
Recovering Architectural Views from Software Process Models

Julio Ariel Hurtado Alegrı́a Alexandre Bergel Marı́a Cecilia Bastarrica
Computer Science Department (DCC)
Universidad de Chile, Santiago, Chile

{jhurtado, abergel, cecilia}@dcc.uchile.cl

1. Introduction

Defining organizational software process models
is necessary for improvement. However, determining
whether a process model is appropriate before being
enacted remains challenging, i.e., to statically verify
process models instead of testing them, as suggested
by [5]. For example, identifying cycles of dependencies
among work products, or task cycles with no clear end-
ing conditions are not always easily seen in complete
process model specifications [2].

The convenience of specifying the software architec-
ture with multiple views has been agreed upon [1][3],
so we follow the same approach for dealing with
processes. Different stakeholders require different eval-
uations, thus it seems natural to deal with multiple ar-
chitectural views. We specify our process models using
the SPEM 2.0 standard. Process architectural views are
built following an architectural recovery process such
that each view allows us to evaluate different process
characteristics. We propose three process architectural
view types: ROLEBLUEPRINT, TASKBLUEPRINT and
WORKPRODUCTBLUEPRINT.

2. Process Architecture Recovery

As for most engineering activities, defining a robust
and efficient software process is a non-trivial activity
that requires flexible and expressive tools. As a com-
plement to software process design tools, we provide
an agile and lightweight environment for recovering,
visualizing and understanding software process mod-
els. This environment is based on the Moose software
analysis platform1 and the Mondrian2 visualization
engine. Scripts define a visualization based on the
OMG Software & Systems Process Engineering Meta-
Model Specification 2.0 (SPEM). Process visualization

1. http://moose.unibe.ch
2. http://moose.unibe.ch/tools/mondrian

scripts use a domain specific language and are usually
short (< 10 lines of code).

Our experience with recovering software processes
shows that there is no unique “perfect” view to visually
render a software process architecture. We identified
three different views that provide great help in getting
higher level representations. Role, task and work prod-
uct are the central concepts in SPEM, so making the
views focus on these concepts is intuitive and has the
advantage to introduce no extra abstraction.

A polymetric view [4] is a lightweight software
visualization technique enriched with software metrics
information. It consists of a graph where domain
elements are nodes and the relation between these
elements are edges. Graph aspect variables (node po-
sition, size and color) are determined by computing
some metrics. The three polymetric views we identified
for recovering process architecture are examplified
in Figure 1. For the sake of conciseness, name of
elements have been ommitted from the figure.

The blueprints were used for analyzing an example
software process model from a small company. Some
problems have been identified and the company is
currently taking appropriate actions to solve them.

ROLEBLUEPRINT. An edge designates a collaboration
between two roles. Two roles collaborate if they work
on the same task. The size of a role represents the
quantity of tasks this role is in charge of. In the figure,
this view reveals an interesting situation for the case:
there is a “small” role that is not connected with other
roles. By inspecting which role it is, we saw that it
corresponds to the client role. This means that the
client is not collaborating with other roles whereas it
should at least collaborate with the analyst and the
tester in the analysis and testing tasks, respectively.

TASKBLUEPRINT. A box represents a task and an edge
designates an order dependency between two tasks: T1
depends on T2, if T1 uses a work product produced by
T2. The size of a task represents the number of work

mailto:jhurtado@dcc.uchile.cl
mailto:abergel@dcc.uchile.cl
mailto:cecilia@dcc.uchile.cl
http://moose.unibe.ch
http://moose.unibe.ch/tools/mondrian


RoleBlueprint WorkProductBlueprint

TaskBlueprint

Figure 1. Process architecture visualization

products required and produced. The example view in
the figure reveals an anomalous situation for the case:
there exist some isolated tasks and task groups, so it
is not possible to interpret the model, and neither to
validate its execution order. Although task connections
are not required in SPEM 2.0 because the connection
is realized between the Task Use, we still need a
coherent relationship between tasks and their related
work products. Likewise, cycles without entrance and
exit tasks are present; this means that it is not possible
to determine previous and following tasks of the cycle,
and neither when a cycle must end.

WORKPRODUCTBLUEPRINT. Each work product of
the analyzed process model is a node in the view. A
work product W1 depends on W2, if W1 is an output
of a task where W2 is input. Here we can also find
isolated sets of work products, i.e., a process model
is defined as a set of unconnected process areas, and
not as a coherent and complete process model. For
example for producing test cases, the use cases are
necessary, however this is not defined in the process
model. So, we were able to discover that the example
process model is incomplete.

Lesson learned. We assessed a number of popular
agile software processes (Open UP, XP and Scrum) and
two industrial software processes (Tutelkan Reference
Process – a CMMI Level 2 reference process, and DTS
– a small company process). These case studies show
that these three architectural blueprints are a great tool
to validate process models identifying incompleteness
and anomalies. We identified a number of problems in

these processes, which are currently under considera-
tion for improving process model descriptions. This
approach has a high potential for verifying process
models in other domains, e.g. business process models.

References

[1] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers,
R. Little, R. Nord, and J. Stafford. Documenting Soft-
ware Architectures. Addison-Wesley, 2002.

[2] D. Jacobs and C. Marlin. Multiple view software process
support using the MultiView architecture. In ISAW-2 and
Viewpoints ’96, pages 217–221. ACM, 1996.

[3] D. Jacobs and C. D. Marlin. Software process represen-
tation to support multiple views. IJSEKE, 5(4):585–597,
1995.

[4] M. Lanza and S. Ducasse. Polymetric Views-A
Lightweight Visual Approach to Reverse Engineering.
TSE, 29(9):782–795, Sept. 2003.

[5] L. J. Osterweil. Software Processes Are Software Too.
In 9th ICSE, pages 2–13. ACM Press, 1987.

About the Authors. Julio Ariel Hurtado Alegrı́a is a
PhD student at the DCC, Univ. de Chile. His interest
is software process modeling. Alexandre Bergel is an
Assistant Professor at DCC, Univ. de Chile. His inter-
est is software visualization. Marı́a Cecilia Bastarrica
is an Assistant Professor at DCC, Univ. de Chile. Her
insterest is software architecture.


	Introduction
	Process Architecture Recovery
	References

