ZAC: Access Control in JavaScript

Rodolfo Toledo Eric Tanter
PLEIAD Lab
Computer Science Department (DCC)
University of Chile
Blanco Encalada 2120
Santiago, Chile

{rtoledo,etanter}@dcc.uchile.cl

Abstract

ZAC is a practical lightweight library for access control in JavaScript based on aspect orientation. The ZAC
access control architecture is stack-based, very similar to the ones of Java and C#. However, ZAC integrates other
interesting features for more expressive access control. First, access control policies can be enforced at the level of
objects, which permits more fine-grained control over the access to resources. Second, policies in ZAC can base
their decisions on the execution history of scripts, which permits to express policies that are impossible to define
using other models, such as bounded-time execution.

Index Terms

D.3.3 Language Constructs and Features, D.3.2 Scripting languages, D.3.1 Semantics

I. INTRODUCTION

Third-party JavaScript code inclusion is a cornerstone of today’s Web-2.0 applications. Without it, rich
personalized start pages, like iGoogle and My Yahoo, would be unthinkable. Facebook would not be
as rich as it is without external applications. Even targeted advertising, like Google AdSense, would be
impossible. However, despite being very useful, including external code poses a threat to the hosting page:
JavaScript can be used to modify both the layout and the functionality of a page to a potentially arbitrary
degree.

The questions are therefore: What are the rights of external code? Is it allowed to arbitrarily modify
the host page layout or functionality? How can it be restricted to only certain actions? Can we make sure
external code does not degrade the interactive user experience with the page? Other languages that also
support dynamic loading of code, like Java and C#, have a powerful access control architecture, allowing
developers to expressively specify the rights of code. While the most recent specification of JavaScript
includes some basic access control features [10], external tools must be used for more advanced control
over the access to sensitive resources; these tools rely on a variety of approaches, ranging from code
analyses, code transformation, and runtime libraries.

CURRENT APPROACHES FOR ACCESS CONTROL IN JAVASCRIPT

The only way provided by the HTML standard to control the rights of external code is to use frames:
including a script inside a frame gives full permissions to the script, but only over its enclosing frame.
However, in the majority of cases, this option is not expressive enough, mainly because it is too coarse-
grained. For instance, it is impossible to grant certain permissions to external code, like showing alert
dialogs, while forbidding others, like accessing cookies.

For this reason, several proposals have been presented for controlling the actions that scripts can perform
within a web page (Figure 1). AdSafe [1] limits the JavaScript features external code can use, leaving only
a “secure” subset of the language that can be statically checked to ensure it does not perform potentially
dangerous actions. FBJS [6] rewrites the code to replace references to standard objects with limited, but

| Name | Enforcement | Based on | Extensible/Specification | Granularity]|
AdSafe static static analysis no/- script
FBJS static + dynamic | object wrappers no/- page
BrowserShield | dynamic program monitoring | yes/blacklisting page
Caja static + dynamic | object capabilities yes/whitelisting script

| ZAC | dynamic | dynamic AOP | yes/blacklisting | object |

Fig. 1. JavaScript proposals for access control.

equivalent objects, preventing any potentially dangerous action. This is what Facebook uses for third-
party applications. BrowserShield [13] is a more flexible proposal that can be used in more scenarios.
BrowserShield transforms code to make it trigger notifications of its own activity during execution. An
observer entity then decides whether the activity of the code should be allowed or not. New policies
can be specified as functions using the JavaScript language itself. Finally, Caja [2] is a more principled
approach to access control based on the object-capability model. In this model, external code can access
(and therefore use) references to other objects only if the host page provides them. If no reference is
provided, the external code can still compute based on its own (harmless) references. Caja is used in
iGoogle and My Yahoo.
As depicted in Figure 1, ZAC combines very interesting features:

« Dynamic enforcement of policies enables the execution of programs that are safe but use unsafe
constructs. For example, programs that use eval only to deserialize JSON objects from strings, and
not to execute arbitrary code, are safe. However, because they use a potentially unsafe construct,
such programs are rejected by systems like AdSafe.

« Being based on dynamic aspect-oriented programming (AOP) [5], allows ZAC policies to reason
about program execution in its entirety. For instance, it is possible to define a policy that prevents
a script from never ending, or taking too much time for acceptable web interaction. This kind of
policy is impossible to express in the object-capability model because the property does not depend
on object references, but rather on computation itself.

« Extensible access control specifications is crucial considering that different usage scenarios imply
different requirements. This is acknowledged by other proposals like BrowserShield and Caja.

o Object-level granularity is a unique feature of ZAC. Allowing the coexistence of different policies
for different scripts within a Web page is fundamental. Going beyond the script level down to the
object level also enables a secure interaction among scripts: objects from one script can use objects
from other scripts, possibly with different policies; the correct policy will be unequivocally enforced.
This is not the case with capabilities, where an untrusted object that obtains a reference to a sensitive
resource can use it without limitations.

The principle of ZAC is that foreign code can use every feature of JavaScript, including eval, and also
can access every reference to any object in the system. However, the access control policy assigned to the
foreign code when loaded forbids dangerous actions before they happen at runtime. In other words, ZAC
follows a blacklisting approach, which, despite being considered less safe than a whitelisting approach,
is actually used in real systems for access control. Even more, it turns out to be equivalent to the access
control architectures of widely-used languages such as Java [8] and C# [9] (see Figure 2 for more details).
Finally, ZAC also inherits the great expressive power of the underlying general-purpose library for aspect-
oriented programming AspectScript [15], as will be shown later on in this article.

II. ZAC IN ACTION

ZAC is based on assigning access control policies to scripts when loaded. At runtime, the policy is
enforced for every action performed by these scripts.

Blacklisting v/s Whitelisting in Practice

Policies based on whitelisting specify what resources the entities in the system can access (e.g. user
X can use the printer). Conversely, policies based on blacklisting specifies what resources cannot
be accessed (e.g. user Y cannot modify system files). In general, whitelisting is considered a safer
approach because access to resources can be granted gradually, minimizing the risk of inadvertently
granting access to unneeded sensitive resources. This is not the case of blacklisting where it is
possible to forget to restrict access to a resource.

However, and despite the fact that whitelisting is superior from a conceptual point of view,
blacklisting-equivalent approaches are successfully use in practice. A compelling proof of this
comes from the widespread use of Java and C#. While their access control architectures appear
to be based on whitelisting (because one declares permissions, not restrictions), they are in
practice equivalent to blacklisting approaches. This stems from the fact that permission checking
in these architectures has to be explicitly triggered at each and every relevant place in the code
(using SecurityManager.checkPermission(<Permission>) in Java and <IPermission>.Demand() in C#).
This means that forgetting to add the permission check associated to a sensitive resource in Java/C#
is just like forgetting to restrict the access to that resource in ZAC. The dependency on explicit
checks implies that the set of permissions is known in advance, and therefore, the set of restrictions
can be calculated as the complement of the permissions. This is what makes the architectures of
Java and C# equivalent, in practice, to the blacklisting architecture of ZAC.

Fig. 2.

A. Loading Scripts

Enforcing access control policies with ZAC is very easy through the use of a simple API. For example,
to load a third-party script it is only necessary to use the ZAC.load method:

ZAC.load(”http ://www. evilsite .net/evil.js”, ZAC.newDefaultPolicy());

Loading the evil.js script using load, its execution is automatically subject to the restrictions in the policy
specified as the second argument. Policies in ZAC are sets of restrictions. Figure 3 shows the restrictions in
the policy returned by ZAC.newDefaultPolicy(), targeted to restrict the access to common sensitive resources.
For instance, the ZAC.R_ALERT restriction forbids the use of alert dialogs. These dialogs are normally used
to provide valuable information to the user, but they can also be used to turn a page (or even the whole
browser) unusable by endlessly showing an alert dialog. Another example is ZAC.R_LOCATION, that forbids
redirections of the page. This restriction prevents malicious scripts from sending the browser to potentially
dangerous sites.

B. Policy Enforcement

When loaded using ZAC.load, a script is unable to bypass the specified access control policy, directly or
indirectly. This means that the script itself will not be able to perform any action forbidden by the policy,
and also that it will not be able to lead other (possibly trusted) code to do it on its behalf. The reason is
that ZAC supports stack-based access control [7] similar to Java [8] and C# [9]. The semantics of stack-
based access control says that each time a sensitive action is about to be performed, the current stack of
evaluation is inspected to determine whether all the participating entities (in the case of JavaScript, objects
and functions) are allowed to perform the action. If one entity is not allowed, then the action is aborted,
typically by throwing an exception. In order to diminish the performance overhead, ZAC does not inspect
the stack every time a sensitive action occurs, but maintains the security state of the application at each
necessary point (see Figure 4 for more details).

Figure 5 shows three different attempts to call the alert function, all ending with an exception raised by
the access control policy. The first one is a direct call, the second one uses delegation: the untrusted code

| Constant (ZAC.) | Description

R_ALERT prevents alert calls.

R_LOCATION prevents redirection of the browser.

R_.C_STYLES prevents calls to computedStyles().

R_INNER_HTML sanitizes strings assigned to the innerHTML property.
R_COOKIES prevents access to cookies.

R_GLOBAL prevents access to properties of the global object.

R_EVAL prevents arbitrary use of eval (only JSON deserialization).
R_FUN prevents instantiations of Function objects.

R_STO_SI prevents calls to setTimeout and setinterval with a string argument.
R_HTTP_REQ prevents instantiations of XMLHttpRequest objects.
R_DEF_PROTOS prevents modification of prototypes of default objects.
R_.ARGS prevents access to the arguments property of other functions.
R_WATCH prevents calls to watch and unwatch.

R_UNENCR prevents calls to toSource and uneval.

R_ZAC_POLICIES \ prevents access to ZAC policies.

Fig. 3. Restrictions in ZAC’s default access control policy. Constants are accessed as properties of the ZAG global property.

ZAC Performance overhead

The main sources of performance overhead in ZAC are twofold: the overhead of event generation,
and the overhead of the stack-inspection semantics for access control. We refer the reader to [15]
for an overview of the optimization techniques for event generation.

In order to diminish the performance overhead of access control, ZAC does not inspect the stack
every time a sensitive action occurs. Instead, it uses a state-based approach in which the security state
of the application is kept up to date. This approach is similar to the optimization for control flow
pointcuts commonly used in the implementation of aspect-oriented languages [12], where determining
whether an action is in the control flow of another is a matter of testing a variable, avoiding the
traversal of the stack. The technique used in ZAC can also be compared to security-passing style [16],
in which an extra parameter representing the current security context is passed to all functions. As
future work, other implementation approaches can be integrated, such as using continuation marks [4].
This permits to get rid of the dependency on the stack to reason about access control (maintaining
the same semantics), and also enables very interesting optimizations [3].

Fig. 4.

invokes the (trusted) info function, which in turn tries to call alert. All these attempts end with an exception
because the stack contains an object whose policy does not permits calls to alert. The third attempt is
interesting, because it uses eval. ZAC ensures that restrictions of the code that calls eval are inherited
by the eval-ed code: therefore, this attempt also fails. The last attempt is more intricate: although ZAC’s
policies are specified at the level of scripts (loading them using load), they are enforced at the level of
individual objects. The consequence is that if an object is created during the execution of a script subject
to a certain policy, that object’s execution will always be subject to that policy: wherever the object goes,
the policy follows it. Therefore, in the example, the policy is present in the stack when the anonymous
function calls info. This is the reason why the third attempt also ends with an exception. It is important to
highlight that this kind of access control is impossible to achieve with any other proposal (Figure 1). For
example, in capability-based access control, if the anonymous function manages to get a reference to the
info function, there are no means to prevent it from calling info to display an alert dialog. Once an object
obtains a reference, it can use that reference at will, no matter which was the policy originally assigned

gy

(a) direct invocation (d) scheduled invocation

(using delegation) (using eval)

setTimeout(function(){
info("I'm evil!");

}, 1000);

function info(msg){

alert("I'm evil!"); alert(msg);

eval("alert(\"I'm evil\")");

'

[

1

1

[

1

1

1

| alert(..)

1

! ’
| <string> R-AI‘E
1 ;
1

[

[

1

[

[

1

1

[

info("I'm evil!");

! 1
! 1
! 1
! 1
! 1
' 1
! 1
' 1
! 1
! 1
! 1
! 1
! 1
1 alert(..) \
! 1
! 1
! 1
! 1
' 1
! 1
' 1
! 1
! 1
J 1

1 second
setTimeout(.) | ~ ™~ alert(..) >

eviljs ((R_ALERT info(.) D

anonymous,
function

alert(..) D
evil.js (R_ALERT

execution stack

eval(..)

eviljs (R_ALERT)

execution stack

info(.) D

eviljs (R_ALERT

R_ALERT

1
I
1
1
I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
: execution stack
1

1

execution stack

[: policy containing the ZAC.R_ALERT restriction D : stack inspection order }

Fig. 5. Policy enforcement in ZAC. All these attempts will fail with an exception raised by the access control policy.

to it.

C. Defining Custom Policies

As typical sets, policies in ZAC can be modified by adding or removing restrictions (using the add and
remove methods respectively). There are several scenarios where this can be useful. For instance, it seems
natural to specify different policies for different foreign scripts, depending on the level of confidence the
host page has in each of them. Another scenario is when a policy must be constructed programmatically
(e.g. according to the preferences of the user). The API of ZAC permit to modify policies even after using
them to load a script. These modifications will affect all the scripts already loaded using the policy.

In addition to default policies, empty policies can be created using ZAC.newPolicy(). In the following
piece of code, two policies are configured to enforce different restrictions in two different scripts:

var softPolicy = ZAC.newPolicy(); //fresh policy (no restrictions)
//restrict only page redirections and evaluation of code in notSoEvil.js

softPolicy .add(ZAC.RLOCATION, ZAC.R.EVAL);

ZAC.load(”http :// evilsite .net/notSoEvil.js”, softPolicy);

//get a default policy and remove only the RALERT restriction for evil.js
var hardPolicy = ZAC.newDefaultPolicy ();

hardPolicy .remove (ZAC.RALERT) ;

ZAC.load(”http :// evilsite .net/evil.js”, hardPolicy);

III. EXTENDING ZAC

Each restriction in a policy is targeted to restrict the access to common sensitive resources. ZAC’s
policies can be extended by adding new restrictions targeted to protect other resources.

A. Defining Restrictions

A restriction is a JavaScript object with two properties, both of which are functions. A rule property is
in charge of identifying the access to the resource, and an action property is in charge of specifying the
action to take when the resource access occurs. For example, the ZAC.R_ALERT restriction is implemented
as follows:

ZAC.RALERT = {
rule: function(event){ return event.isCall() &% event.fun === alert; },
action: function(event){ throw ”Cannot call alert”; }

b

Event Properties Common Common
Name properties | methods
New fun, args
Init target, fun, args
. roceed(args),
Call target, fun, args, context, reflective P (args)
parent clone(),
Exec target, fun, args is<eventName>()
PropRead target, name
PropWrite target, name, value

Fig. 6. Properties and methods of events supported by ZAC. fun: the function being used as a constructor (New and Init), or being
called/executed (Call and Exec). args: the arguments of the event. target: the target of the event. context: the object performing the
call. reflective: whether the call was performed using call or apply. parent: the parent event (like a stack of execution). proceed:
executes the event. clone: clones the event (useful to store a reference). is<eventName> () : boolean-returning utility methods to identify
the kind of event.

The function bound to the rule property identifies calls to the alert function by returning true when such
calls occur. It uses the event parameter, which is a representation of the event occurring in the script.
Figure 6 shows the complete list of event types supported by ZAC, and the corresponding properties
(fields and methods) in each case. The function bound to the action property simply throws an exception
because invoking alert is completely forbidden.

An alternative to simply throwing an exception is to provide, possibly under certain circumstances, an
alternate “safe” behavior. For example, the eval function of JavaScript is widely considered dangerous
because it permits to execute arbitrary, potentially malicious, code. However, eval has a very useful
application: the deserialization of a JSON [11] object from a string. Because JSON object’s serialization
format do not permit functions, no arbitrary code can be executed when evaluating a serialized object.
In other words, using eval for deserializing JSON objects is safe. The code below shows the ZAC.R_EVAL
restriction that only forbids the evaluation of code that is not in JSON format:

ZAC.REVAL = {
rule: function(event){ return event.isCall() &% event.fun === eval; },
action: function(event){
try{
return JSON. parse (event.args[0]);
catch(e){
throw ”Eval can only be used to deserialize JSON objects.”;
}
Fb

Just like in the ZAC.R_ALERT restriction, the rule property identifies calls to a certain function, in this case,
eval. The action property, instead of immediately throwing an exception, first tries to evaluate the first
argument of eval (event.args[0]) as a JSON string. If it effectively is a JSON string, the resulting object is
returned. Otherwise, an exception is thrown by JSON.parse; the restriction action then throws an exception
itself.

B. Adding New Restrictions

ZAC comes with a set of predefined restrictions (recall Figure 3), which corresponds to common cases.
It is possible to define whole new kinds of restrictions as well. Let us define a new restriction that limits
the number of windows a script can open:

function nWindowsRestriction(n){
return {
nWindows: 0,

rule: function(event){ return event.isCall() &% event.fun === document.open; },
action: function(event){
if (++this.nWindows > n){
throw ”Cannot open more than ” + n + ” windows.”;

}

return event.proceed();

}
b}
//add the restriction to a fresh policy
var policy = ZAC.newPolicy ().add(nWindowsRestriction (3));

The code above shows the use of three interesting elements: a stateful restriction, a restriction factory,
and the use of event.proceed().

Stateful restrictions. A restriction can have any number of additional properties apart from rule and
action. In the example, the nWindows property is used to keep track of the number of windows opened by
the script. Therefore the restriction returned by nWindowsRestriction is called a stateful restriction. The only
consequence associated to a stateful restriction is that when it is added to more than one policy, its state
is shared among these policies. For this reason, a restriction like the one returned by nWindowsRestriction
will allow three windows in total, summing up all the windows opened by all scripts the restriction applies
to.

Restriction factory. To define a restriction, creating an object with the appropriate properties suffices.
However, using a restriction factory like the nWindowsRestriction function has two advantages. First, it
permits to easily parameterize the restriction (the n argument in the example). And second, it permits to
obtain a different instance each time the generator is invoked. This can be used to avoid the sharing issue
associated to stateful restrictions.

The proceed method. The proceed method can be used to execute the original behavior the event
parameter represents in the script. In the example, the call to the open function. The proceed method
accepts the same parameters the original event does. If specified, these parameters replace the original
parameters passed to the event. If omitted, the event is executed with the original parameters.

IV. ADVANCED FEATURES

A. Privileged Execution

In some cases, a piece of code needs to perform a sensitive action on behalf of another piece of
code. This could be the case of the info function presented before: it may allow any entity to display an
alert dialog, regardless of its access control policy. However, the stack-based access control mechanism
presented before does not permit that. For this reason, languages like Java [8] provide a way to relax this
constraint by executing a privileged action: during the execution of a privileged action, the restrictions of
the objects in the control flow before the privileged action are omitted. Only the ones pertaining to objects
up to the one initiating the privileged action are considered. In terms of the stack inspection mechanism,
privileged execution is analogous to stop looking in the stack of execution when the frame that initiated
the privileged action is reached. It is important to notice that the privileged execution mechanism does
not circumvent access control: any object can start a privileged execution, but doing so, it cannot get rid
of its own restrictions, because they are maintained. In other words, a very restricted object can start a
privileged execution, however, during the privileged action, the restrictions of the object are present.

In ZAC, a privileged action is started by a self call to doPrivileged, and the code to execute in this
privileged context is specified as the body of the function passed as parameter. Therefore, the info function
can be implemented this way:

function info (msg){
this.doPrivileged (function () {

alert(msg);

13

privileged execution

1 1
1 1
: function info(msg){ I
. .. . 1)

! th|s.doPr|V|I.eged(functlon(){ alert(..) | @ - policy containing the
| alert(msg); 1 ZAC.R_ALERT restriction

. I
b doPrivileged(..) I
: } D : D : stack inspection order
! info(..) \\ 1
L e .
. info("I'm evil!); : \\ : end of stack inspection
1 1 J
1 evil.js (R_LALERT .
1 1
1 1
1

execution stack

Fig. 7. Stack inspection in presence of privileged execution.

Figure 7 depicts the stack-based access control process in presence of privileged execution: when the alert
function is about to be called, the stack is inspected up to the frame that initiated the privileged action,
thus the frame corresponding to the object that has the ZAC.R_ALERT restriction is not reached.

doPrivileged acts just as a marker method signaling a privileged execution. Objects can use their own
implementations of doPrivileged, the only requirement is to maintain the name. A default implementation
of this method is to simply invoke the function argument:

obj.doPrivileged = function(action){
action ();

b

The semantics of ZAC for privileged execution defines that any self call to doPrivileged starts a privileged
action. Non self calls to doPrivileged are not considered privileged executions. In consequence, an untrusted
object cannot call doPrivileged on a trusted object to bypass access control.

B. Taking Advantage of AspectScript

As mentioned before, ZAC is implemented on top of AspectScript. AspectScript is an extension to
JavaScript adding support for aspect-oriented programming [5]. In aspect-oriented programming, execution
of a program is represented as a series of join points (a function call, a property access, an object creation,
etc.—see Figure 6). A pointcut identifies a set of join points, and a piece of advice is the action to be
taken at a join point matched by a pointcut. In AspectScript, an aspect is a pointcut-advice pair, where
both pointcuts and advices are plain JavaScript functions that receive a join point as parameter.

AspectScript’s aspects corresponds exactly to ZAC’s restrictions, where the rule property is the pointcut,
and the action property is the piece of advice. The policy enforcement (stack-based access control and
privileged actions) is implemented based on dynamic deployment of aspects and expressive scoping [14].
ZAC depends only on AspectScript to be secure: if AspectScript generates all the events associated to
the execution of all untrusted objects, these objects will not be able to do anything without ZAC being
aware of it. This is the reason why ZAC policies cannot be circumvented.

The fact that ZAC is implemented on top of AspectScript brings many benefits, of which we highlight
two: the ample variety pointcuts included in AspectScript, and the ability to reason about the program
execution.

AspectScript includes several predefined pointcuts that can be composed to identify more intricate
actions. For example, the following pointcut identifies the calls to alert that occur inside the body of any
method of obj:

var PCs = AspectScript.Pointcuts;
var pc = PCs.call(alert).and(PCs.within(obj));

Pointcuts in AspectScript can also match sequences of events, optionally restricted by temporal condi-
tions. This can be useful in access control to, for instance, forbid the invocations to alert that occur too
frequently, say more than one per second.

The ability of ZAC to reason about the execution of a program derives from the fact that AspectScript
generates join points for every action in the scripts, evaluating pointcuts for each one of them. In a
capability-based model, for instance, reasoning about the history of program execution is impossible. This
is because the model considers accessing a reference and executing some methods as the only way to
threaten a system. However, there are other interesting security properties that are related to the actual
computation of programs.

An example of a security property based on actual computation—which is actually checked by most
browsers—is to ensure that a third-party script does not degrade the interactive experience of the user: if
a script takes too long to execute, the browser suspends its execution and asks the user whether to simply
abort the script. While such a restriction is beyond the realm of capabilities, it is straightforward to define
with ZAC:

function ninstructionsRestriction(n){
return {

ninstructions: 0,

rule: function(event){
return ++nlnstructions > n;

b

action: function(event){
if (confirm(”This script is running for too long. Abort it?”){

throw ”Cannot execute more than ” + n + instructions”;

}
ninstructions = 0;
return event.proceed();

}
b
For simplicity, we use instruction count rather than actual time. The point here is just to give an idea

of the wide range of policies that can be expressed using dynamic AOP as a foundation for defining
restrictions.

2

V. CONCLUSION

The ubiquity of the JavaScript language and the myriad of ways in which it is being used turn
access control into a crucial element for a safe web experience. In this article we presented ZAC, a
lightweight practical library for access control in JavaScript comprising very interesting features which
permit to express security properties not enforceable with other approaches, such as per-object restrictions
and bounded-time execution. ZAC’s implementation is based on aspect orientation, which, apart from
constituting a solid ground currently under active development, brings many practical benefits in terms of
expressiveness.

Availability. ZAC is available at http://pleiad.cl/aspectscript/zac, and AspectScript at
http://pleiad.cl/aspectscript.

REFERENCES

[1] AdSafe. http://www.adsafe.org.

[2] Caja. http://code.google.com/p/google-caija.

[3] John Clements and Matthias Felleisen. A tail-recursive machine with stack inspection. ACM Transactions on Programming Languages
and Systems (TOPLAS), 26(6):1029-1052, 2004.

[4] John Clements, Ayswarya Sundaram, and David Herman. Implementing continuation marks in javascript. In Proceedings of the
Workshop on Scheme and Functional Programming, 2008.

[5] Tzilla Elrad, Robert E. Filman, and Atef Bader. Aspect-oriented programming. Communications of the ACM, 44(10), October 2001.

[6] FBJS. http://wiki.developers.facebook.com/index.php/FBJS.

(71

(8]
(9]

(10]
(11]
(12]
(13]
(14]

[15]

(16]

Cédric Fournet and Andrew D. Gordon. Stack inspection: theory and variants. ACM Transactions on Programming Languages and
Systems (TOPLAS), 25(3):360 — 399, 2003.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification, 3rd edition. Addison-Wesley, 2005.
Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Language Specification. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

ECMA International. ECMAScript Language Specification. ECMA-262. ECMA, 5 edition, December 2009.

JSON. http://www. json.org/.

Hidehiko Masuhara, Gregor Kiczales, and Christopher Dutchyn. A compilation and optimization model for aspect-oriented programs.
In G. Hedin, editor, Proceedings of Compiler Construction (CC2003), volume 2622 of Lecture Notes in Computer Science, pages
46-60. Springer-Verlag, 2003.

Charles Reis, John Dunagan, Helen J. Wang, Opher Dubrovsky, and Saher Esmeir. Browsershield: Vulnerability-driven filtering of
dynamic html. ACM Trans. Web, 1(3):11, 2007.

Eric Tanter. Expressive scoping of dynamically-deployed aspects. In Proceedings of the 7th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2008), pages 168—179, Brussels, Belgium, April 2008. ACM Press.

Rodolfo Toledo, Paul Leger, and Eric Tanter. AspectScript: Expressive aspects for the Web. In Proceedings of the 9th ACM International
Conference on Aspect-Oriented Software Development (AOSD 2010), pages 13-24, Rennes and Saint Malo, France, March 2010. ACM
Press.

Dan Wallach and Edward Felten. Understanding Java stack inspection. In Proceedings of the IEEE Symposium on Security and Privacy,
pages 52-63, 1998.

