, all edges are tested with the
Delaunay angle condition. For any given edge e,
the test routine computes its opposite angles λ and
γ from the triangles ta, tb that share e (by using
the Edges array previously defined in section 3) and
checks if the sum satisfies the following condition:

λ+ γ ≤ π (1)

If the opposite angles fulfills the condition, then e is
labeled as d = 1, otherwise it is labeled as d = 0.
This label can be computed independently for each
edge of the mesh. Figure 2 shows a small mesh Se

composed by only two triangles, where edge e does
not satisfy Delaunay condition (1). In the example,

Figure 2: Labeling phase for a given triangulation.

edge e is the unique internal edge of the mesh,
thus the only one to be analyzed. The return value
when testing e is d = 0, while boundary edges are
always labeled as d = 1 by default. The ”Labeling”
routine can be modeled for the GPU with a parallel
paradigm, since each edge is an isolated problem that
can be assigned to an individual execution thread.
In addition, all r/w instructions are performed on
the thread’s analyzed edge while the Triangles array
remains read-only. This last observation assures that

3

all threads access unmodified and consistent data at
any execution instant.

In 2D triangulations the ”Labeling” phase is
just done as mentioned before. For tridimensional
surface triangulations, we do not flip edges that
would deform the domain geometry. We use a
threshold value for the angle formed by the normal
vector defined by the triangles that share an edge.
Let β be the threshold value, then an edge can be
labeled if the angle µ formed by the normal vectors−→
N0 and −→N1 is less than or equal to β (see Figure3).

Figure 3: Condition: µ ≤ β

4.2 Selection

Because of neighbor dependency problems, it is not
possible to flip all the edges labeled as d = 0 at
the same time. Maybe in some particular cases this
will be possible, but it cannot be taken as a general
rule. By definition, the flip of a given edge e will al-
ways produce a transformation on the triangles (ti,
tj) where this edge belongs to. This transformation
affects directly the state of the other edges of the tri-
angles that share e, making impossible to flip them
while e is being flipped. However, it is possible to
achieve the same desired result by processing in par-
allel a subset of edges that are independent among
them. In order to get a proper subset, a scan is done
through all the edges that have got labeled as d = 0.
As a general rule, a given subset A will be completely
independent only and only if:

∀ e1, e2 ∈ A Te1∩Te2 = ∅ where Te = {t ∈ T : e ∈ t}
(2)

Figure 4: The first Subset for this mesh can either
a,c or b,c.

In other words, an edge with d = 0 is added to
the subset A if it does not share any of their as-
sociated triangles with the other edges already in-
cluded in A. To illustrate how condition 2 is applied,
Figure 4 shows the selection process for an arbitrary
mesh, where edges a, b, and c need to be flipped but
they cannot be flipped at the same time. After ap-
plying condition 2, the resulting subset can be either
{a, c} or {b, c} but a and b cannot be together in any
case, because they share t2.
The implementation of this phase fits better on a
CPU architecture because these dependencies need
to be solved sequentially in order to build a consis-
tent subset of parallel processing edges.

4.3 Processing

Once the subset A is correctly generated, the algo-
rithm proceeds to the third phase which can also
be processed in parallel via the CUDA kernel. We
define the per thread edge-flip method as an index
exchange between the two triangles ta, tb related to
the processed edge e. Rather than using dynamic ar-
rays where e could be deleted and created again as a
flipped edge, we propose a different approach, where
the operation can be seen as a geometric transfor-
mation of the pair of triangles that share the edge e.
More precisely, this transformation can be seen as a

4

rotation of the triangles ta, tb fully independent from
the rest of the mesh. All execution threads can per-
form this transformation in parallel because they do
not share any triangle. The transformation is done
on the Triangles array using the information related
to ta and tb stored in the Edges array by following
these steps:

• Find the opposite vertex indices ua and ub of e
in the Triangles array going through ta and tb
(Edges array).

• Locate the position of the first common vertex
index c1 in the Triangles array going through ta.

• Locate the position of the second common vertex
index c2 in the Triangles array going through tb.

• Exchange data, by copying u1 into Triangles[c2],
and u2 into Triangles[c1].

• Update the values of ta, tb and v1, v2 related to
e in the Edges array.

Figure 5 illustrates the case of flipping the edge
e from the example mesh Se used in ”Labeling”
phase (Fig.2). For this example, just one execution

Figure 5: The edge-flip is applied as a rotation of
triangles.

thread is needed. For larger meshes, the subset A
can contain thousands of edges and then the same
amount of threads will be needed to process them.
However, the logic inside each thread will always re-
main simple as in this small case.

4.4 Update

After an edge-flip, consistency problems might ap-
pear on the Edges array, specifically on the edges sur-
rounding the flipped edge e. On the previous phase,
the algorithm updated only the values of the flipped-
edges in the Edges array, but the other affected edges
did not receive any update; they can now store ref-
erences to triangles to whom they don’t belong any-
more (obsolete ta, tb values). We say that an edge is
inconsistent when its vertex indices obtained through
ta, tb differ from the ones stored in v1 and v2. It
is important to mention that in our data structure
model, v1 and v2 will always contain correct indices
to the vertices array of any non-flipped edge e, no
matter how many edge flips were performed. This
means that edges never rotate, therefore they remain
in the same original place but belonging to different
triangles ta, tb. In the example mesh Se used for the
previous phase, inconsistent information appeared at
edges b and d right after flipping e (see Figure 6).

The detection of an inconsistent edge is trivial;
Given an edge e, compare the vertex indices accessed
via ta and tb against v1 and v2. If the values are
not the same, then the edge is partially inconsistent
(just the indices of one triangle are not correct) or
completely inconsistent (the indices of both triangles
are not correct). In any case, the indices v1 and v2
stored on each inconsistent edge become the target
values it needs to be recovered through the Triangles
array. The key point here is to observe that if the
access through ta is wrong, it means that the correct
values are in the triangle that was rotated together
with ta (while the edge shared by both was flipped).
The solution is then to provide a way that each edge
can access the other triangle involved in the edge-flip
(rotation). This information can be obtained from
the Selection phase: Each time an edge is added to
the subset A, a pair of triangle indices ti, tj is stored
in the array R[] in the form of R[ti] = tj and vice-

5

Figure 6: Edges marked with a cross indicate incon-
sistent information.

versa (see Figure 7). Then, if ta contains inconsistent
information, ti = ta[0] div 3 is used as the triangle
index in the R array to find tj = R[ti], the other tri-
angle that must contain the indices stored in v1 and
v2. For edges completely inconsistent, the update
process is done for ta as well as for tb.

Since the update of a given edge does not affect
its neighbors, it is possible to model a parallel
solution where each execution thread can update one
particular edge, covering the entire mesh domain in
one single kernel call.

Each phase plays an important role for the global
algorithm. In fact, each one uses the results from
the previous one. When all four phases complete
their tasks, we say that an iteration occurred and
a subset of edges has been flipped completely in

Figure 7: R array holds the relations of all involved
triangles.

parallel. Each time a new iteration of the algorithm
is applied, other subset of edges is flipped and
a better triangulation is achieved. Finally, the
algorithm ends when all edges become labeled as
d = 1, which is an indicator that the mesh has
become a 2D Delaunay triangulation and or close to
a 3D Delaunay triangulation if some edges were not
flipped because of geometry restrictions.

Figure 8 shows a flow diagram of the algorithm and
how the four phases are integrated.

5 Implementation

Nvidia’s CUDA architecture and libraries were
chosen to implement the kernels, while OpenGL was
chosen to render mesh surface. Thanks to the C type
structures used for the mesh model, it is possible to
represent vertex and triangle data via OpenGL buffer
objects (VBO and EBO respectively). Additionally,
CUDA is capable of mapping these OpenGL buffer
arrays into its kernels with no need of resending
data from Host to Device, increasing efficiency. For
the edges, there was no need to keep them on the
Device side, because they do not make part of the
OpenGL rendering pipeline. Therefore, they are

6

Figure 8: Quadriphasic Iterative algorithm.

sent from Host to Device each time the kernel needs
them. Figure 9 shows how meshes are visualized in
our software by sending the mesh data directly into
GPU memory via OpenGL.

6 Tests and results

Each test consists on measuring the time needed to
process a given mesh. For each mesh, the test is
repeated four times, and the average value is kept for
the record. Because the standard deviation became
too insignificant, we chose not to include it as part
of the results. The same tests are also performed to
a CPU-based edge-flip algorithm. Table 1 shows the
testing platform used for all tests.

Table 2 presents the test meshes with their vertex,
triangle and edge number. Table 3 shows the results
in seconds for both CPU and GPU implementations.
Symbol I is the improvement factor obtained by using
the GPU implementation.

For mesh number 5, we show how the number edge-
flips performed relate to each iteration of the algo-

Figure 9: Different Meshes loaded into our implemen-
tation.

Table 1: Testing platform
Hardware Detail
GPU Nvidia Geforce 9800GTX+, 512MB
CPU AMD Phenom x4 850
Mem 4GB RAM DDR2 800Mhz
OS Linux Ubuntu 64-bit

Table 2: Meshes used as test examples
Mesh ID Vertexes Edges Triangles
1 32 68 102
2 1,222 2,448 3,672
3 10,002 30,000 20,000
4 23,490 70,290 40,648
5 360,002 1,080,000 720,000

rithm (See Figure 10). As expected, the first three
iterations concentrate most of the parallel operations
and the last ones are in charge of flipping the remain-
ing edges to reach the Delaunay triangulation. How-
ever, not all meshes will have this behavior, in fact,

7

Table 3: Performance comparison
Mesh Iterations TGPU [s] TCPU [s] I=TCP U

TGP U

1 1 0.0044 0.0025 0.5619
2 4 0.0220 0.1833 8.3412
3 5 0.0584 0.8993 15.397
4 1 0.1405 4.1937 29.8544
5 7 1.3884 55.678 40.1022

Figure 10: Parallel processed edges at each iteration.

the behavior depends on the mesh topology. For spe-
cial meshes like the ones presented on the Edelsbrun-
ner’s book[9], our proposed algorithm concentrate
most of its edge-flips on its central iterations. Fig-
ure 11 shows an example with one of the worst cases
for Delaunay transformations based on the edge-flip
algorithm. Figure 12 shows that the number of edge-
flips is maximum on the middle iterations, and mini-
mum on the first and last ones. The test was applied
also to equivalent meshes with 12 and 16 nodes dis-
tributed in the same way as the 8-node mesh shown
in Figure 11, and the same behavior was observed.

7 Discussion and Conclusions

To our knowledge, no parallel GPU solution has been
proposed for this problem, making the present work
a first proposal for the implementation of the edge-
flip strategy on a Graphics Processing Unit. We have

Figure 11: One of the worst cases for the edge-flip
algorithm.

Figure 12: Behavior of our proposed algorithm on the
worst case.

presented a parallel approach for managing the tri-
angle neighbor dependency, the edge flipping and the
detection and update of inconsistencies. With the
proposed mesh model structure, it was possible to
achieve full integration with the graphics rendering
pipeline (OpenGL) and with the GPU hardware.

Our proposed algorithm is best suited for meshes
composed by more than thousand edges. For the test
of Mesh No = 5, our implementation took approxi-
mately 1.4[s] while the CPU classic implementation
took at least 55[s] obtaining a 4000% performance
improvement. Although the results indicate that the
GPU solution is faster, the sequential CPU algorithm
still becomes useful as a complement for processing
small meshes, because its performance is approxi-
mately two times better than our GPU implementa-
tion. The reason of this behavior is because the cost

8

of processing a low quantity of edges on the GPU is
not enough to justify the cost of hardware initializa-
tion and data transfers through the PCI-Express bus.
For one of the worst case meshes, our algorithm pre-
sented a particular behavior maximizing the number
of edge-flips that can be executed in parallel at the
middle iterations instead of at the beginning ones.
This fact was not initially expected.

The proposed algorithm can also be useful to im-
prove the performance of previous works on Delau-
nay triangulations. For example, the authors of the
algorithm described in [5] could improve their results
by considering our work for their step ”C4” which is
computed completely on the CPU.
Nowadays, with actual and modern GPU hardware,
it is possible to achieve better results because the
CUDA architecture scales performance automatically
as more stream processors are available. Addition-
ally, with the recent introduction of the new GPU
architecture based on MIMD, it is possible to take
advantage of the multi-instructional feature and get
higher performance by launching parallel kernels.
In the near future, we would like to get information
about at which mesh size n (number of edges) will be
always convenient to use a GPU-implementation in-
dependent of the number of the edge flips that must
be done and for meshes which less than n edges, at
which number of edge-flips would be useful. Finally,
if we could find a way to reduce the CPU computing
time at the Selection phase, the performance could
increase considerably.

8 Code Listings

Phase 1: Labeling.

//#Labeling (GPU)
__global__ void labeling(vertex* vert , int* tri ,

edge* e){
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i<NUM_EDGES){

if(e[i]. internal ()){
//e[i] is an internal edge
dAngle = delaunayAngle(vert , tri , e[i]);
gAngle = geometryAngle(vert , tri , e[i]);
e[i].d = isDelaunay(dAngle) +

isGeoRestricted(gAngle , ANGLE_LIMIT);
if(e[i].d == 0){

endFlag = false;
}

}
else{

//e[i] is a boundary edge
e[i].d = 1;

}
}

}

Phase 2: Selection:

// Selection (CPU)
void selection(Edge* edges){

int selSize =0;
int triRel[NUM_TRIANGLES], triUsed[NUM_TRIANGLES];
int selection[NUM_TRIANGLES];
for(int i=0; i<getNumEdges (); i++){

e = &edges[i];
if(e->delaunay == 0){

if(triAvailable(triUsed , e->t1 , e->t2)){
// triangle available , mark as used.
markUsed(triUsed , e->t1 , e->t2);
markRelation(triRel , e->t1 , e->t2);
// add edge index to selection
addSeleccion(selection , i);
selectedEdges ++;

}
}

}
}

Phase 3: Processing.

#Procesamiento (GPU)
__global__ void edgeFlip(vertex* vbo , GLuint* eab ,

Edge* e, int* eIndexes){

int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i<SELECTION_SIZE){

// eIndexes has the selected edges from phase 2
int myEdge = eIndexes[i];
T1 = e[myEdge].t1;
T2 = e[myEdge].t2;
// Search opposite vertexes
getOpposites(eab , T1 , T2,

&opposite1 , &opposite2);
// Search first common vertex
searchCommon(T1, opposite1 , NULL , &common1)
// Search second common vertex
searchCommon(T2, opposite2 , c1, &common2)
// flip -- exchange data
eab[common1] = eab[opposite2];
eab[common2] = eab[opposite1];
// update flipped edge ’s values.
updateEdge(myEdge , e, i, eab ,

opposite1 , opposite2 ,
common1 , common2);

}
}

Phase 4: Update.

#update (GPU)
__global__ void update(GLuint* eab ,

int* trirel ,
Edge* edges ,

int numPares){
int i = blockIdx.x * blockDim.x + threadIdx.x;

9

if(i<numPares){
int index;
if(!cons(e[i], eab , e[i].t1))

int Tr = trirel[e[i].t1];
update(e[i], eab , Tr);

}
if(e[i].count < 2)

return;
if(!cons(e[i], eab , e[i].t2)){

int Tr = trirel[e[i].t2];
update(edge[i], eab , Tr);

}
}

}

References

[1] J. R. Shewchuk, “Triangle: Engineering a 2d
quality mesh generator and delaunay triangu-
lator,” in First Workshop on Applied Compu-
tational Geometry (ACM, ed.), pp. 124–133,
(Philadelphia, Pennsylvania), 1996.

[2] M. De Berg, Computational Geometry: Algo-
rithms and Applications. Santa Clara, CA, USA:
Springer-Verlag TELOS, 2000.

[3] R. G. Healey, M. J. Minetar, and S. Dowers, eds.,
Parallel Processing Algorithms for GIS. Bristol,
PA, USA: Taylor & Francis, Inc., 1997.

[4] J. Kohout and I. Kolingerová, “Parallel delaunay
triangulation based on circum-circle criterion,”
in SCCG ’03: Proceedings of the 19th spring con-
ference on Computer graphics, (New York, NY,
USA), pp. 73–81, ACM, 2003.

[5] G. Rong, T.-S. Tan, T.-T. Cao, and Stephanus,
“Computing two-dimensional delaunay triangu-
lation using graphics hardware,” in I3D ’08:
Proceedings of the 2008 symposium on Interac-
tive 3D graphics and games, (New York, NY,
USA), pp. 89–97, ACM, 2008.

[6] C. D. Antonopoulos, X. Ding, A. Chernikov,
F. Blagojevic, D. S. Nikolopoulos, and
N. Chrisochoides, “Multigrain parallel delaunay
mesh generation: challenges and opportunities
for multithreaded architectures,” in ICS ’05:
Proceedings of the 19th annual international

conference on Supercomputing, (New York, NY,
USA), pp. 367–376, ACM, 2005.

[7] C. L. Lawson, “Transforming triangulations,”
Discrete Mathematics, vol. 3, no. 4, pp. 365 –
372, 1972.

[8] S. Fortune, “A note on delaunay diagonal flips,”
Pattern Recognition Letters, vol. 14, no. 9,
pp. 723 – 726, 1993.

[9] H. Edelsbrunner, Geometry and Topology for
Mesh Generation (Cambridge Monographs on
Applied and Computational Mathematics). New
York, NY, USA: Cambridge University Press,
2001.

[10] N. Corporation, NVIDIA CUDA Compute Uni-
fied Device Architecture - Programming Guide,
2007.

10

