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Abstract. Global Model Management (GMM) provides a framework
for managing large sets of interrelated heterogeneous and complex MDE
artifacts. Megamodels are a special kind of model introduced by GMM
for containing MDE artifacts. Managing artifacts then involves the ma-
nipulation of the megamodel that contains them. Such manipulations
can be regarded as programs on megamodels. A precise static typing ap-
proach enables the prevention of type errors during the execution of such
programs and contributes to their verification. Weaving models express
relationships between models. Their role in MDE is becoming more im-
portant because of the increasing number of powerful applications they
enable. In this paper we show that a metamodel-based typing approach
for weaving models may lead to situations were further execution is un-
safe, and how a new type defined for them solves the problem.

1 Introduction

Model-Driven Engineering (MDE) mainly suggests basing the software develop-
ment and maintenance processes on models and chains of model transformations.
A few MDE artifacts (e.g., models, metamodels, transformations) can be eas-
ily managed, but when industrial use cases are tackled, large sets of interrelated
heterogeneous and complex artifacts become unmanageable. Global Model Man-
agement (GMM) [3] is a solution for coping with more complex cases by modeling
in the large. There, a megamodel [2] is a model storing references to models and
relationships between them. As a megamodel may refer to any kind of MDE
artifacts, it may be logically seen as an environment where elements, as in a
programming language, can be either declared or defined. Declared elements are
existing models (implicitly initialized variables) and externally defined transfor-
mations (operations). Other elements may be defined within a megamodel, and
they are internally defined composite transformations (operations) and mod-
els resulting from the application of operations (explicitly initialized variables).
A series of such constructs can be understood as a program whose execution
manipulates the contents of a megamodel.

Executability, in this context, introduces the notion of an execution error
within a megamodel. One form of execution error is a type error. A definition of
type error depends on a specific language, but always includes the application
of a function on arguments for which it was not defined, and the attempted
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application of a non-function [18]. Therefore, typing is critical in GMM. A type
system addresses a set of type errors ET and may be used for determining well
typing. A well typed program, with respect to a consistent type system, then
exhibits good behavior (i.e., does not cause type errors from ET upon execu-
tion, and thus program behavior is not unpredictable). In a concrete project, a
megamodel would refer to all involved artifacts, and the manipulation of such
a megamodel would encompass the progress of project-specific processes. For
this reason, a megamodel-centric tool, such as AM3 [1], should prevent the oc-
currence of execution errors in general, and type errors in particular, when its
underlying megamodel is manipulated. We addressed the problem of static typ-
ing in GMM in [16]. Static checking is a form of program verification [4]. Since
megamodels are themselves models, and megamodel manipulations are regarded
as programs, our typing approach contributes to verification in MDE.

GMM’s original typing approach was informally based on a form of “type
by metamodel” relation. In [16] we showed that in some non-trivial cases such
an approach enabled the loss of sensitive type information preventing any form
of further typechecks. Our new typing approach introduced other types and re-
placed the original has-type relation for some specific kinds of models, most
notably, (higher-order) transformation models. This approach prevents the loss
of type information and provides a formal means to reason about the typing of
core GMM elements within a megamodel. However, we realized that when the
type of a model is related to other types the original has-type relation enables
checks that result weaker than what is desirable, suggesting that our approach
needed further improvements. In [15] we successfully experimented with this idea
by introducing a new type for ATL libraries. A related case is the more complex
case of weaving models, for example enacted by AMW [5] models. A weaving
model captures fine-grained relationships between elements of distinct models
in the form of links. It conforms to a metamodel that specifies the semantics
of such links. In turn, macromodels are a proposal for model management simi-
lar to megamodels. [12] stresses the importance of defining relationships among
models within a macromodel. Such relationships may be represented in a me-
gamodel by means of weaving models, and thus the same argument applies to
their importance within GMM. In this paper we extend our typing approach
for GMM by defining a specific type for weaving models which enables stronger
checks in the context of megamodel manipulations.

The rest of this work is organized as follows. Section 2 describes the GMM
approach, introduces megamodel manipulations, and discusses our current typ-
ing approach. Section 3 addresses the typing of weaving models. It describes the
current limitations and introduces a new type for them. The implementation of
this new type within our type system is addressed in Sect. 4. Section 5 concludes.

2 Megamodeling and Typing in GMM

In this section we summarize the key concepts of GMM, especially megamodels,
and we discuss their manipulation and typing.
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MetaMetaModel self.conformsTo = 
MetaModel .conformsTo.oclIsKindOf(MetaMetaModel)
TerminalModel .conformsTo.oclIsKindOf(MetaModel)

Fig. 1. Core and model management-specific GMM concepts

2.1 Global Model Management Approach

The purpose of GMM is to provide a framework where large sets of interrelated
heterogeneous and complex MDE artifacts can be appropriately managed. Such
artifacts include models, metamodels, transformations, any concrete variant of
them, and even other domain specific artifacts. It provides a metamodel [8]
which specifies all kinds of artifacts that are to be managed. Such a metamodel
is incrementally organized into a core part, specifying general MDE concepts or
artifacts, and a number of domain specific extensions which either introduce new
concepts or refine existing ones. This extensibility enables GMM to be applied to
different MDE approaches, which usually introduce the following three different
kinds of models (their relationships are shown in Fig. 1):

– terminal models (M1) conform to metamodels and are representations of
real-world systems.

– metamodels (M2) conform to metametamodels and define domain-specific
concepts.

– metametamodels (M3) conform to themselves and provide generic concepts
for metamodel specification.

One novel element introduced by GMM is the notion of a megamodel. A
megamodel is a variant of the notion of model, specific to the domain of model
management. A megamodel is a container of other models and relationships
among them. Transformation models and weaving models are also variants of
the notion of terminal model. For example the GMM4ATL extension introduces
the notion of ATLModel as a specialization of TransformationModel. In turn, the
GMM4AMW extension introduces de notion of AMWModel as a specialization
of WeavingModel.

One obvious application of megamodels is storing (references to) any model
or artifact involved in a project. Provided that megamodel manipulation facili-
ties are available, MDE artifacts exhibiting the characteristics mentioned at the
beginning of this section can be properly managed. Naturally, these ideas are
meant to be realized by a tool for enjoying such benefits in a practical context.
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2.2 Megamodel Manipulation

For fulfilling its purpose, a megamodel needs to be properly manipulated. Ba-
sic actions on megamodels are CRUD operations with respect to the elements
they contain. Elements within a megamodel may be either externally or inter-
nally defined. Externally defined elements (e.g., metamodels, terminal models,
transformation models and so on) are treated as black boxes, and their creation
within a megamodel is actually a declaration. Internally defined elements are
compositions of other contained transformations and elements obtained from
applying transformations to other contained elements. Their creation is actually
a definition. All elements are implicitly or explicitly initialized, either by their
external or internal definition.

Transformation models are executable elements and they are considered as
operations. They can only be applied to some other elements already contained
in a megamodel, and their results are automatically included in the megamodel.
Manipulating a megamodel is then like programming, where the megamodel acts
as an environment [9] which is updated with each new declaration or definition.

2.3 Typing in GMM

We regard the declaration and definition of elements within a megamodel as
statements of a model-based programming language. The execution of a simple
program composed of a sequence of such statements then manipulates the con-
tents of a megamodel. We formalized such programming language by means of
the cGMM calculus [16]. cGMM is a predicative dependently typed λ-calculus
based on Constructive Type Theory, similar to a subset of the Predicative Calcu-
lus of (Co)Inductive Constructions (pCIC) [10, 17]. We map GMM constructs to
cGMM terms which are based on standard concepts such as variables, dependent
products and applications. We also define an environment where declarations and
definitions (involving typed terms) are included. In this way, a program on a me-
gamodel can be expressed as terms of cGMM. Then a type system for cGMM
formally defines the notion of typing in GMM and provides a precise means for
reasoning about types.

Typing in cGMM is based on the original has-type relation considered in
GMM. Such relation, denoted as :c2, is based on the directed association from
Model to ReferenceModel in Fig. 1; m :c2M (model m is typed by reference model
M ) iff model m conforms to reference model M. We use :c2 for typing reference
models and terminal models which are not transformation models. Models in
general are variables, and reference models in particular are variables which may
occur at either side of a ‘:’ operator (for this reason we do not make a syntactical
distinction between terms and types). However, since this type operation accepts
only reference models at its right side, typing by metamodel is not always ap-
propriate, and some elements are not typed according to :c2. This is the case
of transformation models, which are typed by (possibly dependent) products.
A non-dependent product represents classical function types, where dependent
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products represent either dependent function types (for handling transforma-
tions whose type depends on a metamodel) and universal quantifications (for
handling higher-order transformations). We realized that the type of other ter-
minal models refer to other types as well, and we investigated the applicability of
new type constructors for those cases. We experimented with the simple case of
ATL libraries [15] and we concluded that a new type enables stronger checks. In
the next section we analogously proceed with the more complex case of weaving
models, whose types refer to other types as well.

3 Typing Weaving Models

3.1 Model Weaving

Model weaving enables the definition of user-defined relationships between mod-
els. More specifically, a relationship is realized by a set of links which connect
model elements contained in the models involved in the model weaving. Further-
more, such set of links is the contents of a model, a weaving model. For example,
assuming that we want to define a model weaving between two models ma and
mb, we define a weaving model mw whose contents may be {<a1, b1>,<a2, b1>,
. . . }, where <ai, bj> denotes that ai and bj are linked, and ai and bj are model
elements such that ai ∈ ma and bj ∈ mb. Note that model weavings may be
n-ary in general. A model weaving is essentially a mapping, and as such, there
is a number of useful applications [12]. In particular we could mention trans-
formation specification and tracing. Tracing models are a particular usage of
weaving models. In that case, a link between two elements means that one of
them was created (during the execution of a transformation) from the other. As
another and more concrete example, a model weaving could be defined between
the models that represent the implementation and the deployment views of the
same system. Then, a component may be linked to a node, and the meaning of
that link is that the component will be deployed on the node. The conclusion is
that links may have different meanings, which directly depend on the purpose of
the model weaving in which they participate. Being a terminal model, a weaving
model needs to conform to a (weaving) metamodel. Such a metamodel, in turn,
needs to define the semantics of links. As a consequence, a separate weaving
metamodel is required for each kind of relationship one wishes to define.

AMW [5] is one possible realization of the notion of model weaving. It pro-
poses a concrete approach to deal with the problem of multiple weaving meta-
models. Such metamodels exhibit among them more commonalities than differ-
ences. Therefore, AMW defines a core weaving metamodel that factorizes those
commonalities, from which several specific extensions may be produced. In par-
ticular, an abstract notion of link is defined, which is expected to be specialized
as needed by the weaving metamodel extensions.

3.2 Example

An interesting case study of model weaving applicability is the model adaptation
problem presented in [6]. When a metamodel Ma evolves into a metamodel
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Mb, the concern is to adapt any terminal model ma conforming to Ma to the
new metamodel version Mb. The proposed solution is a three-step adaptation.
First, a matching process computes the equivalences and changes between Ma

and Mb. Second, an adaptation transformation is derived from those discovered
equivalences and changes. Finally, such transformation from ma produces mb,
which conforms to Mb.

Equivalences and changes between metamodels are expressed by means of a
weaving model conforming to the Match weaving metamodel extension. Match
introduces different variants of links for indicating those model elements that
are present in both metamodels, and those which were added or deleted from
Mb with respect to Ma. Note that in this case woven models are not terminal
models; they are metamodels instead.

cGMM terms for the matching process (first step) and its application to
concrete metamodels reveal how GMM currently handles the typing of weav-
ing models. Assuming we are working within the EMF technical space (i.e.,
the metametamodel is ECore), the matching process is performed by an ATL
transformation which can be declared as:

Matching : ECore × ECore → Match

This transformation accepts two metamodels, both of them conforming to ECore,
and produces a weaving model conforming to Match. Then considering two differ-
ent versions of Petri Nets metamodels PetriNetV1 and PetriNetV2, it is possible
to define a weaving model based on an application of Matching as follows:

match := (Matching (PetriNetV1,PetriNetV2 ))

A query on the environment for the type of this generated weaving model re-
turns match : Match. Note that the type is plainly the Match metamodel. This
is because weaving models are currently typed using :c2. Next we discuss the
consequences of this result.

3.3 A Type for Weaving Models

A terminal model (except an ATL library or any variant of transformation
model), is typed using :c2 by the metamodel it conforms to. A weaving model
conforms to a given weaving metamodel. This is true both in the general case
where a stand-alone weaving metamodel is defined, or in the particular case of
AMW where the weaving metamodel is actually an extension of AMW’s core
weaving metamodel. In either case the metamodel a weaving model conforms to
is a weaving metamodel, and as a result our discussion applies to AMW, but
also for the general case.

If weaving model mw conforms to weaving metamodel Mw, then we can
say that mw :c2 Mw. However, mw links elements within some woven models.
For simplicity let us assume that these models are just ma and mb, and that
they are typed as ma:Ma and mb:Mb. We can further assume another weaving
model m′w which conforms to Mw as well, but linking elements within mc:Mc

and md:Md. At this point, by applying the default typing approach, we would
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have that mw:Mw and m′w:Mw. In other words, both weaving models would
appear to have the same type. Although they are similar, both weaving models
are not exactly of the same nature. But most importantly to us, sensitive type
information is not captured.

As an example, let us resume the the case of model adaptation from the
previous section. The second step consists in the generation of the adaptation
transformation that performs the third step. This second step is carried out
by a higher-order transformation (HOT), which we call AdaptationGeneration,
accepting a matching model and producing the expected adaptation transfor-
mation. The problem is that we do not have sufficient information for properly
declaring AdaptationGeneration. Such a declaration must have the following form
(parentheses at the target are not necessary but included for clarity reasons):

AdaptationGeneration : Match → (? → ?)

We are unable to express the type of the generated transformation, even if we
know that its source and target are the metamodels woven by the matching
model. A direct consequence of this is that a generated adaptation transforma-
tion remains untyped. This prevents any type check on further applications, and
as such, using it will not be safe.

For overcoming this problem we incorporate type information about the wo-
ven models to the type of a weaving model. We do this by introducing a Weaving
type constructor of the form: [[Weaving A B ]], where A is a weaving metamodel
(extension) and B is a cartesian product of reference models. The type system
only requires a type rule which enforces these constraints. In this way now we
would have mw:[[Weaving Mw Ma Mb]] and m′w:[[Weaving Mw Mc Md]] (in this
syntax we omit the product operator). This type information reveals that both
weaving models are similar, since they both conform to the Mw weaving meta-
model, but they are not of the same type. Furthermore, with this extended type
information we can now properly type all steps of the adaptation case study.
First we need to declare again the transformation of the first step, now using a
dependent product as a dependent function type:

Matching : A:ECore × B :ECore → [[Weaving Match A B ]]

Now we can declare the transformation of the second step, in this case using a
dependent product for universal quantifications:

AdaptationGeneration : ∀A,B :Type.[[Weaving Match A B ]] → (A → B)

Then we define match as before. Note that a query for the type of match now re-
turns match : [[Weaving Match PetriNetV1 PetriNetV2 ]]. Finally we can produce
the adaptation transformation through the following definition:

AdaptPNV1ToV2 := (AdaptationGeneration PetriNetV1 PetriNetV2 match)

Metamodels PetriNetV1 and PetriNetV2 are used in the application above for
instantiating quantified variables A and B respectively. A query on the envi-
ronment for the type of the generated adaptation transformation then returns
AdaptPNV1ToV2 : PetriNetV1 → PetriNetV2 as expected.
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Fig. 2. The complete adaptation problem in the implementation of cGMM

4 Implementation Remarks

We developed the type system for cGMM as a separate component. It provides
an environment which can be updated with new declarations and definitions. It
supports cGMM terms that correspond to all elements defined in the core GMM
metamodel and its main extensions. Such terms are type-centric representations
of actual GMM elements and the type system reasons about their types as
required. The component provides an ITypeSystem API which is used for feeding
the environment with new declarations and definitions, and for querying the type
of elements within the environment. For terms, we developed a simple textual
language which is similar to Gallina, the specification language of Coq [14].
Calls to the API are translated to a textual command language similar to The
Vernacular, the command language of Gallina. An ANTLR-based parser then
builds cGMM terms from those commands. Type errors are handled by means
of custom TypeException exceptions.

Figure 2 shows the commands involved in the case study of the previous
section, being processed by a console application which directly accesses the
parser. The Assume and Declare commands are used for declarations, the Define
command for definitions, and Check for retrieving type information. Note that
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declared elements are explicitly typed, while the type of defined elements is
completely inferred by the type system. In addition, the arguments for the ap-
plication of AdaptationGeneration (within the definition of AdaptPNV1ToV2 )
to be used for properly instantiating quantified variables A and B were not used;
they were inferred by the type system as well.

The impact on the implementation of the type system of adding the new type
for weaving models was moderate. Naturally we needed to define WeavingType
as a new variant of Type. Such type refers to a product of types restricted to
reference models, and to a new variant of Metamodel, the WeavingMetamodel.
Type substitution rules and algorithms for unification (inference of implicit ar-
guments) and for type matching were also required.

The AM3 tool [1] is a set of Eclipse plugins that realize the GMM approach.
Plugin architecture mimics the structure of GMM’s metamodel: a core plugin
and extension plugins for specific domains. AM3 provides a Megamodeling per-
spective which in turn provides a generic megamodel navigator and editors. Our
implementation of cGMM is being integrated with AM3 as another extension
plugin behind the ITypeSystem interface. When a type-related event occurs,
AM3 issues an appropriate command to the type system and further exchange
type information as required by the case. Such a loosely coupled integration
simplifies testing and type system evolution, and enables the substitution of the
type system as well as its reuse in other contexts.

5 Conclusions and Further Work

Weaving models enable a number of powerful applications, and their typing
is of particular interest in our context. In this paper we showed that a sim-
ple metamodel-based typing approach for weaving models may provoke the loss
of type information which unavoidably makes any further execution of specific
transformations unsafe. A new type constructor specifically defined for typing
weaving models solved the problem.

Based on this experience, we can now proceed with other GMM elements
which present similar cases. In particular, textual entities, which are not mod-
els, are currently untyped in GMM. A proper type constructor for textual entities
would enable an improved typing for model-to-text and text-to-model transfor-
mations supporting concrete realizations, such as TCS [13], which are common
MDE artifacts. In turn, our type system does not support subtyping yet. Even
though our approach can handle the cases when a weaving metamodel is ei-
ther self-contained or it is an extension of another, subtyping would enable the
explicit representation of AMW’s core weaving metamodel.

One of our main directions of future work is to fully integrate our implemen-
tation of cGMM with AM3. The modular architecture defined for this integration
enables the reuse of the type system component. In that context, we are planning
another integration with Wires* [11]. That tool provides a graphical executable
language for the orchestration of complex ATL transformations chains, but does
not currently typecheck the defined compositions.
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pages 105–114. CEA LIST, June 2005.

6. K. Garcés, F. Jouault, P. Cointe, and J. Bézivin. Managing Model Adaptation
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