Aspectizing Java Access Control

Rodolfo Toledo!, Angel Nufiez2, Eric Tanter!, Jacques Noyé>
IPLEIAD Lab, Computer Science Department, University of Chile
2ASCOLA Project, Ecole des Mines de Nantes-INRIA, LINA

Abstract—It is inevitable that some concerns crosscut a sizeable application, resulting in code scattering and tangling. This issue
is particularly severe for security-related concerns: it is difficult to be confident about the security of an application when the
implementation of its security-related concerns is scattered all over the code and tangled with other concerns, making global reasoning
about security precarious. In this study, we consider the case of access control in Java, which turns out to be a crosscutting concern
with a non-modular implementation based on runtime stack inspection. We describe the process of modularizing access control in
Java by means of Aspect-Oriented Programming (AOP). We first show a solution based on Aspectd, the most popular aspect-oriented
extension to Java, that must rely on a separate automata infrastructure. We then put forward a novel solution via dynamic deployment
of aspects and scoping strategies. Both solutions, apart from providing a modular specification of access control, make it possible to
easily express other useful policies such as the Chinese wall policy. However, relying on expressive scope control results in a compact
implementation, which, at the same time, permits the straightforward expression of even more interesting policies. These new modular
implementations allowed by AOP alleviate maintenance and evolution issues produced by the crosscutting nature of access control.

Index Terms—Programming languages, security, aspect-oriented programming, access control.

1 INTRODUCTION

The security architecture of Java consists of several com-
ponents [1]: data typing, memory management, bytecode
verification, secure classloading, cryptography, secure
communications, public key infrastructure, and access
control. Among them, Java access control (hereafter JAC)
is a cornerstone of the platform: it is in charge of
ensuring that sensitive resources (e.g. the filesystem) are
accessed only by the classes authorized to do so.

More than a decade ago, the JAC architecture evolved
from a very limited sandbox model into a more flex-
ible model based on stack inspection [2]. In the for-
mer model, classes are considered as either trusted or
untrusted. This condition determines which classes are
able to access sensitive resources and which classes are
not. In the latter model, finer-grained control based
on permissions is introduced. Permissions represent the
ability to access and use a particular resource (e.g. a file)
in a certain manner (e.g. read-only or read-write). Fine-
grained access control in the JAC architecture allows one
to assign different sets of permissions to different classes.
Furthermore, stack inspection is used to dynamically exam-
ine if a sensitive operation can be performed or not.

The three main mechanisms of the JAC architecture
based on stack inspection are:

o Basic permission checking. When a sensitive re-

source is about to be accessed, a call to the JAC
API triggers a stack inspection algorithm, which
checks whether all the classes in the current stack
of execution possess the necessary permission to
access the resource. If not, an exception is thrown.
This basic behavior prevents the confused deputy

Work partially funded by INRIA-CONICYT Project RAPIDS.

problem [3] from happening, i.e. an untrusted class
cannot lead a trusted one to access (or modify) a
sensitive resource on its behalf.

o Privileged execution. In some scenarios, it is neces-
sary for a class to access a sensitive resource on be-
half of another —possibly untrusted- class. For this,
the JAC architecture supports privileged execution.

o Permission contexts. When accessing a sensitive
resource, it can be necessary for a class to use
the permissions present at another point in the
execution of the application. The JAC architecture
provides the means to capture a permission context
and restore it later on.

While these three mechanisms together provide a very
powerful access control system, the JAC architecture
suffers from modularity issues. Indeed, in order to trig-
ger permission checking through stack inspection, an
explicit call to the JAC architecture is necessary. As a
consequence, code related to permission checking ends
up scattered at each and every place where sensitive
resources are accessed, tangled with other concerns.
In other words, access control is a crosscutting concern,
which pollutes and limits the good modularity of a
system. Figure 1 shows all classes of the standard dis-
tribution of Java where access control is necessary'. The
bars represent classes and the different lengths depict
the size of the class in lines of code. The black parts
inside the bars point out the actual places where basic
permission checking is performed.

In addition to the non-modularity of permission
checking, the implementation of stack inspection is itself
problematic: while part of it resides in the Java libraries

1. Figure obtained by using XRef. http://www.eclipse.org/ajdt/xref.

java.lang Class java.net

ClassLoader

NetworkInterface
Socket

Thread CookieHandler

Runtime HttpURLConnection

reflect. AccessibleObject ResponseCache

X X URLClassLoader
Java.io File MulticastSocket
ObjectOutputStream

Obi

Authenticator

ServerSocket
FilelnputStream

java.beans

FileOutputStream Beans

RandomAccessFile PropertyEditorManager
event.InputEvent Introspector

print.PrinterJob . 8
java.security. Identity

java.awt Mouselnfo AccessControlContext
TextComponent
Robot

Window

Signer

SecureClassLoader
KeyboardFocusManager java.rmi.server.RMISocketFactory
Toolkit

color.ICC_Profile

java.applet.Applet

g

java.util Locale

DHBE =°Hg HDQ EEED“H“ﬂﬁ

java.util.concurrent.Executors

Fig. 1. Access control checks in the standard distribution of Java 1.5.

(the stack inspection algorithm), it also relies on support
from the Java Virtual Machine implementation for snap-
shotting the current stack of execution (permission con-
text capturing). Moreover, this native support is specific
to (and can only be used for) access control enforcement.

The problems caused by crosscutting concerns in the
implementation of software are well known, and are the
raison d’étre of the aspect-oriented software development
community. In the particular case of access control we
can mention at least three specific issues: (1) it is not
easy to change the current access control implemen-
tation (e.g. to change the kind of security policies be-
ing enforced), because it is not modularly defined; (2)
programs that do not take security into account can-
not be made security-aware without directly modifying
them [4]; and (3) forgetting to trigger access control
checks at sensitive points in an application can lead to
hard-to-spot security holes. If permission checks are not
modularized, it is hard to reason about them globally.

To address the issue of scattered permission checks,
several aspect-oriented approaches have been pro-
posed [5], [6], [7], [8], [9], [10], [11], [12], [13], [14]. Thanks
to Aspect-Oriented Programming (AOP), access control
checks can be implicitly triggered as part of the advice
of aspects. The pointcuts of these aspects denote in a
localized manner the different points where permission
checking should happen.

While aspectizing permission checks is a valuable
improvement over the existing state of affairs, none
of the above-mentioned proposals address the full
set of mechanisms of the JAC architecture, including
both privileged execution and capturable permission
contexts. Also, they rely on the existing implementation
of stack inspection, which, as mentioned before, is split
between a Java library and the specialized support in
the JVM. In contrast, we aim to fully aspectize Java
access control, including the implementation of stack
inspection, and the three fundamental mechanisms
based upon it.

In other words, this paper explores the following

research questions:

o Assuming a language with support for aspects, can we
build a modularized access control architecture that is (at
least) as expressive as the JAC architecture?

o If so, what general-purpose aspect-oriented language
features facilitate, or enable, the definition of such an
architecture?

o What benefits derive from the use of aspect orientation?

We believe these questions to be of practical importance
for both the language-based security and aspect-oriented
programming communities, and we hope this study
sheds some light on the kind of support for AOP that a
modern execution environment should provide.

This study reports on our effort to define the JAC
architecture entirely within Aspect], the de facto standard
aspect-oriented extension of Java [15]. Although we suc-
ceeded in this attempt, the result was not completely
satisfactory. While basic permission checking can be
defined in terms of restriction aspects using the scop-
ing mechanisms of Aspect], privileged execution and
permission contexts require a specialized access control
automata. For this reason, we tried again using the state-
of-the-art proposal in terms of scope control: scoping
strategies [16], [17]. This time, the solution fitted com-
pletely within the aspect language, providing several
interesting advantages:

a) itis extremely succinct and elegant: the central piece,
the AccessControlAspect, is only 10 lines of code.

b) it fully supports the three main mechanisms of the
JAC architecture: basic permission checking, privi-
leged execution, and permission contexts.

c) it is more expressive’ than the JAC architecture: it
supports per-object permissions (rather than just
per-class), as well as more dynamic permission
assignment policies.

d) it does not rely on specialized runtime mechanisms
for stack inspection, but rather relies on a general-
purpose aspect scoping construct that can be used
in other domains.

The rest of this paper is organized as follows. Section 2
illustrates the use of the JAC architecture through a
simple running example. Section 3 explores the use of
Aspect], highlighting why a specialized automaton for
access control is necessary. Section 4 introduces scoping
strategies and shows how they can be used to simply
express the full JAC architecture, in a finer-grained and
dynamic manner. Section 5 reflects on the advantages
and future challenges derived from an aspectized access
control architecture. Section 6 compares the solutions
based on Aspect] and scoping strategies in detail. Sec-
tion 7 discusses related work and Section 8 concludes.

2. Following [18], we say that a language A is more expressive than
another language B, when translating a program with occurrences of
a feature of A to B requires a global reorganization of the program.

2 ACCESS CONTROL IN JAVA

The JAC architecture enforces a discretionary access con-
trol policy [19] in which granting access to sensitive
resources depends on the identity of the requester. In
this regard, the JAC architecture [1] is based on several
elements, namely: protection domains, classes, permis-
sions, and threads. A protection domain is defined as a
set of classes that are loaded (by a classloader) from a
certain codebase (represented by a URL). Each protec-
tion domain is granted a set of permissions. Through
the protection domain they belong to, classes share the
same set of permissions. In the JAC architecture, the
smallest entity a certain permission can be granted to is a
protection domain. Permissions are granted (by default)
to protection domains in a separate Java policy file®. This
is done before the application starts by the administrator
of the system. In the remainder of this paper, we refer
to “the permissions of the protection domain of a class”
simply as “the permissions of the class” for conciseness.
The JAC architecture defines a system protection do-
main. By default, only classes in this domain are consid-
ered trusted and hence are allowed to access sensitive
resources. Examples of resources accessible by the sys-
tem protection domain are the filesystem, screen, mouse,
and keyboard. Currently, all code shipped as part of Java
belongs to the system protection domain (§4.1 [20]).
The last elements in the JAC architecture are threads. It
is fundamental to consider them in the equation because
a thread of execution can cross different protection do-
mains. For instance, when user code wants to print some
text to the standard output, the thread of execution goes
from a user protection domain* to the system protection
domain. The inverse case is also possible when a class
in the system protection domain invokes a method per-
taining to a class in a user protection domain (this is the
case of callbacks in the Swing GUI library for instance).
For a more detailed and formal description of the JAC
architecture, we refer the reader to [1], [2], [20], [21].
This section illustrates the JAC architecture through a
simple incrementally-refined example.

2.1

Consider a service whose function is to periodically
clean a temporary directory. This kind of service could
be useful, for instance, to applications that require great
amounts of disk space or to disk-cleaning applications.

Figure 2 depicts the architecture of the service:
TmpCleaner is the entry point for client applications
through its clean method. Each file in the temporary
directory is deleted by an auxiliary CleanTask instance,
which encapsulates the deletion of a particular file. The
service is designed this way because if the file cannot
be immediately deleted, the CleanTask instance schedules
itself for later execution with a certain delay using a

lllustrative Example

3. A description of this file and its syntax can be found in §3.3 of [20].
4. We use the term “user protection domain” to refer to a protection
domain other that the system protection domain, potentially untrusted.

:TmpCleaner

clean() ' !
’ _:L* [foreach path in tmpdir] E
create(path) 1
---------- F—_:CleanTask !
run() 1 E
L 1
create() !
______ » !
|
[canDelete] ! |

I
delete() : i

- >
i i
[else] ! !
schedule(this,5000) 1
—» |
1
i

I
L !
- /:/ run() /://
<t i
| 1
Fig. 2. lllustrative Example: a service for cleaning a temporary
directory.

preexistent java.util. Timer. When the delay is over, the Timer
invokes the CleanTask.run method again (the asynchronous
nature of this call is denoted by the double diagonal
lines at the bottom of the figure). If the file still cannot
be deleted, the CleanTask schedules itself again until the
deletion can be finally performed. This service exercises
the three mechanisms of JAC presented in Section 1:

o Basic permission checking. As a first approxima-
tion, we can ensure that TmpCleaner can only be used
by clients that have permissions to write to the
temporary directory.

o Privileged execution. If we rather want to allow
TmpCleaner to be invoked by any class (this is safe
considering the nature of the temporary directory,
and makes the service usable in a wider range of
contexts), the deletion of files must be performed as
a privileged execution.

o Permission contexts. As explained before, some
deletions are postponed by scheduling CleanTask in-
stances on a Timer. They are subsequently executed,
but in a completely different context by the timer
thread. This means that the permission context
present at the original call to TmpCleaner.clean must
be captured and later on reinstalled when the CleanTask
instances are scheduled by the timer.

2.2 Basic Permission Checking

In the JAC architecture, when access to a system-
sensitive resource is about to be performed, the class
accessing the resource must explicitly perform a call
to SecurityManager.checkPermission. This method takes as a
parameter a java.security.Permission instance representing
the permission to be checked. For example, here is the
essence of the code in the java.io.File.delete method:

SecurityManager .checkPermission (
new FilePermission(this.path, FILE_ DELETE ACTION)

/}actual deletion goes here...

000 %

S

Fig. 3. Basic permission checking algorithm in the jac architecture.

When checkPermission is invoked, the permissions of all
classes in the stack of execution of the current thread
are inspected. If one of these classes is not granted
the permission to delete the file, the whole operation
is canceled by throwing a java.security.AccessControlException.
Following is the pseudo-code for this stack inspection
mechanism?® (m is the index of the top frame in the stack):
i =m;
while (i > 0) {

if (class i does not have the permission)

throw new AccessControlException ();
i=1i- 1;
}

This basic access control mechanism is very useful
in the most common scenario: a class in the system
protection domain is being used by a class in a user
protection domain. This is the situation in the running
example: TmpCleaner service is not part of the system
protection domain. Hence, the file deletion should be
allowed only if CleanTask (the class that calls File.delete)
and the other classes in the stack, all have been granted
the corresponding permission (recall that the system
protection domain is granted all permissions).

The path followed by the stack inspection algorithm
can be observed in Figure 3. The arrows show the order
in which the classes are inspected, starting from File,
the class that triggers the basic permission checking
algorithm (the circled “check” in the figure). The arrow
pointing outwards of TmpCleaner denotes that its clients
are also inspected.

2.3 Privileged Execution

In some cases, there is the necessity for a class to access
a sensitive resource on behalf of another class. In the

5. This algorithm and the remaining ones in this section are de-
scribed in detail in the JAC architecture specification, §4 of [20]. The
only difference is that in the documentation, the stack inspection algo-
rithm continues in the stack that was active when the current thread
was created (§4.3). In our case, we abstract from this implementation
detail and assume a one-piece stack.

example, it is safe to let any class use the TmpCleaner
service because only the service determines which files to
delete; it cannot be told to delete other, non-temporary
files (assuming that the service itself is granted access
only to the temporary directory).

To allow this, the JAC architecture provides a way to
perform a privileged action®. The semantics of privileged
execution is that during the execution of the action,
the permissions to consider must exclude the ones of
classes in the stack above the class that started the action,
but must include the ones of that class. The updated
stack inspection algorithm that takes into account the
execution of privileged code is:
i=m;
while (i > 0) {

if (class i does not have the permission)

throw new AccessControlException();

if (class i started a privileged action)

return;

i=i-1;

}

The algorithm inspects the stack class by class, just
like the previous algorithm, but when it sees a class that
started a privileged action, it returns normally (having
checked the permission for that class before). Note that
this feature does not intrinsically imply a security breach
because the permissions of the entity that starts a privi-
leged execution are maintained.

In our example, TmpCleaner should execute its complete
body inside a privileged action. This way, any client
will be able to use the service, regardless of its own
permissions. Following is how TmpCleaner specifies which
code is executed as a privileged action:

class TmpCleaner {

public void clean() {
AccessController.doPrivileged (new PrivilegedAction() {
public Object run() {
for(String path: tmpdir){
new CleanTask(path).run();

¥
s

i3

The doPrivileged method starts a privileged action. The
action to perform in this privileged context is specified as
the body of the run method of a java.security.PrivilegedAction
instance.

Figure 4 shows the sequence diagram for the previous
code. The class that started a privileged action is signaled
with a star (TmpCleaner), acting as a barrier through
which no arrow can go. This barrier prevents the stack
inspection algorithm from inspecting further classes in
the stack. Executing the body of the clean method in a
privileged action allows any class to use the service, no
matter if it cannot write the temporary directory.

6. The word “privileged” is misleading in this context because no
privilege is necessary to start a privileged action: it can be started by
any class, trusted or not (§4.2.2 of [20]).

ﬁ [Privileged Mark]

%

Fig. 4. Permission checking with privileged execution.

2.4 Permission Contexts

Despite the privileged action inside TmpCleaner.clean, there
is a second path for basic permission checking not shown
in Figure 3. This path goes from CleanTask to Timer. It is
a different path because the call is asynchronous and
hence, it is not in the control flow of TmpCleaner.clean. For
this reason, the file deletion is not under the privileged
action, so stack inspection goes over all the stack. There-
fore, our intent of using the permissions of TmpCleaner
when deleting files is not complete: the permission con-
text of the original call to TmpCleaner.clean must be captured
and used when deleting the files later on.

The use of a permission context ensures that the
classes inspected in an indirect file deletion are the same
than in a direct deletion. This is necessary to guarantee
that changes in the permissions granted to these classes
are correctly reflected in the execution.

In the JAC architecture, capturing the current permis-
sion context is done with AccessController.getContext(). We
use it at the beginning of the privileged action in the clean
method. The context object is essentially a reification
of the current execution stack. Later, the CleanTask.run
method runs the deletion of the file as a privileged
action, passing the previously-captured context as an
extra parameter (we modified the constructor of CleanTask
to specify the context). This ensures that the deletion
is done in the permission context corresponding to the
TmpCleaner class: if TmpCleaner can delete files in the tem-
porary directory, the deletion proceeds; if it cannot, an
access control exception is thrown.

The code below illustrates the capture of the permis-
sion context in TmpCleaner.clean, and its subsequent use in
CleanTask.run:

//TmpCleaner (context capture)
public void clean() {

AccessController.doPrivileged (new PrivilegedAction() {

public Object run() {
AccessControlContext ctx = AccessController.getContext();
for(String path: tmpdir){
new CleanTask(path, ctx).run(); //pass ctx

}
s

}

//CleanTask (context usage)
public void run() {
if (canDelete()) {
AccessController.doPrivileged (new PrivilegedAction() {
public Object run() {
file .delete();

}}. this.ctx); //use ctx to delete the file

else{ /x self—scheduling on timer =/ }

Following is the complete stack inspection algorithm
for permission checking in Java, updated to support the
use of permission contexts:

i=m;
while (i > 0) {

if (class i does not have the permission)

throw new AccessControlException ()

if (class i started a privileged action)

if (a context was specified)
continue inspection on context
return;

i=i-1;

}

The semantics of passing a permission context to a
doPrivileged call is that once the class that initiated the
privileged action is reached, the stack inspection contin-
ues in the stack the permission context represents. If no
context was supplied, the algorithm returns normally,
just as in the previous case for handling privileges.

Figure 5 depicts the updated scenario. First, the per-
mission context at the beginning of the clean method
is represented as the stack of execution at that point
(the involved classes are exactly the ones of Figure 4).
Then, the doPrivileged call in CleanTask.run passes a reference
to this permission context. When deleting a file, the
captured permission context is used. This completely
eliminates the second path from CleanTask to Timer.

3 JAVA ACCESS CONTROL WITH ASPECTJ

In this section we describe how to implement the
three main mechanisms of the JAC architecture using
Aspect] [15], the de facto aspect-oriented extension to
Java.

3.1

Aspect-oriented programming makes it possible to mod-
ularize crosscutting concerns, like access control. Specif-
ically, in the pointcut-advice (PA) model for aspect-
oriented programming [22], [23], crosscutting behavior
is defined by means of pointcuts and advice. Execution
points at which advice may be executed are called
(dynamic) join points. A pointcut identifies a set of join
points, and a piece of advice is the action to be taken at a
join point matched by a pointcut. An aspect is a module
that encompasses a number of pointcuts and pieces of
advice.

Following is the shape of an aspect in Aspect], which
follows the PA model:

Aspect-Oriented Programming

(1) Context capture

ﬁ [Privileged Mark]

AccessController

PrivilegedAction$1
TmpCleaner
[Permission Context]
ctx = getContext()

(2) Context usage

ﬁ [Privileged Mark]

doPriviIeged(paZ,)

File
Deletion

Fig. 5. Permission checking with permission context capture (1) and further usage (2).

aspect AspectExample {
pointcut pc(): ... //predicate selecting join points

before(): pc() {
//action to take before selected join point execution

i3

The aspect AspectExample declares one pointcut and one
piece of advice. The pointcut pc selects the join points of
interest, typically using some kind of pattern matching
(e.g. call(void Point.set*()) for all calls to setters in Point).
Pointcuts can also expose contextual information such
as the target of a call (target(..)) or the currently executing
object (this(..)). The piece of advice (before():...) declares
that before each join point of interest, the specified action
should be performed. A piece of advice can also be
declared as after or around to execute them after or instead
of matching join points, respectively. In the latter case,
the piece of advice can use the construct proceed() to
execute the original behavior associated to the join point,
if so desired.

3.2 Factoring out Access-Control Checks

Through the PA model, it is straightforward to modular-
ize access control checks. It is only necessary to define
an aspect whose pointcut identifies accesses to sensitive
resources, and whose advice triggers stack inspection:
aspect FileDeletionPermission {

pointcut resourceAccess(File file):
execution(boolean File.delete()) && target(file);

before(File file): resourceAccess(file) {
SecurityManager . checkPermission (
new FilePermission(file .path, FILE_DELETE ACTION)

);
i3

Deploying this aspect is equivalent to performing
the explicit invocation to SecurityManager.checkPermission in
File.delete (Section 2.2). However, the fundamental ad-
vantage of the aspect-oriented approach is that explicit
calls to SecurityManager.checkPermission are not necessary
anymore. As long as one aspect per kind of permission
is defined, the calls end up modularized in these aspects.

This approach is possible because the Aspect] pointcut
language is expressive enough to identify all points
where access control is necessary. Although further

study is required for the general case, we have con-
ducted a study for the standard Java distribution, which
shows that it is possible to specify pointcuts for all
occurrences’. This by-product of our study constitutes,
to the best of our knowledge, an original contribution.

3.3 Stack Inspection Semantics via Scope Control

Most prior proposals for the modularization of access
control in Java uses the aforementioned approach for
factoring out access-control checks [5], [6], [7], [8], [9],
[10], [11], [13], [14]. However, this way of aspectizing
access control still relies on the non-modularized and
specialized stack inspection implementation of Java. It
is interesting to explore if aspects can allow for a fully
modular JAC architecture. To do so, we need to express
the stack inspection semantics via another mechanism.

Before we go into details on how to implement stack
inspection in a modular way, let us describe the kind of
aspects we will need to use for the task.

Aspects like FileDeletionPermission simply delegate access
control decisions to the default stack inspection algo-
rithm. This algorithm ensures that all classes in the stack
have the corresponding permission when a resource
is about to be accessed. Consequently, we call these
aspects permission aspects. However, since the default
implementation of stack inspection cannot be part of
a modularized solution (because it is not modularly
defined), we need another kind of aspects based on
a different mechanism for access control enforcement:
restriction aspects. A restriction aspect, instead of in-
voking SecurityManager.checkPermission in its advice, throws
an exception as soon as it sees the resource access its
pointcut identifies:

aspect FileDeletionRestriction {
pointcut resourceAccess(File file):
execution(boolean File.delete()) && target(file);

before(File file): resourceAccess(file) {
if(file.path.equals(”...”)) {
throw new AccessControlException ();
}
i3

7. The complete list can be found at http://pleiad.cl/research/3sec

Because a restriction aspect throws an exception when
its pointcut matches a join point, its scope must be limited
so that it only sees illegal resource accesses. In other
words, its scope must be controlled. In this section we
explore how the scoping features of Aspect] can be used
for this purpose.

3.4 Aspectizing Basic Permission Checking

Determining whether a resource access is legal or not can
be considered a matter of flow of execution: if the access is
in the control flow of a class with a restriction to access
the resource, then the access is illegal. Otherwise, the
access is legal.

Aspect languages usually provide means to reason
about control flow: aspects can be limited to see only
the join points that occur within certain flows of exe-
cution. Aspect], in particular, provides two options in
this regard. First, Aspect] features percflow deployment,
which creates and deploys a new aspect instance for each
flow of execution starting in certain join points (specified
using a pointcut). Second, Aspect] also features a cflow
pointcut, which matches join points only under a partic-
ular flow of execution. A cflow pointcut can be conjuncted
with other pointcuts as an extra condition over the join
points to select. Using these Aspect] control flow features
to limit the scope of restriction aspects, implementing
basic permission checking is straightforward. Following
is the FileDeletionRestriction aspect, updated so that it only
sees join points in the control flow of the execution of any
method in UntrustedClass. The code includes both percflow
and cflow implementation options ((a) and (b) resp.), but

only one is necessary®.

aspect FileDeletionRestriction
percflow(execution(* UntrustedClass.*())) ‘ (@) {

pointcut resourceAccess(File file):
execution(boolean File.delete()) && target(file);

before(File file): resourceAccess(file) &&

cflow(execution(* UntrustedClass.*())) ‘(b) {
if(file.path.equals(”...”)) {
throw new AccessControlException ();
}
i3

3.5 Privileged Execution

The previous implementation of basic permission check-
ing using either percflow or cflow is simple and direct.
However, it cannot be used for realizing privileged
execution. Once in a privileged execution, restriction
aspects must not see a resource access even if it occurs
in the control flow of a method of an untrusted class.
In the case of percflow, once a restriction aspect has been
deployed, it cannot be undeployed for the extent of a

8. The difference between these options is that percflow also controls
the instantiation of aspects: each time a method of UntrustedClass is
executed, a new aspect instance is created (if not already in the control
flow of another UntrustedClass method execution).

privileged execution, which is exactly what is needed.
The case for cflow is similar. This problem is even more
evident if we consider multiple privileged executions,
initiated by different classes, with a mixture of trusted
and untrusted classes involved in the stack.

It turns out that the scoping mechanisms offered by
Aspect] does not suffice to express the JAC architecture
stack inspection semantics. For this reason, it becomes
necessary to manually manage state upon which to
decide whether a resource access is legal or not. In
the following, we detail a solution that maintain access
control state through a pushdown automaton.

3.6 Access Control Automaton

In the following, we maintain access control state
through a pushdown automaton. This approach corre-
sponds, in essence, to various proposals for stack in-
spection alternatives [24], [25], [26], [27]. The novelty is
that in this work we use an aspect-oriented approach
for updating the automaton. With the use of this access
control automaton, restriction aspects are deployed with
global scope and must check the automaton to decide
when to throw an exception.

Each access control automaton® has two logical states:
LEGAL and ILLEGAL, representing legal and illegal resource
accesses, respectively. For a given automaton, it is in state
LEGAL when all classes in the stack of execution have the
permission to access the resource it guards. It is also in
state LEGAL when a privileged execution (started by a
trusted class) is in progress. If none of these conditions
hold, the automaton is in state ILLEGAL. Figure 6 depicts
the access control automaton for privileged execution'®.
This automaton is updated each time a (trusted or
untrusted) class enters and exits the stack; and also when
entering and exiting a privileged action. Transitions are
prefixed with enter/exit and suffixed Trusted/Untrusted/DoPriv
for this purpose. The stack of the access control automata
is used to remember from which state an enter* transition
originated, so that the automaton can correctly switch
back to the corresponding state on an exit* event. The
symbols in the stack can be: L, I, and *I; for “coming
from LEGAL”, “coming from ILLEGAL”, and “coming from
ILLEGAL, but the last class was trusted” respectively. The
*| symbol is useful to distinguish a privileged execution
started by a trusted class and one started by an untrusted
class. The _ symbol is used to ignore what is on the top of
the stack (when specified in the second position of tran-
sitions), and to prevent a push operation from occurring
(when specified in the third position of transitions).

The implementation of the FileDeletionRestriction aspect
supporting privileged execution, using and updating
its access control automaton is presented in Figure 7.

9. We consider one access control automaton per restriction aspect
for convenience and practical reasons: a global automaton would have
an exponential number of states: 2", where n is the total number of
restrictions.

10. We tested this automaton with JFlap. http:/ /www jflap.org.

enterTrusted, _; _ enterTrusted, _; *I
exitTrusted, _; _ exitTrusted, *I; _
enterDoPriv, _; L enterDoPriv, I; |

exitDoPriv, L; exitDoPriv, I; |

enterUntrusted, _; L

—N
& exitUntrusted, L;

UterDoPriv, *|;

exitDoPriv, *I; *I

*|

enterDoPriv, L;L
L;L

exitDoPriv,
enterUntrusted, _; |
exitUntrusted, I;

Fig. 6. Pushdown automaton for privileged execution. Transitions have
the form: <event>,<value on top of the stack> ;< value pushed onto the
stack>.

aspect FileDeletionRestriction {
//resource access pointcut and advice
pointcut resourceAccess(File file): ... ;
before(File file): resourceAccess(file) {
if (lautomaton.inLegalState()) { //scope check
if(file.path.equals(”...”)) {
throw new AccessControlException();

b}

//automaton handling
private static InheritableThreadLocal<AC_Automator>
automaton = new InheritableThreadLocal<AC_Automaton>() {
protected synchronized AC_Automaton initialValue () {
return new AC_Automaton();

}
protected AC_Automaton childValue (AC_Automaton parent) {
return new AC_Automaton(parent);

P
pointcut untrustedMethods(): ... ;

Object around(): untrustedMethods() {
automaton.get().enterUntrusted();
try { return proceed(); }
finally { automaton.get().exitUntrusted(); }

}

Object around(): !untrustedMethods() { //trusted
automaton.get() enterTrusted () ;
try { return proceed(); }
finally { automaton.get().exitTrusted(); }

}

Object around(): call(x AccessController.doPrivileged(..)) {
automaton.get (). enterDoPriv();
try { return proceed(); }
finally { automaton.get().exitDoPriv(); }

i3

Fig. 7. FileDeletionRestriction and its access control automaton

The top part of the figure shows the pointcut and
advice of the restriction aspect. The only variation there
is the check to determine if the automaton is in an
ILLEGAL state, in which case an exception is thrown.
The bottom part of the figure shows the code for
updating the automaton. The untrustedMethods pointcut
selects the set of methods belonging to classes that
have the corresponding restriction. Each time one of

class PermContext {
public static Map <Class, AC_Automator> getContext() {
Map <Class, AC_Automatorr> context =
new HashMap <Class, AC_Automaton>();

context.put(FileDeletionRestriction.class,
FileDeletionRestriction.getContext());
// put automaton instances for other restrictions

return context;

1}

Fig. 8. Permission context implemented as a map.

those methods is executed, the automaton is updated
accordingly. The same process is performed for trusted
classes (the methods not selected by untrustedMethods),
and when doPrivileged is executed. The try/finally blocks are
necessary to update the automaton even when proceed
throws an exception. Finally, the automaton is accessed
through an InheritableThreadLocal variable, which allows
each automaton to correctly reflect the access control
state of the corresponding thread.

By using these updated restriction aspects, the JAC
architecture semantics for privileged execution can be
implemented. However, the solution combines Aspect]
constructs and a specialized access control automata.
Actually, each access control automaton rebuilds its own
view of the execution stack.

3.7 Permission Contexts

In order to support permission contexts, the access con-
trol automata can be extended with the necessary infras-
tructure for snapshotting and reinstalling a permission
context.

On the JAC side, a permission context is represented
by the set of classes in the current thread of execution.
This is so because the stack inspection algorithm needs
the execution stack to tell whether a resource access is
legal or not. On the access control pushdown automaton
side, the current states and stacks of the automata always
instantaneously distinguishes between a legal and an
illegal resource access. Therefore, the permission context
at an execution point can be considered as the set of
access-control-automaton instances at that point.

In implementation terms, a permission context maps
restriction aspects and automaton instances. As shown in
Figure 8, the getContext method of the PermContext class can
be used to get this map. It uses the getAutomaton method
provided by each restriction aspect to get a copy of the
current automaton instance.

When a piece of code is going to be executed under
a given context, each restriction aspect needs to change
its automaton instance by the respective instance in the
given context. The current automaton instance needs to
be saved in order to be restored after the piece of code
is executed. Since contextual execution can be nested,
the automaton instances need to be stored in a stack.
The FileDeletionRestriction aspect of Figure 7 is extended to
support permission contexts as Figure 9 shows. First,

aspect FileDeletionRestriction {
/* code of Figure 7 x/

Object around(PrivilegedAction action, PermContext context):
call(x AccessController.doPrivileged(..,..)) &
args(action,context){

stack.get().push(automaton.get());
automaton. set(context.get(getClass()));

try {
return proceed(action,context);

%inally {
automaton. set (stack.get().pop());
35

public static AC_Automaton getContext() {
return new AC_Automaton(automaton.get());

}

private static InheritableThreadLocal<Stack<AC_Automatorss>
stack = new InheritableThreadLocal<Stack<AC_Automaton>>(){
protected synchronized Stack<AC_Automaton> initialValue (){
return new Stack<AC_Automaton>();

}

protected Stack<AC_Automatorr>
childValue (Stack<AC_Automator> parent) {
Stack<AC_Automatorr> stack = new Stack<AC_Automaton>();
stack.addAll(parent);
return stack;

}
I

Fig. 9. FileDeletionRestriction and its access control automaton with
support for permission contexts.

the aspect is equipped with the getAutomaton method
returning a copy of the current automaton instance.
Second, a new piece of advice is defined that intercepts a
contextual execution and changes the current automaton
instance by the respective automaton instance given in
the passed context. Third, the aspect is provided with
a stack variable implemented as an InheritableThreadLocal
object, which is used to keep the automaton instances
that need to be restored after contextual executions.

3.8 Summary

The implementation presented in this section constitutes,
to the best of our knowledge, the first modular real-
ization of the JAC architecture entirely based on aspect
orientation. However, the solution is not completely sat-
isfactory. While basic permission checking can be defined
in terms of restriction aspects using the scoping mech-
anisms of the Aspect] language, privileged execution
and permission contexts require these mechanisms to be
replaced with a specialized access control automaton.

The reason for falling back to an implementation
based on access control automata is that Aspect] only
supports a limited notion of scoping of aspects. First,
it is impossible to undeploy an aspect once it has been
deployed using percflow, which is necessary for privileged
execution. Second, using cflow, it is not possible to dis-
tinguish a legal resource access from an illegal one once
in the control flow of multiple privileged executions.

Stack propagation function

[[Task] [:Service |
:

Delayed evaluation propagation function

d(jPrask) = true

i c(jPryn) = true

— —[> : aspect propagation

| () : aspect environment

Fig. 10. Propagation of aspects with scoping strategies

4 JAVA ACCESS CONTROL WITH SCOPING
STRATEGIES

In this section we show how scoping strategies [16], [28]
can be used to define the JAC architecture in an aspect-
oriented manner by controlling the scope of restriction
aspects. This contrasts with the Aspect] solution, which
is based on global deployment of restriction aspects and
explicit scope control through access control automata.

After a brief introduction to scoping strategies, we
explain how a simple scoping strategy allows an ele-
gant specification of the three main mechanisms of the
JAC architecture (basic permission checking, privileged
execution, and permission contexts). We then describe
in details why such a simple definition effectively meets
the requirements.

4.1

Scoping strategies permit fine-grained control over the
scoping semantics of a deployed aspect [16], [28]. The
“scope” of an aspect is the set of join points that the
aspect potentially matches, i.e. against which its point-
cuts are evaluated. A scoping strategy itself is specified
by two propagation functions: a call stack propagation
function c specifies how an aspect propagates along with
method calls, and a delayed evaluation function d specifies
whether or not an aspect is “captured” in objects when
they are created!!. Intuitively, the former allows control-
ling dynamic scoping of aspects, stopping propagation
when a certain condition is met. Dynamic scoping of
aspects is, for instance, found in Caesar] [29], where
the construct deploy(asp){block} dynamically deploys the
aspect asp along the execution of the block block. The
latter allows aspects to follow certain objects, similar to
per-instance aspects in Aspect] and Caesar]: the aspect
sees join points occurring lexically within all methods
of the object. By analogy with the construct deploy, we
assume that the construct deployOn(asp){obj} deploys the
aspect asp on the object obj.

Propagation functions are themselves pointcuts,
ie. they are predicates over join points: ¢ matches call
join points for which the aspect should propagate, while
d matches object creation join points. Figure 10 depicts

Scoping Strategies in a Nutshell

11. Scoping strategies also include a third component, called activa-
tion function. Activation is not used here, so we omit it.

propagation of an aspect asp deployed with the scoping
strategy s = [call(* Task.run()), target(Task)]'2. If asp is currently
deployed (i.e. it is in the current aspect environment), it
propagates on calls to run (jp,.,) but not on calls to clean
(Jpciean)- Therefore asp sees join points occurring during
the execution of run. Similarly, it gets captured in new Task
objects (jprask), and not in new File objects (jprii.). This
means that it sees the subsequent activity of these Task
objects. We assume here that scoping strategies are pro-
vided as additional arguments to the deployment con-
structs: deploy[s](asp){block} and deployOn[s](asp){obj}, where
s is a scoping strategy.

Many examples of scoping strategies have been for-
mulated elsewhere, for both local aspects [16] and dis-
tributed aspects [17], as well as for variable bindings [28].

4.2 The Scoping Strategy for Java Access Control

The specification of the JAC architecture by means of
scoping strategies is succinct and elegant. Figure 11
presents the AccessControlAspect aspect, in charge of
deploying restriction aspects. The underlying idea is
to deploy restriction aspects on objects with a proper
scoping strategy, so that the relevant parts of the activity
of the objects is under control of the restriction aspects.

Deploying restriction aspects. The AccessControlAspect
aspect deploys restriction aspects on objects when they
are created. First, the init pointcut matches all object
creations (line 3), binding the newly-created object to
the instance parameter (line 4). The associated advice
(lines 13-16) deploys the corresponding restriction
aspects on that object, using deployOn (line 16). The set of
restriction aspects that corresponds to a particular object
is determined by the getRestrictionsFor method (line 14).
This method encapsulates the binding of objects to their
protection domain. One possible implementation is to
mimic the JAC architecture by returning the restriction
aspects that correspond to the permissions declared
in the Java policy file. Another implementation would
be to return restrictions based on dynamic conditions,
such as the kind of user currently interacting with the
application, as in role-based access control [30].

Access control scoping strategy. Restriction aspects are
deployed on objects (line 16) with the access control
scoping strategy defined in lines 7-11. The call stack
propagation function of the strategy expresses both basic
permission checking and privileged execution, as will be
explained in Section 4.3 and 4.4, respectively. Essentially,
it specifies that a restriction aspect always propagates
on the call stack, except on privileged calls. The delayed
evaluation propagation function expresses the capture
of permission contexts. It ensures that restriction aspects
propagate to AccessControlContext instances; therefore, cre-
ating such an object is a means to take a snapshot of the

12. We use the concrete syntax [c,d] for deployment strategies, where
¢ and d are defined similarly to Aspect] pointcuts.

10

1 aspect AccessControlAspect {
//creation of objects
pointcut init(Object instance): execution(x.new(..))

&& this(instance);

ScopingStrategy acss = [
I(call(x Object.doPrivileged(..)) &&
if(jp.getTarget() == jp.getThis())),
0 target (AccessControlContext)

2
3
4
5
¢ //access control scoping strategy
;
8
9

RN

s before(Object instance): init(instance) {

4 Aspect[] restrictions = getRestrictionsFor(instance);
15 //per—instance deployment
16 deployOn[acss](restrictions){ instance };

Fig. 11. Access control aspect for deploying restriction aspects.
[from policy]
FDR
|

. ~

FDR FDR

Lo FDR

File
Deletion

Fig. 12. Restriction aspects propagation for basic permission check-
ing

restriction aspects present at that point in time. This is
explained in Section 4.5.

4.3 Basic Permission Checking

Basic permission checking dictates that accesses to
system-sensitive resources must be denied if a class on
the stack does not have the corresponding permission.
The call stack propagation function of the access control
scoping strategy (lines 8-9 of Figure 11), in the absence
of privileged execution (i.e. no calls to the doPrivileged
method), always evaluates to true (line 9 is explained
in Section 4.4). In consequence, the restriction aspects
of the objects participating in the stack unconditionally
propagate through all method invocations: they see all
actions that are about to be performed, and can deny
them as appropriate.

Figure 12 shows how the FileDeletionRestriction (FDR)
aspect is propagated on method invocations in the
TmpCleaner service. For the sake of clarity, we consider
FDR to be the unique restriction aspect in the system.
The only untrusted object, with FDR deployed on it,
is the client that invokes TmpCleaner.clean; all remaining

instances!® are considered trusted. The figure shows how

FDR unconditionally propagates from the initial call to
TmpCleaner.clean until the point of the actual file deletion,
following the semantics of the stack propagation func-
tion.

4.4 Privileged Execution

Recall from Section 2.3 that only the restrictions associ-
ated with the entity that initiates a privileged action and
the subsequent ones must be enforced, while those asso-
ciated with entities higher in the call stack are ignored.

In terms of scoping strategy for restriction aspects,
this means that restriction aspects must not see resource
accesses in the dynamic extent of the privileged action:
they should not propagate when a privileged action
starts executing. However, the restriction aspects associ-
ated with the entity initiating the privileged action must
be present during the execution of the action.

We introduce a special doPrivieged method for priv-
ileged code execution, similar to the doPrivileged static
method of the AccessController class in the JAC architecture.
The semantics is equivalent except that this method is
now defined on Object, as an instance method:

class Object {

public final Object doPrivileged (PrivilegedAction action){
return action.run();

i3

In order to support the requirements of privileged
execution stated above, doPrivileged is only effective on
self calls. When called on this—and only in that case—
the current restriction aspects do not propagate. This is
specified by the call stack propagation function of the
access control scoping strategy shown on Figure 11, line
8-9: propagation on the call stack stops upon calls to
Object.doPrivileged only if jp.getThis() == jp.getTarget() (i.e. it is
a self call). Note that because doPrivileged is an instance
method of the object that is initiating the privileged
action, restrictions associated to that object (as specified
by the policy file) do propagate.

To illustrate this point better, let us extend our scenario
by assuming that the policy file specifies that TmpCleaner
is restricted to writing to the tmp directory. Figure 13
shows how the FileDeletionRestriction (FDR) aspect is propa-
gated on method invocations in the TmpCleaner service,
and then stopped by the call to doPrivieged. However,
the restriction deployed on TmpCleaner (called TOR for
“Temp Only Restriction”) propagates to the execution
of doPrivileged (as for any instance method), and subse-
quently propagates during the evaluation of the action.
Eventually, the file deletion is allowed, because only TOR
is present.

13. We assume that all method calls are performed over an object.
Static methods still fit the model if we convert them into instance
methods or consider classes as objects.

11

[from policy] [from policy]

)
FDR FDR U TOR
~ N
~—-- N
\
doPrivileged(pa)
TOR TOR

Fig. 13. Restriction aspects propagation for permission checking with
privileged execution

4.5 Permission Contexts

Recall from Section 2.4 that using permission contexts
involves two processes: context capture and context
usage. Once a permission context is captured (by call-
ing AccessController.getContext()), it can be reinstalled by
performing a privileged execution with the context as
a parameter. The semantics of using a context for a
privileged execution stipulates that, in addition to the
restrictions of the entity starting the privileged action
(as in the previous section), the restrictions enforced also
include the restrictions of the permission context.

In terms of the scoping strategy for restriction aspects,
this means that it should be possible to capture the
restrictions present at some point in time, associate them
with a permission context, and later on use them in a
privileged execution. Let us first detail how permission
contexts are captured and then, how to reinstall them.

Capturing restrictions in permission contexts is han-
dled by the scoping strategy: the delayed evaluation
propagation function permits restriction aspects to prop-
agate to all newly-created AccessControlContext instances
(Figure 11, line 10). In consequence, creating such an
object captures in that object all the current restriction
aspects, i.e.. the current permission context:

AccessControlContext ctx = new AccessControlContext();

In order to reinstall the restriction aspects propagated
to an AccessControlContext instance, we introduce an over-
loaded version of the doPrivileged method, taking a context
as a second parameter, just like in the original JAC
architecture:
public final Object doPrivileged(PrivilegedAction action,

AccessControlContext context){
return context.run(action);

}

The method calls the run method on the context object
to include it in the stack, thereby ensuring that all
captured restriction aspects are reinstalled, and conse-
quently propagate on the stack. The AccessControlContext
class is simply defined as follows:

public final class AccessControlContext{
public final Object run(PrivilegedAction action){

(1) Context capture

12

(2) Context usage

[from policy] [from policy] [from policy]
7
‘ % p
(FDRUTOR) FOR FDR
(FOR) <~ i S. -~__-V - -
-- \ X -
- N
V \
\
TOR (TR -7 [Permission Context] R dOPFiV”eged(pa?,)
_________ - TOR
[ctx:AccessControlContext

~~~~~~~~~~ &
______________________ File
deletion

Fig. 14. Restriction aspects propagation for permission context capture (1) and further usage (2).

return action.run();

i3

Note that for the same reasons exposed in Section 4.4, the
restriction aspects of the object that invokes doPrivileged
are present in the doPrivileged body. Therefore the ade-
quate set of restrictions (the union of the restrictions
in the object initiating the privileged action and the
restrictions in the context object) is reestablished.

To illustrate this process, let us again extend our
scenario by considering that the entity that starts the
timer also has a FileDeletionRestriction. Figure 14 shows
how the FDR and TOR aspects are propagated in method
invocations in the TmpCleaner service. Both aspects are
stopped at doPrivileged calls, but TOR is captured on
an AccessControlContext instance that is later on used by
CleanTask to start a privileged action. This results in the
inclusion of TOR in the stack again. At the point of the
file deletion, the only restriction aspect is TOR, so the
deletion is eventually allowed.

5 EVALUATION OF ASPECTIZED ACCESS
CONTROL

In this section we discuss some of the advantages and
disadvantages of the aspect-oriented implementations
of the JAC architecture presented in Sections 3 and 4.
We consider three viewpoints in this analysis, namely
modularity, security, and expressiveness.

5.1

An aspect-oriented solution implies two major advan-
tages in terms of modularity. First, looking at pointcut
declarations immediately reveals where access control is
being enforced, without having to navigate the code to
find the relevant points. In consequence, it is difficult
to miss security-sensitive operations because they are
specified in a single place. Second, access control is
defined exclusively in dedicated modules: the restriction
aspects. Consequently, there is no scattering and tangling
of the access control concern.

One issue that may appear when adding access control
to a (probably unaware) application is how it handles
the exceptions thrown on illegal resource accesses. The

Modularity

problem is that without considering access control, ap-
plications are not prepared for the unexpected scenario
of failing to access a resource. Exception handling can be
seen as another concern, and means have been proposed
to deal with it in an aspect-oriented manner [31], [32].

Modularizing privileged execution (calls to doPrivileged)
presents a similar challenge: certain pieces of code (bod-
ies of privileged actions) must be handled specially with
respect to the access control state of the application.
Having privileged execution modularized is important
to fully achieve the objective of a completely modular
specification of access control. We plan to explore this in
future work.

5.2 Security

Turning checkPermission calls into restriction aspects pre-
vents malicious aspects from interfering with access
control. For example, consider the following aspect:
aspect MaliciousAspect {

pointcut accessControl():

call(void SecurityManager.checkPermission(..));
void around(): accessControl() {}

This aspect selects all calls to checkPermission and does
nothing instead, thus completely annihilating access con-
trol. Restriction aspects solve this problem because they
provide an implicit way of performing access control
checks: having no explicit calls to checkPermission means
no join points for malicious aspects to match on.
However, some aspect languages permit aspects to
observe not only the computation of the base application,
but also the computation of other aspects. For instance,
Aspect] provides an adviceexecution pointcut to select ad-
vice execution. Using this pointcut, a malicious aspect
can interfere with access control by skipping some or all
advice executions. This means that advice of restriction
aspects can be prevented from throwing exceptions on
illegal resource accesses, thus eliminating access control.
A couple of tentative solutions to this issue, mainly
based on further limiting the scope of aspects, can be
devised. A first alternative is to use the notion of levels
of execution, as in stratified aspects [33] and execution



levels [34]. In a nutshell, the idea is to structure com-
putation into levels, starting with base computation at
level 0. Aspect computation is by default considered as
occurring at level 1, and is therefore invisible to other
aspects. If needed, aspects can be deployed at higher
levels of execution, thereby possibly observing other as-
pects. In this model, restriction aspects can be deployed
on a sufficiently-high level so that no other aspect can
see (or interfere with) their activity. A second alternative
is to classify aspects into user (untrusted) and kernel
(trusted) categories, where user aspects cannot interfere
with kernel aspects. For instance, join points derived
from computation of kernel aspects can be hidden from
user aspects. We intend to address this issue in future
work.

5.3 Expressiveness

An aspectized access control architecture makes it possi-
ble to easily express useful policies, such as the Chinese
wall policy [35], which is based on the history of resource
accesses.

The aim of the Chinese wall policy is to avoid con-
flicts of interest in decision making. In the Chinese
wall model, sensitive resources are called objects (e.g. a
financial report); an object pertains to a company dataset
(e.g. an oil company); and a company dataset pertains
to a conflict of interest class (e.g. oil companies). The idea
is that once an entity accesses a certain object, it must
not longer be able to access other objects in a different
company dataset within the same conflict of interest class
(e.g. financial reports of two different oil companies).
This way, the entity cannot combine information from
one conflict of interest class to make strategic decisions.

The Chinese wall policy is known to be difficult to
implement using the JAC architecture because “[..] the
JVM would need not only to monitor object interaction
but also keep a history of it” (§7.2 of [1]). However it
can be directly defined using a restriction aspect:

aspect ChineseWallRestriction {
List accessedCompanies = new ArrayList();

pointcut objectAccess(Object object):
/* accesses to objects =/ &k target(object);

before (Object object): objectAccess(object) {
Company company = companyOf(object);
if (accessedCompanies. contains (company)) {
return; //OK if the company was already accessed

}
for (Company c: accessedCompanies){
//accessing an object within the same COI class?
if (coiOf (company) == coiOf(c)){
throw new AccessControlException();

}

accessedCompanies.add(company ) ;

i3

The key in this implementation is that aspects intrinsi-
cally monitor the execution of the system. This contrasts
with the architecture based on explicit permission check-
ing of Java.

13

6 ACCESS CONTROL AUTOMATA VS SCOPING
STRATEGIES FOR ACCESS CONTROL

In this section we present a comparison between access
control using Aspect] and access control using scoping
strategies. Although a solution based on Aspect] is pos-
sible in order to implement the JAC architecture, the use
of scoping strategies brings many benefits, from both a
conceptual and a practical viewpoint.

6.1 General Purpose vs Domain Specific

In terms of the infrastructure necessary to support a
modularized JAC architecture, both solutions are similar.
For the Aspect] solution, a per-thread automaton is
necessary to keep track of the current access control state
of the stack given the restrictions of entities participating
in it. For the scoping strategies solution, a per-thread
aspect environment is required to maintain the set of
restriction aspects currently in scope. However, a funda-
mental conceptual difference between both approaches
is whether they can serve purposes other access control.
On the one hand, the automata infrastructure is specific
and therefore, only useful for this problem. On the other
hand, the aspect environments infrastructure is general-
purpose and can be used for much more than access
control. Examples where dynamically-deployed aspects
with proper scope are useful are manifold [16], [17]. Ac-
tually, scoping strategies are generally applicable, includ-
ing to other kinds of adaptations beyond aspects [28].

6.2 Expressiveness

In this section we compare both solutions in terms of
expressiveness. By expressiveness, we refer to the fact
that a feature that is directly expressible with dynamic
deployment and scoping strategies such as per-object re-
strictions requires additional data structures and several
modifications to be implemented in Aspect]. The reason
for this, as detailed before in Section 3, is the limited
scoping control in the language.

6.2.1 Increased Dynamism

Dynamic aspect deployment allows greater control over
where and when an aspect affects a program [16]. While
the Aspect] solution is limited to static deployment and
refining the scope of aspects necessarily implies modi-
fying the access control automata, the scoping strategies
solution can take advantage of dynamic deployment. In
particular, dynamically deploying AccessControlAspect in-
troduces the possibility to activate and deactivate access
control at will, depending on runtime conditions in the
application.

In the original JAC architecture, all classes are subject
to access control. Even classes in the system protection
domain are checked by the stack inspection algorithm!
The reason is that access control is global, it cannot be de-
activated'®. Analogously, in the Aspect] implementation,

14. A call to doPrivileged does not deactivate access control. It only
puts a mark denoting that stack inspection must stop there.



restriction aspects are active even when the automaton
state is legal. Again, this is due to the global scope of
restriction aspects in that implementation.

In the scoping strategies implementation of the JAC
architecture, activating (resp. deactivating) access con-
trol is just a matter of deploying (resp. undeploying)
AccessControlAspect!®. In consequence, through dynamic
deployment developers can specify in which execution
flows of the program restriction aspects are deployed on
objects, and hence, which objects are subject to access
control. Examples of scenarios where the conditional
activation/deactivation of access control can be useful
are:

o Unconditional Activation. When transferring con-
trol flow to methods on unknown, dynamically-
loaded classes: execution of these methods is always
untrusted, therefore, AccessControlAspect should be un-
conditionally deployed.

o Conditional Activation. When loading an untrusted
site in a browser tab: only dynamic content (ap-
plets, flash animations, JavaScript code, etc.) in that
specific tab is untrusted, therefore, AccessControlAspect
should be deployed only in case an untrusted site is
about to be loaded. This per-page security enforce-
ment is what the Firefox add-on NoScript!® does.

o Unconditional Deactivation. When a user marks an
application as trusted: all code in that application is
now considered trusted, therefore, AccessControlAspect
should be unconditionally undeployed in future
executions.

o Conditional Deactivation. When executing com-
mands in a command-line interpreter: certain com-
mands do not access sensible resources, like echo
and date (only the screen, which the user already has
access to at this point), therefore, AccessControlAspect
can be undeployed for them.

These are only some direct advantages derived from
dynamic deployment for access control. Further study
may reveal more, such as a policy that dynamically
enforces different security levels (with different perfor-
mance trade-offs) depending on the state of the applica-
tion.

6.2.2 Increased Granularity

In the original JAC architecture and in the Aspect] modu-
larized implementation, access control is specified at the
class level. However, access control at the level of classes
has limits in terms of expressiveness [36], [37]. Let us bor-
row an example (not the solution) from [37] to illustrate
how per-object access control permits the expression of
finer-grained policies. In a hospital management system,
users can be doctors or patients. Doctors can both read
and update records of their patients, whereas patients
can only read their own records. If the system is modeled

15. All objects which already have restriction aspects deployed on
them are still subject to access control.
16. http:/ /noscript.net. It has more than 69 million downloads.

14

with Doctor and Patient classes, assigning them the corre-
sponding read and write permissions, a security breach is
immediately introduced. Firstly, all doctors are able to
read and write all patient records, not only the records
of their own patients. At the same time, patients are able
to read other patient records, probably including private
information. Conversely, with object-based access con-
trol, one direct solution is just to deploy the following
restriction aspects on Doctor and Patient instances:

aspect DoctorsRestriction {
pointcut patient Access(Patient patient):
execution(x Patient.*(..)) & this(patient);

before(Patient patient): patientAccess(patient) {
//reference to the doctor this aspect is deployed on
Doctor doctor = ...;
//this doctor does not treat the patient
if (!doctor.treats(patient)){
throw new AccessControlException ();

}
i3

aspect PatientsRestriction {
pointcut readRecord(Patient patient):
execution(Record Patient.getRecord()) && this(patient);

before(Patient patient): readRecord(patient) {
//reference to the patient this aspect is deployed on
Patient thisPatient = ...;
//this patient is accessing the record of another patient
if (thisPatient != patient){
throw new AccessControlException ();

}
13

With these restriction aspects deployed on Doctor and
Patient instances, doctors are not able to read or update
records of other patients; and patients are not able to
read records of other patients.

To illustrate another feature derived from the in-
creased granularity, let us extend the example by adding
a second kind of doctor, a doctor-in-chief, that is allowed
to view and modify the records of patients of other doc-
tors (i.e. no restriction is deployed on it). Now suppose
that a doctor wants to pass a patient record to another
doctor, but s/he does not want the record to be modified.
Since the doctor receiving the record could be a doctor-
in-chief, it is not safe to just pass the record.

To solve this issue, the doctor can, defensively, deploy
the following restriction on the record to prevent it from
being modified:
aspect RecordRestriction{

pointcut writeRecord(Record record):
execution(x Record.setx(..)) & target(record);

before(Record record): writeRecord(record){
//reference to the record this aspect is deployed on
Record thisRecord = ...;
if (thisRecord == target){
throw new AccessControlException();

}
i3

Notice that this restriction is deployed on the Record
object itself, not in the entities potentially accessing it.
Even if the doctor that receives the record shares it with



other entities, they will not be able to alter it, regardless
of their own restrictions.

6.2.3 Increased Control

Scoping strategies can be used to define other kind
of policies by easily changing the scope of restriction
aspects. For instance, one can define a pervasive pol-
icy [38]. This policy ensures that all actions derived from
the execution of a restricted object must be restricted
as well. By derived we refer to the actions directly
generated by the object and the actions generated by
other objects it creates. This policy is implemented by
deploying restriction aspects with the pervasive scoping
strategy [16] defined as [true,rue]. Actions directly gen-
erated by the object are subject to the policy because
the call stack propagation function is always true, so
restriction aspects always propagate on the stack. Ac-
tions indirectly generated by the object are also subject
to the policy because the delayed evaluation function is
always true, so restriction aspects always propagate to
new objects. Consider the following example:

//(1) code in an untrusted object

File file = new File(”/etc/passwd”);
trustedObject. file = file;

//(2) code in trustedObject
this.file .delete();

Under stack inspection semantics, the file deletion would
be allowed because there is no trace of the untrusted
object in the stack. Conversely, in a pervasive policy
semantics, the call to delete throws an exception. The
reason is that when the untrusted object creates the File
object, the restriction aspects of the former propagate to
the latter, due to the delayed evaluation function.This
can be seen as a kind of history-based access control [39].

Implementing this policy using the solution based
on Aspect] and automata involves (besides adding per-
object restrictions support) a complete rewrite of the
access control automata. Conversely, as shown above,
using scoping strategies is just a matter of changing the
propagation functions.

6.3 Optimization Opportunities

The solution based on scoping strategies presents more
direct optimization opportunities than the solution based
on access control automata.

First, because access control automata are not defined
within Aspect], they cannot benefit from the optimiza-
tions made to the compiler/runtime of the language.
In this regard, the cflow pointcut is a very good exam-
ple of the kind of optimizations that can be achieved
when scope constructs are part of the aspect language.
Although cflow can be implemented as an automaton
updated by a dedicated aspect (just like access control
automata), it is translated, in most cases, into a simple
counter which is increased at the beginning of join points
matched by the argument of cflow, and decreased at the

15

end. Even more, a cflow pointcut can be removed com-
pletely when conjuncted with an always-false pointcut.
This last optimization would be much more complicated
without integrated support from the compiler.

Second, although one can devise optimizations to the
access control automata supporting per-class restrictions,
adding support for per-object restrictions—to take ad-
vantage of the increased expressiveness shown in Sec-
tion 6.2—, makes optimizations much harder due to
the dynamic nature of policy enforcement. The code to
update the automaton for per-object restrictions is:

aspect FileRestriction{
//...pointcut and advice remain the same

pointcut all (Object ctx): execution(x *.x(..)) & this(ctx);

Object around(Object ctx): all(ctx){
boolean t = isTrusted(ctx);
if (t){ automaton.enterTrusted(); }
else { automaton.enterUntrusted();
try { return proceed(); }
finally {
if (t){ automaton.exitTrusted();
else { automaton.exitUntrusted ()

}
i3

When the transitions to take in the automaton depend
on dynamic conditions, in this case whether the object
currently in context is trusted or not, no simple general
static analysis applies: every method in the system must
be selected by the aspects to update the automata.
Conversely, the access control scoping strategy is generic
and known in advance. Actually, the conditions expressed
by its components are all statically determinable, except
for deciding whether a call to doPrivileged is a self call
or not. Note that even this condition can be statically
determined, by adopting a syntactic resolution of self
calls, as in the encapsulation policies of Scharli et al. [40].
Therefore it is possible to evaluate the scoping strategy
for access control at compile time, avoiding unnecessary
runtime overhead. The study of partial evaluation of
scoping strategies in this case, and in general, is on-going
work.

}

}
s}

7 RELATED WORK

The relation between aspects and security has a long
history. A particular line of work that is complementary
to access control as considered in this paper is the
notion of data flow pointcuts and properties [41], [42],
[43]. With respect to access control, there are related
proposals in the area of modularization of access control
checks, as well as in alternative implementations of
stack inspection.

Modularization of Access Control Checks. Several
proposals have been presented to modularize access
control, particularly in Java [5], [6], [7], [8], [9], [10],
[11], [12], [13], [14]. However, these approaches only
factor out access control checks into aspects, as shown
in Section 3.2. None of them tackles the issue of



modularizing the stack inspection semantics mechanism
itself, nor do they support privileged execution and
permission contexts.

Alternative Implementations of Stack Inspection. There
are several proposals providing alternative implementa-
tions of stack inspection, but to the best of our knowl-
edge, none of them is explicitly aspect oriented.

In [25], Wallach et al. present SAFKASI, in which code
is transformed to follow a security-passing style [24].
This is similar to continuation-passing style because
an additional parameter representing the current access
control state is added to all methods. The value of this
parameter is maintained by a pushdown automaton.
This is the work that inspired the access control au-
tomaton presented in Section 3.6 (as mentioned before,
the only difference is that we use aspect orientation
for updating the automaton). In contrast, our approach
“passes” permission specifications around in the form
of restriction aspects with an appropriate propagation
strategy.

In [26], inlined reference monitors are used to main-
tain access control state in the application. The ap-
proach is very close to AOP (even though the con-
nection is not explicitly established) in that actions
(e.g.PERFORM SECURITY UPDATE <action >) are performed
whenever certain events occur (WHEN <method signature >).
Note that these two proposals support privileged ex-
ecution, but do not deal with capturing and restoring
permission contexts.

8 CONCLUSIONS AND PERSPECTIVES

We have presented two completely modular access con-
trol architectures based on aspects, one using Aspect],
the de facto aspect-oriented extension to Java; and another
using dynamic deployment and scoping strategies. To
the best of our knowledge, this is the first successful at-
tempt to fully modularize the access control architecture
of Java by means of aspect orientation. Previous propos-
als only considered the modularization of access control
checks, whereas we also deal with the more advanced
features associated to the stack inspection algorithm,
i.e. privileged execution and permission contexts.

We showed that, contrary to the current implementa-
tion of access control in Java and in our implementation
using Aspect], the scoping strategies approach is not
based on specialized support for stack introspection, but
rather uses general-purpose aspect-oriented constructs.
The key element for this is the advanced control of aspect
scoping provided by scoping strategies.

To validate our result, we provide two implementa-
tions of the modularized JAC architecture. As a first
proof of concept, the architecture is implemented in
an interpreted higher-order procedural language similar
to Scheme, supporting aspects and scoping strategies.
The second implementation is in a real-world aspect-
oriented extension of JavaScript, called AspectScript [38].

16

As a consequence, real-world JavaScript applications can
benefit from a modularized access control architecture.
This is particularly useful considering that advanced
access control, as in Java, is not part of the language
specification [44], despite the importance of security in
this ubiquitous language.

As mentioned before, we plan to explore several re-
search issues. First, how to take full advantage of the
dynamism of aspect deployment and scoping strategies.
Second, how to modularly specify the calls to doPrivileged
in order to completely aspectize privileged execution.
And finally, how to partial evaluate scoping strategies
to increase runtime performance.

Apart from enabling a modular implementation
of an expressive access control architecture, scoping
strategies open various new research opportunities. First,
considering per-object permissions is more expressive
than per-class permissions, as recognized in [36]
and [37]. Therefore, our aspect-oriented implementation
of access control can bring that level of expressiveness
to languages supporting scoping strategies. Second,
scoping strategies have been shown to be useful in a
distributed context as well [17]; this means that our
proposal can be extended to support access control in a
distributed setting, modularly.

Availability. The elements used in this study are available at
http:/ /pleiad.cl/research/3sec. They include (1) the Scheme
interpreter for a multi-threaded Scheme-like language with
scoping strategies; (2) the TmpCleaner service implemented in
this language, as well as (3) in AspectScript; (4) the Aspect]
implementation of the JAC architecture; and (5) the list of
pointcuts for access control in the standard Java distribution.

REFERENCES

[1] L. Gong and G. Ellison, Inside Java(TM) 2 Platform Security: Ar-
chitecture, API Design, and Implementation. —Pearson Education,
2003.

[2] L. Gong, M. Mueller, H. Prafullchandra, R. Schemers, and S. Mi-
crosystems, “Going beyond the sandbox: An overview of the new
security architecture in the Java development kit 1.2,” Proceedings
of the USENIX Symposium for Secure Systems, 1997.

[3] N. Hardy, “The confused deputy,” SIGOPS Operating Systems
Review, vol. 22, no. 4, pp. 36-38, 1988.

[4] I Welch and R. Stroud, “Supporting real world security models
in Java,” in Distributed Computing Systems, 1999. Proceedings. 7th
IEEE Workshop on Future Trends of Distributed Computing Systems,
1999, pp. 155-159.

[5] ]. Viega, J. Bloch, and P. Chandra, “Applying Aspect-Oriented
programming to security,” Cutter IT Journal, vol. 14, no. 2, pp.
31-39, Feb. 2001.

[6] B. De Win, B. Vanhaute, and B. De Decker, “Security through
aspect-oriented programming,” in Advances in Network and Dis-
tributed Systems Security, B. De Decker, F. Piessens, J. Smits, and
E. Van Herreweghen, Eds. Kluwer Academic Publishers, 2001,
pp. 125-138.

[71 B. D. Win, B. Vanhaute, and B. D. Decker, “How aspect-oriented
programming can help to build secure software,” Informatica 26,
vol. 2, pp. 141-149, 2002.

[8] P. Sowikowski and K. Zieliski, “Comparison study of aspect-
oriented and container managed security,” in Proceedings of the
Workshop on Analysis of Aspect Oriented Software, Germany, 2003.



(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

B. D. Win, W. Joosen, and F. Piessens, “Developing secure applica-
tions through Aspect-Oriented programming,” in Aspect-Oriented
Software Development. Addison-Wesley Professional, Oct. 2004,
pp. 633—650.

B. Vanhaute, B. D. Decker, B. D. Win, and D. Decker, “Building
frameworks in Aspect],” Workshop on Advanced Separation of Con-
cerns (ECOOP), pp. 1-6, 2001.

B. D. Win, W. Joosen, and F. Piessens, “AOSD security: A prac-
tical assessment,” Workshop on Software Engineering Properties of
Languages for Aspect Technologies (SPLAT), vol. 2003, pp. 1-6, 2003.
M. Huang, C. Wang, and L. Zhang, “Toward a reusable
and generic security aspect library,” in AOSD Technologies for
Application-Level Security, 2004.

R. Ramachandran, “Aspect] for multilevel security,” Master The-
sis, Victoria University of Wellington, 2006.

A. Mourad, M. Laverdire, and M. Debbabi, “An aspect-oriented
approach for the systematic security hardening of code,” Comput-
ers & Security, vol. 27, no. 3-4, pp. 101-114, Jun. 2008.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and
W. Griswold, “An overview of Aspect],” in Proceedings of the
15th European Conference on Object-Oriented Programming (ECOOP
2001), ser. Lecture Notes in Computer Science, J. L. Knudsen, Ed.,
no. 2072.  Budapest, Hungary: Springer-Verlag, Jun. 2001, pp.
327-353.

E. Tanter, “Expressive scoping of dynamically-deployed aspects,”
in Proceedings of the 7th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2008). Brussels, Belgium:
ACM Press, Apr. 2008, pp. 168-179.

E. Tanter, J. Fabry, R. Douence, J. Noyé, and M. Siidholt, “Expres-
sive scoping of distributed aspects,” in Proceedings of the 8th ACM
International Conference on Aspect-Oriented Software Development
(AOSD 2009). Charlottesville, Virginia, USA: ACM Press, Mar.
2009, pp. 27-38.

M. Felleisen, “On the expressive power of programming lan-
guages,” Science of Computer Programming, vol. 17, pp. 35-75, 1991.
P. Samarati and S. D. C. di Vimercati, “Access control: Policies,
models, and mechanisms,” in Foundations of Security Analysis and
Design, ser. Lecture Notes in Computer Science. London, UK:
Springer Berlin / Heidelberg, 2001, vol. 2171, no. 2171, pp. 137-
196.

Sun  Microsystems Inc., “Java  security architecture,”
http:/ /java.sun.com/javase/6/docs/technotes/guides/

security /spec/security-specTOC.fm.html.

G. Karjoth, “An operational semantics of Java 2 access control,”
in Computer Security Foundations Workshop, IEEE. ~ Washington,
DC, USA: IEEE Computer Society, 2000, p. 224.

H. Masuhara, G. Kiczales, and C. Dutchyn, “A compilation and
optimization model for aspect-oriented programs,” in Proceedings
of Compiler Construction (CC2003), ser. Lecture Notes in Computer
Science, G. Hedin, Ed., vol. 2622. Springer-Verlag, 2003, pp. 46—
60.

M. Wand, G. Kiczales, and C. Dutchyn, “A semantics for advice
and dynamic join points in aspect-oriented programming,” ACM
Transactions on Programming Languages and Systems, vol. 26, no. 5,
pp- 890-910, Sep. 2004.

D. Wallach and E. Felten, “Understanding Java stack inspection,”
in Proceedings of the IEEE Symposium on Security and Privacy, 1998,
pp- 52-63.

D. Wallach, A. Appel, and E. Felten, “SAFKASI: a security mech-
anism for language-based systems,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 9, no. 4, pp. 341-378,
2000.

U. Erlingsson and F. Schneider, “IRM enforcement of Java stack
inspection,” in Proceedings of the IEEE Symposium on Security and
Privacy, 2000, pp. 246-255.

E. B. Schneider, “Enforceable security policies,” ACM Trans. Inf.
Syst. Secur., vol. 3, no. 1, pp. 30-50, 2000.

E. Tanter, “Beyond static and dynamic scope,” in Proceedings of the
5th ACM Dynamic Languages Symposium (DLS 2009). Orlando, FL,
USA: ACM Press, Oct. 2009, pp. 3-14.

I. Aracic, V. Gasiunas, M. Mezini, and K. Ostermann, “An
overview of Caesar],” in Transactions on Aspect-Oriented Software
Development, ser. Lecture Notes in Computer Science, vol. 3880.
Springer-Verlag, Feb. 2006, pp. 135-173.

D. Ferraiolo and R. Kuhn, “Role-Based access control,” 15th NIST-
NCSC National Computer Security Conference, pp. 554-563, 1992.

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

17

E. C. Filho, N. Cacho, E. Figueiredo, R. Maranho, A. Garcia, and
C. M. E Rubira, “Exceptions and aspects: the devil is in the
details,” in Proceedings of the 14th ACM SIGSOFT international sym-
posium on Foundations of software engineering. Portland, Oregon,
USA: ACM, 2006, pp. 152-162.

N. Cacho, E. C. Filho, A. Garcia, and E. Figueiredo, “EJFlow: tam-
ing exceptional control flows in aspect-oriented programming,”
in Proceedings of the 7th international conference on Aspect-oriented
software development. Brussels, Belgium: ACM, 2008, pp. 72-83.
E. Bodden, F. Forster, and F. Steimann, “Avoiding infinite recur-
sion with stratified aspects,” in Proceedings of Net.ObjectDays 2006,
ser. Lecture Notes in Informatics. GI-Edition, 2006, pp. 49-54.
E. Tanter, “Execution levels for aspect-oriented programming,”
in Proceedings of the 9th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2010). Rennes and Saint
Malo, France: ACM Press, Mar. 2010, pp. 37-48, best Paper Award.
D. Brewer and M. Nash, “The chinese wall security policy,” in
IEEE Symposium on Security and Privacy. Los Alamitos, CA, USA:
IEEE Computer Society, 1989, p. 206.

M. Pistoia, A. Banerjee, and D. A. Naumann, “Beyond stack in-
spection: A unified Access-Control and Information-Flow security
model,” in Proceedings of the 2007 IEEE Symposium on Security and
Privacy (SP '07). 1EEE Computer Society, 2007, pp. 149-163.

J. Fischer, D. Marino, R. Majumdar, and T. Millstein, “Fine-
Grained access control with Object-Sensitive roles,” in 23rd Eu-
ropean Conference on Object-Oriented Programming (ECOOP), ser.
Lecture Notes in Computer Science, vol. 5653.  Genova, Italy:
Springer Berlin / Heidelberg, Jul. 2009, pp. 173-194.

R. Toledo, P. Leger, and E. Tanter, “AspectScript: Expressive
aspects for the Web,” in Proceedings of the 9th ACM International
Conference on Aspect-Oriented Software Development (AOSD 2010).
Rennes and Saint Malo, France: ACM Press, Mar. 2010, pp. 13-24.
M. Abadi and C. Fournet, “Access control based on execution
history,” In Proceedings of the 10th annual Network and Distributed
System Security Symposium, pp. 107-121, 2003.

N. Schérli, A. Black, and S. Ducasse, “Object-oriented encap-
sulation for dynamically-typed languages,” in Proceedings of the
19th ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications (OOPSLA 2004). Vancouver,
British Columbia, Canada: ACM Press, Oct. 2004, pp. 130-149,
aCM SIGPLAN Notices, 39(11).

H. Masuhara and K. Kawauchi, “Dataflow pointcut in aspect-
oriented programming,” in Proceedings of the First Asian Sym-
posium on Programming Languages and Systems (APLAS’03), ser.
Lecture Notes in Computer Science, vol. 2895, Nov. 2003, pp. 105-
121.

D. Alhadidi, A. Boukhtouta, N. Belblidia, M. Debbabi, and
P. Bhattacharya, “The dataflow pointcut: a formal and practical
framework,” in Proceedings of the 8th ACM international conference
on Aspect-oriented software development. Charlottesville, Virginia,
USA: ACM, 2009, pp. 15-26.

A. Mourad, A. Soeanu, M. Laverdire, and M. Debbabi, “New
aspect-oriented constructs for security hardening concerns,” Com-
puters & Security, vol. 28, no. 6, pp. 341-358, Sep. 2009.

E. International, ECMAScript Language Specification. ECMA-262,
5th ed., Apr. 2009.



