
AVISPA: Localizing Improvement Opportunities in Software Process
Models

Julio Ariel Hurtado Alegŕıa
Computer Science Dept.

Universidad de Chile
IDIS Research Group
University of Cauca

jhurtado@dcc.uchile.cl

Maŕıa Cecilia Bastarrica
Computer Science Dept.

Universidad de Chile
cecilia@dcc.uchile.cl

Alexandre Bergel
Computer Science Dept.

Universidad de Chile
abergel@dcc.uchile.cl

Abstract

Software process models are sophisticated and large
specifications aimed at organizing and managing soft-
ware development. Their formal specification demands
an enormous effort, but once specified there are few ap-
proaches and even fewer tools that aid the process engi-
neer to evaluate the quality of the process. According to
the industrial experience we conducted over the last five
years, we have found a series of software process model
patterns that indicate the potential presence of miscon-
ceptions or misspecifications. This paper presents these
patterns, characterizes the kind of error they potentially
reveal, and details the graphical indicator we used to
localize potential errors within a software process. To
assist process engineers to assess the quality of their
processes, we provide AVISPA, a tool that graphically
renders different aspects of a process model. Potential
errors are highlighted using intuitive and comprehensi-
ble indicators. The approach and the supporting tool
are illustrated by applying them for evaluating the soft-
ware process models of three industrial case studies.

1. Introduction

Counting on a well defined software process model is
determinant for achieving software quality and process
productivity. Therefore, many companies have under-
taken software process specification and improvement
as a priority project. However, conceptualizing the
software process model demands an enormous effort for
making explicit common practices and defining prac-
tices that do not exist within the company yet. Stan-
dards such as ISO/IEC15504 [10] and maturity mod-
els such as CMMI [17] are generally used as guidelines

for this process. But there are still no standard wide-
spread mechanism for determining the quality of the
specified process, and thus the return-of-investment of
software process definition is not always clear.

For the last five years we have been working in aiding
small software companies in Chile to define their devel-
opment processes in an effort to improve national in-
dustry standards1. As part of this practical experience,
we have found that there are some typical recurrent er-
rors in software processes, some of them due to concep-
tual errors in the process design and others just speci-
fication errors. But none of them are easily identified,
let alone localized, because of the enormous amount
of process elements involved, multiple views, and in-
formal notations that may sometimes introduce ambi-
guity. For example, a role that does not collaborate
with others, even though is not an error in itself, may
indicate a misconception in the software process. Sim-
ilarly, if we consider that a task precedes another one
if the output artifacts of the former are inputs for the
latter, then having islands of disconnected subgraphs
suggests an error in the software process specification.
Also, having tasks that involve too many input and/or
output work products, may become bottlenecks and a
better process design may require dividing these tasks,
but it is not always clear how many is too many.

In a previous work, we have proposed process model
blueprints [9] as a means for visualizing and analyz-
ing different perspectives of a software process model.
The three blueprints we consider (Role Blueprint,
Task Blueprint, and Work Product Blueprint)
are applied to software process models defined using
SPEM 2.0, the standard notation for process specifica-
tion. The process blueprints we proposed are effective

1Tutelkán: Achieving High Quality in National Software In-
dustry by Applying Reference Processes (www.tutelkan.org).

in identifying exceptional entities [4], i.e., exceptions
in the quantitative data we collected. Blueprints were
successfully used to identify a number of flaws in an
industrial process model. Since then, we have assessed
a number of other industrial process models, and we
discovered a set of recurrent patterns ranging from sub-
optimal modeling to misconceptions and misspecifica-
tions. This paper is about presenting, formalizing and
validating these recurrent patterns.

We rigorously define a series of recurrent errors ap-
pearing in software process models, and we explain
their potential consequences. We also show how each
of these error patterns can be identified as part of a
software process blueprint. We have built AVISPA
(Analysis and Visualization for Software Process As-
sessment)2, a tool that builds blueprints and high-
lights error patterns. It has been developed on top of
MOOSE and using the Mondrian environment for dis-
playing blueprints. Counting on this tool, the process
engineer only needs to analyze highlighted elements,
demanding less experience for effective process model
evaluation, and adding usability as well.

SPEM 2.0
Process spec Avispa

Enhanced
process
blueprint

Manual
interpretation

Figure 1. Avispa in the software process
model improvement process

The specification of a software process model re-
quires a domain specific language. We consider SPEM
2.0 for our work since it is the standard of OMG, and
it has also been promoted within the Chilean software
industry by the Tutelkán project. The whole software
process improvement will be benefited with the use of
Avispa, and the methodology that is followed is that
shown in Figure 1. This paper is about describing
Avispa and the enhanced generated process blueprints
(bold components in Figure 1).

We have applied AVISPA for analyzing the process
models defined in three different Chilean software com-
panies. We have been able to find several of the defined
error patterns, and most of them resulted in actual er-
rors. All processes analyzed had some error, giving
support to our hypothesis that a formal tool that helps
the process engineer is completely required. We report
some of these experiences.

2http://www.moosetechnology.org/tools/ProcessModel.
Avispa is freely available under the MIT license.

The rest of the paper is structured as follows. Sec-
tion 2 presents a description of empirically found re-
current errors, as well as a description of their implica-
tions, and how they look in a process model blueprint.
A detailed description of the AVISPA tool is included
in Sect. 3 and its application for localizing error pat-
terns in three industrial software process models is re-
ported in Sect 4. Related work is discussed in Sect. 5.
Finally, some conclusions and further work are pre-
sented in Sect. 6.

2. Problematic Process Model Patterns

For the past five years we have been conducting ap-
plied research in the area of software process models in
small software companies in Chile [8, 18, 19] as part of
the Tutelkán project. Along this work we have identi-
fied a number of common errors and problematic sit-
uation in software process model specifications, either
due to misconceptions or misspecifications. In this sec-
tion we report a series of these patterns, how they may
be identified within a process model blueprint, and
mainly how, through a reverse engineering approach,
we are able to automatically highlight them as part of
the blueprint where they appear.

Section 2.1 is a summary of our previous work [9].
It is necessary to introduce it since we augmented our
previous visualizations with new information to iden-
tify problematic model patterns. Readers familiar with
Process Model Blueprints may safely skip Sect. 2.1.
Section 2.2 informally presents the problematic pat-
terns we have identified. They are revisited in more
detail in later on.

2.1. Process Model Blueprints

Role Blueprint, Task Blueprint and Work
Product Blueprint are three graphical representa-
tions of a process model. Each of them focuses on a
particular aspect of the process model, namely roles,
tasks and work products. Each blueprint is visualized
as a polymetric view [11], a lightweight software visu-
alization technique enriched with software metrics in-
formation, that has been successfully used to provide
software maps.

In the Role Blueprint, nodes are roles whose size
represents the number of tasks in which they are in-
volved, and edges between two nodes indicate role col-
laboration (two roles that work together in the same
task). Following the principle of the exceptional en-
tities reengineering pattern [4], nodes that are signifi-
cantly larger than others may be a symptom of over-
loaded roles, and isolated roles could suggest a specifi-

2

http://www.moosetechnology.org/tools/ProcessModel

Figure 2. Enhanced Task Blueprint with potential errors highlighted

cation error since those roles are not collaborating with
any other in the whole process.

In the Task Blueprint, nodes are tasks whose
hight and width represent the number of input and
output work products of the task, respectively. Edges
between two nodes represent precedence: a task T1
precedes task T2 if there is an output work product
of T1 that is an input work product of T2. A node
that is significantly longer compared to others is likely
to be a bottleneck of the process since this task has to
wait for all input work products to be available in order
to begin. Also having too many initial tasks (with no
predecessors) may be an indication of a misspecifica-
tion since the process generally starts as a consequence
of a decision that triggers the rest of the process. An
example of an enhanced Task Blueprint is depicted
in Figure 2. The original version of Task Blueprint
uses gray scale to indicate associated guidelines. As it
is described later on, in this enhanced version, colors
indicate potential anomalies.

In the Work Product Blueprint nodes are work
products whose dimensions represent the number of
tasks that write and read the work product, respec-
tively. Here, a large node may also represent a bot-
tleneck since significantly large work products are re-
quired for a great deal of tasks. An edge between two
work products WP1 and WP2 implies that there is a
task that consumes WP1 and produces WP2. Even
though there may be many initial and final work prod-
ucts not suggesting any error, disconnected subgraphs
strongly suggest the existence of independent subpro-
jects, revealing conception or specification problems.

2.2. Potential Errors

As outlined in the previous section, there is a num-
ber of patterns likely to reveal anomalies in software

process specifications that we have realized that are
fairly frequent. We here describe some of them along
with their consequences and how they would look in the
blueprint where they may be found. We also provide a
tentative quantification for how bad may be considered
too bad, so that it could serve as a basis for automating
localization.
Overloaded roles. If a role is involved in a large
number of tasks, it becomes a risk: if it fails, the asso-
ciated tasks within the process will fail as well. This is
a clear anomaly in the process model conception. Bet-
ter choices would be either specializing the role by di-
viding its responsibilities, or reassigning tasks to other
roles. We would say that a role is overloaded if it is
more than one standard deviation larger than the av-
erage size. This error pattern can be computed as part
of the Role Blueprint, and we highlight overloaded
roles in red. In Fig. 3 we can see that the Developer
role is much larger than the others, and thus it may be
overloaded.

Figure 3. Role Blueprint

Isolated roles. There may be certain tasks that a role
executes by itself, but it is not frequently right to have

3

a role that never collaborates in any task with other
roles. In general, this kind of error pattern shows a
misspecification: a role should have been assigned to
take part of a certain task but it was forgotten. This
error pattern is also apparent in the Role Blueprint,
and we highlight isolated roles in green. In Fig. 3, the
Client role is isolated.

Tasks that involve too many work products. A
process where tasks are involved with too many work
products may reveal that tasks are not specified with
the appropriate granularity. A task that needs too
many input work products may reveal an extremely
complex task, and not only it would be difficult to
accomplish as planned but also it should wait until
all these work products are available before the pro-
cess can proceed. Similarly, a task with too many
output products may be too complex since its goal is
not unique. This pattern can be seen in the Task
Blueprint where we highlight wide nodes (too many
output work products) in red, high nodes (too many in-
put work products) in yellow, and large nodes (where
both dimensions are big) in orange, as shown in Fig. 2.
We consider a task to be too big if its hight or width
are larger than one standard deviation from the aver-
age task hight or width, respectively.

Work products required for too many tasks.
Work products required for a high number of tasks may
cause serious bottlenecks when they are not available.
This situation can be seen in the Work Product
Blueprint where we highlight in orange nodes whose
width (number of tasks that require it as an input) is
more than one standard deviation from the average.

Independent subprojects. In a software process
model, tasks and work products are related with edges
indicating precedence. In the Task Blueprint, a task
T1 precedes a task T2 if there is an output work prod-
uct of T1 that is an input workproduct of T2. Similarly,
in the Work Product Blueprint a work product
WP1 predecedes another work product WP2 if there is
a task where WP1 is an input and WP2 is an output.
Considering that the process model specifies the way to
proceed when working on one project, it is conceptually
odd to have disconnected subgraphs, both in the Task
Blueprint and the Work Product Blueprint. In
general, these situations arise due to misspecifications,
when work products have not been specified as input or
ouput artifacts for certain tasks when they should have
been. We identify each subgraph with a different color
in both, the Task Blueprint and the Work Prod-
uct Blueprint, in order to identify the existence of
independent subprojects.

3. Tool Support for Localizing Potential
Errors

This section sketches the internals of the implemen-
tation of Avispa. The scripts for implementing two of
the error patterns are subsequently offered in Sect. 3.2.
Finally, a description of the tool from the user point of
view is provided in Sect. 3.3.

3.1. Implementation of Avispa

PMObject

PMRole PMArtifactPMTask* *
* *

* *

MooseGroup

PMRoleGroup PMTaskGroup PMArtifactGroup

*

followingTasks
numberOfArtifactOutputs
numberOfArtifactMandatoryInputs
deviationToMeanInputArtifacts: double
deviationToMeanOutputArtifact: double

PMTask
viewTaskBlueprintOn:

PMTaskGroup

detailled view

MooseEntity

Figure 4. The Avispa metamodel (gray
classes belong to FAMIX)

The error pattern detection described in the pre-
vious section is implemented in Avispa, an extension
of MOOSE that deals with process models specified
in SPEM 2.0. The FAMIX family of metamodels3

has been augmented with the Avispa metamodel as
shown in Fig. 4 for describing and representing soft-
ware processes. FAMIX has been extended by sub-
classing MooseEntity and MooseGroup. The name of
the classes that belongs to Avispa begin with PM.
PMObject contains operations and attributes common
to all SPEM elements (essentially a particular identi-
fier). PMRole, PMTask and PMArtifact describe elemen-
tary components of SPEM 2.0. Each of these classes

3http://www.moosetechnology.org/docs/famix

4

http://www.moosetechnology.org/docs/famix

offers methods for computing metrics and navigating
through a model. For example, a task is aware of its
following tasks (i.e., tasks that farther need to be com-
pleted) and its associated artifacts. A group of roles,
tasks and artifacts are expressed as instances of PM-

RoleGroup, PMTaskGroup and PMArtifactGroup, respec-
tively. The purpose of offering specialized collections is
to enable dedicated visualization to be defined on these
groups. For example, the method viewTaskBlueprintOn:

is defined on PMTaskGroup which defines the enhanced
task blueprint describe below.

Process Blueprints (Sect. 2.1) are visualized using
the Mondrian visualization engine4 [14]. Mondrian op-
erates on any arbitrary set of values and relations to
visually render graphs. As exemplified below, visual-
izations are specified with the Mondrian domain spe-
cific language.

3.2. Error Pattern Implementation in Avispa

We illustrate the implementation of two error pat-
terns: independent projects and tasks involving too
many work products. We provide the script for each of
them, and the rationale in each implementation. The
other error patterns are similar to these ones.

Independent subprojects. This kind of error can
be seen when the Task Blueprint has disconnected
subgraphs. Thus, each independent subgraph will be
colored differently, and having a Task Blueprint
with more than one color will mean that there are some
missing dependencies. On the other hand, if the Task
Blueprint is all the same color, this will mean that
there are no independent subprojects, and therefore the
process will be fine with respect to this error pattern.
The following script builds a colored Task Blueprint
where independent subprojects can be identified. Inde-
pendent subproject always reveal an error in the pro-
cess model specification.

PMTaskGroup>> viewTaskBlueprintOn: view
| ds components orderedComponents normalizer |
“Compute disjoint sets and assign a color to each set”
cycleColor := ...

“Display the blueprint”
view shape rectangle

borderColor: Color black;
borderWidth: 1;
fillColor: [:v — cycleColor value: v];
width: [:each — each numberOutputs * 10];
height: [:each — each numberInputs * 10].

view nodes: self.
view shape arrowedLine.
view edges: self from: #yourself toAll: #followingTasks.
view treeLayout

4http://www.moosetechnology.org/tools/mondrian

Fist a cycle is computed so that edges of connected
subgraphs are painted with the same color. Then, indi-
vidual nodes are built assigning them a size and a fill-
ing color. Tasks are represented as rectangular nodes
whose color is that of the subgraph it belongs to. Their
width is related to the number of output artifacts, and
the height shows the number of input artifacts. Arrows
between two nodes exist if they are related with the fol-
lowing relationship. The whole blueprint is shown as a
tree.

Tasks that involve too many work products.
Here again the error will be seen in the Task
Blueprint, but now the nodes that are larger than
the standard deviation from the average number of in-
put or output work products will be highlighted as po-
tential errors. As usual, the standard deviation is the
square root of the mean of the differences from each
element’s value to the mean value. Highlighted tasks
reveal complexity in the process, but they are not al-
ways errors.

A series of metrics are precalculated so that
the script can be executed. numberOutputsi and
numberInputsi are the number of output and input
work products of task i in the process. Then, consid-
ering that there are n tasks in the process, we can cal-
culate the mean number of input and output artifacts
for the whole process as follows:

MeanInArt =

Pn
i=1 numberInputsi

n
(1)

MeanOutArt =

Pn
i=1 numberOutputsi

n
(2)

And then, the standard deviation can be calculated
as follows:

sigmaIn =

s Pn
i=1(numberInputsi −MeanInArt)2

n
(3)

sigmaOut =

s Pn
i=1(numberOutputsi −MeanOutArt)2

n
(4)

Also, the distance to the mean value to both Mean-
InArt and MeanOutArt are calculated as follows:

distToMeanInArti = |MeanInArt− numberInputsi| (5)

distToMeanOutArti = |MeanOutArt− numberOutputsi| (6)

These metrics are used as part of the script in or-
der to determine the color of each node in the Task
Blueprint.

5

http://www.moosetechnology.org/tools/mondrian

view shape rectangle
fillColor: [:each | ((each distToMeanInArt abs > self sigmaIn) &

(each distToMeanOutArt abs > self sigmaOut))
ifTrue: [Color orange]
ifFalse: [(each distToMeanIn abs > (self sigmaIn)
ifTrue: [Color yellow]
ifFalse: [(each distToMeanOut abs > self sigmaOut)
ifTrue: [Color red]
ifFalse: [Color white]]]];

borderColor: Color black;
width: [:each | each numberOutputs * 10];
height: [:each | each numberInputs * 10].

view nodes: self.
view shape arrowedLine.
view edges: self from: #yourself toAll: #followingTasks.
view treeLayout.
view root interaction item: ’inspect group’ action: [:v | self inspect]

The main part of the script is devoted to determin-
ing the color of each node according to its relative di-
mensions. If the distance to both mean values, the
number of input and output artifacts, is larger than
the standard deviation, then the node will be colored
in orange. If only the distance of the number of output
artifacts from the mean output artifacts is larger than
the standard deviation, the node will be red. If only
the distance of the number of input artifacts is larger
than the standard deviation from the mean, then the
node will be yellow. Otherwise, the node will be white.
Edges will be drawn according to the followingTasks
set that should have been precalculated. The whole
blueprint is presented as a tree.

Obtaining a Task Blueprint that is all white
means that all tasks have similar complexity with re-
spect to the number of input and output work prod-
ucts. Several orange tasks show a poor design. Yellow
tasks have too many input work products, and even
though it may suggest task complexity, it may not be
too bad. On the other hand, red tasks, i.e. those with a
lot of different output work products, are worse because
the purpose of the task is not unique and it clearly sug-
gests a poor design.

3.3. Avispa User Interface

Avispa has become a robust tool to import and vi-
sualize SPEM 2.0 based process models. It is built in
Moose and the Pharo programming language5, and so
it benefits from a large toolset for navigation and visu-
alization. Figure 5 shows the main user interface. The
Tutelkán model has been loaded and is ready to be an-
alyzed. The navigation pane shows four entry points to
begin an assessment: artifacts, roles and tasks. Naviga-
tion is realized through the information available in the
metamodel (see Section 3.1). Although not depicted,

5http://ww.pharo-project.org

Figure 5. The Avispa main user interface

metrics and other specific information (e.g., descrip-
tion and annotations) are available under the properties
tab.

4. Applying Avispa in Real World Pro-
cesses

The process model evaluation was carried on three
small Chilean software companies: Amisoft, BBR En-
gineering and DTS. First, we briefly present the con-
text in each company, and then we describe the results
of applying Avispa to evaluate the software processes
defined in each of them.

4.1. Application Scenarios

Amisoft is around ten years old and it is formed
by thirteen qualified employees. Its main goal has
been to deliver specialized and quality services. Its
development areas are: client/server architecture so-
lutions, enterprise applications based on J2EE and
Systems integration via TCP/IP and MQ Series.
Amisoft has started its software process improvement
project in 2009, and it is currently implementing the
ISO9000:2000 standard and the CMMI model. Its soft-
ware process model has been inspired by OpenUP.

BBR Engineering is one of the main software fac-
tories of BBR, a consulting company since 1994. It is
formed by 24 employees specialized in different roles in-
cluding architects, project managers, developers, qual-
ity assurance specialists and analysts. BBR Engineer-
ing has developed solutions mainly in the area of re-
tail; specifically, its main areas are: points of sale,
payment systems, communications and interfaces, e-
business, and integration. The company has started
its software process improvement project in 2009 using
the Tutelkán Reference Process as a reference for its
implementation.

6

http://ww.pharo-project.org

Figure 6. Task Blueprint for localizing disconnected subgraphs in Amisoft.

Figure 7. Task Blueprint for localizing tasks involved with too many work products in Amisoft.

DTS was born around 1990 from a joint venture
between a Chilean Aeronautic company, EANER and
ELTA Electronics Industries. DTS works in solutions
for military and civil technology. It counts on 250 em-
ployees, including engineers, certified technicians, op-
eration workers and managers. DTS started to define
its software process model in 2008, using the Rational
Unifed Process as a reference. In DTS there is no spe-
cific software process improvement project; its effort
has been oriented towards recovering the software pro-
cess actually applied in the organization, in order to
formalize it, evaluate it, and eventually improve it.

4.2. Tool Application

Amisoft. In this case, applying Avispa for identify-
ing disconnected subgraphs resulted in very few discon-
nected elements, even though it is clear that the tool
easily help finding which they are, as shown in Fig. 6.
Avispa was also applied for identifying tasks that are
involved with too many work products, as can be seen
in Fig. 7; in this case the results were not that good.
The process in Amisoft includes 93 tasks, 17 roles and
57 work products. The blueprints show a lot of prob-
lems in both patterns: 5 misspecifications (5.4%) and
32 potential errors of complexity of the tasks (34.4%).
So, these results allow claiming that the process has
an appropriate specification but, many tasks should be

reviewed with respect to their complexity.

BBR Engineering. Similarly, we have applied
Avispa for finding disconnected graphs and complex
tasks to the process model of BBR Engineering, and
the results are shown in Figs. 8 and 9, respectively.
The process in BBR includes 79 tasks, 18 roles and 42
work products. The blueprints show many problems
according to both patterns: 23 potential errors of task
complexity and 26 misspecifications. There is a large
number of misspecifications corresponding to isolated
tasks (35.4%). The 29.1% of the tasks had a complex-
ity very far to the mean. So, the design of numerous
tasks should be reviewed in detail.

DTS. Avispa was also applied to the process of DTS
for identifying and localizing both kinds of error pat-
terns, and the output is shown in Figs. 10 and 11. The
process in DTS includes 57 tasks, 9 roles and 66 work
products. The results are far better than that of the
other processes: in this case only 2 misspecifications
were found (3.5%) and 15 potential complexity errors
(26.3%). However the complexity of the tasks is a re-
current problem.

5. Related Work

In this paper, we start with a SPEM 2.0 software
process model, that has already been formally specified

7

Figure 8. Task Blueprint for localizing disconnected subgraphs in BBR Engineering.

Figure 9. Task Blueprint for localizing tasks involved with too many work products in BBR Engi-
neering.

following any strategy, and we apply Avispa for evalu-
ating the quality of the process itself and/or the spec-
ification as a technical review support tool, depending
on the error pattern that we are able to find. Deter-
mining whether a software process is appropriate for a
particular organization remains an open problem and
we do not pretend this paper to solve it.

Software process model quality can be addressed
with different perspectives: metrics, testing, simula-
tion, or technical reviews. Canfora et.al. [2] define some
ratio metrics for measuring overall software processes.
However, based on this general data it is hard to know
what is wrong, where the error is located, and how
to find opportunities for improvement when there is
no apparent error. In Process Model Testing, process
models are checked against their specifications, simi-
larly to software testing. An example of process test-
ing is a software process assessment, where a process
and its corresponding model are evaluated based on a
capability maturity framework. This kind of approach
is present in CMMI [17] and ISO/IEC15504 [10]. This
kind of testing activities can only be carried out once
the process model has already been implemented, tai-
lored and enacted. This approach checks for the adher-
ence to a standard but it does not evaluate the quality
of the process model in itself. Gruhn [7] has proposed a
verification technique based on simulation results and

execution trace evaluation. Simulation has a shorter
cycle, but it still requires enactment data. This is an
appropriate verification technique if the process model
is known to be correct, but if the model is incomplete,
underspecified or its design is not appropriate, then the
process model simulation will not reflect the expected
results. Cook and Wolf [3] present a formal verification
and validation technique for identifying and measuring
the discrepancies between process models and actual
executions. They do not address completeness or con-
sistency of the process model. Pérez et al. [16] sug-
gest to evaluate the congruence between the process
model and a given environment based on past data.
However, obtaining these measurements is hard and
the results are not precise. Formal specifications and
checking based on Petri Nets in a multi-view approach
are presented in [6], but formal checking has semantic
limitations.

As Osterweil has said [15], software processes are
software too, so techniques that apply to software pro-
grams can be also applied in process models. Finding
error patterns in source code has been fairly success-
ful [12] [5], so following a similar approach we have been
able, based on a vast empirical experience, to identify
a series of error patterns in software process models, to
describe them in detail, and to formalize the way they
look so that they can be automatically located.

8

Figure 10. Task Blueprint for localizing disconnected subgraphs in DTS.

Figure 11. Task Blueprint for localizing tasks involved with too many work products in DTS.

The classical domain for software visualization is
software source code. There has been a great deal of
work on visualizing classes and methods [11], software
architecture [13], and even source code annotations [1].
The work presented in this paper has the same ratio-
nale: providing concise information about an engineer-
ing artifact in order to maintain and improve it. By
taking some of these ideas and applying them to ana-
lyze software process models, the evaluation of process
models obtained similar benefits to those achieved with
software source code.

We have already presented process model blueprints
in [9]. There, each blueprint is built following a reverse
engineering approach as a model-driven strategy where
the process model is the input to the script that acts
as a transformation so that a new output model can
be built presenting a partial view that may be more
illustrative for finding errors. However, we realized that
usability of process model blueprints was threatened
when dealing with large and complex process models.
Avispa has improved usability by identifying a set of
common error patterns, and highlighting them.

9

6. Conclusions

We have presented Avispa, a tool for process model
evaluation that follows a reverse engineering approach
for localizing a set of identified potential errors. These
errors may come either from process conceptualization
or from misspecifications. We show how each of the
error patterns identified can be seen in the appropri-
ate process blueprint, and we made Avispa highlight
them. Some of the process models we were work-
ing with for the last years have been evaluated using
Avispa, and some errors were found, as well as some
improvement opportunities, showing the effectiveness
of the approach and the tool.

The tool is targeted to those software process mod-
els formally specified in SPEM 2.0. This may be one
of its main limitations since it is hard and expensive
to formally define a complete process. However, if a
company decides it is worth the effort, then Avispa
provides an added value to this investment assuring,
at least partially, the quality of the specified process.

As part of our ongoing work, we are in the process
of defining a set of solution patterns that the tool will
suggest so that each error pattern found could be solved
in an assisted manner. In this way, the round trip for
software process improvement will be complete.

Acknowledgments

The work of Julio A. Hurtado has been partially
funded by a scholarship of NIC Chile.

References

[1] A. Brühlmann, T. Gı̂rba, O. Greevy, and O. Nier-
strasz. Enriching reverse engineering with annota-
tions. In International Conference on Model Driven
Engineering Languages and Systems, volume 5301 of
LNCS, pages 660–674. Springer-Verlag, 2008.

[2] G. Cánfora, F. Garćıa, M. Piattini, F. Ruiz, and C. A.
Visaggio. A family of experiments to validate metrics
for software process models. Journal of Systems and
Software, 77(2):113–129, 2005.

[3] J. E. Cook and A. L. Wolf. Software process valida-
tion: quantitatively measuring the correspondence of
a process to a model. ACM Transactions On Software
Engineering Methodology, 8(2):147–176, 1999.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-
Oriented Reengineering Patterns. Morgan Kaufmann,
2002.

[5] J. Durães and H. Madeira. Emulation of Software
Faults: A Field Data Study and a Practical Ap-
proach. IEEE Transactions on Software Engineering,
32(11):849–867, 2006.

[6] J. Ge, H. Hu, Q. Gu, and J. Lu. Modeling Multi-
View Software Process with Object Petri Nets. ICSEA
2006, 0:41, 2006.

[7] V. Gruhn. Validation and verification of software pro-
cess models. In Proc. of the Software development
environments and CASE technology, pages 271–286,
1991.

[8] J. A. Hurtado and M. C. Bastarrica. Tutelkán Imple-
mentation Process: Adapting a Reusable Reference
Software Process in the Chilean Software Industry.
Technical Report TR/DCC-2010-4, Computer Science
Department, Universidad de Chile, June 2010.

[9] J. A. Hurtado, A. Lagos, A. Bergel, and M. C. Bas-
tarrica. Software Process Model Blueprints. In Pro-
ceedings of the International Conference on Software
Process, ICSP’2010, volume 6195 of LNCS, pages 273–
284. Springer-Verlag, July 2010.

[10] ISO. /IEC 15504 : Information technology - software
process assessment and improvement. Technical re-
port, Int. Organization for Standardization, 1998.

[11] M. Lanza and S. Ducasse. Polymetric views—
a lightweight visual approach to reverse engineer-
ing. Transactions on Software Engineering (TSE),
29(9):782–795, Sept. 2003.

[12] B. Livshits and T. Zimmermann. Dynamine: finding
common error patterns by mining software revision
histories. SIGSOFT Softw. Eng. Notes, 30(5):296–305,
2005.

[13] M. Lungu and M. Lanza. Softwarenaut: Exploring
hierarchical system decompositions. In Proceedings of
CSMR 2006 (10th European Conference on Software
Maintenance and Reengineering), pages 351–354, Los
Alamitos CA, 2006. IEEE Computer Society Press.

[14] M. Meyer, T. Gı̂rba, and M. Lungu. Mondrian: an
agile information visualization framework. In Proceed-
ings of the ACM 2006 Symposium on Software Visu-
alization, SOFTVIS, pages 135–144. ACM, 2006.

[15] L. J. Osterweil. Software Processes Are Software Too.
In International Conference on Software Engineering,
pages 2–13, 1987.

[16] G. Pérez, K. El Emam, and N. Madhavji. Evaluating
the congruence of a software process model in a given
environment. In Fourth International Conference on
the Software Process, pages 49–62, 1996.

[17] SEI. CMMI for Development, Version 1.2. Technical
Report CMU/SEI-2006-TR-008, Software Engineering
Institute, 2006.

[18] G. Valdés, H. Astudillo, M. Visconti, and C. López.
The Tutelkán SPI Framework for Small Settings: A
Methodology Transfer Vehicle. In Proceedings of the
17th European System & Software Process Improve-
ment and Innovation, Grenoble, France, September
2010. To Appear.

[19] R. Villarroel, R. Fajardo, and O. Rodŕıguez. Imple-
mentation of an Improvement Cycle using the Com-
petisoft Methodological Framework and the Tutelkán
Platform. CLEI Electronic Journal, 13(1), April 2010.

10

	. Introduction
	. Problematic Process Model Patterns
	. Process Model Blueprints
	. Potential Errors

	. Tool Support for Localizing Potential Errors
	. Implementation of Avispa
	. Error Pattern Implementation in Avispa
	. Avispa User Interface

	. Applying Avispa in Real World Processes
	. Application Scenarios
	. Tool Application

	. Related Work
	. Conclusions

