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ABSTRACT

JavaScript is widely used to build increasingly complex Web appli-
cations. Unsurprisingly, these applications need to address cross-
cutting concerns. Therefore support for aspect-oriented program-
ming is crucial to preserve proper modularity. However, there is
no aspect-oriented extension of JavaScript that fully embraces the
characterizing features of that language: dynamic prototype-based
programming with higher-order functions. In this paper, we present
AspectScript, a full-fledged AOP extension of JavaScript that adopts
higher-order programming and dynamicity as its core design princi-
ples. In AspectScript, pointcuts and advices are standard JavaScript
functions, bringing the benefits of higher-order programming pat-
terns to define aspects. In addition, AspectScript integrates a num-
ber of state-of-the-art AOP features like dynamic aspect deploy-
ment with scoping strategies, and user-defined quantified events.
We illustrate AspectScript in action with several practical exam-
ples from the realm of client Web applications, and report on its
current implementation. AspectScript is a practical extension that
provides better modularity support to build Web applications, and
that will eventually make it possible to empirically validate the ben-
efits brought by advanced aspect language mechanisms in an ever-
growing application domain.
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1. INTRODUCTION

There is a clear trend in the software industry towards Web-
based applications, as witnessed by the increasing number of popu-
lar Web-based applications like Facebook, YouTube, and Blogspot.
Even operating system are being developed based on Web tech-
nologies (e.g. eyeOS' and Chrome OS?). For the development of
these applications, the JavaScript language is one of the most used,
mainly because almost all modern browsers support it. A conse-
quence of this trend is that JavaScript, which was initially used
only for small client-side scripting, is now used to build complex
applications. In such applications, crosscutting concerns are likely
to appear and end up being scattered at many places in the code,
tangled with other concerns.

While modularization of crosscutting concerns has long been
considered in Web technologies [28] (e.g. separate CSS files for
presentation style), there is not much support at the scripting code
level. Aspect-Oriented Programming (AOP) [15] addresses this is-
sue by introducing new means of modularizing programs, in partic-
ular through the pointcut-advice mechanism. The potential benefits
of AOP for JavaScript have already been identified and resulted in
a number of aspect-oriented proposals for JavaScript [1, 2, 4, 5, 7,
36]. However, these proposals are fairly basic in that they at best
attempt to mimick Aspect] [17] in JavaScript. However, beyond
the fact that it is dynamically typed, JavaScript is a language that
is also fundamentally different from Java. As a result, existing pro-
posals fail to properly integrate with the characterizing features of
JavaScript, i.e. a dynamic prototype-based object model with full
support for higher-order functions.

In contrast, AspectScript builds upon advances in AO language
design research to address the specificities of JavaScript in a novel
way. Inspired by the work on aspects in higher-order procedu-
ral languages by Dutchyn, Tucker, and Krishnamurthi [34, 14],
AspectScript supports first-class aspects; both pointcuts and ad-
vices are defined using first-class functions, providing the full ben-
efits of higher-order programming. In line with this work and the
inherently dynamic nature of JavaScript, AspectScript supports dy-
namic deployment of aspects, as found for instance in CaesarJ [9]
and AspectScheme [14]. Also, AspectScript integrates scoping
strategies [30, 31] for proper control over the scope of dynamically-
deployed aspects. In addition, AspectScript avoid issues of infinite
loops due to aspect reentrancy [29]. Finally, AspectScript not only
supports implicitly-generated join points following the language
model, but also provides the possibility to define custom join points
triggered explicitly, as in Ptolemy [26]. This combination of fea-
tures is unique in the space of current aspect languages.

Uhttp://eyeos.org/
Zhttp://googleblog.blogspot.com/2009/07/
introducing-google-chrome-os.html



This paper puts a strong emphasis on the practical benefits of
integrating these features in an AO extension of JavaScript. Sec-
tion 2 therefore exposes several concrete examples addressed with
AspectScript, progressively revealing how each feature comes into
play. Section 3 then reviews the main elements of the AspectScript
language in a systematic manner. Section 4 presents key points
regarding the implementation of the core of AspectScript, and Sec-
tion 5 describes how two features, custom join points and scoping
strategies, have been added to the core language. Section 6 dis-
cusses related work and Section 7 concludes.

Availability. AspectScript is available online [18] and currently
supports Mozilla Firefox.

2. ASPECTSCRIPT IN ACTION

We introduce AspectScript through concrete examples. More
precisely, we implement a number of extra functionalities to Face-
book, a representative Web-2.0 application. For each of the four
cases, we show how an aspect-oriented solution with AspectScript
enables a modular and straightforward specification.

For conciseness, in the code fragments, we use the variables AS
and PCs as abbreviations for AspectScript and AspectScript.Pointcuts
respectively. All the examples are included with the distribution,
and can be downloaded from the AspectScript website [18].

2.1 A Simple Example

In Facebook, users can freely tag people (supposedly) appearing
in photos. If the user being tagged is a friend of the tagger, the tag
becomes a link to the user profile, and the picture is added to the
personal photo album. However, to avoid wrong tags, Facebook
provides a way to remove them through a “remove tag” option.

For most cases, this simple solution is satisfactory. However, if
a user has been wrongly tagged in hundreds of photos, he has to re-
move each tag individually. Let us devise an extension to Facebook
that suggests an automatic removal of all tags once a user untags
herself from a certain number of pictures (say 3) in a given album.
This feature can be implemented as an aspect in AspectScript:

var pc = PCs.exec(removeTag).and(nTimes(3));

var adv = function(jp) {

var userld = jp.args[0]; //1st argument to removeTag
var albumld = jp.args[1]; //2nd argument to removeTag
showRemoveAllTagsDialog(userld, albumid);

1
AS. after(pc, adv); //deployment

This simple example illustrates how to define and deploy a simple
aspect: defining a pointcut pc, an advice adv, and finally deploying
the aspect. AspectScript provides AS.before/around/after(..) func-
tions, which are syntactic sugar for manually creating and deploy-
ing an aspect with a particular advice kind. The aspect is deployed
with global scope (more on this later).

The aspect matches three executions of the removeTag function.
This function is parametrized by the id of the user, the id of the al-
bum, and the id of the photo (userld, albumld, and photold respec-
tively). The advice adv removes all tags of the user in the current
album, after confirmation. The variables that identify the user and
album are obtained from jp.args, which stores the values with which
the function was executed. The pointcut pc is a conjunction of two
pointcuts. The first is obtained using the exec pointcut designator
(i.e. a function that returns a pointcut), and matches all executions
of the removeTag function. The second pointcut is obtained using
the nTimes pointcut designator. It matches whenever it is evalu-
ated a given number of times. The nTimes PCD is not part of the
standard PCD library; it is defined as a higher-order function:

var nTimes = function(n) {

var times = O;

return function(jp) {
return ++times >= n;
b
b
The actual conjunction of pointcuts is performed using the and
method of the pointcut returned by exec(removeTag). This shows
how pointcuts provided by AspectScript support a fluent interface’
for operands such as or, and, and inCflow. Note how the combina-
tion of first-class functions and fluent interfaces allow for an exten-
sible pointcut language within standard JavaScript syntax.

2.2 Pointcuts: Matching Sequences

While the previous aspect definition appropriately modularizes
the new feature, it is a typical example of a stateful aspect [13],
implemented with book-keeping code (the times variable in the
pointcut). Recognizing this fact, we now present an alternative im-
plementation that uses a general-purpose trace PCD for matching
sequences of events:

var rt = PCs.exec(removeTag);
var adv = function(jp) { /x as above */ };
AS. after(trace(rt,rt,rt), adv);

Note that the pointcut rt only matches execution of removeTag, and
that at deployment time, we actually specify that we are interested
in a sequence of three such events.

The higher-order trace function is a pointcut designator that re-
ceives a list of pointcuts. This list specifies the sequence of join
points to match. Interestingly, trace is also simply defined within
AspectScript as follows*:

var trace = function() { //variable—arg function
var state = 0;
var pcs = arguments; //actual arguments
return function(jp) {

if (pes[state](jp)) {
if (state == pcs.length—1) {
state = 0; // reset state
return true; //match

}

state++; //go to the next pointcut

}

return false;
b
Note that the pointcut resets its state after matching the whole se-
quence (our previous definition with nTimes did not reset). The
trace pointcut designator is mostly illustrative. It is far from a full-
fledged tracematch mechanism in which sequences can be defined
with regular expressions and free variables, and where multiple in-
stances of a sequence can be matched simultaneously [8].

Exposing context information. In order to expose context informa-
tion to either the advice or other pointcuts, a pointcut can take as
optional parameter an environment, and define new bindings in it.
The pointcut returns the environment if it matches’. For instance,
we can define a time PCD that always matches any join point and
only extend the given environment with a new binding associating
a given identifier to the current time:

*Fluency is a structuring principle to make APIs closer to embed-
ded DSLs, see http:/martinfowler.com/bliki/Fluentinterface.html

“In JavaScript, it is possible to omit the declaration of formal pa-
rameters. The actual parameters can then be accessed using the
implicit variable arguments, as an array.

’Returning true in a pointcut has the same meaning as returning the
same environment originally passed to the pointcut.



function time(id) {
return function(jp,env) {
return env.bind(id, new Date().getTime());

b
}

We can now revisit our simple trace PCD to allow pointcuts in a se-
quence to expose context information to be used in later pointcuts:

var trace = function() {
// ... as above
var env = AS.emptyEnv;
return function(jp) {
match = pcs[state](jp,env);
if (match) {
env = match;
if (state == pcs.length—1){ state = 0; return env; }
// ... as above

Note how trace now passes a (local) environment to each pointcut
in the sequence, and keeps the bindings defined by previous point-
cuts. This progressively builds up a sequence-local environment.
When the whole sequence finally matches, the environment is re-
turned. We can use this enhanced trace PCD to express the fact
that the removal of tagging advice is triggered only if the three tag
removals are performed within a given time interval:

var timeDiff = function(jp,env) {
return env.t1 — env.t0 < 10000; // 10 seconds
b

var timedSeq = trace(rt.and(time("t0")), rt,
rt.and(time("t1")).and(timeDiff));
AS. after (timedSeq, adv);

We define a timeDiff pointcut that expects t0 and t1 to be bound in
the environment and checks the time difference. We then define
the sequence pointcut using trace, making sure that the first and
third occurrences of rt bind the current time as expected. This brief
example obviously does not take into account all the intricacies of
a proper tracematch mechanism, but it does illustrate the flexibility
brought by first-class, user-definable pointcuts in AspectScript.

2.3 Giving Life to JavaScript Values

In Facebook, user pages are updated with the last messages from
friends without the need to reload the page. To achieve this, Face-
book uses Ajax [16]: a set of Web development techniques for
asynchronous client-to-server communication. However, when page
elements (e.g. the last messages) depend on Ajax responses, they
must be updated after every communication with the server to show
up-to-date information. The complexity of Ajax updates can be al-
leviated by introducing basic support for reactive values: when a
value originating from an Ajax response changes, all page elements
depending on it are updated accordingly. Using AspectScript, we
introduce a library for basic reactive values, e.g.:

var msgs = new ReactiveValue("lastMsgs.php?id=...", 3000);
newMessages.innerHTML = msgs;

We create a new reactive value msgs, passing the URL from
which the value must be obtained, as well as the update interval.
We then assign this value to the innerHTML property of the page
element displaying new messages. Every time the reactive value is
updated, the property is automatically updated.

The library has two elements: the ReactiveValue constructor and
an aspect that takes care of the assignment of reactive values to
page elements. The aspect, defined below, intercepts all assignment
join points where the left-value is a page element and the right-
value is a ReactiveValue object. Instead of proceeding, the around
advice stores the join point in the reactive value itself. Therefore,
the assignment proper does not happen yet.

var pc = function(jp) {
return jp.isPropWrite() &&
isDomElement(jp.target[jp.name]) & //left—value
jp.value instanceof ReactiveValue; //right—value

var adv = function(jp) {

var reactiveValue = jp.value;

reactiveValue.add(jp); //store jp for future executions
A}S.around(pc, adv);

A reactive value therefore holds a list of assignment join points,
corresponding to assignments to page elements that must be re-
freshed whenever the value changes. This is done each interval mil-
liseconds by scheduling the Ajax query. Whenever the new value
of the Ajax query is ready, onreadystatechange is applied. This
function simply invokes proceed on all the assignment join points:
function ReactiveValue(url, interval) {

var ajaxResquest = ...; //new remote connection

var jpList = []; //list of assignment join points

function query() {

//make request

}
this.add = function(jp) {
jpList.push(jp);

aj’axRequest.onreadystatechange = function() {
for(var i = 0; i < jpList.length; ++i)
jpList[i].proceed(ajaxRequest.responseText);

//schedule query for repetition
setinterval (query, interval);

}

As a result, all page elements that directly depend on a reactive
value are reassigned (join points are re-proceeded) each time the
value changes. Note that this simple library for reactive values
does not support full-fledged reactive computation (including in-
direct dependencies), like Flapjax [23]. This said, the library is still
useful to address direct dependencies between values

2.4 Access Control with Scoping Strategies

Most modern Web applications allow third-party applications to
provide extra functionality through an API. However, one of the
most attractive features of Facebook is the ability to include them
right inside Facebook pages, and since recently, third-party applica-
tions can use JavaScript to provide a richer user experience. Sadly,
JavaScript can also be used by malicious applications to fool users.
For instance, the following application tries to change the “home”
link to point to an external page, identical to the login page of Face-
book, thereby misleading the user to reinsert his access credentials:
var maliciousApplication = {
fakeURL : '123.45.56.78/facebook.com’,
action : function() {
var homeElem = ...;
homeElem. href = this.fakeURL;

P h

To avoid these kinds of applications, Facebook limits the area
of the Web page that an external application can access. Suppose
that a function isOutsideAppArea(elem) exists for checking whether
a DOM element elem is outside the area bounds of an application
page, and hence its access is forbiddenS. Using AspectScript, we
can build a modular solution based on aspects:

The actual implementation in Facebook rewrites the application
code to replace all references to objects in the DOM by references
to objects that check whether an application is trying to access an
element outside its area. We use the isOutsideAppArea abstraction
in this example for the sake of simplicity.



var forbiddenElement = function(jp) {
var elem = jp.target;
return isDOMElement(elem) && isOutsideAppArea(elem);
b
var fa = PCs.get("«").and(forbiddenElement);
var forbid = function(jp) {
throw "forbidden access";

b
var securityAspect = AS.aspect(AS.AROUND, fa, forbid);
AS.deployOn(securityAspect, maliciousApplication);

AS.aspect is used to create the securityAspect. The fa pointcut
of aspect matches all accesses to DOM elements that are outside
the page area of the application, and the forbid around advice im-
mediately throws an exception. In this example, securityAspect is
deployed using deployOn. The semantics of per-object deployment
are the same as in e.g. CaesarJ [9] and Aspect] (e.g. perthis): the
aspect “sees” all join points occurring lexically within the methods
of maliciousApplication.

Although the securityAspect aspect prevents the maliciousApplication

object from directly accessing elements outside of its page area, it
does not forbid the application to indirectly access. This is because
the aspect does not see the join points that are not lexically within
any method of maliciousApplication. For instance, it can use an ex-
ternal function to change the home link:

var maliciousApplication = {
// ... as above
action : function() {
setHomelLink(this.fakeURL); //indirect modification

P

While the above pattern could be detected by using a control flow
check, the malicious application can also schedule setHomeLink(..)
for later execution, thereby completely invalidating any kind of
control flow reasoning:

//modification scheduling in 100 ms
setTimeout(function (){ setHomeLink(this.fakeURL);}, 100);

In both cases discussed above, per-object aspect deployment is
unable to properly prevent the malicious application to perform its
evil deed. A solution to this problem is to use a more expressive
scoping strategy for the security aspect [30]. In particular, we want
to deploy the aspect in the maliciousApplication with a pervasive
scoping strategy [31]:

AS.deployOn(securityAspect, maliciousApplication, pervasive);

In general, a scoping strategy specifies how an aspect propagates
along the call stack as well as in newly-created procedural values
(objects and functions in J. avaScript)7 [30, 31]. The pervasive strat-
egy simply states that the aspect always propagates in both function
applications and newly-created procedural values.

In our example, this ensures that the security aspect is propagated
unconditionally on the stack and therefore sees all accesses to el-
ements in the control flow of any method of maliciousApplication.
The security aspect is propagated to all new procedural values as
well, so the anonymous function passed to setTimeout is also con-
sidered potentially malicious. Therefore, using the pervasive scop-
ing strategy, the security aspect prevents maliciousApplication from
directly and indirectly accessing elements outside of its page area.

7 A scoping strategy also permits to refine the pointcuts of an aspect
for a particular deployment, but we do not need this feature here.

2.5 Identifying New Kinds of Events

In Facebook, a user can interact with applications, events, mes-
sages, and many other elements. When a user interacts with one of
these elements, a description is added to the user wall (i.e. a single
page overview of recent user activity). Wall reporting is clearly a
crosscutting concern; it can be modularized using an aspect:

var pc = ...; //user interactions with elements
var adv = function(jp) {
var elem = ...; // extract elem from jp

wall.add(elem.getDescription()); //desc. of the element
b
AS. after(pc, adv);

Specifying the appropriate pc pointcut is not straightforward. The
standard approach is to define pc as the union of all calls (or execu-
tions) of the functions “corresponding to” interactions of the user
with Facebook elements. Nevertheless, this does not always work.
For instance, when the user adds an already-added application, the
change is discarded. This is reflected in the code of addApplication:

function addApplication(app) {
if (lalreadyAdded(app)) {
//1. check compatibility between the user and the app
//2. synchronous Ajax call to register the app
//3. add the app to the apps bar

b}

Defining a pointcut that matches when addApplication effectively
adds an application is not straightforward. For these kinds of cases,
AspectScript provides custom join points as in Ptolemy [26], whose
underlying idea is to trade obliviousness for precision and abstrac-
tion. Using a custom join point, the addApplication function can
signal precisely when it actually adds an application:

if (lalreadyAdded(app)) {
AS.event("addApp", {elem: app}, function() {
//steps 1, 2, 3 as above

L H

A custom join point is generated by a call to AS.event, passing three
parameters: an event type (addApp), an object containing contex-
tual information provided to pointcuts and advices ({elem: app}),
and a block of code (a thunk) specifying the base code associated
to the join point. With this custom join point, the specification of
the pc pointcut above is straightforward:

var pc = PCs.event("addApp").or(/xother interactions*/);

The PCs.event matches all custom join points with the specified
name. The context information can be accessed as properties of the
join point: in this example, jp.elem is the app object.

2.6 Summary

This informal presentation of AspectScript has illustrated sev-
eral features of AspectScript through concrete applications. We
have shown: how to define and create aspects with different advice
kinds; how to compose pointcuts and define custom PCDs, taking
advantage of higher-order programming patterns; how to expose
context information; how join points can be used as first-class val-
ues, stored in data structures and proceeded multiple times; how
to deploy aspect globally, per-object/function, and to control the
scope of deployed aspect with scoping strategies; and how to use
custom join points to identify new points of interest. The follow-
ing section undertakes a more systematic exposition of the main
features of AspectScript.



[ join point [ points in the program execution at which... |
new a function or object is created.
init a function or object is initialized.
call a function is called.
exec a function is applied.
v-read a local variable is read.
v-write a local variable is written.
p-read an object property is read.
p-write an object property is written.
event AS.event(..) is called.

Figure 1: Dynamic join points of AspectScript.

3. A TOUR OF ASPECTSCRIPT

We now describe AspectScript in more details, reviewing its hy-
brid join point model (Section 3.1), followed by the aspect model
(Section 3.2), and the deployment model (Section 3.3). Finally,
Section 3.4 describes how aspect reentrancy is controlled.

3.1 Hybrid Join Point Model

At its core, AspectScript adopts a join point model in the line
of that of Aspect] [17], but tailored for the JavaScript language.
As in any aspect-oriented language, join points are generated im-
plicitly upon certain evaluation steps of the program. Pointcuts
can then quantify over these join points. While quantification is
a crucial feature of aspect languages, the obliviousness brought by
implicitly-generated join points is more controversial. In particular,
it suffers from a number of problems related to the difficulty of rec-
onciling the (low) level of abstraction of standard join points with
the need for quantifying over application-specific events. To this
end, AspectScript also includes a mechanism for explicitly trigger-
ing custom join points, in the style of Ptolemy [26]. To the best
of our knowledge, combining both implicit and explicit join point
generation is a distinguishing feature of AspectScript in the current
design space of aspect languages.

Standard join points. Figure 1 presents the standard join points
supported in AspectScript. Save the last kind, which corresponds
to custom events, all these join points are generated implicitly when
a related expression is about to be evaluated. The JavaScript object
model is peculiar in several respects. In particular, any function is
considered a method of an object: top-level functions and anony-
mous functions are considered methods of the global root object of
JavaScript. In addition, executing this.foo() in the context of an ob-
ject o, where foo is a method of o, is different from invoking simply
foo(). In the latter case, foo executes in the context of the global ob-
ject, not of 0. Also, a function is an object per-se, which can have
properties on its own. AspectScript considers these peculiarities
when generating join points, setting the target and current object
properties of the join point appropriately. Finally, AspectScript in-
cludes join points for local variable accesses (v-read, and v-write),
not present in the join point model of Aspect].

Custom join points. In addition to standard, implicitly-generated
join points, AspectScript also supports explicitly-generated cus-
tom join points. This mechanism corresponds to typed events in
Ptolemy [26]. It addresses limitation of both implicit invocation
and aspect-oriented languages, by making it possible to treat any
(block of) expression(s) execution as an event that can be quanti-
fied over by pointcuts. Events have a type that closely corresponds
to their intended (application-specific) semantics, rather than being

tied to the base language operational semantics. It is also possi-
ble to communicate an arbitrary set of context information to other
pointcuts and advices without introducing unnecessary coupling to
program details. In AspectScript, typed events are supported as
custom join point with a type attribute. This attribute can be a
string (JavaScript does not support symbols) or any object. Be-
cause AspectScript does not modify the syntax of JavaScript, the
(block of) expression(s) that corresponds to the custom join point
is defined in a thunk. In addition to the type and the thunk, a custom
join point has an arbitrary numer of properties, which can then be
used in poincuts and advices. The generation of a custom join point
with AS.event was illustrated in Section 2.5. Aspects perceive cus-
tom join points like standard ones. Similarly, if no aspect apply, the
original computation takes place, i.e. the specified thunk is applied.

3.2 Higher-Order Aspects

AspectScript is directly inspired by AspectScheme [14], in which
aspects, pointcuts, and advices are first-class values. Consequently,
they can be created and manipulated at runtime. As illustrated in
Section 2, an aspect in AspectScript is a pointcut-advice pair; point-
cuts and advices are plain JavaScript functions.

Pointcut model. Following standard practice, it is standard to de-
fine a pointcut as a function that takes a join point as parameter and
returns an environment if it matches, or false if it does not [20].
The environment is used by pointcuts to pass information to the
corresponding advice. A peculiarity of AspectScript in this respect
is that pointcuts are also parameterized by an environment. This
permits inner pointcuts of a given pointcut to communicate using
the environment. For instance, in the pointcut (pc1 && pc2), the en-
vironment returned by pc1 (if it matches) is then passed to pc2. We
have illustrated the use of this feature in Section 2.28.

Figure 2 presents some of the pointcut designators available in
AspectScript. Because pointcuts are standard JavaScript functions,
their definition does not rely on any additional syntactic constructs.
Also, pointcut designators take full advantage of the potential of
higher-order functions. No standard pointcut in AspectScript mod-
ifies the environment. Pointcuts exposing typical contextual infor-
mation like this, target, and args in Aspect] would be redundant
here because these values are available as join points properties
(e.g. jp-target, jp.args), as illustrated in Section 2.

It is important to notice that AspectScript pointcuts do not rely
on meta-data like types or annotations in order to match join points.
The reason is that JavaScript does not support types nor annota-
tions. AspectScript pointcuts also avoid using variable names to
discriminate first-class values; rather they rely on value identity.
This can be seen in the definitions of the call and exec pointcut des-
ignators in Figure 2, where the reference equality operator (===) is
used to compare functions. Identity-based comparison is important
in a language where functions are first-class values, and hence can
be bound to many names, or none at all. Name-based selection in
this context can result in many false negatives (e.g. a function exe-
cution not matched because it is applied through an alias) as well as
false positives (e.g. a variable name that is used to refer to different
functions at different moments in time).

Adpvice model. Advices in AspectScript are functions parameter-
ized by a join point and an (optional) environment. The join point
object passed as parameter has a proceed method, which permits
the execution of the original computation at the join point. In the

8The examples of Section 2 also make use of the fact that point-
cuts can return true instead of the empty environment, and that all
function parameters in JavaScript are optional.



function call(fun) { //call
return function (jp,env) {
return (jp.isCall() & jp.fun === fun)? env : false;

}}

function exec(fun) { //execution
return function (jp,env) {
return (jp.isExec() &% jp.fun === fun)? env : false;

}}

function get(name) { //variable read
return function(jp,env) {
return (jp.isVarRead() &% jp.name == name)? env : false;

}}

function set(target,name) {

return function(jp,env) {
return (jp.isPropWrite() 8&

jp.target == target && jp.name == name)? env : false;

}}

function cflow(pc) { //control flow
return function cflow(jp,env) {
if (jp == null) {
return false;
}

return pc(jp,env)? env :

}}

function not(pc) { //negation
return function(jp,env) {
//’not’ does not return the (possibly) modified env.
return (pc(jp,env) != false)? true : false;

}}

//property write

cflow(jp.parent,env);

Figure 2: Some pointcuts available in AspectScript.

case of a custom join point, proceed evaluates the associated thunk.
The environment corresponds to the environment returned by the
associated pointcut. Like pointcuts, advices can access the bind-
ings in the environment (e.g. in the example of Section 2.2, the
advice can access both t0 and t1).

AspectScript supports a basic scheme for the composition of as-
pects: when several aspects apply over the same joint point, the
applications of their advices are nested like in Aspect]. Like in
AspectScheme, the precedence for the application of nested advices
is determined by the order in which the aspects are deployed: the
last-deployed aspect goes first. We come back on aspect weaving in
Section 4.2, when describing the implementation of AspectScript.

3.3 Deployment and Scoping Strategies

Dynamic deployment of aspects has been shown to enhance reuse
and to better support software variability in general [24, 27]. A
number of aspect languages and frameworks hence support dy-
namic aspect deployment, under different flavors and scoping se-
mantics. In fact, a language with higher-order aspects but with-
out dynamic deployment makes little sense [14]: if aspects can
be crafted at runtime (i.e. by a higher-order function), it should
definitely be possible to deploy them at runtime. Furthermore,
controlling the scope of aspects is crucial, not only for software
variability. When analyzing the potential problems that can arise
when composing modules containing woven aspects, McEachen
and Alexander make clear that developers need more control over
scoping of aspects [22]. We believe this is all the more important
in a dynamically-typed setting. AspectScript supports dynamic as-
pect deployment, further refined with scoping strategies [30].

Deployment expression Scope
deploy(asp) / undeploy(asp) global
deploy(asp, fun [,ss]) on block: dynamic by default
deployOn(asp, val [,ss]) on object: lexical by default

Figure 3: Aspect deployment in AspectScript. Scoping strate-
gies can be optionally specified in the last two alternatives.

Dynamic Deployment. As in CaesarJ [9] and AspectScheme [14],
AspectScript supports dynamic deployment of aspects. Deploy-
ment options are presented in Figure 3. The first option is global
scope: deploy(a) deploys aspect a such that it sees all join points
in the execution of the program, until it is explicitly deployed with
undeploy(a). Internally, deploy (resp. undeploy) just adds (resp. re-
moves) an aspect to the global aspect environment, globalAspects.

In order to deploy an aspect with dynamic scope (e.g. fluid-around
in AspectScheme), deploy can take a thunk (no-arg function) as an
extra argument. In this case, the aspect sees all join points in the
dynamic extent of the evaluation of the thunk. Internally, this vari-
ant of deploy temporarily adds the aspect to the global environment,
executes the thunk, and then removes the aspect:

function deploy(aspect, fun){
globalAspects.add(aspect);
var r = fun();
globalAspects.remove(aspect);
return r;

}

This mutation-based implementation is necessary because JavaScript
does not support dynamic binding.

The third deployment option is per-value deployment, which fol-
lows the semantics of per-instance deployment in e.g. CaesarJ and
Aspect] (per-this). The scope of an aspect deployed using deployOn
is lexical, therefore the aspect only sees join points occurring lex-
ically within method bodies of the objects it is deployed on. If
deployed on a function, the aspect sees all join points in the body
of the function, including inner functions.

Scoping Strategies. Both deployment on a block (deploy) and de-
ployment on values (deployOn) can be refined using a scoping strate-
gies, specified as a last parameter. Scoping strategies [30, 31] per-
mit fine-grained control over the scope of a dynamically deployed
aspect. A scoping strategy is a triple of functions [c,d,f]. ¢ (resp. d)
is propagation function specifying whether or not an aspect propa-
gates along the call stack (resp. in newly-created functions or ob-
jects). fis an activation function making it possible to filter out cer-
tain join points. In other words, ¢ permits to stop the unconditional
propagation of dynamic scope at certain points, d enables aspects
to be captured in certain procedural values as they are created, and
f specifies a deployment-local refinement of the aspect pointcut.

All three functions are boolean-returning functions that take a
join point as parameter’. In the case of ¢, the join point is the call
the aspect can propagate through; in the case of d, the join point
is the creation of the new object or function; and in the case of f,
the join point is the one subject to filtering. As an example, the
pervasive scoping strategy [31] used in the example of Section 2.4
is defined as follows:

var pervasive = [true,true,true];

°In AspectScript, ¢, d and f can be specified directly as values; this
is syntactic sugar for the corresponding constant function.



This strategy specifies that the aspect propagates unconditionally
on the call stack (c always evaluates to true). Similarly, the aspect
propagates to all new procedural values (d always evaluates true).
Finally, the filter function f always evaluates to true as well, there-
fore no filtering is performed and the aspect sees all join points.
Many examples of scoping strategies have been formulated else-
where, for both local aspects [30] and distributed aspects [33], as
well as variable bindings [31].

3.4 Control of Aspect Reentrancy

Thus far we have ignored a fundamental issue with the proposed
design of AspectScript: if a function application triggers a join
point, and a pointcut is a plain JavaScript function, then applying a
pointcut pc triggers a function application join point against which
pc should itself be evaluated, leading to an infinite loop! And the
same happens with an advice that applies a function whose applica-
tion is matched by its associated pointcut. In fact, while this issue
of aspect reentrancy is exacerbated in a higher-order aspect lan-
guage like AspectScript, it is latent in any aspect language'®. Some
mechanism must be provided to avoid aspects potentially matching
join points triggered by their own execution [10, 29].

Limitations of current solutions. Higher-order procedural aspect-
oriented languages like AspectML and AspectScheme adopt dif-
ferent solutions to this problem, though both rely on a mechanism
to deactivate weaving in some way. Indeed, AspectScheme uses a
primitive operator app/prim to apply a function without generating a
join point, and AspectML suggests a similar disable primitive that
hides the whole computation of an expression. The difference is
their scope: app/prim only hides a single function application join
point, but does not hide the computation triggered by that appli-
cation; conversely, disable has dynamic scope. Current Aspect]
patterns to address these issues are similar to disable: adding a
control-flow condition to pointcuts such that join points occurring
in the dynamic extent of advice execution are ruled out [10]. The
Aspect] pattern however does not work in the case of reentrancy
caused by if pointcuts [29].

As argued extensively elsewhere [32], relying on control flow
checks to avoid reentrancy is flawed for several reasons. Most im-
portantly, since proceed is called as part of an advice, reasoning on
control flow conflates advice computation and base computation,
resulting in aspects not applying when then should. Also, disabling
weaving for aspectual computation simply makes it impossible for
aspects to advise aspects.

Solution in AspectScript. In order to properly address issues of
reentrancy without entailing conflation or sacrificing visibility of
aspect computation, AspectScript relies on the notion of execution
levels [32], a refinement of the proposal of stratified aspects [10]. In
a nutshell, the idea is to structure computation into levels, starting
with base computation at level 0. Aspect computation is by default
considered as ocurring at level 1, and is therefore invisible to other
aspects. If needed, aspects can be deployed at higher levels of ex-
ecution, thereby possibly observing other aspects, or an aspect can
explicitly lower part of its computation (if so, a mechanism ensures
that it does not see its own computation). A detailed description
of the implementation of reentrancy control and execution levels is
however outside the scope of this paper. In-depth motivation and
formal description of execution levels can be found in [32].

The bottom line is that, for the programmer, AspectScript just
works as if the issue of reentrancy did not exist, precisely because

Dhttp://mww.eclipse.org/aspectj/doc/released/progguide/
pitfalls-infiniteLoops.html

AspectScript handles execution levels behind the scene. We have
not illustrated advanced scenarios with explicit level shifting, such
as aspects of aspects (see [32]); rather we have focused on illus-
trating the simplicity of the default, most common cases. All the
pointcuts in Section 2 and Figure 2 are defined naturally, without
having to resort to primitive operators like app/prim and disable.
Similarly, advices can perform any computation and they never en-
ter infinite loops caused by aspect reentrancy.

4. IMPLEMENTATION

In this section we detail the implementation of AspectScript. In
particular, Section 4.1 details the code transformation phase re-
quired for weaving, and Section 4.2 describes the weaving process.
Finally, we end with a preliminary analysis of AspectScript perfor-
mance in Section 4.3.

Given the dynamic nature of JavaScript, weaving in AspectScript
is mostly done at runtime. In order to be able to dynamically
weave aspects without modifying a particular JavaScript engine,
our AspectScript implementation first performs a code transforma-
tion phase in which some expressions are rewritten into invocations
of reifiers (Section 4.1). These reifiers then make it possible to per-
form runtime aspect weaving (Section 4.2). Relying on code trans-
formation means that AspectScript can run on any client browser,
without requiring the installation of dedicated complements or add-
ons. Currently, our AspectScript implementation has been tested
with the Mozilla Firefox browser (versions 3.0.* and 3.5.*). The
complete transformation phase is implemented in JavaScript, us-
ing an optimized version of the parser of the Narcissus project!!.
A JavaScript implementation is interesting in order to be able to
do client-side parsing; this could be useful for example in the case
of remote code loading or eval invocations. These applications are
subject of further exploration.

4.1 Code Transformation

The code transformation phase rewrites JavaScript source code'?
by introducing invocations of reifiers. Reifiers are functions that
generate the join points associated with the rewritten expression.

For the reader unfamiliar with JavaScript, Figure 4 presents a
subset of its syntax, relevant to the transformation performed by
AspectScript (we substitute fun for function to save space). A script
is a list of statements, which can be either a function or variable
declaration, a block or an expression. Expressions include object
creation (either with a constructor or literally), definitions of arrays
and anonymous functions, function invocation and variable/prop-
erty access and assignment.

Script z = 3
Statement s = funid(id) {3} | varid=e | {3} | ¢;
Expression e := newec(e)|{id: e} | [e] | fun(id){s}

| (@) | ev.id(e)
|id | eid|id=e|erid=e

Figure 4: Subset of the JavaScript syntax.

The transformation is defined by the syntax-driven rewriting func-
tion [-], presented in Figure 5. The first four rules deal with state-
ments. Rule 1 recursively triggers the transformation of the ex-
pression being used to initialize the declared variable. A function

"http://mxr.mozilla.org/mozilla/sourcefjs/narcissus/
12 AspectScript per se does not extend the syntax of JavaScript; as
illustrated in previous sections, it is provided as a library.



Statements
[var id = e] = var id = [e] 1)
[fun id¢(id) {s}] = var idy = [fun (id) {s}] (2)
[[{E}]] = {[[Efu’n—declsﬂ[[Eothcr—dccls]]} (3)
le:] = [e; (4)

Object Creation

[[neW ec(é)]] = Pnew (fun(k,a){return new k(a@)}, [ec], [[[E]H) (5)
_[[e)] = prew (fun(k,a)ireturn [a]}, Array, [[e]]) (6)
[fun(id) {8}] = puwrap (fun(){return fun(id)[{s}]) (7)
[fid - e}] = puas (fun()fthis.id = [e]}) (8)

Function Invocation

[e; @] = pear (AS.globalObject, e, [[€]]) (9)
lesid(@)] = pean([e¢], [er-id], [[])) (10)

Variable and Property Access

[id] = pread, ("id", id) (11)
[[ld = 6]] = passignv ("idus [[e]]) (12)
[e.id] = preadp([[eﬂ, "id") (13)
[[et.id = 6]] = passignp (Hetﬂ, "id"! [[6]]) (14)

Figure 5: Rewriting function.

declaration is rewritten into a var declaration, binding the function
name to the (transformation of) the anonymous function definition
(rule 2). Rule 3 groups functions declared in a block, and moves
them to the beginning of that block. This reordering is necessary
because of rule 2: in JavaScript a variable needs to be explicitly as-
signed to a value in order to be used, whereas a function declaration
makes the function name available globally in its declaring block.
Finally, rule 4 rewrites the expression part of the statement.

The next rules rewrite expressions. The general scheme is the
same: all the information required to generate a join point is gath-
ered and passed as parameters to the appropriate reifier, which then
triggers weaving (Section 4.2). Object creation (rule 5) is rewrit-
ten into an invocation of the pn.., reifier, passing as argument a
first-class anonymous function that encapsulates the actual instanti-
ation (parametrized by the constructor and actual arguments). This
function is then used at runtime for the proceed method of the con-
structed join point. The same approach is used for array creation
(rule 6). The reifier also receives the constructor and the arguments.
In order to support generation of function execution join points,
functions are wrapped; thus, rule 7 uses a different reifier pwrap-
Finally, literal object creation (rule 8) uses yet another reifier, pj:.
This reifier receives as argument a first-class anonymous function
that encapsulates the initialization of the properties specified in a
given literal object creation.

The remaining rules are straightforward. Function invocations
(rules 9 and 10) are transformed into invocations of the p.qi; rei-
fier, passing as parameters the target of the call, the function being
invoked, and its arguments. Rule 9 uses the global object as a tar-
get because the JavaScript semantics specifies that when no target is
specified when invoking a function, the global object must be used.
Rules for variable access (11 and 12) rewrite reads and writes of
variables into calls to the preqd, and purite, reifiers respectively.

weave(jp)

J

(1) Compute current aspects

(AE: Aspect Environment)

(3) Chain and apply advices

AE function

Global AE in context @

wion (1, (T (T proceedt.
AE object

in context @
proceed(..)

(2) Evaluate pointcuts @
pc(jp,env)? proceed(..)

/_\ |:> e
|ﬁ| Original jp behavior

Figure 6: Weaving process.

In both cases, the name of the variable is passed as the first param-
eter to the reifiers. For prcqd, , the second parameter is the current
value of the variable, and for p.rite, , it is the value being assigned.
Similarly, rules for property access (13 and 14) transform reads and
writes of properties into invocations of the Pread, and Puwrite, rei-
fiers, passing as parameter the name of the property being accessed,
and in the case of a property write, the value being assigned. The
owner of the property is passed as the first argument to both reifiers.

4.2 Runtime Weaving

At runtime, the calls to the reifiers inserted by rewriting are eval-
vated. Apart from creating the corresponding join point, the reifiers
also trigger the weaving process by invoking the weave function of
AspectScript. To illustrate reifiers, below is the (simplified) imple-
mentation of the p.q; reifier:

function r_call(obj, fun, args){
var jp = new CallJP(obj, fun, args, currentJoinPoint);
return weave(jp);

}

The r_call function receives as arguments the target of the call (obj),
the function being invoked (fun), and the arguments to that func-
tion (args). This is the JavaScript code executed to weave a call
expression, corresponding to the transformation rules 9 and 10 in
Figure 5.

The weave function weaves the join point it receives as argu-
ment. Figure 6 depicts the weaving process initiated by weave, and
its simplified definition is as follows:

function weave(jp){
// 1. compute current aspects
var currentAspects =
union (globalAspects,aspectsin(ctxObj) ,aspectsin(ctxFun));
// 2. evaluate pointcuts
var advices = match(jp, currentAspects);
// 3. chain and apply advices
return chainAndApply (advices);

}

The first step is to determine the set of aspects that may potentially
apply. Recall from Section 3.3 that AspectScript supports different
deployment mechanisms: global, per-function, and per-object*. In

B3 Scoping strategies are an extension to AspectScript (Section 5.2).
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Figure 7: Performance overhead of AspectScript for CPU-
intensive tests in the JQuery test suite.

consequence, at a given join point, the list of aspects that may apply
is the union of the aspects that are deployed in several aspect en-
vironments (step 1). First, the global aspect environment contains
all aspects deployed using deploy (either deployed globally or with
dynamic scope). In addition, aspects may have been deployed with
deployOn, therefore each object and function has its own aspect en-
vironment. At a given join point, aspects in the currently-executing
function (ctxFun) and the currently-execution object (ctxObj) have
to be considered (accessed with aspectsin in the code above).

Once the list of current aspects has been determined, pointcuts of
all these aspects are evaluated against the current join point (step 2).
The advices of aspects that matched the current join point are then
chained together, each one nesting the next one (step 3). Execut-
ing proceed in one advice triggers the following advice; in the last
advice in the chain, proceed runs the original base computation.
Note that following AspectScheme [14], before and after advices
are only syntactic sugar for around advices. Aspects are deployed
in the reverse order of their deployment, like in AspectScheme.

4.3 Runtime Performance

The primary design goal of AspectScript is expressiveness. When
conceiving the language, we have not sacrificed any potentially
valuable feature on the basis of its expected cost. Still, we are
interested in making AspectScript a practical solution for aspect-
oriented programming in JavaScript; it therefore makes sense to
evaluate its overhead. In order to do so, we selected a subset of the
jQuery [6] test suite (+1300 tests, around 90% of the total number
of tests) that includes only CPU-intensive tests, as this constitutes a
worst-case scenario for AspectScript. For this experiment, we used
jQuery 1.3.2 (118KB of source code) on an Intel Core 2 Duo, 2.66
GHz PC with 2GB of RAM running Ubuntu 9.04 (kernel 2.6.28)
and Firefox 3.5.2. Running the selected tests takes approximately
20s in this setting, without AspectScript.

We then transformed the jQuery library as described in Sec-
tion 4.1 in order to support aspects. The transformed code ended
up weighing 326KB (a 2.8x factor). Just running the test suite with
the transformed library, without any aspect weaving at all, is 5.7
times slower. This overhead includes the generation of approxi-
mately 3.4 million join points (Mjp). Considering this baseline,
Figure 7 describes the overhead introduced by an aspect follow-
ing different deployment scenarios: (a) a globally-deployed aspect,
(b) an aspect deployed with the pervasive scoping strategy we used
in Section 2.4, and (c) an aspect deployed on an object (the $ ob-
ject, entry point of the jQuery library). In both cases (a) and (b),
the deployed aspect sees all 3.4Mjp; in case (c), due to lexical scop-
ing, the aspect only sees 1.2Mjp. The advice of the aspect only calls
proceed on the join point. For each case, we measured the overhead

with both a pointcut that never matches and a pointcut that always
matches, thus giving a lower and an upper bound for the overhead
of the presence of the aspect. We did experiments where the point-
cut does a function comparison (using reference equality) instead
of just returning a boolean, without any noticeable difference.

The overhead of a global aspect is between 12.3x (never match)
and 13.3x (always match). Activating scoping strategies and de-
ploying a pervasive aspect implies a relative overhead of 20% only
(15.3x-16.1x). Using a per-object aspect (which results in the as-
pect seeing only 1.2Mjp) reduces the overhead down to 8.3x-10.9x.
The results are overall encouraging, especially considering the low
amount of time we spent working on optimizing the implementa-
tion so far; our focus has rather been to get the semantics right
and working. We believe there are many venues for optimization
to be explored, both in the runtime itself and by adding the possi-
bility for the programmer to statically declare certain aspects and
restrictions on the general dynamicity of AspectScript. Finally,
raw overhead in a CPU-intensive scenario does not really reflect
the fact that JavaScript is more widely used for interactive applica-
tions, that may even include remote communication. For instance,
we have tested AspectScript (global aspect always matching) on a
JavaScript Tetris game, without any noticeable difference'®.

S. EXTENSIBILITY

In addition to being a practical aspect language, AspectScript is
also a useful medium for experimenting with new aspect-oriented
constructs. While as of now AspectScript does not provide any
particular support for modular language extension per se, the con-
ciseness of its core implementation (1700 loc, comments included)
makes it easy to localize extension points. We now report on our
experiment in extending our initial implementation of AspectScript
in order to support both custom join points as in Ptolemy [26] (Sec-
tion 5.1), and scoping strategies [30, 31] (Section 5.2). Our moti-
vation to integrate both features is eventually to gather empirical
evidence about their use in practical scenarios.

5.1 Custom Join Points

As illustrated previously, the generation of custom join points is
done by invoking AS.event passing as parameters the type of the
custom join point (just a string), the arguments it exposes, and the
block of code to which the join point corresponds (Section 3.1).
Therefore, AS.event plays the role of an explicit reifier, similar
to those introduced in Section 4.1. Rather than being introduced
through code transformation, the programmer explicitly inserts them
where needed. Not surprisingly, the definition of event is very sim-
ilar to that of a reifier:

AS.event = function(type, ctx, block){
return weave(new CustomJP(type, ctx, block));

b

Just like any other join point, CustomJP needs to implement the
proceed method. In the case of custom join points, proceed must
execute the specified block:

function CustomJP(type, ctx, block){

this.proceed = function (){
return block();
b
}

“Both versions of the Tetris game can be tested online on the
AspectScript website [18].



The proceed function invokes the block of code the join point was
created with. The code presented above is the essence of the custom
join points extension. The real implementation is the same except
for a few performance optimizations. The complete code of the
extension is only 56 lines of code.

5.2 Scoping Strategies

Adding scoping strategies to AspectScript was a significant ex-
tension, though compact to implement. This extension shows how
to better control the scope of deployed aspects; and to do so, a de-
ployed aspect requires extra attributes. Recall from Section 3.3 that
a scoping strategy specifies the propagation of an aspect by means
of both a call stack propagation and delayed evaluation functions
(resp. ¢ and d), and its activation by means of a filter function (f).
Adding these three properties to a deployed aspect object is trivial
in a dynamic prototype-based language like JavaScript:

function deploy(aspect, fun, ss){
ss = normalize(ss); //turn boolean exprs. into functions
aspect.c = ss[0]; aspect.d = ss[1]; aspect.f = ss[2];
//...as in Section 3.3

}

To implement the scoping strategies semantics, we use two func-
tions: enterSS and exitSS, invoked at the beginning and at the end
of weave, respectively. Both take as parameter the list of current
applicable aspects (Figure 6) and the current join point; they may
update the list to reflect the scoping specifications.

Let us first look at how call stack propagation is supported. Be-
fore weaving, enterSS checks if the current join point is a call, and
if so, it checks which aspects should propagate, by evaluating their
¢ propagation function:

var removedAspects = ...; //stack for nested calls
function enterSS(asps, jp){
if(jp.isCall()){
var removed = [];
for(var i = 0; i < asps.length; ++i){
if (lasps[i].c(jp)){
asps.remove(asps[i]); //remove from current aspects
removed.add(asps[i]); //but remember it

'}

removedAspects . push(removed) ;

}}

If an aspect does not propagate, it is removed from the list; all re-
moved aspects are kept on a stack so as to be reinstalled when the
evaluation represented by the join point returns (the removedAspects
stack enables the support for nested calls), in exitSS:

function exitSS(asps, currentJP){
if (currentdP.isCall ()){
var removed = removedAspects.pop();
asps.add(removed);

b}

Taking into account delayed evaluation propagation is simpler;
it is only necessary to add the following condition to enterSS:

function enterSS(asps, currentJP){

// ... as above
if (currentdoinPoint.isInit ()){
for(var i = 0; i < asps.length; ++i){

if(asps[i].d(currentdP)){
AS.deployOn(asps[i], currentJP.target);
1
PHl

If the current join point is an init, the d function of each current as-
pect is evaluated. Whenever d evaluates to true, the corresponding
aspect is deployed on the object being created, using deployOn.

The code presented above is the essence of the scoping strategies
extension. The actual code is only 65 lines in total, including the
implementation of filtering (the last component of a deployment
strategy), not included here for space reasons.

6. RELATED WORK

Modularization of crosscutting concerns has long been consid-

ered in Web technologies [28]. An example of this is the separation
of an HTML document in different sources, such as CSs files for
presentation style and JavaScript files for functionality. However,
within these sources, crosscutting concerns are still present. For
this reason, diverse tools to modularize these concerns are available
in the Web. For instance, the jQuery library [6] allows program-
mers to separate crosscutting concerns in the DOM of a Web page,
e.g. for adding borders to all tables. We now review AOP frame-
works for JavaScript, as well as AOP proposals for other higher-
order procedural languages.
AOP for JavaScript. A large number of lightweight AOP frame-
works for JavaScript have been made available on the Web by pro-
grammers, that rely on function wrappers. In the simplest case,
there is no quantification at all, and one explicitly has to give both
a function and the advice function that should be added to it with
wrapping [7]. Some frameworks make it possible to wrap methods
of an object by specifying the names of the methods to wrap [2,
3, 5], and others support regular expressions for describing method
names to wrap [1, 4].

AOJS [36] is a more mature AOP framework that takes quan-
tification more seriously, and relies on code transformation. How-
ever, it does not embrace the features of JavaScript as AspectScript
does. Aspects (with before and after advice only) are specified in
a separate XML file; therefore, aspects cannot enjoy the full power
of higher-order programming. In addition, function identification
is name-based, rather than identity-based. As discussed in Sec-
tion 3.2, this leads to fragile pointcuts, that may (not) match when
expected, and excludes the execution of anonymous functions. The
join point model of AspectScript is also considerably richer, and ex-
tensible. AOJS does not support dynamic deployment of aspects.
While this is beneficial in terms of performance, it is limitating
in terms of expressiveness. We plan to improve performance of
AspectScript in the future by supporting static specifications to re-
strict full dynamicity to a certain extent. Finally, aspect reentrancy
in AOJS is avoided by simply deactivating weaving during pointcut
and advice evaluation, an insufficient solution (Section 3.4).

AOP for higher-order procedural languages. AspectScript draws
significantly on previous work on AOP extensions of higher-order
procedural languages like Scheme, Standard ML and Caml".

AspectScheme [14] is an aspect-oriented extension of Scheme,
which is, like JavaScript, dynamically typed. In order to support the
full power of higher-order programming, pointcuts and advices in
AspectScheme are standard functions, aspects are dynamically de-
ployed (either with dynamic or lexical scope), and function identifi-
cation is identity-based rather than name-based. AspectScript imi-
tates AspectScheme in all these dimensions. This said, AspectScript
supports a richer join point model, including custom join points.
Context exposure in AspectScript is more powerful, allowing point-
cuts in a composition to use bindings exposed by prior pointcuts.
Finally, AspectScript supports more expressive aspect deployment
(deployOn) and scoping (scoping strategies).

AspectML [12] is an AO extension of Standard ML [25]. Like

SWe do not repeat here the limitations of the mechanisms provided
by AspectScheme and AspectML to avoid reentrancy (Sect. 3.4).



AspectScript, pointcuts are first-class values, but advices are not.
Aspects are deployed with lexical scope only. AspectML does
not use function identity to match pointcuts; instead, pointcuts use
function names and argument types to match functions that are cur-
rently in lexical scope. Anonymous functions cannot be advised
(although an as-yet-unsupported any keyword is discussed). As
discussed before, relying on function names in a language where
functions are first-class values easily leads to both false positives
and false negatives.

Aspectual Caml [21] extends Caml [19] with aspect-oriented
constructs. Like AspectML, Aspectual Caml integrates well with
the type system of the host language. In addition, Aspectual Caml
takes into account the fact that Caml supports object-oriented pro-
gramming. In essence, the aspect-oriented features of Aspectual
Caml are very similar to AspectML, except for the fact that Aspectual
Caml supports pattern matching over method names (in any scope),
as well as advising anonymous functions. However pointcuts are
not first-class values.

7. CONCLUSION

Because JavaScript is being widely used in applications of ever-
increasing complexity, it is particularly relevant to propose a pow-
erful aspect-oriented extension. AspectScript is a first concrete,
working step in this direction. AspectScript fully embraces the
characteristic features of JavaScript, by supporting higher-order as-
pects, a full-fledged join point model, customizable quantified events,
and dynamic aspect deployment with expressive scoping. Aspect
reentrancy is avoided without causing any burden on programmers.
This combination of features is unique in the current design space
of aspect languages. We have illustrated the potential practical ben-
efits of this language through a number of examples from the realm
of client Web applications.

While several enhancements could be made to the language it-
self, like supporting customizable implicit join points [35], the ma-
jor challenges for AspectScript are related to its practical adoption:
portability, performance, and debugging support.

Browser integration. Currently, AspectScript has only been
tested in Firefox. For AspectScript to be adopted in real-world
applications, a version compatible with current browsers is nec-
essary. We intuit that AspectScript can work on most existing
browsers with minor modifications because its implementation is
mostly based on the ECMA-262 specification'®.

Weaving optimization. Implementing aspect weaving in dy-
namic languages like JavaScript is hard to do efficiently [11]. The
main issue is the inability to partially evaluate pointcuts, because
extremely few conditions can be statically determined. Our ini-
tial benchmarks of AspectScript confirm the resulting cost. While
many Web-based applications are highly interactive in nature and
may not be so performance-sensitive, it is important to improve
the current performance of AspectScript. Based on a preliminary
study, we foresee three different lines for improvement: 1) support-
ing constructs that indicate to AspectScript that certain pointcuts do
not need to be evaluated at every join point; 2) permitting the pre-
declaration of aspects to allow AspectScript to partially evaluate
them; 3) adding native support for aspects to the JavaScript engine
itself, so as to avoid relying on code transformation.

Debugging. Currently, debugging an application instrumented
by AspectScript is hard mainly for two reasons. First, because the
code is rewritten and reordered by the transformation, the program-
mer ends up debugging a completely different application. Second,

http://www.ecma-international.org/publications/files/ECMA-ST/
ECMA-262.pdf

step-by-step examination of a running program needs to be aware
of AspectScript in order to not jump to AspectScript internal code.
We therefore plan to extend a popular debugging tool, like Fire-
Bug'”, to make it AspectScript-aware.
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