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Abstract

We develop a theoretical methodology for estimating joint probability density functions from marginals by,
transforming the set of random variables into another set of independent random variables is necessary. To
test this theory in practice, we developed a software application which implemented a reduced form of this
methodology, and worked well with several datasets. Finally, we discuss how to expand this methodology.
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1. Introduction

Estimating the distibution of random variables is an essential concern to statistics and its related disci-
plines, such as machine learning and data mining.

A classic approach to estimating joint probabilities for discrete data are Chow-Liu trees. Chow-Liu trees
method consist in specifying which variables are related using a tree structure, much like Bayesian trees [1].
The best property of Chow-Liu trees is that, if they are built as maximum likelihood estimators, then they
can be built using a MST algorithm, like Kruskal’s.

Later, machine learning techniques appeared. Several modeling techniques deal with the problem of
computing joint probabilities, such as Bayesian networks and classification trees, but these are discrete.
However, neural networks and support vector machines already support fuzzy input, which makes them
somewhat adequate for estimating joint pdfs. And regarding fuzziness, fuzzy logic and sets are somewhat
adequate for estimating joint pdfs too. Despite fuzzy methods were designed to work with discrete data,
their trick was supporting continuous data. But these methods still do not analytically model joint pdfs. (Yet
can extend almost any discrete technique to continuity.)

In what strictly regards to estimating joint pdfs or cdfs, we find several multivariate distributions such
as the multivariate normal distribution, multivariate Student distribution, Wishart distribution (generalizes
chi-square to multiple dimensions), etc. Note that this approach to joint distributions is the classic one.

A slightly different approach is shown in [2]. In this work, Pages-Laguna and Zamoras apply spectral
estimate methods to estimate joint pdfs. Spectral estimate methods are applied to power spectrum density
functions, which are positive and real, like pdfs. Note that the approximation techniques also apply to joint
cdfs.

However, there is an active research topic concerned with the estimation of cdfs: copulas. A copula
is a function defined on [0,1]n (n dimensions) which estimates joint cdfs from marginals cdfs [3], and can
naturally be extended to estimate joint jdfs.

Research on copulas started after Sklar’s theorem in 1959, when he demonstrated that always exists a
copula C : [0,1]d → [0,1] which estimates any given joint cdf. Each argument of the copula is marginal cdf
evaluated on its parameter, i.e.

C(F1(x1), ...,Fn(xn)) = F(x1, ...,xn),
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where Fi, i = 1..n, are marginal cdfs, and F(x1, ...,xn) is the joint cdf.
To make use of copulas, it is necessary to use a function which form is almost completely defined. We

claim to have solved this problem in part, with a different approach, which is concerned with joint pdfs
instead of joint cdfs.

In the following, we will deduce a method for estimating joint pdfs from sample data, by transforming
a set of random variables into a set of independent ones, and by computing the marginal pdfs of the latter.
Then we present a software application based on this methodology, and test it using several datasets. Finally,
we discuss how to improve the methodology.

2. Our method

Let us recall two particular cases of pdfs. First, if ~X is a vector of independent random variables, then
its joint pdf is:

f (x1,x2, ...,xn) = f1(x1) f2(x2)... fn(xn),

and if not, one can generally write the joint pdf as:

f (x1,x2, ...,xn) = f1(x1) f2(x2|x1)... fn(xn|x1, ...,xn−1),

where

f (a|b)≡ ∂

∂a
lim
ε→0

Pr(A≤ a∧B ∈ B(b,ε))
Pr(B ∈ B(b,ε))

,

and B(b,ε) is the ball centered in b with radius ε.
What if we could reduce a joint pdf of the second form to a pdf of the first form? If we could do that,

then the problem of computing the pdf is reduced to reducing the problem and computing the marginals.

2.1. Joint pdfs from marginals

Let us suppose we can define variables Yk so that

Yk = φk(X1, ...,Xk),∀k ≤ n,

so that {Yk} is a set of independent random variables and {φk} are increasing in their last parameter. Then,
the joint pdf of~Y = (Y1, ...,Yn) is

g(y1, ...,yn) = g1(y1)...gn(yn).

In particular gk(yk) = gk(yk|y1...yk−1) because of their independence.
Now, let us focus on fk(xk|x1...xk−1). We first see that:

fk(xk|x1...xk−1) =
∂

∂xk
Pr(Xk ≤ xk|(∀i < k)Xi = xi).

As φk is increasing in its last parameter:

Pr(Xk ≤ xk|(∀i < k)Xi = xi) = Pr(φ(X1, ...,Xk)≤ φ(X1, ...,Xk−1,xk)|(∀i < k)Xi = xi).

Replacing φk(X1, ...,Xk) by Yk:

Pr(Xk ≤ xk|(∀i < k)Xi = xi) = Pr(Yk ≤ φ(X1, ...,Xk−1,xk)|(∀i < k)Xi = xi).
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By using (∀i < k)Xi = xi, we can replace φ(X1, ...,Xk−1,xk) by φ(x1, ...,xk):

Pr(Xk ≤ xk|(∀i < k)Xi = xi) = Pr(Yk ≤ φ(x1, ...,xk)|(∀i < k)Xi = xi).

By recognizing that the {Xi} and {Yi} sets share the same information, we can replace (∀i < k)Xi = xi by
(∀i < k)Yi = yi:

Pr(Xk ≤ xk|(∀i < k)Xi = xi) = Pr(Yk ≤ φ(x1, ...,xk)|(∀i < k)Yi = yi).

And recalling that {Yi} is a set of independent random variables, we get:

Pr(Xk ≤ xk|(∀i < k)Xi = xi) = Pr(Yk ≤ φ(x1, ...,xk)).

Thus, going back to fk:

fk(xk|x1...xk−1) =
∂

∂xk
Pr(Xk ≤ xk|(∀i < k)Xi = xi)

fk(xk|x1...xk−1) =
∂

∂xk
Pr(Yk ≤ φk(x1, ...,xk))

fk(xk|x1...xk−1) = gk(φk(x1, ...,xk))
∂φk

∂xk
.

Therefore, the joint pdf of X1, ...,Xk is:

f (x1, ...,xn) = Πk

(
gk(φk(x1, ...,xk))

∂φk

∂xk

)
.

Note that computing f was reduced to computing each gk and φk. In particular, computing gk corre-
sponds to the classic problem of estimating univariate pdfs from samples. So, the difficulty of estimating fk
was really reduced to computing φk.

Note that we cannot use this approach to compute joint cdfs. If it holds that

F(x1, ...,xn) = G(φ1(x1), ...,φn(x1, ...,xn)),

then it also holds that Z
ΩF

g(Y1, ...,Yn)d~Y =
Z

ΩG

g(Y1, ...,Yn)d~Y ,

where
ΩF = {φ1(X1),φ2(X1,X2), ...,φn(X1, ...,Xn) : X1 ≤ x1∧ ...∧Xn ≤ xn}

and
ΩG = {Y1,Y2, ...,Yn : Y1 ≤ φ1(x1)∧Y2 ≤ φ2(x1,x2)∧ ...∧Yn ≤ φn(x1, ...,xn)}.

The above condition requres that ΩF = ΩG, a condition we cannot guarantee. For example, consider that
X1 = Y1 and X2 = Y2−Y1; X1 ≤ 0 and X2 ≤ 0 is equivalent to Y1 ≤ 0 and Y2 ≤ Y1 (ΩF ), which is different to
Y1 ≤ 0 and Y2 ≤ 0 (ΩG).

To address the problem of computing joint cdfs, we suggest using Monte Carlo methods, which are not
affected by the curse of dimensionality as their convergence rate is independent of the number of dimensions
(but instead are very slow) and are simple to implement.
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2.2. Choosing φk

Which φk functions should we use? We propose reducing the problem of computing φk(x1, ...,xk) to the
problem of computing ψk(y1, ...,yk−1,xk), a function which creates a new random variable by making xk
independent from yi<k. Note that φk can be reduced to ψk,

φk(x1, ...,xk) = ψk(ψ1(x1),ψ2(ψ1(x1),x2),ψ3(ψ1(x1),ψ2(ψ1(x1),x2),x3), ...,xk),

and it holds that
∂φk

∂xk
=

∂ψk

∂xk
.

Dealing with such complicated form of ψk is not hard. We just have to keep a record of our transforma-
tions, to use the already computed variables in the next steps:

y1 = ψ1(x1),

y2 = ψ2(y1,x2),

y3 = ψ3(y1,y2,x3),

y4 = ψ4(y1,y2,y3,x4),

...

yn = ψn(y1, ...,yn−1,xn).

Now that the problem is reduced to using ψk, the next problem consists in estimating these functions.
(We leave this problem open.)

3. Implementation

We implemented the simplest case of this methodology, which is limiting ourselves to the linear case. In
particular, we will assume that independence is achieved when covariance is zero. Naturally, this assumption
will not work is many cases, so we also decided to evaluate the accuracy of our estimation in our software.

Note that, to build the independent random variables, we use functions

yk = ψk(y1, ...,yk−1,xk) = xk−∑
i<k

αiyi,

so yk can be obtained using a Gram-Schmidt method. Also, ∂ψk/∂xk = 1, which simplifies the implementa-
tion a bit.

The application was written in Java and reads CSV files. Its appearance can be seen in figure 1.

3.1. Supported pdfs

We supported the following pdfs in our software to compute the marginals:

Normal distribution. We had to include this distribution because it appears commonly.

Powered normal distribution. It is also common to find skewed bell shaped distributions, like lognormals.
To address this problem in its generality, we include the Box-Cox method, which enables our program
to handle these cases.
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Figure 1: Joint PDF Estimator. Evaluated with cc42a dataset.

Power law. Power laws are also common distributions. They appear often when ”inequality” appears.

Exponential distribution. This distribution is common is memoryless processes, like waiting times.

Triangular distribution. We included this distribution to handle spiked distributions.

Uniform distribution. Uniform distributions are also common. And they are very simple to implement.

3.2. Goodness of fit

To assess the quality of the estimation, we decided to avoid using Pearson or similar goodness of fit
tests. Basically, our data has several dimensions and we cannot contrast a joint pdf to the data; there are
not joint pdfs from samples since discrete values are not differentiable. Besides, histogram-based tests are
computationally expensive with high dimensions, so we decided to compare the estimated joint cdfs to the
sample joint cdfs using observations. If the estimation was good, then both cdfs should be similar, i.e.
Fe(x1, ...,xn) = Fs(x1, ...,xn)+ ε (where ε is a small error).

To measure the similarity of Fe (our joint cdf) and Fs, we generate a large sample. For each observation,
we compute both Fe and Fs (we need the original data to compute this function) and then we perform a linear
regression between them. In particular, we expect:

• A high correlation. That is, r2 ≈ 1.
(

r2 = Cov2(Fe,Fs)
Var(Fe)Var(Fs)

.
)
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• A null intercept. That is, in Fe = aFs +b, b≈ 0.

• An inclination of one. That is, in Fe = aFs +b, a≈ 1.

The above expectations led us design a score for assessing the goodness of fit of our data:

q = r2
(

1
1+ |b|

)(
1

1+ |a−1|

)
Note that we may have used a Cramer von Mises test to assess goodness of fit, but Fe and Fs do not

distribute uniformly. In particular, relations among variable change the way their joint cdfs distribute. So,
we decided to use a least squares approach which handles ill distributed data: weighted least squares. We
splitted the observations in bins, and the weights per bin are the multiplicative inverse of the number of
observations.

3.3. Computing joint cdfs
Monte Carlo methods are slow since their convergence rate is sublinear. In particular, we will use

average weighting which converges in order O(n0.5), and is computed as:Z
S

f (x1, ...,xn)≈
∑k f (x1, ...,xn)IS(x1, ...,xn)

∑k f (x1, ...,xn),

where IS(x1, ...,xn) = 1 when (x1, ...,xn) ∈ S, and is zero otherwise [4]. Note that the sample size must be
large to achieve precision.

However, we can compute a large number of joint cdfs efficiently. To do this, we propose creating a
large sample and using it to compute several cdfs. Nevertheless, we may suffer the risk of consistent bias.
To avoid this, we may renew the sample after several uses.

In our particular case, we build samples of 2000 observations and renew them after 50 computations,
when evaluating large numbers of joint cdfs. By doing this, we saved much computational time; what
used to take 10 minutes, now takes about 5 to 15 seconds to compute. Note that we even saved the time
of evaluating pdfs, since we can do that at the same time we renew the sample. (When we generate each
(x1, ...,xn), we also compute its joint pdf and record it.)

4. Experiments

We tested our software using several datasets. First, we tested it using four datasets which were random
sampled by us. If X ,Y,Z are independent random variables, then the columns of Ss1 are A + 0.5B, C−
A,B; these of Ss2 are A1.1 + B1.1, B0.9 − 10C1.1, A +C + AC/1000; these of Ss3 are A + AB/1000, B−
logC, 20log(C + 5); and these of Ss4 are (A + B)2, (C− B)2, C2. Ss2, Ss3 and Ss4 where designed to
evaluate the tolerance of our estimations when slight nonlinear relations appeared.

Second, we used course data. These datasets correspond to the grades of students of Universidad de
Chile in three different courses. We expect the presence of linear relations in these datasets.

Third, we used the voting intentions in the Chilean 1988 Plebiscite dataset [5]. It has 2700 observations
and involves 5 variables which relations are somewhat obscure. (Linear relations are found but do not fully
explain the data.)

And fourth, we used several datasets from the Andrews & Herzberg archive at StatLib [6]. To use them,
we removed their first columns and left only numerical sampled data. (We removed text data, row numbers,
etc.) The sizes of these datasets range from 10 to 302.
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Table 1: Evaluation of Joint PDF Estimator with several datasets.

Dataset Size Variables Fitness Comments
Ss1 157 3 0.93 Fine, yet slightly biased around Fs = 0.
Ss2 157 3 0.88 Works fine, somewhat dispersed.
Ss3 157 3 0.88 Somewhat disperse and biased around Fs = 0.75. (Fig.2-a.)
Ss4 157 3 0.78 Small bias. Dispersion increases as Fs decreases.

cc10b 63 4 0.80 Works fine. Last variable ignored.
cc42a 41 3 0.87 Low dispersion, but slightly biased. (Fig.1.)
in50a 84 6 0.80 High dispersion. Seems unbiased.(Fig.2-b.)
voting 2700 5 0.65 High dispersion. Slight bias around Fs = 0. (Fig.2-c.)
T01.1 50 12 0.45 High dispersion.
T03.1 38 6 0.73 Small bias.
T07.1 184 4 0.30 Works bad.
T13.1 105 12 0.33 Works bad.
T17.1 127 12 0.28 Works bad.
T25.1 264 4 0.44 Works bad. Strong bias.
T30.1 19 6 0.81 Works well despite sample size. (Fig.2-d.)
T33.1 100 5 0.69 Disperse but overall fine.
T35.2 52 6 0.79 Work fine. Slight bias around Fs = 1.
T41.1 10 14 0.38 Works bad. Only 10 variables considered.
T53.1 302 9 0.12 Works bad.
T59.1 42 8 0.56 High dispersion. Seems unbiased.
T60.1 104 4 0.84 Works well. A bit disperse.

Table 1 shows the results of the tests. Note that “Fitness” corresponds to the g measure we already
defined, and its value is randomly generated. Also note that Fe is randomly generated too (using Monte
Carlo integration) and that Fs is estimated from the dataset by counting (another source of error). We cannot
expect g to be close to 1 (for example, 0.97) under these conditions.

As we can see, our application worked well with several datasets. The results of datasets Ss2, Ss3 (fig.2-
b) and Ss4 show that it is somewhat tolerant to nonlinear relations. The result of dataset T30.1 (fig.2-d)
shows that it can approximate joint pdfs even when samples are small. (By taking relations into account, the
curse of dimensionality should be reduced. For example, if corr(X ,Y ) ≈ 1, we need as many observations
as these needed to estimate X solely when estimating f (x,y). Dimensions are relevant as the uncertainty
increases.) Also, the results of the estimations give validity to the measure g included in the program.

5. Conclusions

We developed a methodology for estimating joint pdfs, which can be summarized to:

1. Compute functions φ1...φn such that variables Yk = φk(X1, ...,Xk) form a set of independent random
variables.

2. Compute the marginal pdf gk for each Yk.
3. The joint pdf of X1, ...,Xn is f (x1, ...xn) = g1(y1)...gn(yn)

∂φ1
∂x1

... ∂φn
∂xn

, where (∀k)yk = φk(x1, ...,xk).

To put this methodology into practice, we developed a software application which works with linear φk
functions. We found that its estimations worked well (the estimated joint cdfs were similar to the sample
joint cdfs) in several datasets, which confirms our theory.
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(a) Ss3 (b) in50a (c) voting (d) T30.1

Figure 2: Scatter plots generated by Joint PDF Estimator.

In spite of the simplicity of our methodology, finding suitable functions φk is not a simple problem. By
improving these functions, we may be able to estimate better joint pdfs. However, we should design simple
functions as complicated pdfs are hard to use in theory. Naturally, this constraint also applies to ∂φk/∂xk, as
it is part of the built pdf.
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