*

Metrics for Measuring ATL Model Transformations

Andrés Vignaga

MaTE, Department of Computer Science, Universidad de Chile

avignaga@dcc.uchile.cl

Abstract

ATL is currently one of the most popular model transformations languages.
However, so far the quality of transformations defined in ATL has received little
attention. Metrics is a widely used approach for assessing the quality of software,
and was already applied in the context of other model transformation languages. In
this work we present a set of metrics which make ATL transformations measurable,
and enables assessing their quality.

1 Introduction

Model transformations are key assets in Model Driven Engineering (MDE). They embody
the primary means for manipulating (e.g., creating or modifying) models, which are first
class constructs within MDE. In particular, an MDE-based process may be partially
carried out by executing a series of different model transformations on the artifacts asso-
ciated to that process. As a consequence, the quality of model transformations directly
affects the practical application of MDE. Assessing the quality of model transformations
provides valuable information for managing and controlling both model transformation
development and the process in which they are applied. Software metrics are a widely
used method for assessing the quality of software in general, and have also been applied
to model transformations.

The AtlanMod Transformation Language (ATL) [4] is currently one of the most pop-
ular model transformation language within the MDE community and industry. A set of
metrics which specifically apply to measuring model transformations defined in ATL is
not yet defined. In this paper we address this particular issue.

Quality issues related to ATL transformations were addressed in the ATL2Problem
use case [1]. ATL2Problem is an ATL transformation that checks a set of non-structural
constraints on the ATL definition of concrete transformations, such as rule name unique-
ness. As a result, a Problem model is produced where a Problem element represents a
constraint violation. If regarded as metrics, each kind of problem then may take a binary
value: present or not present. Model transformation metrics have been addressed in [8].
There, a quality model which defines the meaning of quality attributes in the context of
model transformation is proposed. However, metrics for assessing those quality attributes
specifically target transformations defined using the ASF+SDF term rewriting system.
In turn, a framework for measuring model transformations was proposed in [7]. In such
a framework, measures do not refer to a transformation definition. Rather, model trans-
formation quality is indicated by the measure of how much a transformation improves
its involved models. To this end, model-specific metrics are computed on source and
target models of the transformation to be measured, and the improvement is indicated
by calculating the difference or norm of such measures.

*This work was carried out in collaboration with the AtlanMod team (INRIA and EMN), and was
funded by CONICYT Chile and Universidad de Chile.

LibraryRef | * 1 Unit

name libraries unit |name

1..*@/ inModels ‘ ’
OcIModel 1.* Module Library
outModels isRefining
1 ’module 1 | library
* ‘ elements
ModuleElement
RuleVariableDeclaration | variables ?
* * helpers
1
Rule 1 Helper
1 name rule
ActionBlock 0.1
actionBlock
0.1 OutPattern
outPattern
CalledRule MatchedRule
isEntrypoint children [Abstract 1 0.1 InPattern
isEndpoint * |isRefining .
|
isNoDefault rule inPattern
0.1
superRule
* parameters
Parameter LazyMatchedRule
isUnique

Figure 1: Partial ATL metamodel (part 1)

Based on the quality attributes introduced in [8] for model transformations, in this
work we define a set of of metrics which can be applied for measuring model transforma-
tions defined in ATL. The measures obtained from applying those metrics to a concrete
model transformation enable assessing those quality attributes. Our approach may be
applied to individual ATL files. However, more generally, we also consider complete
transformation definitions in ATL. That is, for us, a complete ATL transformation is
composed of a module and the transitive closure of all imported libraries.

The rest of this work is structured as follows. Section 2 introduces the basic con-
structs of ATL transformations for providing a foundation for metric definition. Section
3 enumerates the quality attributes to be considered, and presents the set of metrics for
ATL transformations. In Sect. 4 we discuss the relation of the metrics to the quality
attributes. Section 5 concludes and discusses further work.

2 AtlanMod Transformation Language

In this work we focus on metrics for measuring model transformations defined in ATL.
In this section we summarize the main constructs of the language in order to provide a
foundation for metric definition. ATL is a hybrid transformation language. It enables the
definition of a model transformation in a declarative, rule-based style, in an imperative
style, or both. However, the declarative style should be preferred [3]. A simplification
of the core part of the ATL metamodel [2] is shown in Fig. 1. A transformation is

0.1 OclExpression 1

filter value

inPattern InPattern OutPattern | outPattern

1 1

PatternElement

T

elements | 1..* 1..*| elements
sourceElement mapsTo
InPatternElement I o1 OutPatternFlement| outPatternElement * Binding
= 1 bindings [PropertyName
* 1
OclModel
models model
SimplelnPatternElement SimpleOutPatternElement ForEachOutPatternElement

Figure 2: Partial ATL metamodel (part 2)

defined within a Module and operates on a non-empty set of source models (inModels)
for producing a non-empty set of target models (outModels). A Module has a number
of associated ModuleElements which can be either Rules or Helpers. A Helper is a query
function, which is essentially an OCL expression. It is usually defined in the context of
a model element within a source metamodel (target models are write-only), or in the
context of the Module itself. A special form of Helper, with no parameters, is called an
attribute. For efficiency reasons, a Helper with no parameters should be defined as an
attribute. A Helper may be used either from another Helper or from a Rule.

ATL provides two kinds of Rules: MatchedRule and CalledRule. They correspond to
the declarative and imperative styles respectively. Note that both a Module may have
Rules of both kinds at the same time. A Rule may define local variables, and may have
an ActionBlock of imperative code which is to be executed when the Rule is triggered.

A MatchedRule defines a mapping between a set of source elements (specified by its
InPattern) and a set of target elements (specified by its OutPattern). The details of
these two elements is shown in Fig. 2. An InPattern is composed of a set of InPatter-
nElements, which are to be automatically matched to source elements within a source
model. When a match is got, the Rule triggers, if the optional filter condition is satis-
fied. As a result, each OutPatternElement within the OutPattern is created in a target
model. Properties of these target elements are initialized by the corresponding Binding
using the specified value. Elements of an OutPattern may generate individual model el-
ements (SimpleOutPatternElement) or a collection of model elements of arbitrary length
(ForEachOutPatternElement). A LazyMatchedRule is a special kind of MachtedRule. The
only difference is that it is not automatically matched; it is explicitly called instead.
Finally, a unique LazyMatchedRule uses the same created target elements across all its
calls.

A CalledRule may be regarded as a sort of helper which produces target elements (a
helper may return data values only). A CalledRule needs to be explicitly called from
imperative code. The only exception is the case of a CalledRule designated as entrypoint,

module Families2Persons;
create OUT : Persons from IN : Families;

helper context Families!Member def: familyName : String =
if not self.familyFather.ocllsUndefined() then
self.familyFather.lastName
else
if not self.familyMother.ocllsUndefined() then
self.familyMother.lastName
else
if not self.familySon.ocllsUndefined() then
self.familySon.lastName
else
self.familyDaughter.lastName
endif
endif
endif;

helper context Families!Member def: isFemale() : Boolean =
if not self.familyMother.ocllsUndefined() then
true
else
if not self.familyDaughter.ocllsUndefined() then
true
else
false
endif
endif;

rule Member2Male {
from
s : Families!Member (not s.isFemale())
to
t : Persons!Male (
fullName <- s.firstName + ‘' + s.familyName

)
}
rule Member2Female {
from
s : Families!Member (s.isFemale())
to
t : Persons!Female (
fullName <- s.firstName + ' ' 4 s.familyName
)
}

Figure 3: ATL source code of transformation Families2Persons

which is automatically called when the transformation begins its operation. A CalledRule
accepts parameters and does not have an InPattern. In turn, unlike a MatchedRule, the
OutPattern is optional for a CalledRule.

A Library is a special kind of Unit which includes a set of Helpers. These Helpers may
be called from any Unit (a Module or even another Library) that imports the Library which
includes them. Unlike a Module, a Library cannot be executed on its own, and is thus a
means for modularizing functionality which may be reused in several contexts.

Every Module has a special variable thisModule which represents the Module itself.
This variable may be used for calling CalledRules, LazyMatchedRules, Helpers defined
in the context of the Module, and also a series of other operations. One of them is the
resolveTemp() operation. This operation is usually called from a Binding of a MatchedRule,
or from a Helper which is called from that same location. It may be used for accessing any
of the target model elements which will be generated from a specific source model element
by a MatchedRule. This operation enables a powerful control over target elements, but
its use demands extreme care. For example, since Rules are matched in arbitrary order,
when target model elements need to be ordered in a specific fashion, resolveTemp() may
be used for arranging model elements in an intermediate structure before they are added
into a target model, which is unchangeable. We refer the reader to [10] for an example
of an intensive use of resolveTemp().

As an example of a concrete ATL module, Fig. 3 shows the source code of a simple
transformation from the ATL Transformation Zoo [1]. The module has no library refer-
ences, and the in and out models are Families and Persons respectively. Families2Persons
has four elements: two helpers and two rules. Helper isFemale is an operation with no
parameters defined in the context of metaclass Member from metamodel Families, while
familyName is actually an attribute defined for Member. Both rules are matched rules,
and have an in and out pattern, but have no variables or action block. Since they are
structurally similar we discuss Member2Male only. The in pattern is what is found after
the from keyword, while the out pattern is what is found after the to keyword. The in pat-
tern of Member2Male has a filter which is the OCL expression not s.isFemale(), and just
one element. Such an element is necessarily an instance of class SimplelnPatternElement.
Although not specified in Fig. 2, PatternElement is a subclass of VariableDeclaration.
For the element of the in pattern of Member2Male, the values for the inherited varName
and type attributes are s and Member respectively (the associated model is Families). The
out pattern of Member2Male has one element of class SimpleOutPatternElement, which
is naturally associated to the element of the in pattern just discussed. The element is
also a variable declaration, and the values of varName and type in this case are t and
Male respectively (the associated model is Persons). This element has just one associated
binding. The propertyName is fullName, which is intended to be a property of t, and the
value used for its initialization is the OCL expression s.firstName 4+ ' ' + s.familyName.

3 Metrics

In this section a number of metrics for ATL model transformations is presented. They
are organized according to the ATL metaclass to which they apply. In the case a metric
applies to every variant of the same ATL element, the metric is associated to that element
even if in the ATL metamodel it is an abstract metaclass. First, we start by discussing
the quality attributes we intend to assess with those metrics.

3.1 Quality Attributes

A number of quality attributes, many of which apply to software in general as well, where
identified as relevant for model transformations. Such quality attributes are: Under-
standability, Modifiability, Reusability, Reuse, Modularity, Completeness, Consistency
and Conciseness. The names of attributes should be self explanatory, however a more
detailed description of what they mean in the context of model transformations may be
found in [8]. In addition to those quality attributes, we also consider Complexity and
Performance which were also identified as relevant in the quality model presented in [5].

3.2 Unit Metrics

ATL units considered in this document are Modules and Libraries. ATL Queries are not
taken into consideration. Metrics that apply to each variant of Unit include:

e NIL (Number of Imported Libraries)
This metric counts the number of libraries which are directly imported by an ATL
unit.

e TIL (Total number of Imported Libraries)
This metric counts the total number of imported libraries, whether directly or
indirectly, by an ATL unit. It is the transitive closure of the previous metric.

e NH (Number of Helpers)
This metric counts the number of helpers that are directly defined in an ATL unit;
helpers defined in imported libraries are not counted.

e NHP (Number of Helpers without Parameters)
This metric counts the total number of helpers which do not have formal parame-
ters.

e BOU (Balance Of a Unit)
This metric calculates the quotient between the NH measure of a unit and the
average of the NH measures of all units.

e NHC (Number of Helpers per Context)
This metric counts the number of helpers that are defined for a given context, that
is, a metaclass of a source metamodel, a primitive type, or in the case of a module,
the module itself.

e NOH (Number of Overloaded Helpers)
This metric counts the number of helpers whose contexts are different but their
names are equal.

3.2.1 Module Metrics

The following metrics specifically apply to ATL Modules:

¢ NSM (Number of Source Models)
This metric counts the number of source models of a module. Every source model
is counted, even if more than one of them conforms to the same metamodel.

¢ NTM (Number of Target Models)
This metric counts the number of target models of a module. Every target model
is counted, even if more than one of them conforms to the same metamodel.

e ASSM (Average Size of Source Metamodels)
This metric calculates the average of the sizes of all source metamodels of a module.
The size of one metamodel can be calculated using (a combination of) metrics for
metamodels such as those used in [9].

e ASTM (Average Size of Target Metamodels)
This metric calculates the average of the sizes of all target metamodels of a module.

e CSM (Coverage of Source Metamodels)
This metric calculates the quotient between the total number of distinct meta-
classes from all source metamodels whose instances are used in a transformation
for producing the target models, and the total number of metaclasses from all source
metamodels.

e CTM (Coverage of Target Metamodels)
This metric calculates the quotient between the total number of distinct metaclasses
from all target models whose instances conform any of the target models, and the
total number of metaclasses from all target metamodels.

e NA (Number of Attributes)
This metric counts the total number of attribute helpers that are defined in a
module.

e TA (Transformation Approach)
This metric determines the approach followed by a transformation. Its possible
values are:

— Declarative: when all rules are matched rules and none of them has an imper-
ative block section

— Hybrid: otherwise

NMR (Number of Matched Rules)
This metric counts the number of matched rules defined in the module.

NLR (Number of Lazy matched Rules)
This metric counts the number of matched rules in a module which are specifically
lazy.

NUR (Number of Unique lazy matched Rules)
This metric counts the number of unique lazy matched rules in a module.

NCR (Number of Called Rules)
This metric counts the number of called rules in a module.

DIR (Declarative-Imperative Ratio)
This metric calculates the percentage of rules that are hybrid (i.e., include an
imperative block).

NAR (Number of Abstract Rules)
This metric counts the number of abstract rules defined in a module.

NHR (Number of Hierarchies of Rules)
This metric counts the number of different hierarchies of rules defined in a module.

MHH (Maximum Height of a Hierarchy of rules)
This metric calculates the height of the highest hierarchy of rules in a module.

mHH (minimum Height of a Hierarchy of rules)
This metric calculates the height of the lowest hierarchy of rules in a module.

AHH (Average Height of Hierarchies of rules)
This metric calculates the average height of all hierarchies of rules in a module.

MWH (Maximum Width of a Hierarchy of rules)
This metric calculates the width of the widest hierarchy of rules in a module.

mWH (minimum Width of a Hierarchy of rules)
This metric calculates the width of the narrowest hierarchy of rules in a module.

AWH (Average Width of a Hierarchy of rules)
This metric calculates the average width of all hierarchies of rules in a module.

NUH (Number of Unused Helpers)
This metric counts the total number of helpers (those defined in a module, but also
in any imported library) that are not used.

NUL (Number of Unused Lazy matched rules)
This metric counts the number of lazy matched rules (unique or not) defined in a
module that not used.

NUC (Number of Unused Called rules)
This metric counts the number of called rules defined in a module that are not
used.

ASSP (Average Size of Source Patterns)
This metric calculates the average number of elements within source patterns across
all rules.

e ASTP (Average Size of Target Patterns)
This metric calculates the average number of elements within target patterns across
all rules.

e ABR (Average number of Bindings per Rule)
This metric calculates the average number of bindings per rule. The bindings of a
rule are all bindings of all target pattern elements of the rule.

¢ ANV (Average Number of Variables per rule)
This metric calculates the average number of local variables declared per rule.

e ANF (Average Number of Filtered rules)
This metric calculates the average number of rules which have an associated filter
condition.

e NRSE (Number of Rules per Source Element)
This metric counts the number of rules that match elements of the same source
metaclass.

¢ MLC (Maximum Length of nested Calls to helpers)
This metric calculates the size of the longest chain of nested calls to helpers, starting
from a rule in a module.

e ALC (Average Length of nested Calls to helpers)
This metric calculates the average size of all chains of nested calls to helpers, starting
from any rule in a module.

e NCPC (Number of Clones of a Piece of Code)
This metric detects repeated pieces of code and counts the number of times it
repeats. Repeated code takes the form of a (set of) binding(s) which is (are)
present in different elements of the same out pattern, or more likely, in different
out pattern elements of different rules.

e MLIR (Maximum Length of Implicit dependencies of Rules)
Assuming a rule R1 contains a binding whose right side is a (collection of) source
element(s), and that (those) element(s) is (are) transformed by rule R2, we say
that R1 implicitly depends on R2 because the target element of R1 depends on the
target element of R2. In other words, the result of R1 will depend on the result
of R2. This metric calculates the longest path in the (directed) graph of implicit
dependencies of all rules in a module.

e NIrT (Number of Invocations to resolveTemp())
This metric counts the total number of calls to the resolveTemp() operation.

e NCrT (Number of Callers to resolveTemp())
This metric counts the number of module elements that invoke the resolveTemp()
operation.

3.2.2 Library Metrics
The following metrics specifically apply to ATL Libraries:

e DOL (Dependency of Libraries)
This metric counts the number of times a library is imported by other units.

e FIL (Fan-In of Libraries)
This metric counts the number of times a helper defined in a library is used by a
helper defined in another library.

3.3

FOL (Fan-Out of Libraries)
This metric counts the number of times a helper defined in a library uses a helper
defined in another library.

Rule Metrics

There is a great number of metrics on rules; however most of them are derived from
metrics on modules in the sense that the latter require the former for being computed.
This section focuses on metrics that, even if they are derivable, they are interesting per
se. Metrics that apply to any variant of Rule are:

NLV (Number of Local Variables)
This metric counts the number of local variables defined in the rule.

NUV (Number of Unused local Variables)
This metric counts the number of local variables which are not used in a rule.

NUTP (Number of Uninitialized Target Properties)
This metric counts the number of properties of all target pattern elements of a rule
which are not initialized (neither in a binding nor in a sentence).

NCH (Number of Calls to Helpers)
This metric counts the number of calls to a helper made by a rule. There are two
variants of this metric: calls from bindings and calls made from sentences.

NCL (Number of Calls to Lazy matched rules)
This metric counts the number of calls to a lazy matched rule made by a rule. There
are two variants of this metric: calls from bindings and calls made from sentences.

NCC (Number of Calls to Called rules)
This metric counts the number of calls to a called rule made by a rule. There are
two variants of this metric: calls from bindings and calls made from sentences.

NUA (Number of Uses of Attributes)
This metric counts the number of times a rule uses an attribute. There are two
variants of this metric: uses from bindings and uses made from sentences.

3.3.1 Matched Rule Metrics

The following metrics specifically apply to Matched Rules, and to Lazy Matched Rules
as well:

NCHF (Number of Calls to Helpers from Filter)
This metric counts the number of calls to a helper made by a matched rule from
its filter condition.

NUAF (Number of Uses of Attributes from Filter)
This metric counts the number of times an attribute is used within the filter of a
matched rule.

3.3.2 Lazy Matched Rule Metrics

The following metric specifically applies to Lazy Matched Rules:

NRC (Number of Received Calls)
This metric counts the total number of calls a lazy matched rule receives.

3.3.3 Called Matched Rule Metrics

The following metrics specifically apply to Called Rules:

3.4

NRC (Number of Received Calls)
This metric counts the total number of calls a called rule receives.

NOP (Number of Parameters)
This metric counts the number of parameters a called rule receives.

NUP (Number of Unused Parameters)
This metric counts the number of formal parameters declared by a called rule which
are not used.

Helper Metrics

The body of an ATL helper is an ATL Expression, which is essentially an OCL expression.
Therefore some metrics for OCL expressions, such as those reported in [6], are applicable
to ATL Helpers as well. Metrics that apply to helpers are:

NRC (Number of Received Calls)
This metric counts the total number of calls a helper receives.

NOP (Number of Parameters)
This metric counts the number of parameters a helper receives.

NUP (Number of Unused Parameters)
This metric counts the number of formal parameters declared by a helper which
are not used (this includes self).

CCH (Cyclomatic Complexity of a Helper)
This metric calculates the cyclomatic complexity of a helper.

OCH (Order of Complexity of a Helper)
This metric calculates the order of (i.e., the big O) the computational complexity
of a helper for its worst case, such as linear, quadratic, cubic, etc.

NKW (Number of KeyWords)
This metric counts the number of ATL keywords occurring in the body of a helper.

NOS (Number of Occurrences of Self)
This metric counts the number occurrences of self in a helper.

NVL (Number of Variables in Let expressions)
This metric counts the number of variables defined within let expressions in a helper.

NIE (Number of If Expressions)
This metric counts the number of if expressions defined in a helper.

NBO (Number of Boolean Operators)
This metric counts the number of boolean connectives used in a helper.

NCO (Number of Comparison Operators)
This metric counts the number of comparisons performed in a helper.

NIV (Number of Iterator Variables)
This metric counts the total number of iterator variables declared in a helper.

NAC (Number of Attributes belonging to Context)
This metric counts the number of attributes of the context which are used in a
helper.

10

e NOC (Number of Operations belonging to Context)
This metric counts the number of operations of the context that are invoked in a
helper.

¢ NIO (Number of ocllsTypeOf(), ocllsKindOf() and oclAsType() Operations)
This metric counts the number of type cases and downcastings in a helper.

e NUO (Number of ocllsUndefined() Operation)
This metric counts the number of elements which are tested for definedness in a
helper.

e NNR (Number of Navigated References)
This metric counts the number of references which are navigated in a helper.

e NNC (Number of Navigated Classes)
This metric counts the number of classes a helper navigates to.

¢ WNO (Weighted Number of Operations)
This metric counts the number of operations, weighted by their parameters, which
occur in a helper. The weight of an operation is the number of its formal parameters.

e NPM (Number of Parameters typed by a Metamodel element)
This metric counts the formal parameters of a helper whose types are elements of
any metamodel.

e MDN (Maximum Depth of Navigations)
This metric calculates the length of the longest path of navigations starting from
self.

e NOOC (Number of Operations On Collections)
This metric counts the total number of collection operations which are invoked
within a helper.

4 Relation of Metrics to Quality Attributes

Metrics are related to quality attributes because different measures for a metric indicate
different quality levels with respect to a given attribute. In particular, a metric may be
related to one or more quality attribute. For example, a higher value of NIL (number
of imported libraries) indicates more reuse, more modularity and also more complexity
than a lower one. In that case, we say that NIL is related to Reuse, Modularity and
Complexity. In particular, a higher value of NIL has a “positive” effect on such metrics,
as it increases the corresponding quality level.

Tables 1 and 2 summarize the effect of each metric specified along Sect. 3 on the
quality attributes considered in Sect. 3.1. Symbols ‘4’ and ‘" are used for denoting a
“positive” or “negative” effect of a higher value of a metric on a quality attribute. In
the case of NIL, we have ‘4’ for the three related quality attributes. On the other hand,
NHP is only related to Performance, and a higher value negatively affects that quality
attribute, and is thus marked with ‘—’, since the application of a helper without param-
eters is more time consuming than just using attributes. Additionally, the same metric
may affect different quality attributes in opposite ways. For example, a higher value of
ASSM (average size of source metamodels) would make a transformation definition less
understandable and less modifiable, but more complex.

As expressed before, the same metric may affect more than one quality attribute,
while a quality attribute may also be affected by more than one metric. Therefore, it is
interesting to see how many metrics affect each quality attribute. Alternatively, we may
calculate the percentage of metrics from the proposed set affecting each quality attribute.

11

Id Metric Quality Attributes
z
2|z % > @ 8
HEEREEIBEEE
£I212] |515|12|5|8|E
515|282 54|€|5|8
S|ZI2|2|I2|E|lglg|E|E
fle|8|g|ll|o|o|o|o|o
DR |E|e =000 |0|&
Unit Metrics
NIL Number of Imported Libraries + |+ +
TIL Total number of Imported Libraries + |+ +
NH Number of Helpers | =+ +
NHP Number of Helpers without Parameters -
BOU Balance Of a Unit + + +
NHC Number of Helpers per Context +
NOH Number of Overloaded Helpers +
Module Metrics
NSM Number of Source Models o +
NTM Number of Target Models - -
ASSM | Average Size of Source Metamodels - - +
ASTM | Average Size of Target Metamodels -|- +
CSM Coverage of Source Metamodels + +1| -
CTM Coverage of Target Metamodels + +| -
NA Number of Attributes - -
TA Transformation Approach (value: declarative) +|+ -
NMR Number of Matched Rules - |- +
NLR Number of Lazy matched Rules +
NUR Number of Unique lazy matched Rules |- +
NCR Number of Called Rules o +
DIR Declarative/Imperative Ratio - - +
NAR Number of Abstract Rules -+ + +|+
NHR Number of Hierarchies of Rules -+ + + |+
MHH Maximum Height of a Hierarchy of rules + + |+
mHH minimum Height of a Hierarchy of rules
AHH Average Height of Hierarchies of rules + + |+
MWH | Maximum Width of Hierarchies of rules + +|+
mWH minimum Width of Hierarchies of rules
AWH Average Width of Hierarchies of rules + + |+
NUH Number of Unused Helpers - +| -
NUL Number of Unused Lazy matched rules - + |-
NUC Number of Unused Called rules - +1| -
ASSP Average Size of Source Patterns -|- - +
ASTP | Average Size of Target Patterns - +
ABR Average number of Bindings per Rule - - +| - +
ANV Average Number of Variables per rule - +
ANF Average Number of Filtered rules - - +
NRSE | Number of Rules per Source Element +
MLC Maximum Length of nested Calls to helpers - - +
ALC Average Length of nested Calls to helpers - - +
NCPC | Number of Clones of a Piece of Code - - -1+
MLIR Maximum Length of Implicit dependencies of Rules | — | — +
NIr'T Number of Invocations to resolveTemp() - +
NCrT | Number of Callers to resolveTemp() - +

This could be used for motivating the search for more metrics that affect a certain quality
attribute with a low ratio, or even discarding metrics which address a quality attribute
Table

Table 1: Relation of metrics to quality attributes (part 1)

with a high ratio and, for example, could be hard to implement or interpret.

3 shows, for each quality attribute, the percentage of the metrics that affect it, either

positively or negatively.

12

Id Metric Quality Attributes
z
5|z % > @ 8
HEEREEBEEE
S15|2| |5|5|2|5|8|E
515|582\ 5|E|E| 2|8
S|Z2I23|2|2|E|2|lg|E|E
Sl |g|all|o|o|o|ol|B
Dl |E |2 |0000|~
Library metrics
DOL Dependency of Libraries +
FIL Fan-In of Libraries +
FOL Fan-Out of Libraries +
Rule metrics
NLV Number of Local Variables — +
NUV Number of Unused local Variables — |-
NUTP | Number of Uninitialized Target Properties - -
NCH Number of Calls to Helpers + - +
NCL Number of Calls to Lazy matched rules +
NCC Number of Calls to Called rules +
NUA Number of Uses of Attributes + +
Matched Rule metrics
NCHF | Number of Calls to Helpers from Filters +
NUAF | Number of Uses of Attributes from Filters +
Lazy Matched Rule metrics
NRC | Number of Received Calls [+ T T 1 I+
Called Rule metrics
NRC Number of Received Calls + +
NOP Number Of Parameters -
NUP Number Of Unused Parameters -
Helper metrics
NRC Number of Received Calls +
NOP Number Of Parameters -
NUP Number of Unused Parameters -
CCH Cyclomatic Complexity of a Helper +
OCH Order of Complexity of a Helper +
NKW Number of KeyWords - +
NOS Number of Occurrences of Self - +
NVL Number of Variables in Let expressions - +
NIE Number of If Expressions - +
NBO Number of Boolean Operators - +
NCO Number of Comparison Operators - +
NIV Number of Iterator Variables - +
NAC Number of Attributes belonging to Context - +
NOC Number of Operations belonging to Context - +
NIO Number of calls to ocllsTypeOf, etc. - - +
NUO Number of calls to ocllsUndefined - + +
NNR Number of Navigated References - +
NNC Number of Navigated Classes - +
WNO Weighted Number of Operations - +
NPM Number of Parameters typed by Model element - |+ +
MDN Maximum Depth of Navigations - - +
NOOC | Number of Operations on Collections - + +

Table 2: Relation of metrics to quality attributes (part 2)

5 Conclusions

In this paper we presented a set of metrics which may be used for measuring model
transformations defined in ATL. Measures obtained from the application of these metrics
then enable assessing the quality of ATL transformations. We consider quality in terms
of a set of quality attributes identified elsewhere [5, 8] as relevant for the context of
model transformations. Metrics apply to both ATL modules and ATL libraries, however

13

Quality Attribute | Relation to metrics
Understandability 72%
Modifiability 52%
Reusability 10%
Reuse 25%
Modularity 4%
Completeness 5%
Consistency 11%
Conciseness 14%
Complexity 7%
Performance 15%

Table 3: Distribution of metrics

we defined metrics which are to be applied to the complete definition of a transformation
(i-e., a module and the transitive closure of all imported libraries).

Metrics were derived from the ATL metamodel based on the intuition of what prop-
erties of an ATL transformation could be interesting to measure. The set of metrics we
proposed is not intended to be exhaustive, and furthermore, it needs to be tuned in many
dimensions. To begin with, the practical applicability of the metrics requires the ability
to properly interpret the measures obtained from them. That is, the ability to under-
stand the meaning of specific ranges of values. This could be achieved by a theoretical
analysis of the metrics, complemented with a series of experiments. As an additional
result of this, the actual contribution of individual metrics could be better understood.
This in turn may lead to the definition of composite higher-level metrics from existing
ones, which may be more naturally interpreted. In particular, our set (81 metrics) is
larger than that for ASF+SDF in [8] (27 metrics). This could be explained by the size
and complexity of the ATL metamodel. It could also indicate that our set has too many
fine-grained metrics, even though the abstraction level of both sets is similar. Values
from Table 3 suggest that additional metrics addressing Modularity and Completeness
would be required. Additionally, since ATL transformations are unidirectional, they can
be regarded as functions on models, and therefore our set of metrics may benefit from
porting the notion of function point to the model transformation context.

Either for their application in real world contexts or for conducting experiments for
enhancing our proposal, metrics need to be implemented. One possible approach to that
is by means of a model transformation, analogous to that used in [9] for measuring model
repositories, that generates a Measure model from a (set of) ATL unit(s). Such a trans-
formation would match different elements within the definition of an ATL transformation
for producing measure elements holding the resulting value of computing metrics. In this
work we informally specified the meaning of each metric in natural language. Such specifi-
cation could have been formulated as OCL expressions associated to the ATL metamodel.
Each of those expressions would then constitute the body of a helper which computes
the corresponding metric.

References

[1] ATL Transformations Zoo. Internet: http://www.eclipse.org/m2m/atl/
atlTransformations/, 2009.

[2] Atlantic Zoo. Internet: http://www.eclipse.org/gmt/am3/zoos/atlanticZoo/,
2009.

14

3]

[4]

[10]

F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model Transformation
Tool. Sci. Comput. Program., 72(1-2):31-39, 2008.

F. Jouault and I. Kurtev. Transforming Models with ATL. In J.-M. Bruel, editor,
MoDELS Satellite Events, volume 3844 of Lecture Notes in Computer Science, pages
128-138. Springer, 2005.

P. Mohagheghi and V. Dehlen. Developing a Quality Framework for Model-Driven
Engineering. In H. Giese, editor, MoDELS Workshops, volume 5002 of Lecture Notes
in Computer Science, pages 275-286. Springer, 2007.

L. Reynoso, M. Genero, and M. Piattini. Towards a Metric Suite for OCL Ex-
pressions Expressed within UML/OCL Models. Journal of Comptuer Science and
Technology, 4(1):38—-44, 2004.

M. Saeki and H. Kaiya. Measuring Model Transformation in Model Driven Devel-
opment. In J. Eder, S. L. Tomassen, A. L. Opdahl, and G. Sindre, editors, CAiSE
Forum, volume 247 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

M. F. van Amstel, C. F. J. Lange, and M. G. J. van den Brand. Metrics for Analyz-
ing the Quality of Model Transformations. In G. Falcone, Y.-G. Guéhéneuc, C. F. J.
Lange, Z. Porkolab, and H. A. Sahraoui, editors, 12th ECOOP Workshop on Quanti-
tative Approaches in Object-Oriented Software Engineering (QAOOSE 2008), pages
41-51, Paphos, Cyprus, July 2008.

E. Vépa, J. Bézivin, H. Bruneliere, and F. Jouault. Measuring Model Repositories. In
2nd Workshop on Model Size Metrics, co-located with MoDELS 2006 (MSM 2006),
Genova, Italy, October 2006.

A. Vignaga. Paraphrasing Reference Models and Transformations. Technical Report
TR/DCC-2009-3, Computer Science Department, Universidad de Chile, 2009.

15

