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ABSTRACT
The directed graph representation of the World Wide Web
has been extensively used to analyze the Web structure, be-
havior and evolution. However, those graphs are huge and
do not fit in main memory, whereas the required graph al-
gorithms are inefficient in secondary memory. Compressed
graph representations reduce their space while allowing ef-
ficient navigation in compressed form. As such, they allow
running main-memory graph algorithms on much larger Web
subgraphs. In this paper we present a Web graph represen-
tation based on a very compact tree structure that takes
advantage of large empty areas of the adjacency matrix of
the graph. Our results show that our method is competitive
with the best alternatives in the literature, offering an inter-
esting space/time tradeoff. It gives a very good compression
ratio (3.3–5.3 bits per link) while permitting fast navigation
on the graph to obtain direct as well as reverse neighbors (2–
15 microseconds per neighbor delivered). Moreover, we show
that our representation allows for extended functionality not
usually considered in compressed graph representations.

Categories and Subject Descriptors
E.1 [Data structures]; E.2 [Data storage representa-
tions]; E.4 [Coding and information theory]: Data
compaction and compression; H.3.2 [Information storage
and retrieval]: Information storage—File organization

General Terms
Algorithms

Keywords
Web graphs, Compact data structures

1. INTRODUCTION
The World Wide Web structure can be regarded as a di-

rected graph at several levels, the finest grained one being
pages that point to pages. Many algorithms of interest to
obtain information from the Web structure are essentially
basic algorithms applied over the Web graph. One of the
classical references on this topic [17] shows how the HITS
algorithm to find hubs and authorities on the Web starts by
selecting random pages and finding the induced subgraphs,
which are the pages that point to or are pointed from the

.

selected pages. Donato et al. [12] show how several common
Web mining techniques used to discover the structure and
evolution of the Web graph build on classical graph algo-
rithms such as depth-first search, breath-first-search, reach-
ability, and weakly and strongly connected components. A
more recent example [23] presents a technique for Web spam
detection that boils down to algorithms for finding strongly
connected components, for clique enumeration, and for min-
imum cuts. There are entire conferences devoted to graph
algorithms for the Web (e.g. WAW: Workshop on Algo-
rithms and Models for the Web-Graph).

The problem of how to run typical graph algorithms over
those huge Web graphs is always present in those approaches.
Even the simplest external memory graph algorithms, such
as graph traversals, are usually non disk-friendly [25]. This
has pushed several authors to consider compressed graph
representations, which aim to offer memory-efficient graph
representations that still allow for fast navigation without
decompressing the graph. The aim of this research is to al-
low classical graph algorithms to be run in main memory
over much larger graphs than those affordable with a plain
representation.

The most famous representative of this trend is surely the
WebGraph Framework, by Boldi and Vigna [6]. It is associ-
ated to the site http://webgraph.dsi.unimi.it, which by
itself witnesses the level of maturity and sophistication that
this research area has reached.

The WebGraph compression method is indeed the most
successful member of a family of approaches to compress
Web graphs based on their statistical properties [5, 7, 1, 24,
22, 21]. Boldi and Vigna’s representation allows fast extrac-
tion of the neighbors of a page while spending just a few bits
per link (about 2 to 6, depending on the desired navigation
performance). Their representation explicitly exploits Web
graph properties such as: (1) the power-law distribution of
indegrees and outdegrees, (2) the locality of reference, (3)
the “copy property” (the set of neighbors of a page is usually
very similar to that of some other page).

More recently, Claude and Navarro [10] showed that most
of those properties are elegantly captured by applying Re-
Pair compression [18] on the adjacency lists, and that re-
verse navigation (that is, finding the pages that point to
a given page) could be achieved by representing the out-
put of Re-Pair using some more sophisticated data struc-
tures [9]. Reverse navigation is useful to compute several
relevance ranking on pages, such as HITS, PageRank, and
others. Their technique offers better space/time tradeoffs
than WebGraph, that is, they offer faster navigation than



WebGraph when both structures use the same space. Yet,
WebGraph is able of using less space if slower navigation
can be tolerated.

Asano et al. [2] achieve even less than 2 bits per link by
explicitly exploiting regularity properties of the adjacency
matrix of the Web graphs, such as horizontal, vertical, and
diagonal runs. In exchange for achieving much better com-
pression, their navigation time is substantially higher, as
they need to uncompress full domains in order to find the
neighbors of a single page.

In this paper we also aim at exploiting the properties of
the adjacency matrix, yet with a general technique to take
advange of clustering rather than a technique tailored to
particular Web graphs. We introduce a compact tree rep-
resentation of the matrix that not only is very efficient to
represent large empty areas of the matrix, but at the same
time allows efficient forward and backward navigation of the
graph. An elegant feature of our solution is that it is sym-
metric, in the sense that forward and backward navigation
are carried out by similar means and achieve similar times.

We show experimentally that our technique offers a rele-
vant space/time tradeoff to represent Web graphs, that is,
it is much faster than those that take less space, and much
smaller than those that offer faster navigation. Thus our
representation can become the preferred choice for many
Web graph traversal applications: Whenever the compres-
sion it offers is sufficient to fit the Web graph in main mem-
ory, it achieves the best traversal time within that space.
Furthermore, we show that our representation allows for
other queries on the graph not usually considered in com-
pressed graph representations.

It is customary in compressed Web graph representations
to assume that page identifiers are integers, which corre-
spond to their position in an array of URLs. The space for
that array is not accounted for in the methods, as it is inde-
pendent of the Web graph compression method. Moreover,
it is assumed that URLs are alphabetically sorted, which
naturally puts together the pages of the same domains, and
thus locality of reference translates into closeness of page
identifiers. We follow this assumption in this paper.

2. OUR PROPOSAL

2.1 Conceptual description
The adjacency matrix of a Web graph of n pages is a

square matrix {aij} of n× n, where each row and each col-
umn represents a Web page. Cell aij is 1 if there is a hy-
perlink in page i towards page j, and 0 otherwise. As on
average there are about 15 links per Web page, this matrix
is extremely sparse. Due to locality of reference, many 1s
are placed around the main diagonal (that is, page i has
many pointers to pages nearby i). Due to the copy prop-
erty, similar rows are common in the matrix. Finally, due to
skewness of distribution, some rows and colums have many
1s, but most have very few. More specific properties of Web
graphs have been already studied [2].

We propose a compact representation of the adjacency
matrix that exploits its sparseness and clustering properties.
The representation is designed to compress large matrix ar-
eas with all 0s into very few bits.

We represent the adjacency matrix by a k2-ary tree, which
we call k2-tree, of height h = dlogk ne. Each node contains
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Figure 1: Example of the representation of the ad-
jacency matrix of a Web graph.

a single bit of data: 1 for the internal nodes and 0 for the
leaves, except for the last level of the tree, where all are
leaves and represent some bit values of the matrix. The first
level (numbered 0) corresponds to the root; its k2 children
are represented at level 1. Each child is a node and therefore
it has a value 0 or 1. All internal nodes in the tree (i.e., with
value 1) have exactly k2 children, whereas leaves (with value
0 or at the last tree level) have no children.

Assume for simplicity that n is a power of k; we will soon
remove this assumption. Conceptually, we start dividing the
adjacency matrix into k2 submatrices of the same size, that
is, k rows and k columns of submatrices of size n2/k2. Each
of the resulting k2 submatrices will be a child of the root
node and its value will be 1 iff in the cells of the submatrix
there is at least one 1. A 0 child means that the submatrix
has all 0s and therefore the tree decomposition ends there;
thus 0s are leaves in our tree.

The children of a node are ordered in the tree starting
with the submatrices in the first (top) row, from left to right,
then the submatrices in the second row from left to right,
and so on. Once the level 1 of the tree, with the children
of root, has been built, the method proceeds recursively for
each child with value 1, until we reach submatrices full of
0s, or we reach the cells of the original adjacency matrix. In
the last level of the tree, the bits of the nodes correspond
to the matrix cell values. Figure 1 illustrates a 22-tree for a
4× 4 matrix.

A larger k induces a shorter tree, with fewer levels, but
with more children per internal node. If n is not a power of
k, we conceptually extend our matrix to the right and to the
bottom with 0s, making it of width n′ = kdlogk ne. This does
not cause a significant overhead as our technique is efficient
to handle large areas of 0s.

Figure 2 shows an example of the adjacency matrix of a
Web graph (we use the first 11×11 submatrix of graph CNR
[6]), and how it is expanded to an n′ × n′ matrix for n′ a
power of k = 2 (at the left) and of k = 4 (at the right). The
figure also shows the trees corresponding to those k values.

Notice that the last level of the tree represents cells in
the original adjacency matrix, but most empty cells in the
original adjacency matrix are not represented in this level
because, where a large area with 0s is found, it is represented
by a single 0 in a smaller level of the tree.

2.2 Navigating with a k2-tree
To obtain the pages pointed by a specific page p, that is,

to find direct neighbors of page p, we need to find the 1s in
row p of the matrix. We start at the root and travel down
the tree, choosing exactly k children of each node. We start
with an example and then generalize in the next section.
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Figure 2: Expansion and subdivision of the adjacency matrix (top) and resulting trees (bottom) for k = 2
(left) and k = 4 (right).

Example. We find the pages pointed by the first page in the
example of Figure 1, that is, find the 1s of the first matrix
row. We start at the root of the 22-tree and compute which
children of the root overlap the first row of the matrix. These
are the first two children, to which we move:

• The first child is a 1, thus it has children. To figure out
which of its children are useful we repeat the same pro-
cedure. We compute in the corresponding submatrix
(the one at the top left corner) which of its children
represent cells overlapping the first row of the original
matrix. These are the first and the second children.
They are leaf nodes and their values are 1 and 1.

• The second child of the root represents the second sub-
matrix, but its value is 0. This means that all the cells
in the adjacency matrix in this area are 0.

Now we know that the Web page represented by this first
row has a link to itself and another to page 2.

Reverse neighbors. An analogous procedure retrieves the
list of reverse neighbors. To obtain which pages point to
page q, we need to locate which cells have a 1 in column q of
the matrix. Thus, we carry out a symmetric algorithm, us-
ing columns instead of rows. For instance, to know the pages
pointing to the last page (placed at the rightmost column)
we compute the children of the root representing submatri-
ces that overlap that column. These are the second and the
fourth children. The second child has value 0, therefore no
pages in those rows point to the last page. The fourth child

has a 1, therefore we compute which of its children repre-
sent submatrix overlapping cells in the last columns; these
are the second and the fourth. Now we can conclude that
the last page is only pointed by page 3.

Summarizing, the use of the k2-tree is completely sym-
metric to search for direct or for reverse neighbors. The
only difference is the formula used to compute the children
of each node that will be used in the next step. In either case
we perform a top-down traversal of the tree. If we want to
search for direct(reverse) neighbors in a k2-tree, we go down
through k children forming a row(column) inside the matrix.

3. DATA STRUCTURE AND ALGORITHMS
Our data structure is essentially a compact tree of N

nodes. There exist several such representations for gen-
eral trees [15, 20, 4, 13], which asymptotically approach the
information-theoretic minimum of 2N + o(N) bits. In our
case, where there are only arities k2 and 0, the information-
theoretic minimum of N + o(N) bits is achieved by a so-
called “ultra-succinct” representation [16] for general trees.
Our representation is much simpler, and close to the so-
called LOUDS (level-ordered unary degree sequence) tree
representation [15, 11] (which would not achieve N + o(N)
bits if directly applied to our trees).

Our data structure can be regarded as a simplified variant
of LOUDS for the case where arities are just k2 and 0, which
achieves the information-theoretic minimum of N + o(N)
bits, provides the traversal operations we require (basically
move to the i-th child, although also parent is easily sup-
ported) in constant time, and is simple and practical.



3.1 Data structure
We represent the whole adjacency matrix via the k2-tree

using two bit arrays we call T (tree) and L (leaves):

T : This bit array stores all the bits of the k2-tree except
those in the last level. The bits of the k2-tree are
placed following a levelwise traversal of the tree. We
will represent first the k2 binary values of the children
of the root node, then the values of the second level,
and so on.

L: This bit array stores the last level of the tree. Thus
it represents the value of (some) original cells of the
adjacency matrix.

We create over T an auxiliary structure that enables us to
compute rank queries efficiently. Given an offset i inside a
sequence T of bits, rank(T, i) counts the number of times the
bit 1 appears in T [1, i]. This can be supported in constant
time and fast in practice using sublinear space on top of the
bit sequence [15, 19]. In practice we use an implementation
that uses 5% of extra space on top of the bit sequence and
provides fast queries, as well as another that uses 37.5%
extra space and is much faster [14].

We do not need to perform rank over the bits in the last
level of the tree; that is the practical reason to store them
in a different bitmap (L). Thus the space overhead for rank
is paid only over T .

3.1.1 Analysis
Assume the graph has n pages and m links. Each link is

a 1 in the matrix, and in the worst case it induces the stor-
age of one distinct node per level, for a total of dlogk2(n2)e
nodes. Each such (internal) node costs k2 bits, for a total
of k2mdlogk ne bits. However, especially in the upper levels,
not all the nodes in the path to each leaf can be different.
In the worst case, all the nodes exist up to level blogk2 mc
(only since that level there can be m different internal nodes
at the same level). From that level, the worst case is that
each of the m paths to the leaves is unique. Thus the to-

tal space is
∑blog

k2 mc
`=1 k2` + k2m(dlogk2 n2e − blogk2 mc) =

k2m(logk2
n2

m
+ O(1)) bits in the worst case.

This shows that, at least in a worst-case analysis, a smaller
k yields less space occupancy. For k = 2 the space is

4m(log4
n2

m
+ O(1)) = 2m log2

n2

m
+ O(m) bits, which is

asymptotically twice the information-theoretic minimum nec-
essary to represent all the matrices of n × n with m 1s. In
the experimental section we see that, on Web graphs, the
space is much better than the worst case, as Web graphs are
far from uniformly distributed.

Finally, the expansion of n to the next power of k can,
in the horizontal direction, force the creation of at most
k` new children of internal nodes at level ` ≥ 1 (level ` =
1 is always fully expanded unless the matrix is all zeros).
Each such child will cost k2 extra bits. The total excess is
O(k2 ·kdlogk ne−1) = O(k2n) bits, which is usually negligible.
The vertical expansion is similar.

3.2 Finding a child of a node
Our levelwise traversal satisfies the following property,

which permits fast navigation to the i-th child of node x,
childi(x) (for 0 ≤ i < k2):

Lemma 1. Let x be a position in T (the first position be-
ing 0) such that T [x] = 1. Then childi(x) is at position
rank(T, x) · k2 + i of T : L

Proof. T : L is formed by traversing the tree levelwise
and appending the bits of the tree. We can likewise regard
this as traversing the tree levelwise and appending the k2

bits of the childred of the 1s found at internal tree nodes. By
the time node x is found in this traversal, we have already
appended k2 bits per 1 in T [1, x − 1], plus the k2 children
of the root. As T [x] = 1, the children of x are appended at
positions rank(T, x) · k2 to rank(T, x) · k2 + (k2 − 1).

Example. To represent the 22-tree of Figure 2, arrays T
and L have the following values:

T = 1011 1101 0100 1000 1100 1000 0001 0101 1110,
L = 0100 0011 0010 0010 1010 1000 0110 0010 0100.

Remember that in T each bit represents a node. The first
four bits represent the nodes 0, 1, 2 and 3, which are the
children of the root. The following four bits represent the
children of node 0. There are no children for node 1 because
it is a 0, then the children of node 2 start at position 8
and the children of node 3 start at position 12. The bit in
position 4, that is the fifth bit of T , represents the first child
of node 0, and so on.

For the following, we mark with a circle the involved nodes
in Figure 2. We compute the second child of the third node
is, that is, child 1 of node 2. If we compute rank until
the position of the bit representing node 2, rank(T, 2) = 2,
we obtain that there are 2 nodes with children until that
position because each bit 1 represents a node with children.
As each node has 4 children, we multiply by 4 the number
of nodes to know where it starts. As we need the second
child, this is child1(2) = rank(T, 2) ∗ 22 + 1 = 2 ∗ 4 + 1 = 9.
In position 9 there is a 1, thus it represents a node with
children and its fourth child can be found at child3(9) =
rank(T, 9)∗22 +3 = 7∗4+3 = 31. Again it is a 1, therefore
we can repeat the process to find its children, child0(31) =
rank(T, 31)∗22 +0 = 14∗4+0 = 56. As 56 ≥ |T |, we know
the position belongs to the last level, corresponding to offset
56− |T | = 56− 36 = 20 (to 23) in L.

3.3 Navigation
To find the direct(reverse) neighbors of a page p(q) we

need to locate which cells in row ap∗ (column a∗q) of the
adjacency matrix have a 1. We have already explained that
these are obtained by a top-down tree traversal that chooses
k out of the k2 children of a node, and also gave the way to
obtain the i-th child of a node in our representation. The
only missing piece is the formula that maps global row num-
bers to the children number at each level.

Recall h = dlogk ne is the height of the tree. Then the
nodes at level ` represent square submatrices of width kh−`,
and these are divided into k2 submatrices of width kh−`−1.
Cell (p`, q`) at a matrix of level ` belongs to the submatrix
at row bp`/kh−`−1c and column bq`/kh−`−1c.

Let us call p` the relative row position of interest at level
`. Clearly p0 = p, and row p` of the submatrix of level
` corresponds to children number k · bp`/kh−`−1c + j, for
0 ≤ j < k. The relative position in those children is p`+1 =
p` mod kh−`−1. Similarly, column q corresponds q0 = q
and, in level `, to children number j · k + bq`/kh−`−1c, for



0 ≤ j < k. The relative position at those children is q`+1 =
q` mod kh−`−1.

The algorithm for extracting direct and reverse neighbors
is described in Figure 3. The one for direct neighbors is
called Direct(kh, p, 0,−1), where the parameters are: cur-
rent submatrix size, row of interest in current submatrix,
column offset of the current submatrix in the global matrix,
and the position in T : L of the node to process (the ini-
tial −1 is an artifact because our trees do not represent the
root node). Values T , L, and k are global. The one for
reverse neighbors is called Reverse(kh, q, 0,−1), where the
parameters are the same except that the second is the col-
umn of interest and the third is the row offset of the current
submatrix.

We note that the algorithms output the neighbors in or-
der. Although we present them in recursive fashion for clar-
ity, an iterative variant using a queue of nodes to process
turned out to be slightly more efficient in practice.

Direct(n, p, q, x)
1. If x ≥ |T | Then // leaf
2. If L[x− |T |] = 1 Then output q
3. Else // internal node
4. If x = −1 or T [x] = 1 Then
5. y = rank(T, x) · k2 + k · bp/(n/k)c
6. For j = 0 . . . k − 1 Do
7. Direct(n/k, p mod (n/k), q + (n/k) · j, y + j)

Reverse(n, q, p, x)
1. If x ≥ |T | Then // leaf
2. If L[x− |T |] = 1 Then output p
3. Else // internal node
4. If x = −1 or T [x] = 1 Then
5. y = rank(T, x) · k2 + bq/(n/k)c
6. For j = 0 . . . k − 1 Do
7. Reverse(n/k, q mod (n/k), p +(n/k)·j, y + j ·k)

Figure 3: Returning direct(reverse) neighbors of
page p(q). It is assumed that n is a power of k and
that rank(T,−1) = 0.

3.3.1 Analysis
Our navigation time has no worst-case guarantees better

than O(n), as a row p − 1 full of 1s followed by p full of 0s
could force a Direct query on p to go until the leaves across
all the row, to return nothing.

However, this is unlikely. Assume the m 1s are uniformly
distributed in the matrix. Then the probability that a given
1 is inside a submatrix of size (n/k`)×(n/k`) is 1/k2`. Thus,
the probability of entering the children of such submatrix is
(brutally) upper bounded by m/k2`. We are interested in k`

submatrices at each level of the tree, and therefore the total
work is on average upper bounded by m · ∑h−1

`=0 k`/k2` =
O(m). This can be refined because there are not m different
submatrices in the first levels of the tree. Assume we enter
all the O(kt) matrices of interest up to level t = blogk2 mc,
and from then on the sum above applies. This is O(kt +

m · ∑h−1
`=t+1 k`/k2`) = O(kt + m/kt) = O(

√
m) time. This

is not the ideal O(m/n) (average output size), but much
better than O(n) or O(m).

Again, if the matrix is clustered, the average performance
is indeed better than under uniform distribution: whenever
a cell close to row p forces us to traverse the tree down to
it, it is likely that there is a useful cell at row p as well.

3.4 Construction
Assume our input is the n × n matrix. Construction of

our tree is easily carried out in linear time and optimal space
(that is, using the same space as the final tree).

Our procedure builds the tree recursively. If we are at the
last level, we read the k2 corresponding matrix cells. If all
are zero, we return zero, otherwise we output their k2 values
and return 1. If we are not at the last level, we make the k2

recursive calls for the children. If all return zero, we return
zero, otherwise we output the k2 answers of the children and
return 1.

We have separate arrays for each level, so that the k2 bits
that are output at each level are appended to the corre-
sponding array. As we fill the values of each level left-to-
right, the final T is obtained by concatenating all levels but
the last one, which is indeed L.

Figure 4 shows the construction process. It is invoked as
Build(n, 1, 0, 0), where the first parameter is the submatrix
size, the second is the current level, the third is the row offset
of the current submatrix, and the fourth is the column offset.
After running it we must carry out T = T1 : T2 : . . . : Th−1

and L = Th.

Build(n, `, p, q)
1. C = empty sequence
2. For i = 0 . . . k − 1 Do
3. For j = 0 . . . k − 1 Do
4. If ` = dlogk ne Then // leaf level
5. C = C : ap+i,q+j

6. Else // internal node
7. C = C : Build(n/k, ` + 1,

p + i · (n/k), q + j · (n/k))

8. If C = 0k2
Then Return 0

9. T` = T` : C
10. Return 1

Figure 4: Building the tree representation.

The total time is clearly linear in the matrix size, that is,
O(n2). If, instead, we have an adjacency list representation
of the matrix, we can still achieve the same time by setting
up n cursors, one per row, so that each time we have to
access apq we compare the current cursor of row p with value
q. If they are equal, we know apq = 1 and move the cursor
to the next node of the list for row p. Otherwise we know
apq = 0. This works because all of our queries to each matrix
row p are increasing in column value.

In this case we could try to achieve time proportional to
m, the number of 1s in the matrix. For this sake we could in-
sert the 1s one by one into an initially empty tree, building
the necessary part of the path from the root to the cor-
responding leaf. After the tree is built we can traverse it
levelwise to build the final representation, or recursively to
output the bits to different sequences, one per level, as be-

fore. The space could still be O(k2m(1+ logk2
n2

m
)), that is,

proportional to the final tree size, if we used some dynamic



compressed parentheses representation of trees [8]. The to-
tal time would be O(log m) per bit of the tree.

Note that, as we produce each tree level sequentially, and
also traverse each matrix row (or adjacency list) sequentially,
we can construct the tree on disk in optimal I/O time pro-
vided we have main memory to maintain logk n disk blocks
to output the tree, plus B disk blocks (where B is the disk
page size in bits) for reading the matrix. The reason we do
not need the n row buffers for reading is that we can cache
the rows by chunks of B only. If later we have to read again
from those rows, it will be after having processed a subma-
trix of B × B (given the way the algorithm traverses the
matrix), and thus the new reads will be amortized by the
parts already processed. This argument does not work on
the adjacency list representation, where we need the n disk
page buffers.

4. A HYBRID APPROACH
As we can observe in the examples of the previous sec-

tion, the greater k is, the more space L needs, because even
though there are fewer submatrices in the last level, they
are larger. Hence we may spend k2 bits to represent very
few 1s. Notice for example that when k = 4 in Figure 2,
we store some last-level submatrices containing a unique 1,
spending 15 more bits that are 0. On the contrary, when
k = 2 we use fewer bits for that leaf level.

We can improve our structure if we use a larger k for
the first levels of the tree and a small k for the last levels.
This strategy takes advantage of the strong points of both
approaches:

• We use large values of k for the first levels of subdivi-
sion: the tree is shorter, so we will be able to obtain
the list of neighbors faster, as we have fewer levels to
traverse.

• We use small values of k for the last levels: we do not
store too many bits for each 1 of the adjacency matrix,
as the submatrices are smaller.

Figure 5 illustrates this hybrid solution, where we perform
a first subdivision with k = 4 and a second subdivision with
k = 2. We store the first level of the tree in T1, where the
subdivision uses k = 4 and the second level of the tree in
T2, where the subdivision uses k = 2. In addition, we store
the 2× 2 submatrices in L, as before.

T1 = 1100010001100000,
T2 = 1100 1000 0001 0101 1110,
L = 0100 0011 0010 0010 1010 1000 0110 0010 0100.

The algorithms used to obtain the direct and reverse neigh-
bors are similar to those explained for fixed k. Now we have
a different sequence T` for each level, and L for the last
level. There is a different k` per level, so Lemma 1 and al-
gorithms Direct and Reverse for navigation in Section 3.3
must be modified accordingly. We must also extend n to
n′ = Πh−1

`=0 k`, which plays the role of kh in the uniform case.

5. EXPERIMENTAL EVALUATION
We ran several experiments over some Web crawls from

the WebGraph project. Table 1 gives the main characteris-
tics of the graphs used. The first column indicates the name
of the graph (and the WebGraph version used). Second and
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Figure 5: Expansion, subdivision, and final example
tree using different values of k.

Table 1: Description of the graphs used.
File Pages Links Size (MB)

CNR (2000) 325,577 3,216,152 14
EU (2005) 862,664 19,235,140 77
Indochina (2002) 7,414,866 194,109,311 769
UK (2002) 18,520,486 298,113,762 1,208

third columns show the number of pages and links, respec-
tively. The last column gives the size of a plain adjacency
list representation of of the graphs (using 4-byte integers).

The machine used in our tests is a 2GHz Intel R©Xeon R© (8
cores) with 16 GB RAM. It ran Ubuntu GNU/Linux with
kernel version 2.4.22-15-generic SMP (64 bits). The com-
piler was gcc version 4.1.3 and -O9 compiler optimizations
were set. Space is measured in bits per edge (bpe), by divid-
ing the total space of the structure by the number of edges
(i.e., links) in the graph. Time results measure average cpu
user time per neighbor retrieved: We compute the time to
search for the neighbors of all the pages (in random order)
and divide by the total number of edges in the graph.

5.1 Comparison between different alternatives
We first study our approach with different values of k.

Table 2 shows 12 different alternatives of our method over
the EU graph using different values of k. All build on the
rank structure that uses 5% of extra space [14]. The first
column names the approaches as follows: ′2 × 2′, ′3 × 3′

and ′4 × 4′ stand for the alternatives where we subdivide
the matrix into 2 × 2, 3 × 3 and 4 × 4 submatrices, respec-
tively, in every level of the tree. On the other hand, we
denote ′H − i′ the hybrid approach where we use k = 4 up
to level i of the tree, and then we use k = 2 for the rest of
the levels. The second and third columns indicate the size,



Variant Tree Leaves Space Direct Reverse
(bytes) (bytes) (bpe) (µs/e) (µs/e)

2× 2 6,860,436 5,583,076 5.21076 2.56 2.47
3× 3 5,368,744 9,032,928 6.02309 1.78 1.71
4× 4 4,813,692 12,546,092 7.22260 1.47 1.42
H − 1 6,860,432 5,583,100 5.21077 2.78 2.62
H − 2 6,860,436 5,583,100 5.21077 2.76 2.59
H − 3 6,860,412 5,583,100 5.21076 2.67 2.49
H − 4 6,861,004 5,583,100 5.21100 2.53 2.39
H − 5 6,864,404 5,583,100 5.21242 2.39 2.25
H − 6 6,876,860 5,583,100 5.21760 2.25 2.11
H − 7 6,927,924 5,583,100 5.23884 2.10 1.96
H − 8 7,159,112 5,583,100 5.33499 1.97 1.81
H − 9 8,107,036 5,583,100 5.72924 1.79 1.67

Table 2: Comparison of our different approaches
over graph EU.

in bytes, used to store the tree T and the leaves L, respec-
tively. The fourth column shows the space needed in main
memory by the structures (e.g., including the extra space
for rank), in bits per edge. Finally, the last two columns
show the times to retrieve the direct (fifth column) and re-
verse (sixth) neighbors, measured in microseconds per link
retrieved (µs/e).

We observe that, when we use a fixed k, we obtain better
times when k is greater, because we are shortening the height
of the tree, but the compression ratio worsens, as the space
for L becomes dominant and many 0s are stored in there.

If we use a hybrid approach, we can maintain a compres-
sion ratio close to that obtained by the ′2 × 2′ alternative
while improving the time, until we get close to the ′4 × 4′

alternative. The best compression is obtained for ′H − 3′,
even better than ′2 × 2′. Figure 6 shows similar results
graphically, for the three larger graphs, space on top and
time to retrieve direct neighbors on the bottom. It can be
seen that the space does not worsen much if we keep k = 4
up to a moderate level, whereas times improve consistently.
A medium value, say switching to k = 2 at level 7, looks as
a good compromise.

5.2 Comparison with other methods
We first compare graph representations that allow retriev-

ing both direct and reverse neighbors. Figures 7 and 8
show the space/time tradeoff for retrieving direct and re-
verse neighbors, respectively. We measure the average time
efficiency in µs/e as before. Representations providing space/
time tuning parameters appear as a line, whereas the others
appear as a point.

We compare our compact representations with the pro-
posal in [9, Chapter 7] that computes both direct and reverse
neighbors (RePair both), as well as the simpler representa-
tion in [10] (as improved in [9, Chapter 6], RePair) that
retrieves just direct neigbors. In this case we represent both
the graph and its transpose, in order to achieve reverse navi-
gation as well (RePair × 2). We do the same with Boldi and
Vigna’s technique [6] (WebGraph), as it also allows for direct
neighbors retrieval only (we call it WebGraph × 2 when we
add both graphs). As this technique uses less space on disk
than what the process needs to run, we show in WebGraph
(RAM) the minimum space needed to run (yet we keep the
best time it achieves with sufficient RAM space).

We include our alternatives 2×2, 3×3, 4×4, and Hybrid5,
all of which use the slower solution for rank that uses just
5% of extra space [14], and Hybrid37, which uses the faster
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Figure 6: Space/time behavior of the hybrid ap-
proach when we vary the level where we change the
value of k.

rank method that uses 37.5% extra space on top of T .
As we can see, our representations (particularly Hybrid5

and 2 × 2) achieve the best compression (3.3 to 5.3 bpe,
depending on the graph) among all the techniques that pro-
vide direct and reverse neighbor queries. The only alterna-
tive that gets somewhat close is RePair both, but it is much
slower to retrieve direct neighbors. For reverse neighbors,
instead, it is an interesting alternative1. The alternative
Hybrid37 offers relevant tradeoffs in some cases, particularly
on graph UK. Finally, WebGraph × 2 and RePair × 2 offer
very attractive time performance, but they need significantly
more space. As explained, using less space may make the
difference between being able of fitting a large Web graph
in main memory or not.

If, instead, we wished only to carry out forward naviga-
tion, alternatives RePair and WebGraph become preferable
(smaller and faster than ours) in most cases. Figure 9, how-
ever, shows graph EU, where we still achieve significantly
less space than WebGraph.

We also compare our proposal with the method in [2]
(Smaller). As we do not have their code, we ran new experi-
ments on a Pentium IV of 3.0 GHz with 4 GB of RAM, which
resembles better the machine used in their experiments. We
used the smaller graphs, on which they have reported exper-
iments. Table 3 shows the space and average time needed to
retrieve the whole adjacency list of a page, in milliseconds

1It is tempting to apply the technique over the transposed
graph in order to achieve better time for direct neighbors,
yet this does not work due to the statistical nature of Web
graphs [9, Chapter 7].
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Figure 7: Space/time tradeoff to retrieve direct
neighbors for different representations over graphs
EU (top), Indochina (center) and UK (bottom).

per page. As, again, their representation cannot retrieve re-
verse neighbors, Smaller × 2 is an estimation, obtained by
multiplying their space by 2, of the space they would need
to represent both the normal and transposed graphs2.

We observe our method is orders of magnitude faster to re-
trieve an adjacency list, while the space is similar to Smaller
× 2. The difference is so large that it could be possible to

2This is probably slightly overestimated, as transposed Web
graphs compress slightly better than the original ones. In-
deed it could be that their method can be extended to
retrieve reverse neighbors using much less than twice the
space. The reason is that they store the intra-domain links
(which are the major part) in a way that they have to un-
compress a full domain to answer direct neighbor queries,
and answering reverse neighbors is probably possible with
the same amount of work. They would have to duplicate
only the inter-domain links, which account for a minor part
of the total space. Yet, this is speculative.
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Figure 8: Space/time tradeoff to retrieve reverse
neighbors for different representations over graphs
EU (top), Indochina (center) and UK (bottom).

be competitive even if part of our structure (e.g. L) was in
secondary memory (in which case our main memory space
would be similar to just Smaller). Yet we have not carried
out this experiment.

6. EXTENDED FUNCTIONALITY
While alternative compressed graph representations [6,

10, 2] are limited to retrieving the direct, and sometimes
the reverse, neighbors of a given page, and we have com-
pared our technique with those in these terms, we show now
that our representation allows for more sophisticated forms
of retrieval than extracting direct and reverse neighbors.

First, in order to determine whether a given page p points
to a given page q, most compresssed (and even some classi-
cal) graph representations have no choice but to extract all
the neighbors of p (or a significant part of them) and see
if q is in the set. We can answer such query in O(logk n)
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Space (bpe) Smaller Smaller × 2 Hybrid5
CNR 1.99 3.98 4.46
EU 2.78 5.56 5.21
Time (msec/page)
CNR 2.34 0.048
EU 28.72 0.099

Table 3: Comparison with approach Smaller on
small graphs. The last column is an estimation.

time, by descending to exactly one child at each level of
the tree. More precisely, at level ` we descend to child
k · bp/kh−`−1c + bq/kh−`−1c, if it is not a zero, and com-
pute the relative position of cell (p, q) in the submatrix just
as in Section 3.3. If we arrive at the last level and find a 1
at cell (p, q), then there is a link, otherwise there is not.

A second interesting operation is to find the direct neigh-
bors of page p that are within a range of pages [q1, q2] (sim-
ilarly, the reverse neighbors of q that are within a range
[p1, p2]). This is interesting, for example, to find out whether
p points to a domain, or is pointed from a domain, in case we
sort URLs in lexicographical order. The algorithm is similar
to Direct and Reverse in Section 3.3, except that we do
not enter all the children 0 ≤ j < k of a row (or column),
but only from bq1/kh−`−1c ≤ j ≤ bq2/kh−`−1c (similarly for
p1 to p2).

Yet a third operation of interest is to find all the links from
a range of pages [p1, p2] to another [q1, q2]. This is useful,
for example, to extract all the links between two domains.
The algorithm to solve this query indeed generalizes all of
the others we have seen: extract direct neighbors of p (p1 =
p2 = p, q1 = 0, q2 = n − 1), extract reverse neighbors of q
(q1 = q2 = q, p1 = 0, p2 = n− 1), find whether a link from
p to q exists (p1 = p2 = p, q1 = q2 = q), find the direct
neighbors of p within range [q1, q2] (p1 = p2 = p), and find
the reverse neighbors of q within range [p1, p2] (q1 = q2 =
q). Figure 10 gives the algorithm. It is invoked as Range
(n, p1, p2, q1, q2, 0, 0,−1).

The total number of nodes of level ` that can overlap
area [p1, p2] × [q1, q2] is (bp2/kh−`−1c − bp1/kh−`−1c + 1) ·
(bq2/kh−`−1c− bq1/kh−`−1c+ 1) ≤ ((p2 − p1 + 1)/kh−`−1 +
1) ·((q2−q1+1)/kh−`−1+1) = A/(k2)h−`−1+P/kh−`−1+1,
where A = (p2−p1+1)·(q2−q1+1) is the area to retrieve and
P = (p2−p1 +1)+(q2−q1 +1) is half the perimeter. Added

Range(n, p1, p2, q1, q2, dp, dq, x)
1. If x ≥ |T | Then // leaf
2. If L[x− |T |] = 1 Then output (dp, dq)
3. Else // internal node
4. If x = −1 or T [x] = 1 Then
5. y = rank(T, x) · k2

6. For i = bp1/(n/k)c . . . bp2/(n/k)c Do
7. If i = bp1/(n/k)c Then p′1 = p1 mod (n/k)
8. Else p′1 = 0
9. If i = bp2/(n/k)c Then p′2 = p2 mod (n/k)
10. Else p′2 = (n/k)− 1
11. For j = bq1/(n/k)c . . . bq2/(n/k)c Do
12. If j = bq1/(n/k)c Then q′1 = q1 mod (n/k)
13. Else q′1 = 0
14. If j = bq2/(n/k)c Then q′2 = q2 mod (n/k)
15. Else q′2 = (n/k)− 1
16. Range(n/k, p′1, p

′
2, q

′
1, q

′
2,

dp + (n/k) · i, dq + (n/k) · j,
y + k · i + j)

Figure 10: Returning the pairs (p, q) of pages p point-
ing to q in a range. It is assumed that n is a power
of k and that rank(T,−1) = 0.

over all the levels 0 ≤ ` < dlogk ne, the time complexity adds
up to O(A + P + logk n) = O(A + logk n). This gives O(n)
for retrieving direct and reverse neighbors (we made a finer
average-case analysis in Section 3.3.1), O(p2−p1+logk n) or
O(q2− q1 + logk n) for ranges of direct or reverse neighbors,
and O(logk n) for queries on single links.

7. CONCLUSIONS
Compressed graph representations allow running graph

algorithms, which are essential to extract information from
the Web structure, on much larger subsets of the Web than
classical graph representations, in main memory. We have
introduced a compact representation for Web graphs that
takes advantage of the sparseness and clustering of their ad-
jacency matrix. Our representation is a particular type of
tree, which we call the k2-tree, that enables efficient forward
and backward navigation in the graph (a few microseconds
per neighbor found) within compact space (about 3 to 5
bits per link). Our experimental results show that our tech-
nique offers an attractive space/time tradeoff compared to
the state of the art. Moreover, we support queries on the
graph that extend the basic forward and reverse navigation.

More exhaustive experimentation and tuning is needed to
exploit the full potential of our data structure, in particu-
lar regarding the space/time tradeoffs that can be obtained
from the hybrid approach. We plan also to study more in
depth the clustering properties of the Web graph, and how to
improve them by reordering pages. In particular, locality of
reference can be improved by the folklore idea of sorting the
domains in reverse order, as then aaa.bbb.com will stay close
to zzz.bbb.com. We also plan to work on achieving better
analytical predictions of the behaviour of our technique, ide-
ally considering the statistical laws that are known to govern
Web graphs. Finally, we plan to research and experiment
more in depth on the extended functionality supported by
our representation, such as retrieving a range of neighbors.



We believe the structure we have introduced is of more
general interest. It could be fruitful, for example, to gener-
alize it to binary relations, such as the one relating keywords
with the Web pages (or more generally, documents) where
they appear. Then one could extract not only the Web
pages that contain a keyword, but also the set of keywords
present in a Web page, and thus have access to important
summarization data without accessing the page itself. Our
range searching could permit searching within subcollections
or subdirectories. Our structure could become a relevant
alternative to the current state of the art in this direction,
e.g. [3, 9]. Another example is the representation of discrete
grids of points, for computational geometry applications or
geographic information systems.
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