
Measuring ATL Transformations∗

Andrés Vignaga

MaTE, Department of Computer Science, Universidad de Chile
avignaga@dcc.uchile.cl

Abstract

Model transformations are a key element in Model Driven Engineering because
they are the primary means for model manipulation. Assessing the quality of model
transformations enables the improvement of those assets, and in consequence affects
the quality of the MDE-based process in which they are applied. In this work we
address the implementation of metrics for model transformations. ATL is currently
one of the most popular model transformation languages and thus we focus on mea-
suring transformations defined in ATL. Our solution is implemented as a number
of (higher-order) ATL transformations. The complete definition of ATL transfor-
mations may involve a variable number of libraries, for this reason we realized our
approach by a family of measuring transformations, each of which is automatically
producer by a generator. This use case posed a challenge from a typing point of
view, which we discuss in detail, for which we propose a mechanism for addressing
it.

1 Introduction

Model transformations are a primary means for manipulating models and are thus a key
element in Model Driven Engineering (MDE). The quality of transformations directly
affects the quality of MDE-based processes which rely on them. The ability of assessing
the quality of model transformations enables the improvement not only of individual
transformations, but also of the processes in which they are applied.

The quality of model transformations may be assessed by computing metrics on them
and analyzing the resulting measures. Concrete metrics for measuring transformations
defined in different languages were proposed elsewhere, such as in [4] for the ASF+SDF
system. In this work we discuss the implementation of metrics for model transforma-
tions, focusing on those proposed for ATL in [6]. We implement metrics by means of an
ATL (higher-order) transformation, which accepts as its source the transformation to be
measured, then computes from it the metrics according to their definition, and finally
produces a model containing the obtained measures.

Quality issues related to ATL transformations were addressed in the ATL2Problem
use case [1]. ATL2Problem is an ATL transformation that checks a set of non-structural
constraints, such as rule name uniqueness, on the definition of other ATL transforma-
tions. Although the problems reported by this transformation, which represent constraint
violations, may be regarded as some form of metrics, they focus on other aspects of ATL
transformations compared to those in [6]. Model transformations have already been used
for measuring software. ATL transformations were used for measuring model reposito-
ries [5], and QVT transformations were used for measuring different aspects of information
systems [3].
∗This work was carried out in collaboration with the AtlanMod team (INRIA and EMN), and was

funded by CONICYT Chile and Universidad de Chile.

1

In this work we address the complete definition of ATL transformations, according to
the terms introduced in [6]. The complete definition of an ATL transformation consists of
the module which includes the transformation rules and the transitive closure of imported
libraries (i.e., libraries which are imported by the module and/or among them). Since
modules and libraries are separate models, the implication of such a decision is that
the number of source models of the measuring transformation is variable. Additionally,
the definition of ATL transformations (the measuring transformation we present in this
work is a particular case) require an explicit enumeration of both source and target
models. As a consequence, it is not possible to measure the complete definition of any
ATL transformation using a single measuring transformation. As discussed next, we
shall define a family of measuring transformations, where each member handles a specific
number of source models.

In this document we present a number of ATL transformations which realizes the
scheme discussed above. Based on a “template” transformation we use another transfor-
mation for automatically generating the members of the family of measuring transfor-
mations. Each member produces a model of measures which can be further transformed
to other representations, such as tables or charts. Our results may be used for applying
the metrics defined in [6] in practical contexts. Furthermore, other metrics may easily be
incorporated to our infrastructure as well.

The rest of this work is structured as follows. Section 2 provides an overview of the
proposed solution. Section 3 describes the metamodels involved in the transformations.
The details of the most important components are presented in Sect. 4. Section 5
discusses some issues concerning the typing of the transformations. Section 6 refers to
the prototypical implementation we developed. Section 6 concludes.

2 Overview

Our tool for measuring ATL transformations is expected to handle complete transforma-
tion definitions. The complete definition of an arbitrary ATL transformation is composed
of a mandatory module and a possibly empty set of libraries. As these assets are sep-
arate models, the number of the involved models is positive however arbitrary. This
constitutes a problem. We chose to realize the measuring process through an ATL trans-
formation, and since both source and target models must be statically enumerated in
ATL transformations, it is not possible to define one single transformation which is ca-
pable of measuring an arbitrary transformation. As an example, let us consider two ATL
transformations from [1]: Class to Relational and Models Measurement. For the first
transformation, its complete definition is composed of module Class2Relational (of type
Class→Relational) and library strings (of type Lib(ATL)). Therefore, for the type of the
measuring transformation would be:

∀A,B :Type; C :ReferenceModel. (A→B)×Lib(C) → Measure

where parameters A, B and C should be appropriately instantiated with types Class,
Relational and ATL respectively when applying the measurer transformation to mod-
els Class2Relational and strings. For the second transformation, the complete def-
inition is composed of module KM32Measure (of type KM3→Measure) and libraries
EMOOSE4KM3, FLAME4KM3, MOOD4KM3 and QMOOD4KM3 (which are all typed
by Lib(KM3)). In this case, the type of the measuring transformation would be:

∀A,B :Type;C1,C2,C3,C4:ReferenceModel.
(A→B)×Lib(C1)×Lib(C2)×Lib(C3)×Lib(C4) → Measure

where parameters A and B should be instantiated with types KM3 and Measure re-

2

Descriptor of
“Models

Measurement”

Generator Measurer4

Measurer0
(Template)

Figure 1: Automatic generation of a measurer transformation from a transformation
descriptor and the template

spectively, and parameters C1 through C4 with type KM3, when applying the measurer
transformation to models KM32Measure, EMOOSE4KM3, FLAME4KM3, MOOD4KM3
and QMOOD4KM3. The type of the measuring transformation depends on the number
of models involved in the complete definition of the transformation to be measured, and
specifically, on the number of libraries. We define a family of measuring transformations
of type:

Measurer0 : ∀A,B :Type. (A→B) → Measure
...
Measurer i : ∀A,B :Type;C 1,. . .,C i:ReferenceModel.

(A→B)×Lib(C 1)× . . .×Lib(C i) → Measure (i>0)

In this way, considering the class of transformations which are completely defined by
a module only (i.e., they involve no libraries), then Measurer0 is a measuring transfor-
mation which is capable of measuring any transformation of that class. Analogously,
Measurer i measures any transformation involving exactly i libraries, for all i>0. Note
that the operation of each measuring transformation is essentially the same. In fact, ev-
ery variant may seamlessly manipulate two elements: (a) the module and (b) a collection
of libraries, which will be empty for Measurer0. Then the actual difference among all
measuring transformations reduces to the part of the ATL header where source models
are enumerated, and the code that inserts all source models (except for the module) into
the collection of libraries.

The similarities among the measurer transformations may be exploited by a special
transformation that inserts specific chunks of code into the code of Measurer0 for gener-
ating Measurer i, for any i>0. We call such a transformation a Generator. We illustrate
this idea in Fig. 1 for the case of the transformation Models Measurement discussed be-
fore. The descriptor model contains information about the complete definition of the
transformation. Its metamodel is discussed in the next section. Then the Generator gen-
erates from the template the transformation Measurer4, as Models Measurement involves
four libraries.

Every measuring transformation, either generated or even the template, has access to
the module of the source transformation, the collection of the involved libraries, and the
collection of libraries imported by a given unit (i.e., the module or any library). With
this information, the transformation computes the values for the different metrics. Each
metric is implemented as a separate helper.

3

location
commentsBefore
commentsAfter

name name

libraries module

imports

10..*

0..*

Figure 2: TransformationDescriptor metamodel

3 Metamodels

In this section we discuss the metamodels which are involved in all the transformations
that embodies our solution. For the case of Generator, sources conform to Transforma-
tionDescriptor and ATL, while the target conforms to ATL. For the case of the measuring
transformations, the sources are ATL models (one module and zero or more libraries),
and the target conforms to Measure. For processing the measures, the definition of the
associated metrics is required. Such information is present in models conforming to
Metric.

3.1 Transformation Descriptor

A transformation descriptor model describes the dependencies among the units that com-
pose a complete transformation. The TransformationDescriptor metamodel is illustrated
in Fig. 2. A complete transformation is composed of one module and many libraries. Since
both modules and libraries are units, they in turn may import many libraries.

The Generator transformation just counts the number of libraries that compose the
described transformation and uses that value for inserting the specific code the template
requires for becoming a proper measuring transformation. More concretely, that value is
the index of such a transformation. For the case of Models Measurement transformation,
that value is 4.

3.2 ATL

The ATL metamodel used for Generator and all measuring transformations is the stan-
dard one [2] and will not be further discussed in this document. We refer the reader to [7]
for a short introduction to that metamodel.

3.3 Metric

The Metric metamodel is illustrated in Fig. 3. It is based on a part of the Measure meta-
model defined for the Models Measurement transformation [1]. Such a metamodel can
be understood as the union of the metamodel presented in this section, for representing
information about metrics, and the metamodel presented in Sect. 3.4, for representing

4

location
commentsBefore
commentsAfter

name name
description

name
description

categories metrics
0..*0..*

Figure 3: Metric metamodel

location
commentsBefore
commentsAfter

metricCatalogueName elementName
elementType

namemeasureGroups
measures

0..*
0..*

0..*subgroups

value value value value

Figure 4: Measure metamodel

measures. Using such an “unified” metamodel, the information about the metrics is in-
cluded in every model of measures. This means that several models of measures repeat
the same description of the metrics they refer to. Separating measures from metric def-
initions in their own metamodels, metrics can be defined once, and that model can be
associated to multiple Measure models. Additionally, this approach does not couple the
metrics definition to the existence of measures for them.

A metric set has a name (e.g., “Metrics for ATL Transformations”), and a set of
metric categories. A category has a name too, a description and a set of metrics. A
metric in turn also has a name and a description. A category is used to group metrics.
For example, it may contain all metrics which apply to the same element (e.g. a Rule, a
Helper, etc.).

3.4 Measure

The Measure metamodel is illustrated in Fig. 4. A measure represents the value computed
for a metric. The root of this metamodel is a measure set which indicates the name of
the catalogue containing the definition of the associated metrics (typically, the value of
this attribute is the value of attribute name of class MetricSet in Fig. 3). A measure set
also has a set of groups of measures. Each group contains measures of some element;
therefore the group registers the name and the type of such an element. Measurable
elements may be composite, for that reason groups may have subgroups. A measure has
only a value, which may be of a variety of types (Boolean, Integer, and so on). That
value is meaningless on its own. For that reason, the measure registers the name of the
associated metric. Such a name must match the value of the name attribute (which is

5

unique) of an instance of class Metric within a model conforming to Metric. In this way,
the Measure metamodel has a dependency on the Metric metamodel. Such a dependency
is implemented by attribute values, which is the same mechanism by which an ATL Unit
registers the dependencies on Libraries, through the value of attribute name of LibraryRef
class. However, a weaving model could also be produced along with the measure model,
establishing the required links between the appropriate measure and metric elements.

4 Measuring Transformations

In this section we discuss in detail our approach to measuring complete ATL transfor-
mations using ATL transformations. We start by describing the main ideas behind the
template used for generating the actual measuring transformations. We then present the
details of the Generator transformation which transforms such a template to concrete
ATL measurers.

4.1 Template

Measuring transformations are produced by inserting specific pieces of code into specific
locations of a template transformation. In what follows we describe the structure of such
a template and the operation of measuring transformations during the measurement
process.

4.1.1 Design of the Template

The template we use for generating the different measuring transformations is actually
a fully functional measuring transformation itself. On the one hand, it is capable of
measuring transformations composed of just one module, and for that reason it is the
implementation of the Measurer0 transformation. On the other hand, it is defined in a
way that enables the insertion of specific code which turns it into some Measurer i, for
some i>0. The details of such a process are presented in the next subsection. The ATL
header of the template is therefore:

create OUT : Measure from ModIN : ATL;

which indicates that the template produces a Measure model OUT from an ATL model
(i.e., the module) ModIN. The template also defines two utility helpers; one attribute and
one function. The attribute is defined in the context of the module implementing the
template. It is used for accessing the complete set of libraries involved in the transfor-
mation to be measured. Its name is libraries and is defined as follows:

helper def: libraries : Set(ATL!Library) =
Sequence{library names}->

iterate(e; res : Set(ATL!Library) = Set{} |
res.including(ATL!Library.allInstancesFrom(e)->asSequence()->first())

)
;

This helper essentially converts a sequence of library names to a set of libraries. In
such a definition, library names is a collection of strings where each name is the name of a
formal parameter corresponding to a library. In the case where the template is considered
as a measuring transformation, such a collection is empty, since it is assumed that no
library is involved, and the attribute returns an empty set. In other cases, the resulting
set contains all libraries received as source models. Note that ModIn only provides access
to the names of the libraries imported by it and thus libraries is required. Additionally,

6

helper getLibraries() may be applied on any ATL unit (i.e., a module or a library) and
returns the (possibly empty) set of libraries imported by that unit. It is defined in terms
of libraries as follows:

helper context ATL!Unit def: getLibraries() : Set(ATL!Library) =
let myLibs : Set(String) = self.libraries->collect(n | n.name)->asSet() in

thisModule.libraries->select(l | myLibs->includes(l.name))
;

Each metric is implemented as a separate helper function. Such code is not affected
by the Generator, and as such is shared by all measuring transformations. Furthermore,
we exploit the categorization of metrics used in [6] for determining the context of each
helper. As an example, metric Total number of Imported Libraries (TIL) counts the total
number of imported libraries, either directly or indirectly, by an ATL unit. Such a metric
is applicable to any ATL unit and therefore the context of the helper that implements it
is ATL!Unit. We implemented such a metric recursively as follows:

helper context ATL!Unit def: computeMetric TIL() : Integer =
let libs : Set(ATL!Library) = self.getLibraries() in

let s : Integer = libs->size() in
if s = 0 then

s
else

s + libs->iterate(e; res : Integer = 0 | res + e.computeMetric TIL())
endif

;

This definition uses the getLibraries() helper defined above for accessing the libraries
imported from self. In addition, the type of the result indicates which variant of Measure,
from Fig. 4, should be instantiated for storing the resulting measure. In this case the
result is an Integer value, thus IntegerMeasure needs to be instantiated.

4.1.2 The Measurement Process

The measurement process is defined as follows. We define a MeasureSet for the complete
set of measures computed for a source transformation. Such an element is organized in
a number of MeasureGroup elements. Top level groups correspond to the source module
and to the source libraries, if any. For example, if a transformation to be measured is
defined in a module and n libraries, then the resulting measure model will have n+1 top
level measure groups.

The measure group corresponding to the source module comprises a number of mea-
sures on the module itself, and a number of subgroups which correspond to the different
elements associated to the module. For example, a module may have helpers and rules.
Then, for each of these elements, a measure group, which is a subgroup of the group cor-
responding to the owner module, is generated. Each (sub)group contains the measures
obtained from the corresponding helper or rule. In turn, a measure group corresponding
to a library analogously comprises measures on the library, and a number of subgroups
that correspond to the helpers defined in the library. In turn, each subgroup contains
measures obtained from the corresponding helper. Figure 5 illustrates this scheme ap-
plied to the Class to Relational transformation [1]. Such a transformation is defined by
module Class2Relational and library strings, therefore two top level measure groups were
created.

The template defines two main rules, one for creating the measure group for a module
(rule Module2MeasureGroup) and the other for creating measure groups for libraries (rule

7

metricCatalogueName = "ATL Model Transformation"

: MeasureSet

elementName = "Class2Relational"
elementType = "module"

: MeasureGroup

elementName = "strings"
elementType = "library"

: MeasureGroup

elementName = "Class2Table"
elementType = "matched rule"

: MeasureGroup
elementName = "firstToLower"
elementType = "helper"

: MeasureGroup

metricName = "NIL"
value = 1

: IntegerMeasure

metricName = "TIL"
value = 1

: IntegerMeasure

metricName = "NLV"
value = 0

: IntegerMeasure

metricName = "NIL"
value = 0

: IntegerMeasure

metricName = "TIL"
value = 0

: IntegerMeasure

metricName = "NOP"
value = 0

: IntegerMeasure

......

... ...

......

Figure 5: Partial measure model for Class to Relational

Library2MeasureGroup). These rules create the corresponding measure group, computes
the metrics on the source unit (e.g., measures for metrics NIL and TIL in Fig. 5), and indi-
cates which subgroups need to be created. Other rules include MatchedRule2MeasureGroup
and Helper2MeasureGroup. The resulting elements of such rules are in fact included in
the target model as subgroups of other groups, as is the case of groups corresponding to
elements Class2Table or firstToLower in Fig. 5.

Since any transformation to be measured is assumed to be composed at least by one
single module, then rule Module2MeasureGroup is always matched exactly once. In turn,
rule Library2MeasureGroup will be matched in Measurer i exactly i times, for all i≥0. For
this reason, we decided to include the creation of the instance of MeasureSet within the
out pattern of Module2MeasureGroup.

As a final remark, the approach described above is implemented using declarative
code only. This contrasts with the implementation of the measuring transformation
of [5], which even though it is based on a similar measure metamodel and shares a
similar purpose, it makes intensive use of called rules and imperative code.

4.2 Generator

The Generator transformation transforms the template (i.e., Measurer0) to a Measurer i
transformation, for any i>0. The concrete value of i is extracted from the descriptor
of the transformation to be measured. The Generator produces a transformation whose
implementation is essentially the implementation of the template with the inclusion of
specific fragments of code in some appropriate locations. In other words, the Generator
may be regarded as a “copier” (in the terms of the KM32ATLCopier transformation [1]),
which interleaves additional code. Such additional code is:

8

«metamodel»

ModIN

tempIN OUT

OUT

1

«gmm type» «gmm type» «gmm type» «gmm type»

«source»

«target»«source»

«atl library type»

«source» «target»

«source»

«metamodel»

«target»«source» tdIN

«context»

«source»

«target»

«reference model»

«atl module type»

«atl module type»

«atl module type»

«source» «target»

ModIN n
«uses»

LibnIN

«atl module type»

«atl module type»

OUT

Figure 6: Typing of Generator and measuring transformations

(1) As many formal parameters in the header as libraries are involved as source models.

(2) The names of those formal parameters, as strings, in the library names area of the
definition of the libraries helper discussed in the previous subsection.

As an example, let us consider again the Models Measurement transformation, which
comprises a module and four libraries. Such a transformation is to measured by Mea-
surer4. According to (1), Generator produces its header as follows:

create OUT:Measure from ModIN:ATL, Lib1IN:ATL, Lib2IN:ATL, Lib3IN:ATL, Lib4IN:ATL;

In turn, according to (2), the definition of libraries produced for Measurer4 is the following:

helper def: libraries : Set(ATL!Library) =
Sequence{‘Lib1IN’, ‘Lib2IN’, ‘Lib3IN’, ‘Lib4IN’}->

iterate(e; res : Set(ATL!Library) = Set{} |
res.including(ATL!Library.allInstancesFrom(e)->asSequence()->first())

)
;

5 Discussion

In this section we discuss some issues concerning the typing of the transformations pre-
sented in the previous section. In particular, based on the typing approach presented
in [8], we discuss how types are related for building the types of the Generator and
the measuring transformations. This provides the context for analyzing a limitation in
the typing of transformations like the Generator. We also show in detail the particular
instantiation of this scheme when the Models Measurement transformation is measured.

5.1 Typing the Transformations

In Fig. 6 show how types are combined for building a type for the Generator transforma-
tion and for the family of measuring transformations. In the lower left hand corner the
type of an ATL module can be found. Such a type is built from A and B as source and
target respectively, and for that reason it is denoted as A→B. Both A and B are denoted

9

using a dashed box which means that they are parameters to be bound for obtaining a
concrete function type. In this sense, type A→B is quantified on both A and B. In partic-
ular, stereotypes applied to both parameters indicate that they can be instantiated with
any type, from a simple metamodel to a more complex function type. Then any function
type can be obtained from a proper instantiation of this type, and thus it is the type
of an arbitrary ATL transformation. Right above in the figure, another function type
can be seen. It is built from the type just discussed as source and Measure metamodel
as target. This type specifies a transformation that accepts an arbitrary transformation
as source and produces a measure model as a result. This is the type of the template
transformation, which is Measurer0, as we discussed in Sect. 2. At the center of Fig. 6
another type of an arbitrary ATL transformation uses parameters A’ and B’. Although
parameters are local to the type that declares them, we used different parameter names
for avoiding name conflicts. Above and to the right, another function type is shown.
Such a type indicates that source models are one arbitrary ATL transformation and n
ATL libraries defined in the context of C’, and the target model is a Measure model.
A library typed by Lib(C’) is a library that contains helpers defined in the context of
some element within C’. Type (A’→B’)×Lib(C’)n → Measure is a dependent type which
depends on n. It actually represents a family of types where each member of the family
corresponds to a value of n, for any n>0. Such a type generically types Measurer i, but
most importantly, each member of the family types a concrete measuring transformation.
Note that Lib(C)n is a shorthand notation for Lib(C 1)× . . .×Lib(Cn) used in Sect. 2.
The association stereotyped by uses indicates that the module uses the libraries. This
enables some additional checks. For example, it is expected that the helpers within a
library are defined in the context of some elements contained in the source metamodel of
the module that uses the library. As a consequence, we could require that C’ should be
instantiated with the same type as A’. In the case A’ is instantiated with a product, C’
should be instantiated with a component of A’. In the particular case where the library
defines helpers operating on ATL datatypes (e.g., Strings), C’ should be instantiated with
ATL.

At the top of Fig. 6 the dependent type for the Generator transformation is shown.
Since this type involves the dependent type just discussed, it also depends on n. The
type specifies that the Generator accepts the template and a transformation descrip-
tor as sources, and produces a member of the family of measuring transformations.
Note that, using classical function type notation, the header of the Generator is just
ATL×TransformationDescriptor→ATL, that is, a transformation is produced from a
transformation and a descriptor. This is an underspecification for Generator, since it is
not true that any transformation is expected as input, and it is not possible to infer a
concrete function type for the result. In what follows, we show using an example how
this problem is solved in our approach.

5.2 Example

In the remainder of this section we show how our typing approach is applied to a
concrete case. Figure 7 shows the types involved in the Models Measurement trans-
formation [1]. We have an ATL module of type KM3→Measure, that is, it produces
a Measure model from a KM3 model. Such a module also uses four libraries that
contain helpers defined in the context of some KM3 metaclass. For that reason, the
type of all four libraries is Lib(KM3). Since this transformation involves four libraries
n needs to be bound to 4. As a result, the type of the measuring transformation
is (A’→B’)×Lib(C’1)×Lib(C’2)×Lib(C’3)×Lib(C’4) → Measure, where A’ and B’ can be
bound to any type, and C’1 to C’4 can be independently bound to any reference model.
Then binding A’ to KM3, B’ to Measure, and C’1, C’2, C’3 and C’4 to KM3 in the appropri-
ate part of Fig. 6, the structure of Fig. 7 can be obtained. This means that Measurer4 may
be safely applied to the module and the four libraries that compose Models Measurement.

10

«bind»<A’ KM3,B’ Measure>

tdINtempIN

OUT
«atl module»

«atl module»

«atl module» «terminal model»

«terminal model»

«atl module»

ModIN
OUT

«bind»<C’1 KM3>

«atl module type»

«metametamodel» «metamodel»

«atl library type»FLAME4KM3 MOOD4KM3

EMOOSE4KM3QMOOD4KM3

«uses»

«uses» «uses»

«uses»

«source» «target»IN OUT

«atl library»

«atl library»

«atl library»

«atl library»
Lib1IN

Lib2IN

Lib3IN

Lib4IN

«bind»<C’2 KM3>

«bind»<C’3 KM3>

«bind»<C’4 KM3>«uses»

«uses»

«uses»

«uses»

«bind»<n 4>

«context»

Figure 7: Typing of the complete definition of Models Measurement transformation

The complete process is illustrated in a sort of transformation chain in Fig. 8. At the
top, Generator is applied to Template and KM32MDesc for producing Measurer4. In this
step n is bound to 4 and the resulting type is the one we discussed above. Then, Measurer4
can be applied to module KM32Measure and libraries EMOOSE4KM3, QMOOD4KM3,
MOOD4KM3 and FLAME4KM3, since the bindings already discussed allows such an ap-
plication. Furthermore, we can safely claim that resulting model Measures4KM32M is of
type Measure.

6 Implementation

We developed a prototype which implements the transformations described in this work.
The Generator transformation was fully implemented as a (higher-order) ATL transfor-
mation. In turn, the template was partially implemented. Particularly, the template
includes the implementation of a subset of the large set of metrics for ATL transforma-
tions presented in [6]. An Eclipse workspace containing:

• TransformationDescriptor, ATL, Measure and Metric metamodels,

• Template and Generator ATL source files,

• KM32MDesc terminal model for producing the Measurer4 transformation,

• and KM32Measure, EMOOSE4KM3, QMOOD4KM3, MOOD4KM3 and FLAME4KM3
ATL source files for producing Measures4KM32M terminal model,

is available at http://mate.dcc.uchile.cl/research/tools/measuring.

7 Conclusions

In this work we discussed the implementation of metrics for measuring the complete defi-
nition of ATL transformations as an ATL measuring transformation. Since the complete
definition of an ATL transformation involves a variable number of models, the measur-
ing transformation was replaced by a family of transformation where each member is
specialized in measuring ATL transformations composed of a fixed number of models.
Each such member may be automatically generated from a template transformation,
and a transformation descriptor, through a measurer generator transformation. We suc-
cessfully prototyped our approach by implementing the required infrastructure and a
number of metrics from our base catalogue [6]. This provides a basis for its complete
implementation which in turn will enable the applicability of the metrics in a practical
context.

11

«bind»<A’ KM3,B’ Measure>

tdINtempIN

OUT
«atl module»

«atl module»

«atl module» «terminal model»

«terminal model»

«atl module»

ModIN
OUT

«bind»<C’1 KM3>

«atl module type»

«metametamodel» «metamodel»

«atl library type»FLAME4KM3 MOOD4KM3

EMOOSE4KM3QMOOD4KM3

«uses»

«uses» «uses»

«uses»

«source» «target»IN OUT

«atl library»

«atl library»

«atl library»

«atl library»
Lib1IN

Lib2IN

Lib3IN

Lib4IN

«bind»<C’2 KM3>

«bind»<C’3 KM3>

«bind»<C’4 KM3>«uses»

«uses»

«uses»

«uses»

«bind»<n 4>

«context»

Figure 8: Generation of Measurer4 and its application to the models composing Models
Measurement

Our approach bases its measure representation on the solution proposed in [5]. How-
ever, we separated measures from metrics definition, which avoids redundancy across the
produced measure models. Furthermore, unlike the solution proposed in that work for
measuring models which makes an intensive use of imperative code, our prototype uses
declarative code only.

The ATL use case addressed in this work presented a challenge from a typing point of
view. Even providing the type of each measuring transformation separately, the target
type of the Generator transformation is not actually a single type but rather a family
of separate types. Based on the approach presented in [8], we introduced a form of
dependent type which enabled us to reasonably represent such a family of types at once.

As future work we plan to extend our prototype with more metrics from [6]. With a
complete implementation of such a catalogue detailed experiments can be conducted and
the results could be used for enhancing it. This would start an iterative process, where
metrics are improved as a result of the experiments enabled by the implementation, and
the implementation is updated for reflecting those improvements. Finally, our idea for
representing dependent types for handling target transformations with variable signatures
could benefit from finding and analyzing additional applicability scenarios.

References

[1] ATL Transformations Zoo. Internet: http://www.eclipse.org/m2m/atl/
atlTransformations/, 2009.

[2] Atlantic Zoo. Internet: http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/,
2009.

12

[3] B. Mora, F. Garćıa, F. Ruiz, M. Piattini, A. Boronat, A. Gómez, J. A. Carśı, and
I. Ramos. Software Measurement by Using QVT Transformations in an MDA Con-
text. In J. Cordeiro and J. Filipe, editors, ICEIS (1), pages 117–124, 2008.

[4] M. F. van Amstel, C. F. J. Lange, and M. G. J. van den Brand. Metrics for Analyz-
ing the Quality of Model Transformations. In G. Falcone, Y.-G. Guéhéneuc, C. F. J.
Lange, Z. Porkoláb, and H. A. Sahraoui, editors, 12th ECOOP Workshop on Quanti-
tative Approaches in Object-Oriented Software Engineering (QAOOSE 2008), pages
41–51, Paphos, Cyprus, July 2008.

[5] E. Vépa, J. Bézivin, H. Brunelière, and F. Jouault. Measuring Model Repositories. In
2nd Workshop on Model Size Metrics, co-located with MoDELS 2006 (MSM 2006),
Genova, Italy, October 2006.

[6] A. Vignaga. Metrics for Measuring ATL Model Transformations. Technical Report
TR/DCC-2009-6, Computer Science Department, Universidad de Chile, 2009.

[7] A. Vignaga. Paraphrasing Reference Models and Transformations. Technical Report
TR/DCC-2009-3, Computer Science Department, Universidad de Chile, 2009.

[8] A. Vignaga, F. Jouault, M. C. Bastarrica, and H. Brunelière. Typing in Model
Management. In R. Paige, editor, ICMT2009, to appear.

13

