
AspectMaps: A Scalable Visualization of Join Point Shadows

Johan Fabry ∗

PLEIAD Laboratory
Computer Science Department (DCC)

University of Chile
http://pleiad.cl

Andy Kellens †

Software Languages Lab
Vrije Universiteit Brussel

Belgium
http://soft.vub.ac.be

Simon Denier
Stéphane Ducasse

RMoD, INRIA Lille - Nord Europe
France

http://rmod.lille.inria.fr

Abstract
When using Aspect-Oriented Programming, it is sometimes diffi-
cult to determine at which join point an aspect will execute. Simi-
larly, when considering one join point, knowing which aspects will
execute there and in what order is non-trivial. This makes it difficult
to understand how the application will behave. A number of visu-
alization tools have been proposed that attempt to provide support
for such program understanding. However, they neither scale up to
large code bases nor scale down to understanding what happens at
a single join point. In this paper, we present AspectMaps – a visu-
alization that does scale in both directions, thanks to a multi-level
selective structural zoom. We show how the use of AspectMaps
allows for program understanding of code with aspects, revealing
both a wealth of information of what can happen at one partic-
ular join point as well as allowing to see the “big picture” on a
larger code base. We demonstrate the usefulness of AspectMaps on
three small examples and present the results of a user study that
shows that AspectMaps clearly outperforms other aspect visualiza-
tion tools.

Note: This paper heavily uses colors. Please use a color version
to better understand the ideas presented here.

Keywords aspect-oriented programming, visualization, join point
shadow

1. Introduction
Aspects modularize cross-cutting concerns by encapsulating not
only their behavior but also where and how they are invoked. As
a result, the other modules of the system, called the base code,
perform implicit invocations to the behavior of the aspects. First,
the flow of execution of the base application is reified as a sequence

∗ Partially funded by FONDECYT project 1090083.
† Funded by a research mandate provided by the “Institute for the Promotion
of Innovation through Science and Technology in Flanders” (IWT Vlaan-
deren)

[Copyright notice will appear here once ’preprint’ option is removed.]

of join points. Second, the specification of the implicit invocations
is made through a pointcut that selects at which join points the
aspect executes. The behavior specification of the aspect is called
the advice. An aspect may contain various pointcuts and advices,
where each advice is associated with one pointcut.

The concepts of pointcuts and advices open up new possibil-
ities in terms of modularization, allowing for a clean separation
between base code and crosscutting concerns. However this sepa-
ration makes it more difficult for a developer to assess system be-
havior. In particular, the implicit invocation mechanism introduces
an additional layer of complexity in the construction of a system.
This can make it harder to understand how base system and aspects
interact and thus how the system will behave.

Various well-documented issues within the aspect-oriented
community serve as a testimony to this problem. For example, in-
herent limitations of the expressiveness of pointcut languages have
an impact on the ease with which the correct set of join points can
be captured in a pointcut expression [17]. One well-documented
case of this is the so-called fragile pointcut problem [19, 21]. It
states that – upon evolution of the base code of an aspect-oriented
system – seemingly innocent changes to that base code can lead to
unintended and erroneous behaviour. A similar problem that may
arise is that in complex systems, multiple aspects can intervene at
the same join point. If a developer is not aware of the interactions
of multiple aspects intervening at the same join point, this again
can result in erratic application behavior [24].

Consequently, there is a need for tools that allow software devel-
opers to easily assess the impact of aspects on the base system to aid
in the detection and prevention of the problems we discussed above.
While software visualization is known to be a good approach to
achieve this, current visualizations fall short on various points, as
we show in this paper.

We present a visualization to aid the understanding of aspect-
oriented software systems, called AspectMaps. It provides a scal-
able visualization of implicit invocation. AspectMaps renders se-
lected join point shadows: locations in the source code that at run-
time produce a join point. AspectMaps shows the join point shad-
ows where an aspect is specified to execute, and if multiple as-
pects will execute, the order in which they are specified to run.
This results in a visualization that clearly shows how aspects cross-
cut the base code, as well as how they interact at each join point.
AspectMaps is a scalable visualization mainly due to its use of se-
lective structural zooming. The structure of source code is shown
at different levels of granularity, as determined by the user. As-
pectMaps is also implemented as an open source tool, download-
able from its website http://pleiad.cl/aspectmaps, which further-
more features screencasts of the tool in action.

1 2011/1/9



The remainder of the paper is structured as follows: we next
give an overview of software visualization, detailing typical pitfalls
as well as providing an evaluation of the currently most complete
aspect visualization. Section 3 introduces the AspectMaps visual-
ization, detailing what is shown at each zoom level. In Section 4 we
show how the use of AspectMaps aids program comprehension, us-
ing two examples and an initial user study. We consider future work
in Section 5, followed by an overview of related work in Section 6.
Finally, Section 7 concludes.

2. Software Visualization
Software visualization is defined as the use of graphic means (ty-
pography, graphic design, animation, . . . ) to facilitate human un-
derstanding and effective use of computer software [26]. The idea
of using visualizations to aid in program comprehension is not new.
For example, within the reverse engineering community, software
visualizations are a well-established means of supporting various
software comprehension tasks [22, 27, 28].

One of the major advantages of software visualizations is
that they are able to convey a large quantity of information to a
user [32]. The human brain can easily combine complex informa-
tion from visual cues, making them a suitable means for under-
standing complex software systems. Furthermore, a well-chosen
visualization allows users to pre-attentively process the informa-
tion: rather than having to search for specific information (e.g., by
extracting it from the source code), visualizations can immediately
draw a user’s attention to specific parts of the system.

2.1 Visualization Pitfalls
Despite the advantages of software visualizations, designing a good
visualization is not a trivial task. A visualization must be suffi-
ciently rich such that it can convey the correct information in a
single glance. However the user should not be overwhelmed by the
visualization, making the extraction of any meaningful information
impossible. In cognitive sciences, the topic of data visualization
has been well studied [5, 31], which has produced different guide-
lines to follow to design a successful visualization. In what follows,
we discuss a number of common pitfalls of software visualizations
and distill from this a set of requirements for our visualization of
aspect-oriented systems.

• Amount of colors: The visualization should not overwhelm the
user with the number of colors that are used. The human brain is
only able to distinguish between a limited number of colors (the
threshold often mentioned in literature is 10) in a meaningful
way [5, 30, 32]. If more colors get used, the meaning that is
conveyed by them gets lost.
• Complexity: If the visualization is overly simplistic, it becomes

hard to convey meaningful information to the user. Conversely,
overly complex visualizations become hard to interpret. Instead
of being able to extract information by glancing at the visual-
izations, a user needs to make a conscious effort to interpret
the visualization. As a result he loses the mental context of the
development activity in progress [12].
• Mapping to reality: There should be a clear mapping between

the entities that are present in the visualization and the actual
domain the visualization represents. For a user, the represen-
tation used should feel natural for the particular domain con-
cepts [13].
• Information density: All visual elements of the visualization

should aim at conveying some meaning to the user. This is also
known as Tuftes’ data-ink rule [31]. Elements that are without
such meaning clutter the visualization, thus making it more
complex and should therefore be avoided.

• Scalability: The visualization should be able to work on small
data samples, as well as large quantities of data. When applied
to large amounts of data, the visualization should still be com-
prehensible. One metric that is often applied is that the informa-
tion is best represented on one or two screens, thus minimizing
the amount of scrolling that is required of the user [5].
• Interactivity: A good visualization is not limited to providing

a static picture of the system but also provides a means for user
interaction. By adding such functionality to the visualization,
the user gets more involved in the process of interpreting the
visualization. Additionally, such interactivity might be an ideal
candidate to improve the scalability of the visualization and to
deal with complexity issues. Interactions can be added to the
visualization (e.g., pop-ups) to convey additional information to
the user, or to limit the scope of the visualization to a particular
subset of the software system that is visualized [29].

2.2 Assessing Existing Aspect Visualizations
Our work is not the first to study the subject of aspect visualization.
In this section we discuss what is arguably the currently most com-
plete visualization: the visualization of the AspectJ Development
Toolkit. We provide a brief evaluation of how this visualization per-
forms with respect to the principles we previously treated. To the
best of our knowledge, this is the first time that such an evaluation
has been performed, and we perform it here to provide context for
the remainder of this paper.

AspectJ Development Toolkit The AspectJ Development Toolkit
(AJDT) for Eclipse [7, 9] is arguably the most mature toolkit
for Aspect-Oriented Programming. Amongst other features, AJDT
adds gutter markers in the code editor to indicate join point shad-
ows for affected code entities, and also provides a textual “Cross-
References View”. While these features provide useful feedback,
they do not scale to a large code base [23]. The gutter markers only
show one extremely fine-grained view. When looking at the source
code of one specific class, the developer can see where aspects ap-
ply in the code currently being displayed, and only there. To look
at large classes requires multiple scrolling operations, to view mul-
tiple classes requires opening their code in the editor one by one.
The cross-references view is, in essence, a textual representation.
It lists the signatures of methods where aspects apply. It therefore
cannot provide the advantages of a good visualization. It is for ex-
ample impossible to tell at a glance whether an aspect affects a
given class. Instead the developer needs to interpret all of the text
that is being displayed.

Evaluating the AJDT Visualization AJDT also offers a visual-
ization tool [7], and again it can be argued that this tool provides
the most complete visualization for software that uses aspects. In
Figure 1 we show the visualization of AJDT applied to the Space-
war example project from AJDT1. This visualization is a continua-
tion of the AspectBrowser work by Shonlhe et al. [25]. It offers a
Seesoft-inspired [16] view that shows the classes and aspects in the
entire project as bars, placed side by side. The name of the class
or aspect is printed in the top of each bar. The height of the bar is
proportional to the number of lines of code that are present in the
entity. An alternative organization (not shown here) is ordering the
classes/aspects by package: it shows one bar for each package, by
essentially vertically ordering the bars of the classes and aspects of
that package. Each aspect in the project is assigned a specific color,
and colored stripes represent lines of code affected by aspects. Bars
that are black indicate that no aspects apply to the class or aspect.
Multiple colors in a stripe show that multiple aspects apply, and
the same color repeated that the aspect applies multiple times. Note

1 We omit the legend, which associates colors to aspects.

2 2011/1/9



Figure 1. The AspectJ development tools visualization, showing the Spacewar example

that, strangely, sometimes there are more segments for an aspect
than the number of times that it applies. By double-clicking on a
stripe, the code for that class/aspect is shown with the relevant line
highlighted. By then inspecting gutter marks or the cross-references
view the user can obtain more detailed information on what advice
applies, as well as its nature (before, around, . . . ).

Unfortunately however, the AJDT visualization suffers from
four of the five pitfalls we discussed above, as we discuss next.

Overly simplistic. First, this visualization is overly simplistic.
It offers a simple lines-of-code oriented view of the project source
code. This does not convey enough relevant information to the
user. For example, the visualization does not contain sufficient
information to aid a developer in understanding what happens when
multiple aspects apply at a single join point shadow. This low-level
information can however be vital to a developer: subtle interactions
at the join point shadow level can result in erratic behaviour. As we
will show in Section 4.2, visualizations can be useful in such cases
to help identify such low-level problems.

Furthermore, the visualization fails to show the inherent struc-
ture of the code. What we have here is a set of packages that con-
tain classes or aspects, where each class or aspect is subdivided
in methods or advices. The first example of structural information
that is lacking is what a bar represents: when looking at a bar we
are unable to determine whether the visualized entity is a class or
an aspect. As a second example of the importance of showing this
structure, consider the aspect with the dark blue color. This aspect
is called Debug. What we can see here is that it applies in many
places in the source code. What is however not immediately obvi-
ous is that it applies at the beginning and at the end of each method
or constructor of classes (amongst other locations). To discover
this, for each stripe we need to go to the source code and investigate
the gutter marks there. This takes a number of seconds per stripe,
so to verify this for all the code is prohibitively time-consuming.

High complexity due to context switching. In general, obtain-
ing any information of an aspect beyond the approximate source
code location of its application requires to navigate to the source
code representation. This first requires a mental context switch
of the user to the source code. Secondly, aspect-related informa-
tion such as whether the advice is before, after or around, requires
looking at additional information that is not shown in the revealed
source code. While the visualizer does provide adequate support
for navigation, performing all these actions require more time and
effort than a simple glance. Therefore it is clearly beneficial to dis-
play more information in the visualization itself.

Information Density. Surprisingly, the visualization also suf-
fers from problems of too much information density by showing
black bars for non-affected classes or aspects. The absence of col-
ored stripes is sufficient to convey this, so the user naturally won-
ders what the additional meaning of the black color is. Anecdotal
evidence of this is that when discussing this visualization with col-
leagues, this question invariably was one of the first to be posed.

Scalability and Interactivity. The visualization also suffers
from the pitfalls of low scalability and interactivity. While the
tool has a ‘zoom in’ and ‘zoom out’ function, all that this does is
to make the bars bigger or smaller. No more detailed (structural)
information is revealed upon a zoom in action, which is what
the user would expect, resulting in low interactivity. Conversely,
zooming out does not give a higher level of abstraction on the data,
leading to scalability problems on large code bases. Hovering over
a stripe does produce a pop-up, but this only details the name of
the aspects that apply there. This information is already conveyed
by the color of the stripe (and legend of the diagram), and therefore
this pop-up is useless, not adding any interactivity.

Other Aspect Visualization Tools To the best of our knowledge
there are only two other tools that provide for a visualization of how
aspects cross-cut the code, namely Asbro by Pfeiffer and Gurd [23]
and ActiveAspect by Coelho and Murphy [8]. These however do
not visualize as much information as the AJDT does. Asbro does
not show elements at a granularity finer than classes, and does not
reveal the information that multiple aspects apply to one class or
package. ActiveAspect does scale down to method level but does
not differentiate between multiple aspect applications within the
body of a method. As all aspects that apply within one method
are gathered together in one visualization element, information is
lost. It is for example impossible to see if multiple aspects apply
at one line of code, nor to see whether one aspect applies multiple
times within the method. Alternatively, ITDVisualiser by Zhang et
al. [33] and AspectScope by Horie and Chiba [18] provide infor-
mation on structural modifications and extended module interfaces,
respectively. However we do not consider these as proper visualiza-
tion tools as they use a textual tree-based representation to show the
data. More detailed information on this related work can be found
in Section 6.

We believe that it is possible to construct a better visualization
for aspect-oriented code that does not suffer from the limitations of
none of the above mentioned tools. This paper details our attempt
to build such a visualization, and we introduce it next.

3 2011/1/9



3. The AspectMaps Visualization
AspectMaps is a visualization that offers users a detailed overview
of implicit invocation. It visualizes:

1. where aspects are specified to apply in a system, based on
visualizing join point shadows

2. how aspects possibly interact at each join point shadow

3. in a scalable way, thanks to a multilevel selective structural
zoom.

We define that an aspect applies in a certain source code element
(a package, class, or method) if for at least one pointcut that is
associated with an advice of that aspect, at least one of its join point
shadows belong to that element.

AspectMaps supports the traditional pointcut-advice model of
aspects on an object-oriented class-based language. The join point
model consists of method calls and method executions. Advices
can execute before, around or after a join point, and we distinguish
between after returning and after exception throwing. Aspects may
contain various advices, and an execution order may be specified
between aspects. The above effectively allows us to visualize a
subset of AspectJ [20] and Java code. In this case we ignore inter-
type declarations as well as advices that applies to fields. The
AspectMaps tool is however not restricted to the AspectJ/Java
combination, more detail is in Section 3.5.

Following the guidelines of scalability and interactivity dis-
cussed in 2.1, the key feature of AspectMaps is having the abil-
ity to selectively zoom in on the source code at different levels of
granularity. Zooming in from a coarser level to a more fine-grained
level reveals more detail. The behavior is analogous to street map
applications, e.g., Google Maps, hence the name AspectMaps.

Scalability: Selective Structural Zoom AspectMaps provides vi-
sualization of code at the level of granularity of packages, classes
and methods. In contrast to mapping applications, however, in As-
pectMaps the level of granularity is not a global setting: within one
single diagram, various levels of granularity can be used. For ex-
ample, certain packages can be shown at the package level, while
others are zoomed in at the class level. Likewise, for certain classes,
the visualization can be further zoomed in to depict the system at
the level of individual methods. This allows the user to selectively
zoom in and out to elements of interest. Furthermore, hovering the
mouse pointer over a given element produces a tooltip style pop-up
that shows the element at the next higher zoom level if available.
This allows the user to skim over a number of elements, getting
more information of each in turn without needing to zoom in and
out.

Scalability: Aspect Identification A second factor that enables
scalability is the selection of aspects to be displayed as well as the
colors that identify them. AspectMaps implements the amount of
colors guideline: it by default visualizes the join point shadows of
up to 10 aspects simultaneously, each using distinctive colors. This
is however not a hard-coded limit. The user can for each aspect
choose a specific color and turn visualization of join point shadows
on or off, visualizing as much aspects as needed at the same time
(at the cost of more difficult identification).

Scalability: The Fine-Grained Join Point Shadow View As-
pectMaps also scales down to a very fine level of granularity. At the
most detailed zoom level on a join point shadow, it shows a wealth
of information at a single glance. The user can see the specification
of the kind of advice (before, after, ...), how different aspects are
specified to interact (due to precedence declarations), and whether
the pointcut has a run-time test or not. More detailed information
is available as pop-ups: e.g., advice signatures can be obtained this
way.

Figure 2. Compact visualization of spacewar, java.io.

SpaceObject

Pilot
DisplayRobot

Player

Figure 3. Extended visualization of the spacewar package (anno-
tated with selected class names).

Detailing AspectMaps To detail the AspectMaps visualization,
the remainder of this section is structured following its different
levels of granularity. For each level we show how it is visualized,
and mention how it follows the guidelines outlined in 2.1. To
illustrate the tool we use a number of examples in this section.
Specifically, for Sections 3.1 and 3.2 we use the Spacewar example
from AJDT where we visualize the aspects Coordination in green,
EnsureShipIsAlive in red and Debug in blue. In section 3.3, we
use an additional artificial example, as Spacewar does not suffice to
show all AspectMaps features.

3.1 Package Level
When opened, AspectMaps provides an overview of all the pack-
ages in the system. At this level AspectMaps shows a compact visu-
alization that details the names of packages as well as which aspects
apply in this package. AspectMaps colors the package rectangle
with the color of the aspect that applies, if it is currently enabled
for visualization. If multiple aspects apply in the package this is
indicated by using the color black (which is never a color of an as-
pect). An example of this is shown in Figure 2, which shows two
packages, named spacewar and java.io. Multiple aspects apply in
the spacewar package. The contents of packages, be it classes or
aspects is not shown at this point.

The extended visualization of packages, enabled by performing
a zoom operation on a selected package, reveals package contents.
In Figure 3 the package spacewar has been zoomed in on, showing
the different classes and aspects that it contains.

The extended package visualization is a version of the work of
Lanza and Ducasse on Polymetric Views [22], which we extended
with support for the visualization of aspects. Polymetric Views dis-
play entities as boxes and box dimensions reflect entity properties
(LOC, number of methods, . . . ). A variety of different types of in-
formation is shown at this level:

• Classes: rectangles with black borders. Inheritance relations
are visualized using the standard UML notation, a conventional
mapping to reality.
• Aspects: rectangles with thick colored borders. The color is the

aspect color (which is never black).
• Where aspects apply: class rectangles have the color of the

aspect that applies, or black for multiple aspects.
• Class and aspect metrics: the user selects which dimension

reflects which metric. This increases information density. For

4 2011/1/9



the figures in this paper we select no metric, as this feature of
polymetric views is not the focus of our work.

Note that the polymetric views visualization does not display
the names of classes. This is chosen to avoid clutter, which would
increase complexity. We are faithful to this feature of polymetric
views, class and aspect names are instead revealed in their respec-
tive pop-ups (which is the class level visualization discussed next).

In Figure 3, we see three class hierarchies with as roots Pilot,
Display, and SpaceObject, along with eight aspects where Debug
is in blue and EnsureShipIsAlive in red. The Coordinator aspect
(in green) is not part of this package but applies in four classes
(SpaceObject, Display1, Display2, Registry). In the Pilot hierar-
chy, multiple aspects apply in the subclass Robot, and only the
EnsureShipIsAlive aspect (in red) applies in the subclass Player.

3.2 Class and Aspect Level
The visualization at this level is similar to that at the package level.
Here for classes instance variables are shown as diamonds and
methods are shown as rectangles with a gray border, the height
and width of which can be determined by a user-selected metric.
Methods are colored according to the aspects that apply. Method
squares have a gray border to more easily distinguish them from
classes, decreasing complexity. Pop-ups of instance variables reveal
their name and type.

For aspects, the advices are shown as rectangles of which the di-
mensions are determined by a user-selected metric, and the named
pointcuts are drawn as ovals. No further zoom level is available for
aspects, therefore pop-ups for advices show the line number and
signature, and pop-ups for pointcuts show the name of the point-
cut.

run

keyPressed

keyReleased

Figure 4. Pilot hierarchy and the Debug aspect.

In Figure 4 we show a zoomed in view on all classes in the
Pilot hierarchy, as well as on the Debug aspect. This reveals that
multiple aspects apply on the method run of Robot and that the
EnsureShipIsAlive aspect applies in the methods keyPressed and
keyReleased of Player.

3.3 Method Level
Method level is the finest level of granularity offered by As-
pectMaps. At this level a wealth of information is presented, and
hence the visualization is more complex.

If we consider only one join point, an advice can be specified to
execute before, around or after this join point. Therefore a visual-
ization of its join point shadow needs to separate showing before,
after and around advice. Also, at one join point multiple aspects
may apply, so the visualization must be able to show the execu-
tion of various advices at that point. Considering the method level,

we can have a join point shadow for the execution of the method,
and within the method body various join point shadows for method
calls.

Method Name

Call Shadows 

Before 
Execution 

After 
Execution

Around
Execution

Figure 5. Template for visualization of execution join point shad-
ows (left), and an example destroy method (right). Figure 7 shows
call visualization.

Figure 5 shows a template for the visualization of method exe-
cution join point shadows. On the right, the destroy method is dis-
played using this template: we see that the blue aspect (Debug) ap-
plies before and after. (We detail call visualization in Section 3.3.3).
The figure shows how AspectMaps provides the method name and
shows before, after and around advice in their separate divisions.
We detail next how advice execution within such a division is visu-
alized.

3.3.1 Advice Execution, Run-time Tests, Ordering
To show that an advice applies at a given division of a join point
shadow, AspectMaps draws a small figure in the color of the cor-
responding aspect. This is done for all aspects that apply, aligning
the figures vertically. Figure 6 shows two examples of this.

set4 after
advice

advice with
runtime test

after throwing

run

 precedence
declarations

6 before
advice

Figure 6. Example after and before execution advices on a set and
run method, respectively.

If multiple advices of one aspect apply, for each of these a
figure is drawn. In the example this occurs for the red aspect (left)
and light red aspect (right). AspectMaps currently has two kinds
of figures: a triangle for after throwing advice and a rectangle
for all other advices. This is to emphasize the special nature of
after throwing advice: it executes when the method terminates
by throwing an exception. In the example this is again the red
aspect. Moreover, if there is a run-time test involved in evaluating
the pointcut for an advice execution (e.g., an if-test or a cflow
pointcut) the figure has a thick border in a contrasting color. In
the example this is evident in the green aspect (left). This allows
easy identification of advices that will always run at this join point
shadow: these have no border. Note that each figure shows three
different data points: the aspect, if it is an after throwing, and if
there is a run-time test. This increases the information density,
however without overly increasing the complexity.

When multiple advices apply at the same join point shadow,
the order of their application may be specified by the programmer,
e.g., using the declare precedence construct in AspectJ [20]. When
such an order is specified, AspectMaps indicates this by drawing
an arrow between the advice execution figures that indicates the
order in which the advices will be executed, as well as attempting

5 2011/1/9



to layout these figures in a horizontal sequence2. This increases
information density and maintains a good mapping to reality. An
example is shown in Figure 6 (right). Here the brown code is run
before the two light red advices, and then the orange advice code is
run. There is no ordering specified for the blue and green aspects,
hence no arrows are drawn and no claims can be made about the
order in which these advices will be executed.

Note that AspectMaps shows the order of execution of advices,
and not a declaration of aspect precedence, as defined in e.g., As-
pectJ. The difference lies in that advice execution of after advice
runs in the reverse order than that of before advice. This makes the
visualization easier to understand: what is shown is more directly
connected to the behavior of the resulting application. We do not
require the programmer to perform a context switch and mentally
invert the advice execution order being shown. In other words, we
have a better mapping to reality and reduce complexity.

3.3.2 Execution Join Point Shadows
For execution join point shadows the groups of figures detailing ad-
vice execution are placed in the locations as given by the template
in Figure 5, and illustrated in Figure 6.

Recall that all entities provide extra pop-up information when
the mouse pointer hovers over them, and that this information is
the visualization of the next zoom level if available. As there is no
finer grained zoom level here, we instead provide relevant textual
information on the advice execution element being hovered over
(increasing interactivity). Specifically, we show the signature of the
advice, including its line number in the aspect source code.

3.3.3 Call Join Point Shadows

Shadow 1

Shadow 2
Shadow 3

Before AfterAround

Method Name

Call Shadows 

Figure 7. Template for call join point shadows

The body of a method may contain multiple call join point
shadows, sequentially ordered by the source code of the method.
We visualize advice execution in this same order, aligning them
vertically as a suitable mapping to reality. The visualization of
call join point shadows uses the same visualization as execution
join point shadows. It however orders the before, around and after
divisions horizontally instead of vertically. A template of this is
shown in Figure 7. The horizontal layout was chosen to minimize
unused space when visualizing (increasing scalability), as well as
to avoid confusion of what advice execution belongs to which join
point shadow (decreasing complexity).

In Figure 8 we show a number of methods of the Spacewar ex-
ample that demonstrate the visualization of call join point shadows.
This figure also illustrates the pop-up information for each advice
execution. It consists of the signature of the advice (including its
line number) as well as the signature of the method being called
and the base code expression containing the call (including its line
number). This again increases interactivity and information density.

2 As advice ordering is a partially ordered set, a one-line layout is not always
possible.

Figure 8. A selection of methods in Spacewar showing call join
point shadows, as well as a pop-up of one advice execution (in the
newRobot method of Game).

3.3.4 Summary: Method Level Visualization
At method level, AspectMaps provides a visualization that shows
both call and execution join point shadows at that method, con-
cisely visualizing a large amount of data. For each shadow it shows
the execution of before, after and around advices, as well as the
order of execution. Lastly, for each advice execution it indicates
whether the pointcut depends on a run-time value, as well as high-
lighting after throwing advice.

3.4 Quick Zoom Options
Tools implementing the AspectMaps visualization are expected to
also provide support for the developer by implementing a number
of quick zoom options as well as context-specific zoom options.
Our implementation, which we discuss in Section 3.5, features all
of these zoom options.

The following predefined zoom operations should be provided:

Max Zoom Out. Zooms all elements out i.e., for each element
specifying that its compact representation should be shown.

Max Zoom In. Zooms in maximally on all join point shadows
where an aspect that is being visualized applies.

Interactions Zoom. Zooms in maximally on all join point shad-
ows where more than one of the aspects that are being visual-
ized apply.

Query Zoom. Given a query, which may contain wildcards, zooms
in maximally on classes or methods of which their names
match.

Furthermore, context-specific zoom options should be supplied,
typically contained in a right mouse button menu:

On pointcuts revealing all the join point shadows.

On advices revealing all the join point shadows.

On advice execution revealing the aspect.

On advice execution revealing all other executions.

The advantage of these zoom options is that they save developer
time and effort. There is no time wasted in manually exploring the
visualization and zooming in or out, e.g., looking for a place where
two specific aspects interact, or finding all places where a given
advice applies.

3.5 The AspectMaps Tool
The AspectMaps visualization is also implemented as a tool with
the same name. This tool is built on top of Moose [14], a platform
for software analysis and reverse engineering. As a result, it is

6 2011/1/9



Figure 9. AspectMaps visualization of Spacewar, fully zoomed in on all join point shadows, except for those of the Debug aspect.

relatively independent from the programming languages used both
for the base code as well as for the aspect code. AspectMaps does
not consider the actual source code of the program, but instead
uses its own model. This model is an instance of the ASPIX meta-
model, a new member of the FAMIX meta-model family [14]
which we implemented for the AspectMaps tool. ASPIX (ASPects
in famIX) consists of a generic class-based object-oriented meta-
model enriched with information of join point shadows, advice
ordering and aspect structure. The idea is to have language-specific
importers that generate model instances. These can e.g., obtain the
required information from the source code.

The AspectMaps tool currently only has one importer for a base
and aspect language combination: Java and AspectJ. We have first
implemented an Eclipse plugin that exports join point shadow in-
formation as generated by AJDT, as well as structural information
about the aspects. The importer imports an Eclipse project into the
AspectMaps tool as follows: First the source code of the project
is parsed and the corresponding FAMIX model is generated. Sec-
ondly the join point shadow and aspect structural information is im-
ported, extending the FAMIX model into an ASPIX model that is
subsequently visualized in the AspectMaps tool. Currently the im-
port process needs to be set in motion manually. Automating this,
which would result in ‘live updates’ of the visualization on each
compile is a straightforward implementation task. Similarly, fur-
ther Eclipse integration e.g., presenting the visualization as a pane
within the Eclipse development environment, is an implementation
effort that does not impact the AspectMaps visualization itself. As
a first report on the AspectMaps visualization, this paper solely fo-
cuses on the concepts of the visualization. Constructing a tool with
full Eclipse integration is out of the scope of this paper, and we
leave this as future work.

The AspectMaps tool is open source and available from the
website http://pleiad.cl/aspectmaps. This site also provides an
executable version with the Spacewar example pre-loaded.

4. Program Understanding with AspectMaps
To show how AspectMaps aids in software development and main-
tenance activities, we show three examples where we use As-
pectMaps on Java and AspectJ code and conclude with a user study.
As a quick foretaste of AspectMaps diagrams compare Spacewar in
AJDT, shown in Figure 1, with Spacewar in AspectMaps, shown in
Figure 9. Note that for a fair comparison, the scale of both figures
is the same.

In this section we use AJDT as a base of comparison with
AspectMaps because, to the best of our knowledge, AJDT is the
only visualization that provides the same amount of information
as AspectMaps. Other visualizations fall short on various points, as
indicated in Section 2.2 and discussed in more detail in in Section 6.
Therefore we consider AJDT as the only other tool that can be used
as a basis for a fair comparison.

4.1 Case 1: Unintended Join Point Capture
We first show how AspectMaps allows the developer to avoid the
typical AspectJ pitfall of infinite loops due to unintended join point
capture [4]. Consider the following scenario: a payroll application
is being developed for a large organization. The payroll database is
replicated over multiple redundant data warehouses.

Consequently, database objects are accessed over the network
and a networking package is developed, implementing all database
networking operations. Persistent objects are required to imple-
ment the dummy Persistent interface, and their state may only be
accessed and modified through getter and setter methods. An aspect
named TransparentProxy is created. It intercepts all getter and set-
ter accesses to database objects, and hands these to the network
package, using the execution(public * Persistent+.get*(..));
pointcut.

Visualizing the code in AspectMaps at package level view im-
mediately reveals a suspicious situation. We see that the network
package itself is colored with the TransparentProxy color (dark
blue). In other words, the network proxy code itself will be inter-
cepted by the aspect that redirects the call to the network proxy.
This may lead to an infinite loop. Opening the network package, we
establish that one Config class is the culprit. We examine the pop-
ups of its methods, an example of which is shown in Figure 10. This
reveals that it contains the persistent configuration settings that are
used to establish a network connection. Therefore making a net-
work call is intercepted by the aspect, which leads to a network call
being made, which leads to an infinite loop.

Figure 10. The cause of an infinite loop.

Considering the same scenario, the AJDT visualization tool
does not permit such immediate feedback in all cases. The standard
visualization only shows package information as a pop-up. The user
needs to scrub over all bars, wait for the pop-up to appear, and read
the text of the pop-up. The package view is a better visualization
for this case, but it still falls short. Firstly the package names are
not shown in full in the bars, which requires the user to again
scrub, looking for the right package. Secondly, in larger packages
all classes of the package quickly fail to fit on one screen, requiring
a scrolling operation of the user.

7 2011/1/9



To summarize: in AspectMaps a quick glance is sufficient to
raise suspicion, and further exploration quickly reveals the nature
of the problem. The AJDT visualization tool needs much more
manual intervention before suspicion can be raised.3

4.2 Case 2: Aspect Interactions
The second evaluation of the use of AspectMaps considers interac-
tions between aspects as it is deemed an important research chal-
lenge for the future of Aspect-Oriented Software Development [6].
More specifically, we focus on the execution of multiple advices at
one join point shadow. Dependencies and interactions with aspects
is a large and complex area, and we do not claim that AspectMaps
addresses all of the issues. Instead we show that in some cases the
use of AspectMaps allows one to quickly understand interactions
at a given join point shadows.

In the payroll application above, three more aspects are added: a
Timing aspect for timing all network operations, a Logging aspect
for logging selected network operations, and a RepStats aspect that
gathers statistics of replication operations. In the design phase it is
determined that these aspects, in some cases, will apply at the same
call join points. A precedence order is determined: Logging should
be performed at the end of the call, and Timing should include the
work of RepStats. If the precedence order is omitted, the system
will behave erroneously.

Figure 11. AspectMaps re-
veals a missing precedence
declaration

Figure 12. No precedence is
shown in AJDT.

Using the interaction zoom button (see Section 3.4) of As-
pectMaps to visualize join point shadows where all three aspects
apply, such an omission is immediately clear. We show this in Fig-
ure 11. It shows one method with two relevant join point shadows,
where Timing is in green, Logging is in cyan, and RepStats in red.
At the second join point shadow only Timing applies, while at the
first all three aspects apply. The precedence order should be one
line of red, green and cyan rectangles with precedence declaration
arrows. This is clearly not the case. Instead the visualization shows
us that there is a precedence declaration between timing and log-
ging, and a second precedence declaration between statistics gath-
ering and logging. Investigating the source code of all the aspects,
we can see that the precedence declaration for RepStats is missing.

Performing the same analysis with the AJDT visualization tool
is simply impossible, as revealed in Figure 12. The only informa-
tion that the tool gives us is that the Timing, Logging and RepStats
apply at one join point shadow. It segments a stripe in a seemingly
random number of green, red, and blue parts, in an unclear order.
We need to navigate to all the different aspects and examine all their
source code to build a mental map of precedence ordering.

Remark that with AJDT we must investigate all the aspects
in the system. The reason for this is that AspectJ allows a prece-
dence declaration for two aspects to be declared in any aspect in
the system, not solely in the affected aspects. We therefore cannot
restrict our investigation to the aspects involved in the precedence
relation. Lastly, this investigation process is made even more time-
consuming as the visualizer does not provide a means to navigate

3 Note that the AJDT crosscutting view does not provide any relief here
either as it fails to show the package names of the affected classes.

1 What are the names of the aspects and in what packages are
they located?

2 At which join point shadows do which advices of the aspect
Coordinator apply?

3 At which join point shadows does an advice of Coordinator
and SpaceObjectPainting1 apply?

4 At which join point shadows where multiple advices apply
is the precedence order of all these adviced not explicitly
specified, also for which is it not specified?

5 What methods are not affected by any aspects?

Figure 14. The code comprehension questions.

to the source code of an aspect. We consider it unlikely that such an
investigation will be carried out by developers. This would be es-
pecially the case in a large application with multiple development
teams, where no developer has the overall picture of aspect prece-
dence, and responsibility for finding these issues may not be clear
cut. This will probably cause the problem we show here to be found
only in the testing phase, if at all.

To summarize: AspectMaps immediately gives the developer an
insight in the execution order of aspects. The AJDT visualizer does
not give such information. This requires a whole-source analysis
by the developer to obtain this information, which is an unlikely
scenario in large applications.

4.3 User Study: Understanding Existing Code
As part of the evaluation of AspectMaps we have performed a user
study. The goal of the study was to provide an initial comparison
between AspectMaps and AJDT, establishing their usefulness for
code comprehension of AOSD code. Other aspect visualization
tools were not considered because none of these provide as much
information as AspectMaps and AJDT, as indicated in Section 2.2,
and discussed in more detail in Section 6. This has significant
impact on being able to perform the typical code comprehension
tasks we considered for our study, as we show next.

Study setup For our study, five code comprehension questions
were created, listed in Figure 14. The first two questions treat basic
code comprehension with aspects, of which the second one requires
visualization at sub-method level, i.e. scalability to a very fine-
grained level. Question three and four concern aspect interactions,
with question four stressing scalability issues for when multiple
aspects apply. Question five is a straightforward scalability question
considering a large amount of join point shadows. Considering
other visualization tools, they do not provide enough information to
answer all of these questions: Asbro [23] cannot be used to provide
answers to any of the questions, ActiveAspect [8] cannot provide
answers to questions 2, 3 and 4.

The user study was performed on 15 subjects (PhD students,
postdocs and professors), volunteers from the three different re-
search groups of the authors. All work in the field of software engi-
neering and have at least basic knowledge of AOSD. To introduce
them to AspectMaps the subjects were presented with a preprint of
Section 3 of this paper and were shown the screencasts on the As-
pectMaps website. Also they were given the paper that explains the
AJDT visualization [7]. Lastly, before being given tasks to perform
using the tools, they had five minutes to familiarize themselves with
the tools, asking questions to the authors if necessary.

For each subject one of the two tools was randomly selected
(8 started with AspectMaps; 7 with AspectJ). The subject then
performed the five code comprehension tasks sequentially, on the
Spacewar example. Each task was timed, with a maximum of ten
minutes, and verified for correctness when the subject deemed the

8 2011/1/9



Task AM Time AM Correct AJDT Time AJDT Correct Prefer AM Use AM Use AJDT
1 1m 19s 88% 1m 34s 86% 3.5 3.9 2.7
2 5m 32s 88% 7m 55s 71% 4.1 4.3 2.4
3 2m 22s 100% 3m 41s 71% 4.3 4.3 2
4 5m 18s 88% 9m 17s 14% 4.7 4.4 1.7
5 2m 44s 100% 5m 3s 71% 4.5 4.3 1.9

Global 17m 14s 93% 27m 31s 63% 4.5 4.2 2

Figure 13. User survey results. Global is total time, mean accuracy and overall tool evaluation questions.

task done or if timed out. To obtain a subjective impression of both
tools, the subject then performed the same five tasks on the other
tool. This was not timed nor verified for correctness to rule out
learning effects. After having finished working with both tools, the
subjects filled in a questionnaire.

For each task, the questionnaire asked whether the first tool is
better than the second tool for that task (phrased in those terms
to reduce acquiescence bias) and if they would want to use As-
pectMaps resp. AJDT for these kinds of investigations in the fu-
ture. Then the survey inquired whether the subject globally consid-
ers AspectMaps outperforming AJDT, and if they would use As-
pectMaps resp. AJDT in the future for similar code comprehension
tasks. Grades were given on a five-point Likert scale, and a space
was allowed for final remarks.

Study results An overview of the results is given in Figure 13,
giving the average result of all participants for each entry in the
table4. It shows that AspectMaps outperforms AJDT for each of
the tasks, both in objective measurements of time and accuracy as
well as the subjective opinion of the test subjects.

Considering time taken to perform the different tasks, As-
pectMaps is only slightly faster in the first, most basic task. For the
other tasks, time differences vary from one minute to almost four
minutes. The biggest difference is for task four, arguably the most
complex task, where using AJDT takes 175% of the time needed
when using AspectMaps. Furthermore, in addition to this speedup,
results with AspectMaps are more correct than with AJDT. In task
one the difference is negligible (2%), but in the other, more com-
plex tasks the difference vary from 17% up to an important differ-
ence of 74% in favor of AspectMaps. Again the biggest difference
is obtained in task four. Lastly, AspectMaps is the only tool where
100% accuracy is obtained, and this for 2 questions.

The users clearly evaluate AspectMaps as being a better tool for
supporting comprehension of AOSD software than AJDT. With 3
being a neutral answer and 5 the strongest preference, AspectMaps
rates more than 4 on all but the most basic task. For future code
comprehension tasks, the users completely discard the AJDT vi-
sualization. They however state that they would use AspectMaps,
with scores of 4.3 and 4.4, except for task 1, with 3.9. This is con-
firmed by the overall evaluation that AspectMaps scores better than
AJDT, with a 4.5 average.

Some positive observations of the users are: “AspectMaps
works nicely as a code comprehension tool.”, “Clearly AspectMaps
is more intuitive, I think this is because it uses a spacial metaphor
to show the data and not only text/bars”. The most frequent nega-
tive observation of the users is that AspectMaps does not show the
source code, or that some IDE integration is needed. We consider
this as future work.

Threats to validity The sample size of 15 persons can be consid-
ered the weakest point of the study, but it is in line with sample
sizes of published visualization research (e.g., 24 subjects in[10]).

4 The complete results are available on the AspectMaps website.

The user study we performed is at a small scale and does not al-
low us to generalize about the superiority of our tool over AJDT.
Nonetheless it is worthwhile to remark that the numbers we ob-
tained are unambiguous and consistently in favor of AspectMaps.
This is both in the quantitative as qualitative results.

A second threat lies in the use of colleagues as test subjects for
our study. First, as researchers, our test subjects might not be con-
sidered typical developers. They might favor more complex tools
and might not possess the same set of skills as developers working
in industry. This is however compensated due to the various back-
grounds of our test subjects, their different levels of acquaintance
with AOSD and the differences in programming experience, as we
involved a mix of 12 PhD students (being in various stages of their
PhD), 1 postdoc and 2 professors. Second, the test subjects might
be biased in favor of our work. This might indeed influence the
users subjective opinion. However the time taken and accuracy for
each task are not influenced by such a bias (if present), and solely
based on these numbers AspectMaps already is a considerable im-
provement on AJDT.

A final threat lies in the definition of the tasks that were per-
formed in the user study. More specifically, the five tasks (see Fig-
ure 14) can be perceived as artificial and tailored towards demon-
strating superiority of our approach. Each task however is grounded
in a realistic setting and aims at generalizing a typical comprehen-
sion scenario. The first question simulates the setting where a new
developer needs to get to know the application, and wishes to fo-
cus on the cross-cutting concerns. The second question establishes
whether an aspect applies where it is supposed to i.e., whether its
pointcuts are correct, which is directly linked to the fragile pointcut
problem [19, 21]. Question three addresses the issue of interactions
between aspects. Multiple aspects applying at one join point can
cause bugs if their execution order matters and this order is incor-
rect in the actual application. Question four addresses the same is-
sue of question three, but with a specific focus on scalability: testing
for a large number of aspects and affected classes. The wording of
question five is arguably the most artificial, as it is a straightforward
scalability question. It can however be considered as a question
similar to question two, which considers verifying whether a point-
cut picking out particular join point shadows is correct. In question
five the programmer verifies whether a more broad pointcut of an
aspect is correct, by determining where it does not apply.

5. Discussion and Future Work
The Spacewar example we have used in this paper as a basis
to explain the AspectMaps visualization is but a small piece of
software. We use it as an example because it illustrates the majority
of the features of AspectMaps, therefore obviating the need to
introduce many examples to introduce the visualization. We have
successfully used AspectMaps to visualize larger applications, for
example AJHotdraw [11], which consists of 374 classes and 31
aspects. Note that the AJDT visualizer is unable to process this
example: it crashes on start-up. A full report of the exploration of
the AJHotdraw code is outside of the scope of this paper.

9 2011/1/9



One striking property of the AspectMaps visualization, espe-
cially at the most fine-grained zoom level, is the “boxes within
boxes” syndrome which could confuse the user. While it might
seem that we have superfluous boxes here, we strictly adhere to
the information density data-ink rule [31]: every box has a specific
meaning. The syndrome is due to the deep nested structure we are
showing: the most inner boxes are call join point shadows, located
within a method body, located within an around advice, located
within a method, located within a class, located within a package.
Not visualizing boxes would mean hiding structural information.
We have instead chosen to mitigate the syndrome and reduce com-
plexity through two strategies: the use of color and the ordering of
boxes. All structures at method level and below have a gray bor-
der, above method level a black border. Execution join point shad-
ows are shown in a vertical order, while call join point shadows are
shown horizontally. None of the user study subjects reported prob-
lems with understanding the visualization due to the “boxes within
boxes” syndrome, therefore we believe that this is not an issue.

In AspectJ a precedence declaration for two or more aspects
may be specified in a totally unrelated aspect. As we have men-
tioned in Section 4.2, this means that to know the precedence of any
given two aspects, the developer needs to investigate all the source
code of all the aspects in the system. Using AspectMaps this ques-
tion is not only resolved much more quickly but also less prone to
errors. This is shown by the results of question 4 in our user study,
which is a testament to the power of a good visualization.

Considering interactions between aspects, AspectMaps has a
weak point in this setting. This is due to its focus of being a visual-
ization of advice execution at join point shadows. This weakness is
visualization of interactions at method call and method execution
join point shadows. Consider for example the pointcuts call(* *
AClass.aMethod()) and execution(* * AClass.aMethod()). The
join point shadows for the former are visualized at all calls to
aMethod(). This is a different place in the figure than the visualiza-
tion of aMethod() (unless the call is a recursive call). Nonetheless,
advice execution at the call side interacts with advice execution at
the execution side. It would be beneficial to visualize these interac-
tions as well. We have not yet encountered a suitable visualization
for this, and consider this as future work.

Currently, the AspectMaps tool is not integrated into any de-
velopment environment, running instead in a stand-alone fashion.
As mentioned in Sections 3.5 and 4.3, a possible target for inte-
gration is the Eclipse IDE. This would e.g., allow the user to eas-
ily navigate to the source code of the entities being visualized or
allow the visualization to update itself automatically on a recom-
pile. Such functionality is however additional to the core visual-
ization concepts presented here. These were developed and vali-
dated separately to assess their inherent benefits, avoiding ambigu-
ity of whether any advantages are gained though the visualization
or though other means. Eclipse integration is a straightforward im-
plementation task that we consider as future work.

A last limitation of AspectMaps we discuss here is the limits
of the Java and AspectJ importer. Due to our reliance on a source
code importer for FAMIX, we only are able to parse fully compliant
Java source code (and not able to import java files that also include
AspectJ code). As for our Eclipse plugin, it does not yet provide
information on structural modifications made by the aspects, also
known as static cross-cuts or inter-type declarations. As a result, the
visualization does not show inter-type declarations, nor the aspects
that apply there. Secondly, the plugin does not provide all infor-
mation on the internal structure of aspects, it omits the methods
and attributes that they contain. Consequently, there is no complete
visualization of aspects, nor any visualization of whether aspects
apply within other aspects. As the above features are orthogonal

to the core visualization concepts of AspectMaps we have not yet
implemented support for this, and leave this as future work.

6. Related Work
Arguably the most complete tool suite for aspect-oriented pro-
gramming is the AspectJ Development Toolkit [9]. We discussed
this toolkit in 2.2, and used it as a basis for comparison with As-
pectMaps. AJDT is a tool suite for AspectJ in the Eclipse IDE.
Other development environments also have some form of tool sup-
port for AspectJ. However this support is usually limited to a
weaver (e.g., for Netbeans [2], IntelliJ [3] and JBuilder [1]) and
a view similar to the Cross-references view of AJDT (e.g., for Net-
beans and JBuilder).

Pfeiffer and Gurd [23] propose a visualization tool that is based
on the concept of Treemaps. A Treemap maps the nodes of a
hierarchical structure to rectangles in a plane, using a space-filling
layout. In contrast to graph-based layouts of tree nodes, this does
not waste any screen space. Their tool is called Asbro and provides
for a tree map visualization of where aspects apply in packages
and types. Rectangles representing classes or packages are colored
with an aspect color if an aspect applies there. The authors assess
their tool as being beneficial for obtaining a high-level overview of
aspect application, and state that it is scalable up to on average 2100
classes. However, Asbro does not scale down: it does not reveal
aspect application at finer levels than types. Furthermore, it does
not provide any information of aspect interaction at a given join
point shadow. Additionally, the tool does not have a feature which
shows that multiple aspects apply in one class or package.

Coelho and Murphy take a different approach to scalability
in their ActiveAspect tool [8]. The tool shows an automatically
selected subset of the elements in the code, depending on the
current focus of the developer. The visualization that is used is an
UML extension with a representation of aspects, method execution
advice and method call advice. An important issue with such a
graph notation is that it scales poorly with a large number of
classes. ActiveAspects includes a number of abstraction operations
to lessen clutter in these cases. The power of the approach lies in
the ability of the tool to automatically perform such abstraction
operations, as well as the automatic selection of elements to be
visualized. However Coelho and Murphy note that their user study
shows that the heuristics they are using often do not correspond
with the users wishes. In contrast, in AspectMaps the user selects
what is visualized and what is not, hence there are no heuristics
issues. A further downside of ActiveAspects, as we have detailed
in Section 2.2, is that all aspects that apply within one method are
gathered together in one visualization element. Because of this,
ActiveAspects reveals no information of aspect interactions at one
given join point shadow.

Zhang et al. have presented an analysis toolkit for assessing the
impact of structural modifications through AspectJ inter-type dec-
larations on the behaviour of the system [33]. Due to the inherent
obliviousness of such declarations, it can become increasingly dif-
ficult for a developer to understand how a program will behave. To
present the results of their analyses to a developer, an integration
with Eclipse is offered by means of visual clues (markers) and ded-
icated views that represent the lookup impact and shadowing im-
pact. This approach is complementary to ours: AspectMaps focuses
on the visualization of join point shadows while ITDVisualizer aids
in comprehending inter-type declarations.

Lastly, the AspectScope work by Horie and Chiba [18] consid-
ers aspects as extensions to classes and displays the extended mod-
ule interfaces of these classes. This however uses a textual tree-
based representation, and therefore faces the same scalability issues
as the AJDT cross-cutting view.

10 2011/1/9



Software visualization is a very active field with numerous re-
search results. However, few of them have a clear relevance in the
context of aspect understanding. The most straightforwardly ap-
plicable is Distribution Map [15]. Distribution Map is a generic
visualization that shows how a given phenomenon or property is
distributed across a reference partition of a large software system
(packages organization, files...). In particular, Distribution Map re-
veals the spread and focus of a phenomenon. Spread: how much
does a property spread across the reference partition: is it local or
global? Focus: how close does a property match the reference par-
tition: is it well-encapsulated or cross-cutting? The goal of Distri-
bution Map is not to display aspects but more general properties
like code owners, commits, symbolic information. Also, Distribu-
tion Map can only display one property per node which prohibits
visualizing interacting aspects. Consequently, it could be used to
represent aspects, but lacks the AspectMaps abilities to visualize
information at a sub-method level.

7. Conclusion
Program understanding is a complex task that is made more diffi-
cult when using aspects because the base code implicitly calls as-
pect code. Implicit invocation is specified by pointcuts, adding an
extra level of indirection that makes it difficult to understand total
system behavior.

A common way to aid program understanding is the use of
visualization tools that extract relevant information from the code
under study. A number of visualizations for code using aspects have
been developed [8, 9, 23]. However all of these have visualization-
specific shortcomings, as we have discussed in this paper. Most
noticeably neither of these tools scale both up to a large code base
and down to a very fine-grained level.

In this paper we presented a new visualization for code using as-
pects, called AspectMaps. AspectMaps shows implicit invocations
in the source code by visualizing join point shadows where aspects
are specified to execute. For a given join point shadow, AspectMaps
reveals very fine grained information at a glance: it shows the type
of advice (before, after, . . . ) as well as specified precedence infor-
mation (if any). Furthermore, AspectMaps scales to a large code
base thanks to a selective structural zooming functionality (i.e., a
map metaphor) that progressively reveals more information as a
user drills down into the structure of the code.

To argue for the merits of our visualization, we have shown how
AspectMaps avoids the common visualization pitfalls, discussed
how it improves on existing work, and applied it to two example
case studies. We furthermore performed an initial user study, com-
paring the AspectMaps tool with the only other visualization tool
that allows as much information to be obtained from the code: The
AspectJ Development Toolkit (AJDT). For five different code com-
prehension tasks, AspectMaps consistently outperforms AJDT not
only on the amount of time required to perform each task, but also
on the users opinion of which tool is better and their willingness to
use the tool again for similar tasks in the future.

Downloads, Additional Information
The AspectMaps tool is available on the AspectMaps website
http://pleiad.cl/aspectmaps. This page also contains more infor-
mation, including screencasts and the complete user study results.

Acknowledgments
We wish to thank Éric Tanter, Jacques Noyé, Alexandre Bergel,
Awais Rashid, Thomas Cleenewerck, Kris De Schutter, Kim Mens,
Andrew Eisenberg and Romain Robbes for their invaluable feed-
back when discussing early versions of AspectMaps. Thanks also

to Andrew Eisenberg for helping us understand the AJDT crosscut-
ting model and Alexandre Bergel for helping out with Mondrian.
We thank the user study participants for their time and effort. We
are grateful to Theo D’Hondt for supporting this research. This re-
search is supported by the IAP Programme of the Belgian State.

References
[1] AspectJ for jBuilder. http://aspectj4jbuildr.sf.net/.
[2] AspectJ for NetBeans. http://aspectj-netbeans.sf.net/.
[3] The AspectJ plugin for IntelliJ IDEA.

http://intellij.expertsystems.se/aspectj.html.
[4] Aspectj programming guide, chapter 5: Pitfalls.

http://www.eclipse.org/aspectj/doc/released/progguide.
[5] J. Bertin. Graphische Semiologie. Diagramme, Netze, Karten.

Gruyter, 1974.
[6] Ruzanna Chitchyan, Johan Fabry, Shmuel Katz, and Arend Rensink.

Transactions on Aspect Oriented Software Development V, volume
5490 of LNCS, chapter on Dependencies and Interactions with As-
pects. Springer Verlag, 2009.

[7] Andy Clement, Adrian Colyer, and Mik Kersten. Aspect-
oriented programming with AJDT. AAOS 2003: Analy-
sis of Aspect-Oriented Software workshop at ECOOP 2003,
http://www.comp.lancs.ac.uk/˜chitchya/
AAOS2003/AAOS Home.php, 2003.

[8] Wesley Coelho and Gail C. Murphy. Presenting crosscutting structure
with active models. In AOSD ’06: Proceedings of the 5th international
conference on Aspect-oriented software development, pages 158–168,
New York, NY, USA, 2006. ACM.

[9] Adrian Colyer, Andy Clement, George Harley, and Matthew Web-
ster. Eclipse aspectj: aspect-oriented programming with aspectj and
the eclipse aspectj development tools. Addison-Wesley Professional,
2004.

[10] B. Cornelissen, A. Zaidman, A. van Deursen, and B. Van Rompaey.
Trace visualization for program comprehension: a controlled exper-
iment. In International Conference on Program Comprehension
(ICPC), pages 100–109. IEEE Computer Society, 2009.

[11] Arie Van Deursen. Ajhotdraw: A showcase for refactoring to aspects.
In In: Workshop on Linking Aspect Technology and Evolution. (2005,
2005.

[12] S. Ducasse, M. Lanza, and R. Robbes. Multi-level method understand-
ing with microprints. In 2nd IEEE International Workshop on Visu-
alizing Software for Understanding and Analysis (VISSOFT), pages
33–38. IEEE Computer Society, 2005.

[13] S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and I. Alloui. Package
surface blueprints: Visually supporting the understanding of package
relationships. In Software Maintenance, 2007. ICSM 2007. IEEE
International Conference on, pages 94–103, Oct. 2007.

[14] Stéphane Ducasse, Tudor Gı̂rba, Adrian Kuhn, and Lukas Reng-
gli. Meta-environment and executable meta-language using Smalltalk:
an experience report. Journal of Software and Systems Modeling
(SOSYM), 8(1):5–19, February 2009.

[15] Stéphane Ducasse, Tudor Gı̂rba, and Roel Wuyts. Object-oriented
legacy system trace-based logic testing. In Proceedings of 10th
European Conference on Software Maintenance and Reengineering
(CSMR’06), pages 35–44. IEEE Computer Society Press, 2006.

[16] Stephen G. Eick, Joseph L. Steffen, and Eric E. Sumner, Jr. Seesoft-
a tool for visualizing line oriented software statistics. IEEE Trans.
Softw. Eng., 18(11):957–968, 1992.

[17] Wilke Havinga, Istvàn Nagy, and Lodewijk Bergmans. Introduction
and derivation of annotations in AOP: Applying expressive pointcut
languages to introductions. In First European Interactive Workshop
on Aspects in Software, 2005.

[18] Michihiro Horie and Shigeru Chiba. Aspectscope: An outline
viewer for aspectj programs. Journal of Object Technology, Spe-
cial Issue: TOOLS EUROPE 2007, 6(9):341–361, October 2007.
http://www.jot.fm/issues/issue 2007 10/paper17/.

11 2011/1/9



[19] A. Kellens, K. Mens, J. Brichau, and K. Gybels. Managing the
evolution of aspect-oriented software with model-based pointcuts. In
European Conference on Object-Oriented Programming (ECOOP),
number 4067 in LNCS, pages 501–525, 2006.

[20] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William Griswold. An overview of AspectJ. In Jorgen L.
Knudsen, editor, Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP 2001), number 2072 in Lec-
ture Notes in Computer Science, pages 327–353, Budapest, Hungary,
June 2001. Springer-Verlag.

[21] C. Koppen and M. Stoerzer. Pcdiff: Attacking the fragile pointcut
problem. In European Interactive Workshop on Aspects in Software
(EIWAS), 2004.

[22] M. Lanza and S. Ducasse. Polymetric views — a lightweight visual
approach to reverse engineering. IEEE Transactions on Software
Engineering, 29(9):782–796, September 2003.

[23] J.-Hendrik Pfeiffer and John R. Gurd. Visualisation-based tool support
for the development of aspect-oriented programs. In AOSD ’06:
Proceedings of the 5th international conference on Aspect-oriented
software development, pages 146–157, New York, NY, USA, 2006.
ACM.

[24] M. Rinard, A. Salcianu, and S. Bugrara. A classification system and
analysis of AO programs. In Twelfth International Symposium on the
Foundations of Software Engineering, 2004.

[25] Macneil Shonle, Jonathan Neddenriep, and William Griswold. As-
pectbrowser for eclipse: a case study in plug-in retargeting. In eclipse
’04: Proceedings of the 2004 OOPSLA workshop on eclipse technol-
ogy eXchange, pages 78–82, New York, NY, USA, 2004. ACM.

[26] J. Stasko, J. Domingue, M.H. Brown, and B.A. Price, editors. Software
Visualization - Programming as a Multimedia Experience. MIT Press,
1998.

[27] Margaret-Anne D. Storey, Kenny Wong, F. D. Fracchia, and Hausi A.
Müller. On integrating visualization techniques for effective software
exploration. In Proceedings of IEEE Symposium on Information
Visualization (InfoVis ’97), pages 38–48. IEEE Computer Society,
1997.

[28] Margaret-Anne D. Storey, Kenny Wong, and Hausi A. Müller. How
do program understanding tools affect how programmers understand
programs? In Ira Baxter, Alex Quilici, and Chris Verhoef, editors, Pro-
ceedings Fourth Working Conference on Reverse Engineering, pages
12–21. IEEE Computer Society, 1997.

[29] M.D. Storey, F.D. Fracchia, and H Müller. Cognitive design elements
to support the construction of a mental model during software explo-
ration. Elsevier’s Journal of Systems & Software, 44:171–185, 1999.

[30] E. Tufte. Envisioning Information. Graphics Press, 1990.
[31] E. Tufte. The Visual Display of Quantitative Information. Graphics

Press, 2nd edition edition, 2001.
[32] C. Ware. Information Visualization. Morgan Kaufmann, 2000.
[33] D. Zhang, E. Duala-Ekoko, and L. Hendren. Impact analysis and

visualization toolkit for static crosscutting in aspectj. In International
Conference on Program Comprehension (ICPC), 2009.

12 2011/1/9


	Introduction
	Software Visualization
	Visualization Pitfalls
	Assessing Existing Aspect Visualizations

	The AspectMaps Visualization
	Package Level
	Class and Aspect Level
	Method Level
	Advice Execution, Run-time Tests, Ordering
	Execution Join Point Shadows
	Call Join Point Shadows
	Summary: Method Level Visualization

	Quick Zoom Options
	The AspectMaps Tool

	Program Understanding with AspectMaps
	Case 1: Unintended Join Point Capture
	Case 2: Aspect Interactions
	User Study: Understanding Existing Code

	Discussion and Future Work
	Related Work
	Conclusion

