
AspectMaps: A Scalable Visualization of Join Point
Shadows

Johan Fabry
∗

PLEIAD Laboratory
Computer Science
Department (DCC)
University of Chile

http://pleiad.cl

Andy Kellens
†

Software Languages Lab
Vrije Universiteit Brussel

Belgium
http://soft.vub.ac.be

Stéphane Ducasse
RMoD Team

INRIA Lille - Nord Europe
France

http://rmod.lille.inria.fr

ABSTRACT
When using Aspect-Oriented Programming, it is sometimes
difficult to determine at which join point an aspect will ex-
ecute. Similarly, when considering one join point, knowing
which aspects will execute there and in what order is non-
trivial. This makes it difficult to understand how the ap-
plication will behave. A number of visualization tools have
been proposed that attempt to provide support for such pro-
gram understanding. However, they neither scale up to large
code bases nor scale down to understanding what happens
at a single join point. In this paper, we present AspectMaps
– a visualization that does scale in both directions, thanks
to a multi-level selective structural zoom. We show how the
use of AspectMaps allows for program understanding of code
with aspects, revealing both a wealth of information of what
can happen at one particular join point as well as allowing
to see the “big picture” on a larger code base.

This paper makes heavy use of colors in the figures. Please
obtain and read a color version of this paper to better under-
stand the ideas presented here.

1. INTRODUCTION
Aspects modularize cross-cutting concerns by encapsulat-

ing not only their behavior but also where and how they
are invoked. As a result, the other modules of the system,
called the base code, perform implicit invocations to the be-
havior of the aspects. First, the flow of execution of the base
application is reified as a sequence of join points. Second,
the specification of the implicit invocations is made through
a pointcut that selects at which join points the aspect exe-
cutes. The behavior specification of the aspect is called the

∗Partially funded by FONDECYT project 1090083.
†Funded by a research mandate provided by the “Institute
for the Promotion of Innovation through Science and Tech-
nology in Flanders” (IWT Vlaanderen)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’10, Submission.
Copyright 2010 ACM TBD ...$5.00.

advice. An aspect may contain various pointcut and advice,
where each advice is associated with one pointcut.

The concepts of pointcuts and advice open up new possi-
bilities in terms of modularization, allowing for a clean sep-
aration between base code and crosscutting concerns. How-
ever this separation makes it more difficult for a developer
to assess system behavior. In particular, the implicit invoca-
tion mechanism introduces an additional layer of complexity
in the construction of a system. This can make it harder to
understand how base system and aspects interact and thus
how the system will behave.

Various well-documented issues within the aspect-oriented
community serve as a testimony to this problem. For exam-
ple, when writing pointcut definitions, it is not always clear
for a developer where the aspect will intervene in the base
code. This can then lead to situations where the pointcut ei-
ther captures too many join points (false positives), or where
certain join points that were intended to be captured, are not
(false negatives). One variant of this problem is the so-called
fragile pointcut problem [15, 17]. It states that seemingly in-
nocent changes of the base code can lead to unintended and
erroneous behaviour. Since it is easy to lose track of the
global picture of how the base code and the aspects inter-
act, it can become difficult to identify the source of such
unanticipated behavior. A prominent example is found in
the work of Coelho et al. [8]. The authors investigated a
number of applications that use aspects to determine erro-
neous exception handling behavior. They found that even
in applications where the developers are experts in the use
of aspects false positives and false negatives occur. Specifi-
cally“mistakes on [sic.] pointcut expressions” were found in
the Health Watcher [21] and the Mobile Photo [14] applica-
tion, which are both well-known case studies for AOSD.

Another similar problem that may arise is that in complex
systems with lots of aspects, multiple aspects can intervene
at the same join point. If a developer is not aware of the
interactions of multiple aspects intervening at the same join
point, this again can result in erratic application behavior.

Consequently, there is a need for tools that allow soft-
ware developers to easily assess the impact of aspects on the
base system to aid in the detection and prevention of the
problems we discussed above.

In this paper we present a novel approach based on soft-
ware visualization to aid the understanding of aspect-oriented
software systems. Our tool is called AspectMaps, and it
provides a scalable visualization of implicit invocation. As-
pectMaps visualizes selected join point shadows (a.k.a. sha-

dow points): locations in the source code that at run-time
produce a join point. AspectMaps visualizes the shadow
points where an aspect is specified to execute, and if multi-
ple aspects will execute, the order in which they are specified
to run. This results in a visualization that clearly shows how
aspects cross-cut the base code, as well as how they interact
at each join point. AspectMaps is a scalable visualization
mainly due to its use of selective structural zooming. The
structure of source code is shown at different levels of gran-
ularity, as determined by the user.

The remainder of the paper is structured as follows: we
next give an overview of software visualization, detailing
typical pitfalls as well as discussing existing work on aspect
visualization. Section 3 introduces the AspectMaps visu-
alization, detailing what is shown at each zoom level. In
Section 4 we show how the use of AspectMaps aids program
comprehension, using three case studies. We provide a dis-
cussion and avenues for future work in Section 5, followed by
an overview of related work in Section 6. Finally, Section 7
concludes.

2. SOFTWARE VISUALIZATION
Software visualization is defined as the use of graphic

means (typography, graphic design, animation, . . .) to fa-
cilitate human understanding and effective use of computer
software [22]. The idea of using visualizations to aid in pro-
gram comprehension is not new. For example, within the
reverse engineering community, software visualizations are a
well-established means of supporting various software com-
prehension tasks [23, 24, 18].

One of the major advantages of software visualizations is
that they are able to convey a large quantity of information
to a user [28]. The human brain can easily combine com-
plex information from visual cues, making visualizations a
suitable means for understanding complex software systems.
Furthermore, a well-chosen visualization allows users to pre-
attentively process the visual information: rather than hav-
ing to search for specific information (e.g.,by extracting it
from the source code), visualizations can immediately draw
a user’s attention to specific parts of the system.

2.1 Visualization Pitfalls
Despite the advantages of software visualizations, design-

ing a good visualization is not a trivial task. A visualization
must be sufficiently rich such that it can convey the cor-
rect information in a single glance. However the user should
not be overwhelmed by the visualization, making the extrac-
tion of any meaningful information impossible. In cognitive
sciences, the topic of data visualization has been well stud-
ied [6, 27], which has produced different guidelines to follow
to design a successful visualization. In what follows, we dis-
cuss a number of common pitfalls of software visualizations
and distill from this a set of requirements for our visualiza-
tion of aspect-oriented systems.

• Amount of colors: The visualization should not over-
whelm the user with the number of colors that are
used. The human brain is only able to distinguish be-
tween a limited number of colors (the threshold often
mentioned in literature is 10) in a meaningful way [6,
26, 28]. If more colors get used, the meaning that is
conveyed by them gets lost.

• Complexity: If the visualization is overly simplis-
tic, it becomes hard to convey meaningful information
to the user. Conversely, overly complex visualizations
become hard to interpret. Instead of being able to ex-
tract information by glancing at the visualizations, a
user needs to make a conscious effort to interpret the
visualization. As a result he loses the mental context
of the development activity in progress [10].

• Mapping to reality: There should be a clear map-
ping between the entities that are present in the visu-
alization and the actual domain the visualization rep-
resents. For a user, the representation used should feel
natural for the particular domain concepts [11].

• Information density: All visual elements of the visu-
alization should aim at conveying some meaning to the
user. This is also known as Tuftes’ data-ink rule [27].
Elements that are without such meaning clutter the vi-
sualization, thus making it more complex and should
therefore be avoided.

• Scalability: The visualization should be able to work
on small data samples, as well as large quantities of
data. When applied to large amounts of data, the
visualization should still be comprehensible. One met-
ric that is often applied is that the information is best
represented on one or two screens, thus minimizing the
amount of scrolling that is required of the user [6].

• Interactivity: A good visualization is not limited to
providing a static picture of the system but also pro-
vides a means for user interaction. By adding such
functionality to the visualization, the user gets more
involved in the process of interpreting the visualiza-
tion. Additionally, such interactivity might be an ideal
candidate to improve the scalability of the visualiza-
tion and to deal with complexity issues. Interactions
can be added to the visualization (e.g.,pop-ups) to con-
vey additional information to the user, or to limit the
scope of the visualization to a particular subset of the
software system that is visualized [25].

2.2 Existing Aspect Visualizations
We are not the first to study the subject of aspect vi-

sualization. In this section, we discuss previous work and
illustrate how they can be improved upon.

AspectJ Development Toolkit.
Description. The AspectJ Development Toolkit (AJDT)

for Eclipse [4] is arguably the most mature toolkit for Aspect-
Oriented Programming.

Amongst other features, AJDT adds gutter markers in the
code editor to indicate shadow points for affected code en-
tities, and also provides a textual “Cross-References View”.
While these features provide useful feedback, they do not
scale to a large code base [19]. The gutter markers only
show one extremely fine-grained view. When looking at the
source code of one specific class, the developer can see where
aspects apply in the code currently being displayed, and only
there. To look at large classes requires multiple scrolling
operations, to view multiple classes requires opening their
code in the editor one by one. The cross-references view is,
in essence, a textual representation. It lists the signatures
of methods where aspects apply. It therefore cannot provide

Figure 1: The AspectJ development tools visualization, showing the Spacewar example

the advantages of a good visualization. It is for example im-
possible to tell at a glance whether an aspect affects a given
class. Instead the developer needs to interpret all of the text
that is being displayed.

AJDT also offers a visualization tool. This tool is a con-
tinuation of the AspectBrowser work by Shonlhe et al. [20].
In Figure 1 we show the visualization of AJDT applied to
the Spacewar project. It offers a Seesoft-inspired [13] view
that shows the classes and aspects in the entire project as
bars, placed side by side. The name of the class or aspect
is printed in the top of each bar. The height of the bar is
proportional to the number of lines of code that are present
in the entity. An alternative organization (not shown here)
is ordering the classes/aspects by package: it shows one bar
for each package, by essentially vertically ordering the bars
of the classes and aspects of that package. Each aspect in
the project is assigned a specific color, and colored stripes
represent lines of code affected by aspects. Bars that are
black indicate that no aspects apply to the class or aspect.
Multiple colors in a stripe show that multiple aspects apply,
and the same color repeated that the aspect applies multi-
ple times. Note that, strangely, sometimes there are more
segments for an aspect than the number of times that it
applies. By double-clicking on a stripe, the code for that
class/aspect is shown with the relevant line highlighted. By
then inspecting gutter marks or the cross-references view the
user can obtain more detailed information on what advice
applies, as well as its nature (before, around, . . .).

Unfortunately however, the AJDT visualization suffers
from a number of the pitfalls we discussed above, as we
shall discuss next.

Overly simplistic. First, this visualization is overly sim-
plistic. It offers a simple lines-of-code oriented view of the
project source code. This does not convey enough relevant
information to the user. For example, the visualization does
not contain sufficient information to aid a developer in un-
derstanding what happens when multiple aspects apply at a
single shadow point. This low-level information can however
be vital to a developer: subtle interactions at the shadow
point level can result in erratic behaviour. As we will show
in Section 4.1, visualizations can be useful in such cases to
help identify such low-level problems.

Furthermore, the visualization fails to show the inherent
structure of the code. What we have here is a set of packages

that contain classes or aspects, where each class or aspect
is subdivided in methods. The first example of structural
information that is lacking is what a bar represents: when
looking at a bar we are unable to determine whether the
visualized entity is a class or an aspect. As a second example
of the importance of showing this structure, consider the
aspect with the dark blue color. This aspect is called Debug.
What we can see here is that it applies in many places in
the source code. What is however not immediately obvious
is that it applies at the beginning and at the end of
each method or constructor of classes (amongst other
locations). To discover this, for each stripe we need to go
to the source code and investigate the gutter marks there.
This takes a number of seconds per stripe, so to verify this
for all the code is prohibitively time-consuming.

Context switching. In general, obtaining any informa-
tion of an aspect beyond the approximate source code loca-
tion of its application requires to navigate to the source code
representation. This first requires a mental context switch of
the user to the source code. Secondly, aspect-related infor-
mation such as whether the advice is before, after or around,
requires looking at additional information that is not shown
in the revealed source code. While the visualizer does pro-
vide adequate support for navigation, performing all these
actions require more time and effort than a simple glance.
Therefore it is clearly beneficial to display more information
in the visualization itself.

Information Density. Surprisingly, the visualization
also suffers from problems of too much information density
by showing black bars for non-affected classes or aspects.
The absence of colored stripes is sufficient to convey this, so
the user naturally wonders what the additional meaning of
the black color is. Anecdotal evidence of this effect is that
when discussing this visualization with various colleagues,
this question invariably was one of the first to be posed.

Scalability and Interactivity. The visualization also
suffers from the pitfalls of low scalability and interactivity.
While the tool has a ‘zoom in’ and ‘zoom out’ function, all
that this does is to make the bars bigger or smaller. No
more detailed (structural) information is revealed upon a
zoom in action, which is what the user would expect, re-
sulting in low interactivity. Conversely, zooming out does
not give a higher level of abstraction on the data, leading
to scalability problems on large code bases. Hovering over

a stripe does produce a pop-up, but this only details the
name of the aspects that apply there. This is information
already conveyed by the color of the stripe, and therefore
this pop-up is useless, not adding any interactivity.

Other Aspect Visualization Tools.
To the best of our knowledge there are only three other

tools that provide for a visualization of how aspects cross-
cut the code, namely Asbro by Pfeiffer and Gurd [19], Ac-
tiveAspect by Coelho and Murphy [9], and ITDVisualiser by
Zhang et al [29]. The two former tools however do not vi-
sualize as much information as the AJDT does. Asbro does
not show elements at a granularity finer than classes, and
does not reveal the information that multiple aspects ap-
ply to one class or package. ActiveAspect does scale down
to method level but however does not differentiate between
multiple aspect applications within the body of a method.
As all aspects that apply within one method are gathered
together in one visualization element, information is lost. It
is for example impossible to see if multiple aspects apply
at one line of code, nor to see whether one aspect applies
multiple times within the method. The third tool, ITDVi-
sualiser, is dedicated to analyzing the impact of structural
modifications made by aspects to the base code of the sys-
tem. It uses a marker mechanism to indicate source-code
entities that are affected and provides a number of dedicated
views for assessing how method lookup and shadowing are
impacted by the aspects. We discuss the above approaches
in some more detail in Section 6.

We believe that it is possible to construct a better visu-
alization for aspect-oriented code that does not suffer from
the limitations of neither of the above mentioned tools. This
paper details our attempt to build such a visualization, and
we introduce it next.

3. THE ASPECTMAPS VISUALIZATION
AspectMaps is a visualization tool that offers users a de-

tailed overview of implicit invocation. It visualizes:

1. where aspects are specified to apply in a system, based
on visualizing join point shadows

2. how aspects possibly interact at each join point shadow

3. in a scalable way, thanks to a multilevel selective struc-
tural zoom.

We define that an aspect applies in a certain source code
element (a package, class, or method) if for at least one
pointcut that is associated with an advice of that aspect, at
least one of its join point shadows belong to that element.

AspectMaps supports the traditional pointcut-advice model
of aspects, on an object-oriented class-based language. The
join point model consists of method calls and method exe-
cutions. Advice can execute before, around or after a join
point, and we distinguish between after returning and after
exception throwing. Aspects may contain various advice,
and an execution order may be specified between aspects.
The above effectively allows us to visualize a subset of As-
pectJ [16] and Java code. In this case we ignore inter-type
declarations as well as advice that applies to fields. The As-
pectMaps tool is however not restricted to the AspectJ/Java
combination, which is discussed in more detail in Section 3.5.

Following the guidelines of scalability and interactivity dis-
cussed in 2.1, the key feature of AspectMaps is having the

ability to selectively zoom in on the source code at different
levels of granularity. Zooming in from a coarser level to a
more fine-grained level reveals more detail. The behavior
is analogous to street map applications, e.g., Google Maps,
hence the name AspectMaps.

Scalability: Selective Structural Zooming.
AspectMaps provides visualization of code at the level of

granularity of packages, classes and methods. In contrast
to mapping applications, however, in AspectMaps the level
of granularity is not a global setting: within one single di-
agram, various levels of granularity can be used. For ex-
ample, certain packages can be shown at the package level,
while others are zoomed in at the class level. Likewise, for
certain classes, the visualization can be further zoomed in to
depict the system at the level of individual methods. This
allows the user to selectively zoom in and out to elements
of interest. Furthermore, hovering the mouse pointer over
a given element produces a tooltip style pop-up that shows
the element at the next zoom level. This allows the user to
skim over a number of elements, getting more information
of each in turn without zooming in and zooming out on each
element.

Scalability: Aspect Identification.
A second factor that enables scalability is the selection of

aspects to be displayed as well as the colors that identify
them. AspectMaps implements the amount of colors guide-
line: it by default shows up to 10 aspects simultaneously,
each using distinctive colors. The user can for each aspect
separately select a specific color and turn visualization on or
off (visualizing more than 10 if needed).

Scalability: The Fine-Grained Shadow Point View.
AspectMaps also scales down to a very fine level of gran-

ularity. At the most detailed zoom level on a shadow point,
it shows a wealth of information at a single glance. The user
can see the specification of the type of advice (before, after,
...), how different aspects are specified to interact (due to
precedence declarations), and whether the pointcut has a
run-time test or not. More detailed information is available
as pop-ups: e.g. advice signatures can be obtained this way.

Detailing AspectMaps.
To detail the AspectMaps visualization, the remainder of

this section is structured following its different levels of gran-
ularity. For each level we show how it is visualized, and
mention how it follows the guidelines outlined in 2.1. To il-
lustrate the tool we use a number of examples in this section.
Specifically, for Sections 3.1 and 3.2 we use the Spacewar ex-
ample where we visualize the Coordination aspect in green
and the EnsureShipIsAlive aspect in red. In section 3.3, we
use an additional artificially created example, as Spacewar
does not suffice to show all the features of AspectMaps.

In addition to the (annotated) figures we show in this pa-
per, a status line at the bottom of the AspectMaps window
details textual information of the element the mouse pointer
is hovering over, if any. When we wish to discuss this infor-
mation in the text, we will typeset it [in this form].

Additional material is available at the AspectMaps web-
site http://pleiad.cl/research/software/aspectmaps e.g. fea-
turing some screencasts of the tool in action.

3.1 Package Level
When opened, AspectMaps provides an overview of all the

top-level packages in the system.

Overview.
At this level AspectMaps shows the names of packages

as well as indicating which aspects apply in this package.
The former is restricted to the last part of the fully qualified
name, the complete name is given in the status line. For
the latter AspectMaps colors the background of the pack-
age name with the color of the aspect that applies, if it is
currently enabled for visualization.

Figure 2: Visualizing packages coordination and
spacewar.

If multiple aspects apply in the package this is indicated
by using an alternative color (that can also be selected by the
user). An example of this is shown in Figure 2, which shows
two packages, named coordination and spacewar. Multiple
aspects apply in the spacewar package, indicated by the blue
color. The contents of packages, be it sub-packages or classes
is not shown at this point.

Selective Structural Zooming on Packages.
To view package contents, the user performs a zoom oper-

ation on a selected package. In Figure 3 the package space-
war has been zoomed in on, revealing the different classes
and aspects that it contains (this package contains no sub-
packages).

SpaceObject

Pilot
Display

Game Player

Figure 3: Visualizing the spacewar package, showing
its content (annotated with selected class names).

The visualization at class level is a version of the work
of Lanza and Ducasse on Polymetric Views [18], which we
extended with support for the visualization of aspects. Poly-
metric Views display entity as boxes and box dimensions re-
flect entity properties (LOC, number of methods...). A va-
riety of different types of information is shown at this point:

• Classes: rectangles with black borders. Inheritance
relations are visualized using the standard UML nota-
tion. (A conventional mapping to reality.)

• Aspects: rectangles with colored borders. The border
color is the color for the aspect.

• Where aspects apply: class rectangles have the color
of the aspect that applies, or the multiple aspect color.

• Class metrics: the vertical size of the class rectangle
is proportional to the number of methods in that class;
the horizontal size is proportional to the number of
fields in that class. (Increasing information density.)

Note that this visualization does not display the names
of the classes. This is chosen to avoid clutter, which would
increase complexity. Class names are instead revealed in
the status line when the mouse pointer passes over the re-
spective classes. In Figure 3, we see three class hierarchies
with as roots [SpaceObject], [Pilot] and [Display], along with
two aspects: [Debug] and [EnsureShipIsAlive]. The Coordina-
tor aspect (in green) is not part of this package but applies
in five classes ([SpaceObject], [Game], [Display1], [Display2],
[Registry]). In the Pilot hierarchy, multiple aspects apply in
the first subclass [Robot], and only the EnsureShipIsAlive
aspect (in red) applies in the second subclass [Player].

3.2 Class Level
The visualization at the class level is similar to that at

the package level. Here methods are shown as squares with
a gray border and are colored according to the aspects that
apply (again taking into account the multiple aspect color).
Method squares have a gray border to more easily distin-
guish them from classes, decreasing complexity.

run

keyPressed
keyReleased

Figure 4: Visualizing selected classes of Spacewar
(annotated with selected method names).

In Figure 4 we have zoomed in on all classes in the [Pilot]
hierarchy. This reveals that multiple aspects apply on the
method [run] of [Game] and that the EnsureShipIsAlive as-
pects applies in the methods [keyPressed] and [keyReleased]
of [Player].

3.3 Method Level
Method level is the finest level of granularity offered by

AspectMaps. At this level a wealth of information is poten-
tially of interest, and hence the visualization is more com-
plex.

If we consider only one join point, advice can be specified
to execute before, around or after this join point. Therefore
a visualization of its shadow point needs to separate showing
before, after and around advice. Also, at one join point
multiple aspects may apply, so the shadow point must be
able to show the execution of various advice at that point.
Considering the method level, we can have a shadow point
for the execution of the method, and within the method
body various shadow points for method calls.

Figure 5 shows a template for the visualization of method
execution shadow points. On the right, the Robot construc-
tor is displayed using this template: we see that the blue

Method NameBefore
Execution

After
Execution

Around
Execution Call Shadows

Figure 5: Template for visualization of execution
shadow points (left), and an example Robot con-
structor (right). Figure 9 shows call visualization.

aspect applies before and after. We detail call visualization
in Section 3.3.3). The figure shows how AspectMaps pro-
vides the method name and shows before, after and around
advice in their separate divisions. We detail next how advice
execution within such a division is visualized.

3.3.1 Advice Execution, Run-time Tests, Ordering
To show that an advice applies at a given division of a

shadow point, AspectMaps draws a small figure in the color
of the corresponding aspect. This is done for all aspects that
apply, aligning the figures horizontally. Figure 6 shows after
execution advice of an example set method.

set

4 after
advice

advice with
runtime test

after throwing
advice

Figure 6: Four after execution advice of a set
method.

If multiple advices of one aspect apply, for each of these
a figure is drawn and these are stacked vertically.In the ex-
ample this occurs for the red aspect. AspectMaps currently
has two kinds of figures: a circle for after throwing advice
and a rectangle for all other advice. This is to emphasize
the special nature of after throwing. In the example this is
again the red aspect. Moreover, if there is a run-time test
involved in evaluating the pointcut for an advice execution
(e.g., an if-test or a cflow pointcut) the figure is hashed.
In the example this is evident in the green aspect. This al-
lows easy identification of advice that will always run at this
shadow point: these are not hashed. Note that each figure
shows three different data points, increasing the information
density, however without overly increasing the complexity.

run precedence
declarations5 before

advice

Figure 7: Five before execution advice for a run
method, with 2 precedence declarations.

When multiple advices apply at the same shadow point,
the order of their application may be specified by the pro-
grammer, e.g., using the declare precedence construct in As-
pectJ [16]. When such an order is specified, AspectMaps

indicates this by drawing an arrow between the advice exe-
cution figures that indicates the order in which the advices
will be executed, as well as attempting to layout these figures
in a horizontal sequence1. This increases information den-
sity and maintains a good mapping to reality. An example is
shown in Figure 7. Here the dark blue code is run before the
two purple advice, and then the brown advice code is run.
There is no ordering specified between the cyan aspect and
any of the other aspects, hence no arrow is drawn. Figure 6
does not show any arrows, indicating no ordering is specified
between the green, cyan and red aspects, and therefore no
claims can be made about the order at which the aspects
will be executed at run-time.

Note that AspectMaps shows the order of execution of ad-
vice, and not a declaration of aspect precedence, as defined
in e.g., AspectJ. The difference lies in that advice execution
of after advice runs in the reverse order than that of before
advice. This makes the visualization easier to understand:
what is shown is more directly connected to the behavior of
the resulting application. We do not require the programmer
to perform a context switch and mentally invert the advice
execution order being shown. In other words, we have a bet-
ter mapping to reality and reduce complexity. Furthermore,
this results in AspectMaps not being limited to declaring
execution order on aspects, it is able to visualize code where
aspect ordering is declared at the advice level.

3.3.2 Execution Shadow Points
For execution shadow points the groups of figures detailing

advice execution are placed in their corresponding locations
as given by the template in Figure 5.

Figure 8: A selection of methods in Spacewar show-
ing before and after execution of the Debug aspect,
as well as a popup of one advice execution.

An example of this is shown in Figure 8, which further-
more illustrates the pop-up information given at this level.
Recall that up until now, all entities provide extra pop-up
information when the mouse pointer hovers over them, and
that this information is the visualization of the next zoom
level. As there is no finer grained zoom level here, we in-
stead provide relevant textual information on the advice exe-
cution element being hovered over (increasing interactivity).
Specifically, we show the signature of the advice, including
its line number in the aspect source code.

3.3.3 Call Shadow points
The body of a method may contain multiple call shadow

points, sequentially ordered by the source code of the method.
We visualize advice execution in this same order, aligning

1As aspect ordering is a partially ordered set, a one-line
layout is not always possible.

Shadow 1
Shadow 2
Shadow 3

Before AfterAround

Method Name

Call Shadows

Figure 9: Template for call shadow points

them vertically as a suitable mapping to reality. The visu-
alization of call shadow points uses the same visualization
as execution shadow points. It however orders the before,
around and after divisions horizontally instead of vertically.
A template of this is shown in Figure 9. The horizontal lay-
out was chosen to minimize unused space when visualizing
(increasing scalability), as well as to avoid confusion of what
advice execution belongs to which shadow point (decreasing
complexity).

Figure 10: A selection of methods in Spacewar show-
ing call shadow points, as well as a pop-up of one
advice execution (in the die method).

In Figure 10 we show a number of methods of the Space-
war example that demonstrate the visualization of call shadow
points. This figure also illustrates the pop-up information
for each advice execution. It consists of the signature of
the advice, including its line number in the aspect source
code, as well as the source code for the shadow point (again
increasing interactivity and information density).

3.3.4 Summary
At method level, AspectMaps provides a visualization that

shows both call and execution shadow points at that method,
concisely visualizing a large amount of data. For each shadow
point it shows the execution of before, after and around ad-
vice, as well as the order of execution. Lastly, for each ad-
vice execution it indicates whether the pointcut depends on
a run-time value, as well as highlighting after throwing ad-
vice. An example of this is shown in Figure 11, detailing 14
advice executions of six aspects on two shadow points, with
three aspect ordering specifications, two run-time tests and
one after throwing advice.

3.4 Quick Zoom Options
To aid the developer in quickly visualizing interesting lo-

cations in the code, AspectMaps provides a number of pre-
defined zoom operations:

Max Zoom Out. Zooms all elements out to the top level.

Figure 11: A method where many advice apply.

Max Zoom In. Zooms in maximally on all shadow points
where an aspect being visualized applies.

Interactions Zoom. Zooms in maximally on all shadow
points where multiple aspects being visualized apply.

Query Zoom. Given a query, zooms in maximally on classes
or methods of which their names match. (Currently a
substring match of the query in the name.)

Each of these zoom operations are performed by click-
ing on a button in the user interface. The advantage of
these zoom levels is that they save developer time and ef-
fort. There is no time wasted in manually exploring the
visualization and zooming in or out, e.g.,looking for a place
where two specific aspects interact.

3.5 On Language Independence
AspectMaps is intended to be relatively independent from

the programming languages used both for the base code as
well as for the aspect code. To perform visualization, As-
pectMaps does not consider the actual source code of the
program, but instead uses its own data structures. This
data structure consists of a generic object-oriented model
enriched with information of shadow points as well as advice
ordering. The idea is to have language-specific importers for
the model, which obtain the required information from the
source code.

AspectMaps currently only has one importer for a base
and aspect language combination: Java and AspectJ. The
importer uses the Eclipse Java model to extract the OO
structure of the source code, and the AspectJ development
tools [4] to obtain the shadow point information.

4. PROGRAM UNDERSTANDING WITH
ASPECTMAPS

To show how AspectMaps aids in software development
and maintenance activities, we show three examples where
we use AspectMaps on Java and AspectJ code. In each case
we argue why AspectMaps is more effective than the AJDT
visualization. As a quick foretaste compare Spacewar in
AJDT, shown in Figure 1, with Spacewar in AspectMaps,
shown in Figure 12.

Our first example is a case of unintended join point cap-
ture causing infinite loops, a typical pitfall of AspectJ [5].
Second we show a case of aspect interactions, deemed an im-
portant research challenge of the future of AOSD [7]. Third
we perform an analysis of the Spacewar example, similar to
code understanding efforts in re-engineering.

4.1 Case 1: Unintended Join Point Capture
We first show how AspectMaps allows the developer to

avoid the typical AspectJ pitfall of infinite loops due to un-
intended join point capture [5]. Consider the following sce-
nario: a payroll application is being developed for a large

Figure 12: AspectMaps visualization of Spacewar, fully zoomed in on all shadow points, except for Debug.

organization that has multiple physical office sites. Each
site is responsible for the payroll of the employees at that
site. The payroll database is maintained centrally, replicated
over multiple redundant data warehouses.

To resume, database objects are accessed over the net-
work and modifications to these must be broadcast to all
data warehouses. A networking package is therefore devel-
oped, which implements all database networking operations.
Persistent objects are required to implement the dummy
Persistent interface, and their state may only be accessed
and modified through getter and setter methods. An aspect
named TransparentProxy is created, which intercepts all get-
ter and setter accesses to database objects, and hands these
to the network package. For this, it uses the execution(public
* Persistent+.get*(..)); pointcut.

Figure 13: The cause of an infinite loop.

Visualizing the code in AspectMaps at package level view
immediately reveals a suspicious situation. We see that the
network package itself is colored with the TransparentProxy
color (dark blue). In other words, the network proxy code
itself will be intercepted by the aspect that redirects the
call to the network proxy. This may lead to an infinite loop.
Opening the network package, we establish that one [Config]
class is the culprit. We examine the pop-ups of its methods,
an example of which is shown in Figure 13. This reveals that
it contains the configuration settings that are used to estab-
lish a call over the network. Therefore making a network
call is intercepted by the aspect, which leads to a network
call being made, which leads to an infinite loop.

Considering the same scenario, the AJDT visualization
tool does not permit such immediate feedback in all cases.
The standard visualization only shows package information
as a popup. The user needs to scrub over all bars, wait for
the popup to appear, and read the text of the popup. The
package view is a better visualization for this case, but it
still falls short. Firstly the package names are not shown
in full in the bars, which requires the user to again scrub,

looking for the right package. Secondly, in larger packages
all classes of the package quickly fail to fit on one screen,
requiring a scrolling operation of the user.

To summarize: in AspectMaps a quick glance is sufficient
to raise suspicion, and further exploration quickly reveals
the nature of the problem. The AJDT visualization tool
needs much more manual intervention before suspicion can
be raised.2

4.2 Case 2: Aspect Interactions
The second case of the use of AspectMaps considers in-

teractions between aspects. More specifically, we focus on
the execution of multiple advice at one shadow point. De-
pendencies and interactions with aspects is a large and com-
plex area, and we do not claim that AspectMaps is a silver
bullet. Instead we show that in some cases the use of As-
pectMaps allows one to quickly understand interactions at
a given shadow point.

In the payroll application above, three more aspects are
added: a Timing aspect for timing all network operations, a
Logging aspect for logging selected network operations, and
a RepStats aspect that gathers statistics of replication oper-
ations. In the design phase it is determined that these as-
pects, in some cases, will apply at the same call join points.
A precedence order ought to be determined: Logging should
be performed at the end of the call, and Timing should in-
clude the work of RepStats. If such a precedence order is
omitted, the system might behave in an erratic way.

Figure 14: A precedence
declaration is missing!

Figure 15: No prece-
dence is shown.

Using the interaction zoom button (see Section 3.4) of As-
pectMaps to visualize shadow points where all three aspects
apply, such an omission is immediately clear. We show this
in Figure 14. It shows one method with two relevant shadow
points, where Timing is in green, Logging is in cyan, and
RepStats in red. At the second shadow point only Timing

2Note that the AJDT crosscutting view does not provide
any relief here either as it fails to show the package names
of the affected classes.

Figure 16: AspectMaps visualization of Spacewar, showing all 329 advice executions. For a fair comparison
with the AJDT visualization, the scale is as for Figure 1, and the figure is split in two parts to fit the page.

applies, while at the first all three aspects apply. The prece-
dence order should be one line of red, green and cyan rect-
angles with precedence declaration arrows. This is clearly
not the case. Instead the visualization shows us that there
is a precedence declaration between timing and logging, and
a second precedence declaration between statistics gather-
ing and logging. Investigating the source code of all the
aspects, we can see that the required precedence declaration
for RepStats is missing.

Performing the same analysis with the AJDT visualization
tool is simply impossible, as revealed in Figure 15. The only
information that the tool gives us is that the Timing, Logging
and RepStats apply at one shadow point. It segments a
stripe in a seemingly random number of green, red, and
blue parts, in a random order. We need to navigate to all
the different aspects and examine all their source code to be
able to build a mental map of the precedence ordering.

Remark that with AJDT we must investigate all the as-
pects in the system. The reason for this is that AspectJ
allows a precedence declaration for two aspects to be de-
clared in any aspect in the system, not solely in the affected
aspects. We therefore cannot restrict our investigation to the
aspects involved in the precedence relation. Lastly, this in-
vestigation process is made even more time-consuming as the
visualizer does not provide a means to navigate to the source
code of an aspect. We consider it unlikely that such an in-
vestigation will be carried out by developers. This would
be especially the case in a large application with multiple
development teams, where no one developer has the overall
picture of aspect precedence, and responsibility for finding
these issues may not be clear cut. This will probably cause

the problem we show here to be found only in the testing
phase, if at all.

To summarize: AspectMaps immediately gives the devel-
oper an insight in the execution order of aspects. The AJDT
visualizer does not give any information. This requires a
whole-source analysis by the developer to obtain this infor-
mation, which is an unlikely scenario in large applications.

4.3 Case 3: Understanding Existing Code
As we have indicated in Section 2, software visualization

is a well-established means for program comprehension, for
example in reverse engineering or re-engineering efforts. We
now show how AspectMaps allows the developer to gain in-
sight of existing code, by performing a larger study of the
Spacewar code we have been using as a running example.
To contrast the abilities of AspectMaps and the AJDT visu-
alization, compare Figure 1 and Figure 16. Both show the
same code, zoomed in to show maximum detail, revealing
329 advice executions. It is clear that Figure 16 (of As-
pectMaps) provides us with much more information than
Figure 1 (of AJDT). For example, we can see that the De-
bug aspect (in dark blue), applies at the beginning and at
the end of each method and constructor declaration. This is
impossible to ascertain when looking at Figure 1. Note that,
while we show much more information, achieving a higher
information density, it does not come at the price of too high
complexity. For example, it is straightforward to deduce the
above mentioned behavior of the Debug aspect.

Examining Figure 16, four interesting elements are further
revealed by AspectMaps:

1. No precedence declarations have been declared. We

find this remarkable as there is interaction between
theCoordinator aspect (in green), and other aspects.
In other words, advice of other aspects executes at a
number of coordination points. However there is no
specification of whether this behavior should be also
be coordinated or not.

2. The DisplayAspect aspect (in purple) has four different
pointcut-advice combinations: one specific combina-
tion for each method where the aspect applies. This
is revealed by looking at the pop-ups for each advice
execution rectangle, where the line number given is
specific for each method.

3. The EnsureShipIsAlive aspect (in red) applies only in
the [Pilot] hierarchy. Only one piece of around advice
of the aspect is called. Lastly, when the join point
shadow is ship.fire(), the Debug aspect also executes
an after returning advice that uses the named pointcut
allConstructorsCut(). (Again, this detailed information
is obtained by looking at pop-ups.)

4. At every shadow point where SpaceObjectPainting1 ap-
plies (in yellow), SpaceObjectPainting2 (in cyan) also
applies.

Note that none of the first three observations can be made
using only the AJDT visualization tool, i.e.,the user will
need to inspect the source code. In contrast, all the above
information has been obtained solely through AspectMaps,
i.e.,without looking at the source code.

Considering scalability, Figure 16 uses more than the dou-
ble of screen real estate, making it impossible to visualize on
one screen. We however envision AspectMaps to be used dif-
ferently: using a different zoom level for different elements,
depending on the focus of the developer. For example, we
can ignore the details of the Debug aspect and solely focus on
the remaining aspects in the system, only zooming in where
these apply. This can be done using the max zoom in button
and results in Figure 12. This figure is smaller in size than
Figure 1, and easily fits on a laptop screen. Nonetheless it
still yields the same four observations as Figure 16. This
attests to the scalability of the AspectMaps visualization.

5. DISCUSSION AND FUTURE WORK
One striking property of the visualization, especially at

the most fine-grained zoom level, is the “boxes within boxes”
syndrome which could confuse the user. While it might seem
that we have superfluous boxes here, we strictly adhere to
the information density data-ink rule: every box has a spe-
cific meaning. The syndrome is due to the deep nested struc-
ture we are showing: the most inner boxes are call shadow
points, located within a method body, located within an
around advice, located within a method, located within a
class, located within a package. Not visualizing boxes would
mean hiding structural information. We have instead cho-
sen to mitigate the syndrome and reduce complexity through
two strategies: the use of color and the ordering of boxes.
All structures at method level and below have a gray bor-
der, above method level a black border. Execution shadow
points are shown in a vertical order, while call shadow points
are shown horizontally.

Performing a full-fledged validation of a development tool
requires a user study demonstrating that development tasks
benefit from the use of the tool. Unfortunately we currently

do not have enough resources at our disposal to perform such
a validation thoroughly. Instead, in this paper, we have con-
tinuously evaluated AspectMaps with regard to established
guidelines for visualization tools, showing how AspectMaps
follows these guidelines. Also, we have provided a number of
case studies that illustrate the effectiveness of AspectMaps
for different usage scenarios. Lastly, for these case studies we
have demonstrated that AspectMaps is a sizable improve-
ment over existing visualizations for aspect-oriented code.
Nonetheless, an avenue for future work is performing a user
study, to give us deeper insights in how the tool is used and
how it can be improved.

One contribution of a user study could be about the dis-
playing of metrics at the class level view. Now, in the pack-
age level view the visualization of a class encodes two met-
rics: the height reveals the number of methods, and the
width the number of fields of the class. It is possible to do
the same for methods, at the class level visualization. For
example we could have the method height reflect the length
of the method and the width the number of shadow points.
We found however that this renders the visualization too
confusing, increasing complexity too much without signifi-
cantly increasing information density. We therefore made
a conservative choice to not show these metrics, to reduce
confusion. A user study could reveal if this choice is correct.

We were surprised to discover that in AspectJ a prece-
dence declaration for two or more aspects may be specified
in a totally unrelated aspect. As we have mentioned in Sec-
tion 4.2, this means that to know the precedence of any given
two aspects, the developer needs to manually investigate all
the source code of all the aspects in the system. Using As-
pectMaps this question is instead resolved in a single glance,
which is a testament to the power of a good visualization.

Further considering interactions between aspects, As-
pectMaps has a weak point in this setting. This is due
to its focus of being a visualization of advice execution at
shadow points. This weakness is visualization of interactions
at method call and method execution shadow points. Con-
sider for example the pointcuts call(* * AClass.aMethod())
and execution(* * AClass.aMethod()). The shadow points
for the former are visualized at all calls to aMethod(). This
is a different place in the figure than the visualization of
aMethod() (unless the call is a recursive call). Nonetheless,
advice execution at the call side interacts with advice execu-
tion at the execution side. It would be beneficial to visualize
these interactions as well. We have however not yet encoun-
tered a suitable visualization for this, and consider this as
future work.

A last limitation of AspectMaps we discuss here is the lim-
its of the Java and AspectJ importer. Due to its reliance on
the Eclipse model of the Java code, it does not provide in-
formation on structural modifications made by the aspects,
also known as static cross-cuts or inter-type declarations. As
a result, the diagram does not show inter-type declarations,
nor the aspects that apply there. Secondly, the importer
does not provide information on the internal structure of
aspects, e.g.,the methods that they contain. Consequently,
there is no class level or method level visualization of as-
pects, nor any visualization of whether aspects apply within
other aspects. As this feature is orthogonal to the core visu-
alization concepts of AspectMaps we have decided to not yet
implement support for this, and leave this as future work.

6. RELATED WORK
Arguably the most complete tool suite for aspect-oriented

programming is the AspectJ Development Toolkit [4]. We
discussed this toolkit in 2.2, and used it as a basis for com-
parison with AspectMaps. AJDT is a tool suite for AspectJ
in the Eclipse IDE. Other development environments also
have some form of tool support for AspectJ. However this
support is usually limited to a weaver (e.g.,for Netbeans [2],
IntelliJ [3] and JBuilder [1]) and a view similar to the Cross-
references view of AJDT (e.g.,for Netbeans and JBuilder).

Pfeiffer and Gurd [19] propose a visualization tool that is
based on the concept of Treemaps. A Treemap maps the
nodes of a tree to rectangles in a plane, using a space-filling
layout. In contrast to graph-bases layouts of tree nodes, this
does not waste any screen space. The tool proposed in [19]
is called Asbro and provides for a tree map visualization
of where aspects apply in packages and types. Rectangles
representing classes or packages are colored with an aspect
color if an aspect applies there. The authors assess their
tool as being beneficial for obtaining a high-level overview
of aspect application, and state that it is scalable up to on
average 2100 classes. However, Asbro does not scale down
to a fine granularity: it does not reveal aspect application at
finer levels than types. Furthermore, it does not provide any
information of aspect interaction at a given shadow point.
Additionally, the tool does not have a feature which shows
that multiple aspects apply in one class or package.

Coelho and Murphy take a different approach to scala-
bility in their ActiveAspect tool [9]. The tool shows an
automatically selected subset of the elements in the code,
depending on the current focus of the developer. The visu-
alization that is used is UML extended with a representa-
tion of aspects, method execution advice and method call
advice. An important issue with such a graph notation is
that it scales poorly with a large number of classes. Ac-
tiveAspects includes a number of abstraction operations to
lessen clutter in these cases. The power of the approach
lies in the ability of the tool to automatically perform such
abstraction operations, as well as the automatic selection
of elements to be visualized. However Coelho and Murphy
note that their user study shows that the heuristics they
are using often do not correspond with the users wishes. In
contrast, in AspectMaps the user has full control over what
is visualized and what is not, hence there are no heuristics
issues. A further downside of ActiveAspects, as we have de-
tailed in Section 2.2, is that all aspects that apply within
one method are gathered together in one visualization ele-
ment. Because of this, ActiveAspects reveals no information
of aspect interactions at one given shadow point.

Zhang et al. [29] present an analysis toolkit for assess-
ing the impact of structural modifications through AspectJ
inter-type declarations on the behaviour of the system. Due
to the inherent obliviousness of such declarations, it can be-
come increasingly difficult for a developer to understand how
a program will behave. They propose analyses to assess how
the declarations impact the method lookup of the base pro-
gram, and to identify how particular base-code entities are
shadowed by inter-type declarations. To present the results
of the analyses to a developer, an integration with Eclipse
is offered by means of visual clues (markers) and dedicated
views that represent the lookup impact and shadowing im-
pact. This approach is complementary to ours: AspectMaps
focusses on the visualization of shadow points while ITDVi-

sualizer aids in comprehending inter-type declarations.
Software visualization is a very active field with numer-

ous research results. However, few of them have a clear
relevance in the context of aspect understanding. The most
straightforwardly applicable is Distribution Map [12]. Dis-
tribution Map is a generic visualization that shows how a
given phenomenon or property is distributed across a refer-
ence partition of a large software system (packages organi-
zation, files...) In particular, Distribution Map reveals the
spread and focus of a phenomenon. Spread: how much does
a property spread across the reference partition: is it local
or global? Focus: how close does a property match the refer-
ence partition: is it well-encapsulated or cross-cutting? The
goal of Distribution Map is not to display aspects but more
general cross-cutting properties like code owners, commits,
symbolic information. As a result it can be used to repre-
sent aspects, but lacks the AspectMaps abilities to visualize
information at a sub-method level.

7. CONCLUSION
Program understanding is a complex task that is made

more difficult when using aspects because the base code im-
plicitly calls aspect code. Implicit invocation is specified by
pointcuts, adding an extra level of indirection that makes it
difficult to understand total system behavior.

A common way to aid program understanding is the use
of visualization tools that extract relevant information from
the code under study. A number of visualizations for code
using aspects have been developed [4, 19, 9]. However all
of these are victims of common visualization pitfalls, as we
have discussed in this paper. Most noticeably neither of
these tools scale both up to a large code base and down to
a very fine-grained level.

In this paper we presented a new visualization for code
using aspects, called AspectMaps. AspectMaps shows im-
plicit invocations in the source code by visualizing join point
shadows where aspects are specified to execute. For a given
join point shadow, AspectMaps reveals very fine grained in-
formation at a glance: it shows the type of advice (before,
after, . . .) as well as specified precedence information (if
any). Furthermore, AspectMaps scales to a large code base
thanks to a selective structural zooming functionality (i.e. a
map metaphor) that progressively reveals more information
as a user drills down into the structure of the code.

To argue for the merits of our visualization, we have shown
how AspectMaps avoids the common visualization pitfalls,
discussed how it improves on existing work, and applied
it to three example case studies. Most noteworthy here is
the demonstration that AspectMaps does scale from a fine-
grained level up to a large code base.

Additional Information
More information, including some screencasts, is available
on http://pleiad.cl/research/software/aspectmaps

Acknowledgments
We wish to thank Éric Tanter, Jacques Noyé, Alexandre
Bergel, Awais Rashid, Thomas Cleenewerck, Kris De Schut-
ter, Kim Mens, Simon Denier and Andrew Eisenberg for
their invaluable feedback when discussing early versions of
AspectMaps. Thanks also to Andrew Eisenberg for help-
ing us understand the AJDT crosscutting model. We are

grateful to Theo D’Hondt for supporting this research. This
research is supported by the IAP Programme of the Belgian
State and the SticAmSud project CoReA.

8. REFERENCES
[1] AspectJ for jBuilder. http://aspectj4jbuildr.sf.net/.

[2] AspectJ for NetBeans. http://aspectj-netbeans.sf.net/.

[3] The AspectJ plugin for IntelliJ IDEA.
http://intellij.expertsystems.se/aspectj.html.

[4] AJDT: Aspectj development tools.
http://www.eclipse.org/ajdt.

[5] Aspectj programming guide, chapter 5: Pitfalls.
http://www.eclipse.org/aspectj/doc/released/progguide.

[6] J. Bertin. Graphische Semiologie. Diagramme, Netze,
Karten. Gruyter, 1974.

[7] Ruzanna Chitchyan, Johan Fabry, Shmuel Katz, and
Arend Rensink. Transactions on Aspect Oriented
Software Development V, volume 5490 of LNCS,
chapter on Dependencies and Interactions with
Aspects. Springer Verlag, 2009.

[8] R. Coelho, A. Rashid, A. Garcia, F. Ferrari, N. Cacho,
U. Kulesza, A. von Staa, and C. Lucena. Assessing the
impact of aspects on exception flows: An exploratory
study. In European Conference on Object-Oriented
Programming (ECOOP), pages 207–234, 2008.

[9] Wesley Coelho and Gail C. Murphy. Presenting
crosscutting structure with active models. In AOSD
’06: Proceedings of the 5th international conference on
Aspect-oriented software development, pages 158–168,
New York, NY, USA, 2006. ACM.

[10] S. Ducasse, M. Lanza, and R. Robbes. Multi-level
method understanding with microprints. In 2nd IEEE
International Workshop on Visualizing Software for
Understanding and Analysis (VISSOFT), pages 33–38.
IEEE Computer Society, 2005.

[11] S. Ducasse, D. Pollet, M. Suen, H. Abdeen, and
I. Alloui. Package surface blueprints: Visually
supporting the understanding of package relationships.
In Software Maintenance, 2007. ICSM 2007. IEEE
International Conference on, pages 94–103, Oct. 2007.

[12] Stéphane Ducasse, Tudor Gı̂rba, and Roel Wuyts.
Object-oriented legacy system trace-based logic
testing. In Proceedings of 10th European Conference on
Software Maintenance and Reengineering (CSMR’06),
pages 35–44. IEEE Computer Society Press, 2006.

[13] Stephen G. Eick, Joseph L. Steffen, and Eric E.
Sumner, Jr. Seesoft-a tool for visualizing line oriented
software statistics. IEEE Trans. Softw. Eng.,
18(11):957–968, 1992.

[14] Eduardo Figueiredo, Nelio Cacho, Claudio Sant’Anna,
Mario Monteiro, Uira Kulesza, Alessandro Garcia,
Sergio Soares, Fabiano Ferrari, Safoora Khan,
Fernando Castor Filho, and Francisco Dantas.
Evolving software product lines with aspects: an
empirical study on design stability. In ICSE ’08:
Proceedings of the 30th international conference on
Software engineering, pages 261–270, New York, NY,
USA, 2008. ACM.

[15] A. Kellens, K. Mens, J. Brichau, and K. Gybels.
Managing the evolution of aspect-oriented software
with model-based pointcuts. In European Conference

on Object-Oriented Programming (ECOOP), number
4067 in LNCS, pages 501–525, 2006.

[16] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik
Kersten, Jeffrey Palm, and William Griswold. An
overview of AspectJ. In Jorgen L. Knudsen, editor,
Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP 2001),
number 2072 in Lecture Notes in Computer Science,
pages 327–353, Budapest, Hungary, June 2001.
Springer-Verlag.

[17] C. Koppen and M. Stoerzer. Pcdiff: Attacking the
fragile pointcut problem. In European Interactive
Workshop on Aspects in Software (EIWAS), 2004.

[18] M. Lanza and S. Ducasse. Polymetric views — a
lightweight visual approach to reverse engineering.
IEEE Transactions on Software Engineering,
29(9):782–796, September 2003.

[19] J.-Hendrik Pfeiffer and John R. Gurd.
Visualisation-based tool support for the development
of aspect-oriented programs. In AOSD ’06:
Proceedings of the 5th international conference on
Aspect-oriented software development, pages 146–157,
New York, NY, USA, 2006. ACM.

[20] Macneil Shonle, Jonathan Neddenriep, and William
Griswold. Aspectbrowser for eclipse: a case study in
plug-in retargeting. In eclipse ’04: Proceedings of the
2004 OOPSLA workshop on eclipse technology
eXchange, pages 78–82, New York, NY, USA, 2004.
ACM.

[21] Sérgio Soares, Paulo Borba, and Eduardo Laureano.
Distribution and persistence as aspects. Softw., Pract.
Exper., 36(7):711–759, 2006.

[22] J. Stasko, J. Domingue, M.H. Brown, and B.A. Price,
editors. Software Visualization - Programming as a
Multimedia Experience. MIT Press, 1998.

[23] Margaret-Anne D. Storey, Kenny Wong, F. D.
Fracchia, and Hausi A. Müller. On integrating
visualization techniques for effective software
exploration. In Proceedings of IEEE Symposium on
Information Visualization (InfoVis ’97), pages 38–48.
IEEE Computer Society, 1997.

[24] Margaret-Anne D. Storey, Kenny Wong, and Hausi A.
Müller. How do program understanding tools affect
how programmers understand programs? In Ira
Baxter, Alex Quilici, and Chris Verhoef, editors,
Proceedings Fourth Working Conference on Reverse
Engineering, pages 12–21. IEEE Computer Society,
1997.

[25] M.D. Storey, F.D. Fracchia, and H Müller. Cognitive
design elements to support the construction of a
mental model during software exploration. Elsevier’s
Journal of Systems & Software, 44:171–185, 1999.

[26] E. Tufte. Envisioning Information. Graphics Press,
1990.

[27] E. Tufte. The Visual Display of Quantitative
Information. Graphics Press, 2nd edition edition, 2001.

[28] C. Ware. Information Visualization. Morgan
Kaufmann, 2000.

[29] D. Zhang, E. Duala-Ekoko, and L. Hendren. Impact
analysis and visualization toolkit for static
crosscutting in aspectj. In International Conference on
Program Comprehension (ICPC), 2009.

	Introduction
	Software Visualization
	Visualization Pitfalls
	Existing Aspect Visualizations

	The AspectMaps Visualization
	Package Level
	Class Level
	Method Level
	Advice Execution, Run-time Tests, Ordering
	Execution Shadow Points
	Call Shadow points
	Summary

	Quick Zoom Options
	On Language Independence

	Program Understanding with AspectMaps
	Case 1: Unintended Join Point Capture
	Case 2: Aspect Interactions
	Case 3: Understanding Existing Code

	Discussion and Future Work
	Related Work
	Conclusion
	References

