
Compressed Representations of Permutations, and Applications

Jérémy Barbay Gonzalo Navarro∗

Dept. of Computer Science (DCC), University of Chile.
Blanco Encalada 2120, Santiago, Chile.
jbarbay,gnavarro@dcc.uchile.cl

Technical Reporte TR/DCC-2008-18
received on December 5th, 2008
by the Departamento de Ciencias de la Computación (DCC),
Universidad de Chile, Santiago, Chile.
http://www.dcc.uchile.cl/1877/propertyvalue-11449.html

Abstract

We explore various techniques to compress a permutation π over n integers, taking advantage
of ordered subsequences in π, while supporting its application π(i) and the application of its
inverse π−1(i) in small time. Our compression schemes yield several interesting byproducts, in
many cases matching, improving or extending the best existing results on applications such as
the encoding of a permutation in order to support iterated applications πk(i) of it, of integer
functions, and of inverted lists and suffix arrays.

1 Introduction

Permutations of the integers [n] = {1, . . . , n} are a basic building block for the succinct encoding of
integer functions [MR04], strings [ANS06, GMR06, NM07, Sad03], and binary relations [BHMR07],
among others. A permutation π is trivially representable in ndlg ne bits, which is within O(n) bits
of the information theory lower bound of lg(n!) bits.1 In many interesting applications, efficient
computation of both the permutation π(i) and its inverse π−1(i) is required.

The lower bound of lg(n!) bits yields a lower bound of Ω(n log n) comparisons to sort such a
permutation in the comparison model. Yet, a large body of research has been dedicated to finding
better sorting algorithms which can take advantage of specificities of each permutation to sort. Triv-
ial examples are permutations sorted such as the identity, or containing sorted blocks [Man85] (e.g.
(1 , 3 , 5 , 7 , 9 ,2,4,6,8,10) or (6 , 7 , 8 , 9 , 10 ,1,2,3,4,5)), or containing sorted subsequences [LP94]
(e.g. (1 ,6, 2 ,7, 3 ,8, 4 ,9, 5 ,10)): algorithms performing only O(n) comparisons on such permuta-
tions, yet still O(n log n) comparisons in the worst case, are achievable and obviously preferable.
Less trivial examples are classes of permutations whose structure makes them interesting for appli-
cations: see Mannila’s seminal paper [Man85] and Estivil-Castro and Wood’s review [ECW92] for
more details.
∗Partially funded by Fondecyt Grant 1-080019, Chile.
1In this paper we use the notations lg x = log2 x and [x] = {1, . . . , x}.

1

Each sorting algorithm in the comparison model yields an encoding scheme for permutations:
It suffices to note the result of each comparison performed to uniquely identify the permutation
sorted, and hence to encode it. Since an adaptive sorting algorithm performs o(n log n) compar-
isons on many classes of permutations, each adaptive algorithm yields a compression scheme for
permutations, at the cost of losing a constant factor on some other “bad” classes of permutations.
We show in Section 4 some examples of applications where only “easy” permutations arise. Yet
such compression schemes do not necessarily support in reasonable time the inverse of the permu-
tation, or even the simple application of the permutation: this is the topic of our study. After
highlighting some previous work in Section 2, we describe in Section 3 several encodings of permu-
tations so that on interesting classes of instances the encoding uses o(n log n) bits while supporting
the operations π(i) and π−1(i) in time o(log n). In Section 4, we apply our compression schemes
to various scenarios, such as the encoding of integer functions, text indexes, and others, yielding
original compression schemes for these abstract data types.

2 Previous Work

Let us first remind a useful measure of the entropy of a sequence of integers:

Definition 1 The entropy of a sequence of positive integers X = 〈n1, n2, . . . , nr〉 adding up to n
is H(X) =

∑r
i=1

ni
n lg n

ni
. By convexity of the logarithm, r lgn

n ≤ H(X) ≤ lg r.

Definition 2 The gap length of a sequence of positive integers X = 〈n1, n2, . . . , nr〉 adding up to
n is gap(X) =

∑r
i=1 lg ni. Again, by convexity we have lg(n− r + 1) ≤ gap(X) ≤ r lg n

r . This is a
lower bound to encode the sequence of numbers ni in binary.

2.1 Succinct Encodings of Sequences

Let S[1, n] be a sequence over an alphabet [r]. This includes bitmaps when r = 2 (where, for
convenience, the alphabet will be {0, 1}). We will make use of succinct representations of S that
support operations rank and select: rankc(S, i) gives the number of occurrences of c in S[1, i]
and selectc(S, j) gives the position in S of the jth occurrence of c.

For the case r = 2, S requires n bits of space and rank and select can be supported in constant
time using O(n log logn

logn) = o(n) bits on top of S [Mun96, Cla96, Gol06]. The extra space is, more

precisely, O(n log b
b + 2b polylog(b)) for some parameter b, which is chosen to be, say, b = 1

2 lg n to
achieve the given bounds. In this paper, we will sometimes apply the technique over sequences of
length ` = o(n) (n will be the length of the permutations). Still, we will maintain the value of b
as a function of n, not `, which ensures that the extra space will be of the form O(` log logn

logn), i.e.,
it will tend to zero when divided by ` as n grows, even if ` stays constant. All of our o() terms
involving several variables in this paper can be interpreted in this strong sense: asymptotic in n.
Thus we will write the above space simply as o(`).

Raman et al. [RRR02] devised a bitmap representation that takes nH0(S) + o(n) bits, while
maintaining the constant time for the operations. Here H0(S) = H(〈n1, n2, . . . , nr〉) ≤ lg r, where
nc is the number of occurrences of symbol c in S, is the so-called zero-order entropy of S. For the
binary case this simplifies to nH0(S) = m lg n

m + (n−m) lg n
n−m = m lg n

m +O(m), where m is the
number of bits set in S.

2

Mäkinen et al. [MN07b] showed that the space can be lowered to gap(X) + O(m log log n
m) +

o(n), where X refers to the differences between consecutive positions of bits set in S. Gupta et
al. [GHSV06] showed how to achieve space gap(X) +O(m log log n

m + log n), which largely reduces
the dependence on n, but now rank and select are supported in O(logm) time via binary search
[Gup07, Thm. 17 p. 153].

Grossi et al. [GGV03] extended the result to larger alphabets using the so-called wavelet tree,
which decomposes a sequence into several bitmaps. By representing those bitmaps in plain form,
one can represent S using ndlg re(1+o(1)) bits of space, and answer S[i], as well as rank and select
queries on S, in time O(log r). By, instead, using Raman et al.’s representation for the bitmaps,
one achieves nH0(S) + o(n log r) bits of space, and the same times. Ferragina et al. [FMMN07]
used multiary wavelet trees to maintain the same compressed space, while improving the times for
all the operations to O(1 + log r

log logn).
2.2 Support of Inverse Permutations

Munro et al. [MRRR03] studied the problem of succinctly representing a permutation to efficiently
support the computation of πk(i) (π iteratively applied k times starting at i, where k can be any
integer so that π−1 is the inverse of π). They give two solutions: we highlight here the first one for
comparison with our solution.

Given an integer parameter t, the permutations π and π−1 can be supported by simply writing
down π in an array of n words of dlg ne bits each, plus an auxiliary array S of at most n/t shortcuts
or back pointers. In each cycle of length at least t, every t-th element has a pointer t steps back.
π(i) is simply the i-th value in the primary structure, and π−1(i) is found by moving forward until a
back pointer is found and then continuing to follow the cycle to the location that contains the value
i. The trick is in the encoding of the locations of the back pointers: this is done with a simple bit
vector B of length n, in which a 1 indicates that a back pointer is associated with a given location.
Using rank1 on B gives the location of the appropriate back pointer in the auxiliary array S.

This encoding uses at most (1 + 1/t)n lg n + O(n) bits, and it supports the operation π() in
constant time and the operation π−1() in time O(t). Note that this encoding scheme does not
compress the permutation, even though the size of the additional space it requires varies from zero
(for any permutation with all cycles shorter than t) to (n/t) lg n + O(n) (e.g., for a permutation
consisting of a single cycle of length n).

2.3 Measures of Disorder in Permutations

Various previous studies on the effect of presortedness in sorting considered in particular the
following measures of order on an input array to be sorted. Among others, Mehlhorn [Meh79] and
Guibas et al. [GMPR77] considered the number of pairs in the wrong order, defined more formally
as

inv(X) = |{(i, j)|1 ≤ i < j ≤ n, xi > xj}|;
Knuth [Knu98] considered the number of ascending substrings (runs), defined more formally as

runs(X) = |{i|1 ≤ i ≤ n, xi+1 > xi}| :

Cook and Kim [CK80], and later Mannila [Man85] considered the number of elements which have
to be removed to leave a sorted list, defined more formally as the complement of the length of the
longest ascending subsequence of the permutation:

rem(X) = n−max{t|∃1 ≤ i1 < . . . < it ≤ n|xi1 < xit};

3

Mannila [Man85] considered the smallest number of exchanges of arbitrary elements needed to
bring the input into ascending order, defined more formally as

exc(X) = n− number of cycles in the permutation of {1, . . . , n} corresponding to X;

Skiena [Ski88] considered the number of encroaching sequences, obtained by distributing the input
elements into sorted sequences built by additions to both ends those sequences are usually not
subsequences of the input; Levcopoulos and Petersson [LP94] considered Shuffled UpSequences and
Shuffled Monotone Sequences, both defined more formally as

SUS(X) = min{k|X is a shuffle of k upsequences},

SMS(X) = min{k|X is a shuffle of k monotone sequences};

Estivil-Castro and Wood [ECW92] list them all and some others, along with reductions from one
to another.

Each of those adaptive sorting algorithms yields a compression scheme for permutations, but
the encoding thus defined does not necessarily support the simple application of the permutation to
a single element without decompressing the whole permutation, nor the application of the inverse
permutation. Since the operations π() and π−1() are easy to support on the identity permutation,
or on any subsequence of it, we consider the encodings related to existing difficulty measures (and
adaptive algorithms) identifying sorted subsequences of the permutation, and we introduce a new
difficulty measure based on a stricter definition of runs.

3 Compression Techniques

We first introduce a compression method that takes advantage of (ascending) runs in the permu-
tation. Then we consider a stricter variant of the runs, which allows for further compression in
applications when those runs arise, and in particular allows the representation size to be sublinear
in n. Next, we consider a more general type of runs, which need not be contiguous. Finally we
compare the various compression measures obtained.

3.1 Wavelet Tree on Runs

One of the best known sorting algorithm is merge sort, based on a simple linear procedure to merge
two already sorted arrays, resulting in a worst case complexity of O(n log n). Yet, checking in linear
time for down-step positions in the array, where an element is followed by a smaller one, partitions
the original arrays into ascending runs which are already sorted. This can speed up the algorithm
when the array is partially sorted [Knu98]. We use the same observation to encode permutations.

Definition 3 A down step of a permutation π over [n] is a position i such that π(i + 1) < π(i).
A run in a permutation π is a maximal range of consecutive positions {i, . . . , j} which does not
contain any down step. Let d1, d2, . . . , dk be the list of consecutive down steps in π. Then the
number of runs of π is noted ρ = k + 1, and the sequence of the lengths of the runs is noted
Runs = 〈d1, d2 − d1, . . . , dk − dk−1, n+ 1− dk〉.

For example, the permutation (1 , 3 , 5 , 7 , 9 ,2,4,6,8,10) contains ρ = 2 runs, of lengths 〈5, 5〉.
Whereas previous analyses [Man85] of adaptive sorting algorithms considered only the number ρ
of runs, we refine them to consider the distribution Runs of the sizes of the runs.

4

Theorem 1 There is an encoding scheme using at most n(2 +H(Runs))(1 +o(1)) +O(ρ log n) bits
to encode a permutation π over [n] covered by ρ runs of lengths Runs. It supports π(i) and π−1(i)
in time O(1 + log ρ) for any value of i ∈ [n]. If i is chosen uniformly at random in [n] then the
average time is O(1 +H(Runs)).

Proof: The Hu-Tucker algorithm [HT71] (see also Knuth [Knu98, p. 446], who refers to a variant
due to Garsia and Wachs) produces in O(ρ log ρ) time a prefix-free code from a sequence of fre-
quencies X = 〈n1, n2, . . . , nρ〉 adding up to n, so that (1) the i-th lexicographically smallest code
is that for frequency ni, and (2) if `i is the bit length of the code assigned to the i-th sequence
element, then L =

∑
`ini is minimal and moreover L < n(2 +H(X)) [Knu98, p. 446, Eq. (27)].

We first determine Runs in O(n) time, and then apply the Hu-Tucker algorithm to Runs. We
arrange the set of codes produced in a binary trie (equivalent to a Huffman tree [Huf52]), where
each leaf corresponds to a run and points to its two endpoints in π. Because of property (1), reading
the leaves left-to-right yields the runs also in left-to-right order. Now we convert this trie into a
wavelet-tree-like structure [GGV03] without altering its shape, as follows. Starting from the root,
first process recursively each child. For the leaves do nothing. Once both children of an internal
node have been processed, the invariant is that they point to the contiguous area in π covering all
their leaves, and that this area of π has already been sorted. Now we merge the areas of the two
children in time proportional to the new area created (which, again, is contiguous in π because of
property (1)). As we do the merging, each time we take an element from the left child we append
a 0 bit to a bitmap we create for the node, and a 1 bit when we take an element from the right list.

When we finish, we have the following facts: (1) π has been sorted, (2) the time for sorting
has been O(n + ρ log ρ) plus the total number of bits appended to all bitmaps, (3) each of the ni
elements of leaf i (at depth `i) has been merged `i times, contributing `i bits to the bitmaps of its
ancestors, and thus the total number of bits is

∑
ni`i.

Therefore, the total number of bits in the Hu-Tucker-shaped wavelet tree is at most n(2 +
H(Runs)). To this we must add the O(ρ log n) bits of the tree pointers. We preprocess all the
bitmaps for rank and select queries so as to spend o(n(2 +H(Runs)) extra bits (§2).

To compute π−1(i) we start at offset i of the root bitmap B, with position p← 0, and bitmap
size s ← n. If B[i] = 0 we go down to the left child with i ← rank0(B, i) and s ← rank0(B, s).
Otherwise we go down to the right child with i ← rank1(B, i), p ← p + rank0(B, s), and s ←
rank1(B, s). When we reach a leaf, the answer is p+ i.

To compute π(i) we do the reverse process, but we must first determine the leaf v and offset j
within v corresponding to position i: We start at the root bitmap B, with bitmap size s← n and
position j ← i. If rank0(B, s) ≥ j we go down to the left child with s← rank0(B, s). Otherwise we
go down to the right child with j ← j−rank0(B, s) and s← rank1(B, s). We eventually reach leaf
v, and the offset within v is j. We now start an upward traversal using the nodes that are already
in the recursion stack (those will be limited to O(log ρ) soon). If v is a left child of its parent u,
then we set j ← select0(B, j), else we set j ← select1(B, j), where B is the bitmap of u. Then
we set v ← u until reaching the root, where j = π(i).

In both cases the time is O(`), where ` is the depth of the leaf arrived at. If i is chosen
uniformly at random in [n], then the average cost is 1

n

∑
ni`i = O(1 + H(Runs)). However, the

worst case can be O(ρ) in a fully skewed tree. We can ensure ` = O(log ρ) in the worst case while
maintaining the average case by slightly rebalancing the Hu-Tucker tree: If there exist nodes at
depth ` = 4 lg ρ, we rebalance their subtrees, so as to guarantee maximum depth 5 lg ρ. This affects
only marginally the size of the structure. A node at depth ` cannot add up to a frequency higher

5

than n/2b`/2c ≤ 2n/ρ2 (see next paragraph). Added over all the possible ρ nodes we have a total
frequency of 2n/ρ. Therefore, by rebalancing those subtrees we add at most 2n lg ρ

ρ bits. This is o(n)
if ρ = ω(1), and otherwise the cost was O(ρ) = O(1) anyway. For the same reasons the average
time stays O(1 +H(Runs)) as it increases at most by O(log ρ

ρ) = O(1).
The bound on the frequency at depth ` is proved as follows. Consider the node v at depth

`, and its grandparent u. Then the uncle of v cannot have smaller frequency than v. Otherwise
we could improve the already optimal Hu-Tucker tree by executing either a single (if v is left-left
or right-right grandchild of u) or double (if v is left-right or right-left grandchild of u) AVL-like
rotation that decreases the depth of v by 1 and increases that of the uncle of v by 1. Thus the
overall frequency at least doubles whenever we go up two nodes from v, and this holds recursively.
Thus the weight of v is at most n/2b`/2c. �

The general result of the theorem can be simplified when the distribution Runs is not particularly
favorable.

Corollary 1 There is an encoding scheme using at most ndlg ρe(1+o(1))+O(log n) bits to encode
a permutation π over [n] with a set of ρ runs. It supports π(i) and π−1(i) in time O(1 + log ρ) for
any value of i ∈ [n].

Proof: The same construction of Thm. 1 using a perfectly balanced tree achieves the bounds. To
get rid of the tree pointers we concatenate all the bitmaps levelwise, and can maintain the cor-
rect range in the bitmap as we move down because there are exactly n bits per level (when we
move up we have the ranges in the recursion stack), as described for example by Mäkinen and
Navarro [MN07b]. The last level may have only a prefix filled if ρ is not a power of 2. The O(log n)
term is needed to store ρ and a constant number of pointers (the term is relevant for the case
ρ = 1). �

As a corollary, we obtain a new proof of a well-known result on adaptive algorithms telling that
one can sort in time O(n(1 + log ρ)) [Man85], now refined to consider the entropy of the partition
and not only its size.

Corollary 2 We can sort an array of length n covered by ρ runs of lengths Runs in time O(n(1 +
H(Runs))), which is worst-case optimal, in the comparison model, among all permutations with ρ
runs of lengths Runs so that ρ log n = o(nH(Runs)).

Proof: Our wavelet tree construction of Thm. 1 indeed sorts π within this time, and this works
also if the array is not a permutation (note that equal consecutive elements do not break a
run). In fact there is an additional O(ρ log ρ) term, which by convexity of the logarithm is
O(nH(Runs)), see Def. 1. This is optimal because there are at least n!

ρ!n1!n2!...nρ!
different per-

mutations with Runs = 〈n1, n2, . . . , nρ〉 (take any permutation, sort the first n1 elements, sort the
next n2, and so on, and finally sort the runs so that their largest element is decreasing). Thus
lg n!

ρ!n1!n2!...nρ!
= nH(Runs)−Θ(ρ log n) comparisons are necessary. The term Ω(n) is also necessary

to read the input, hence implying a lower bound of Ω(n(1+H(Runs))) when ρ log n = o(nH(Runs)).
�

6

3.2 Stricter Runs

Some classes of permutations can be covered by a small number of runs of a stricter type. We
present an encoding scheme which uses o(n) bits for encoding the permutations from those classes,
and still O(n lg n) bits for all others.

Definition 4 A strict run in a permutation π is a maximal range of positions satisfying π(i+k) =
π(i) + k. The head of such run is its first position. The number of strict runs of π is noted τ , and
the sequence of the lengths of the strict runs is noted SRuns. We will call HRuns the sequence of
run lengths of the sequence formed by the strict run heads of π.

For example, the permutation (6 , 7 , 8 , 9 , 10 ,1,2,3,4,5) contains τ = 2 strict runs, of lengths
SRuns = 〈5, 5〉. The run heads are 〈6 ,1〉, and contain 2 runs, of lengths HRuns = 〈1, 1〉. Instead,
the permutation (1 , 3 , 5 , 7 , 9 ,2,4,6,8,10) contains τ = 10 strict runs, all of length 1.

Theorem 2 There is an encoding scheme using at most τH(HRuns)(1 + o(1)) + 2τ lg n
τ + o(n) +

O(τ + ρ log τ) bits to encode a permutation π over [n] covered by τ strict runs and by ρ ≤ τ runs,
where HRuns is the vector formed by the ρ run lengths in the permutation of strict run heads. It
supports the operators π(i) and π−1(i) in time O(1 + log ρ) for any value of i ∈ [n]. If i is chosen
uniformly at random in [n] then the average supporting time is O(1 +H(HRuns)).

Proof: We first set up a bitmap R of length n marking with a 1 bit the beginning of the strict runs.
Set up a second bitmap Rinv such that Rinv[i] = R[π−1(i)]. Now we create a new permutation π′ of
[τ] which collapses the strict runs of π, π′(i) = rank1(Rinv, π(select1(R, i))). All this takes O(n)
time and the bitmaps take 2τ lg n

τ +O(τ) + o(n) bits using Raman et al.’s technique, where rank
and select are solved in constant time (§2).

Now build the structure of Thm. 1 for π′. The number of down steps in π is the same as for the
sequence of strict run heads in π, and in turn the same as the down steps in π′. So the number of runs
in π′ is also ρ and their lengths are HRuns. Thus we get at most τ(2+H(HRuns))(1+o(1))+O(ρ log τ)
bits to encode π′, and can compute π′ and its inverse in O(1+log ρ) worst case and O(1+H(HRuns))
average time.

To compute π(i), we find i′ ← rank1(R, i) and then compute j′ ← π′(i′). The final answer is
select1(Rinv, j′) + i − select1(R, i′). To compute π−1(i), we find i′ ← rank1(Rinv, i) and then
compute j′ ← (π′)−1(i′). The final answer is select1(R, j′) + i− select1(Rinv, i′). This adds only
constant time on top of that to compute π′ and its inverse. �

This representation is interesting because it can be sublinear in n if τ is small enough. Still, in
this case the o(n) term can be dominant. Thus it is interesting to explore other encodings where
the o(n) term is significantly reduced, or where the distribution of SRuns is relevant.

Corollary 3 The τ lg n
τ term in the space of Thm. 2 can be replaced by gap(SRuns)+O(τ log log n

τ)
at no cost, where SRuns are the strict run lengths. Furthermore, the o(n) term in the space can
be replaced by O(τ log log n

τ + log n) at the cost of O(1 + log τ) worst and average time for the
operations.

Proof: For the first part, replace Raman et al.’s structure by the gap encoding with constant-
time access (§2). For the second part, replace it instead by the binary searchable gap encoding of

7

Gupta et al., which takes O(1+log τ) time for rank and select. This dominates the other times. �

Other tradeoffs are possible, such as one described by Gupta [Gup07, Thm. 18 p. 155]. Alter-
natively, we might simplify the results when the distribution HRuns is not particularly

Corollary 4 There is an encoding scheme using at most τdlg ρe(1 + o(1)) + 2τ lg n
τ +O(τ) + o(n)

bits to encode a permutation π over [n] covered by τ strict runs and by ρ ≤ τ runs. It supports π(i)
and π−1(i) in time O(1 + log ρ) for any value of i ∈ [n]. The o(n) term can be reduced just as for
Cor. 3.

Proof: The same construction of Thm. 2 using a perfectly balanced tree achieves the bounds. We
get rid of the tree pointers just as for Cor. 1. �

We also obtain interesting algorithmic results on sorting.

Corollary 5 We can sort a permutation of [n], covered by τ strict runs and by ρ runs, and HRuns
being the run lengths of the strict run heads, in time O(n + τH(HRuns)) = O(n + τ log ρ), which
is worst-case optimal, in the comparison model, among all permutations sharing these ρ, τ , and
HRuns values, such that ρ log τ = o(τH(HRuns)).

Proof: Our construction of Thm. 2 sorts π within this time. The additional O(ρ log ρ) cost in-
curred is again absorbed by the term τH(HRuns) due to the convexity of logarithm, see Def. 1. This
is optimal because, just considering the run heads (and not their run lengths), there are already

τ !
ρ!n′1!n′2!...n′ρ!

different permutations with HRuns = 〈n′1, n′2, . . . , n′ρ〉, and thus τH(HRuns)−Θ(ρ log τ)
comparisons are necessary. (note that there are no further choices inside a strict run once the run
head is determined). The term Ω(n) is also necessary, to read the input. �

3.3 Shuffled Sequences

Levcopoulos and Petersson [LP94] introduced the more sophisticated concept of partitions formed
by interleaved runs, such as Shuffled UpSequences (SUS). We discuss here the advantage of consid-
ering permutations formed by shuffling a small number of runs.

Definition 5 A decomposition of a permutation π over [n] into Shuffled UpSequences is a set of,
not necessarily consecutive, subsequences of increasing numbers that have to be removed from π in
order to reduce it to the empty sequence. The minimum number of shuffled upsequences in such a
decomposition of π is noted σ, and the sequence of the lengths of the involved shuffled upsequences,
in arbitrary order, is noted SUS.

For example, permutation (1 ,6, 2 ,7, 3 ,8, 4 ,9, 5 ,10) contains σ = 2 shuffled upsequences of
lengths SUS = 〈5, 5〉, but ρ = 5 runs, all of length 2. Whereas the decomposition of a permutation
into runs or strict runs can be computed in linear time, the decomposition into shuffled upsequences
requires a bit more time. Fredman [Fre75] gave an algorithm to compute the size of an optimal
partition, claiming a worst case complexity of O(n log n). In fact his algorithm is adaptive and
takes O(n(1 + log σ)) time. We give here a variant of his algorithm which computes the partition
itself within the same complexity, and we achieve even better time on favorable sequences SUS.

8

Lemma 1 Given a permutation π over [n] covered by σ shuffled upsequences of lengths SUS, there
is an algorithm finding such a partition in time O(n(1 +H(SUS))).

Proof: Initialize a sequence S1 = (π(1)), and a splay tree T [ST85] with the node (S1), ordered
by the rightmost value of the sequence contained by each node. For each further element π(i),
search for the sequence with the maximum ending point smaller than π(i). If any, add π(i) to
this sequence, otherwise create a new sequence and add it to T . Fredman [Fre75] already proved
that this algorithm computes an optimal partition. The adaptive complexity results from the mere
observation that the splay tree (a simple sorted array in Fredman’s proof) contains at most σ ele-
ments, and that the node corresponding to a subsequence is accessed once per element in it. Hence
the total access time is O(n(1 +H(SUS))) [ST85, Thm. 2]. �

The complete description of the permutation requires to encode the computation of both the
partitioning algorithm and the sorting one, and this time the encoding cost of partitioning is as
important as that of merging.

Theorem 3 There is an encoding scheme using at most 2n(1 +H(SUS)) + o(n log σ) +O(σ log n)
bits to encode a permutation π over [n] covered by σ shuffled upsequences of lengths SUS. It supports
the operations π(i) and π−1(i) in time O(1+log σ) for any value of i ∈ [n]. If i is chosen uniformly
at random in [n] the average time is O(1 +H(SUS) + log σ

log logn).

Proof: Partition the permutation π into σ shuffled upsequences using Lemma 1, resulting in a
string S of length n over alphabet [σ] which indicates for each element of the permutation π the label
of the upsequence it belongs to. Encode S with a wavelet tree using Raman et al.’s compression for
the bitmaps, so as to achieve nH(SUS) + o(n log σ) bits of space and support retrieval of any S[i],
as well as symbol rank and select on S, in time O(1 + log σ) (§2). Store also an array A[1, σ] so
that A[`] is the accumulated length of all the upsequences with label less than `. Array A requires
O(σ log n) bits. Finally, consider the permutation π′ formed by the upsequences taken in label
order: π′ has at most σ runs and hence can be encoded using n(2 +H(SUS))(1 + o(1)) +O(σ log n)
bits using Thm. 1, as SUS in π corresponds to Runs in π′. This supports π′(i) and π′−1(i) in time
O(1 + log σ).

Now π(i) = π′(A[S[i]]+rankS[i](S, i)) can be computed in time O(1+log σ). Similarly, π−1(i) =
select`(S, (π′)−1(i)−A[`]), where ` is such that A[`] < (π′)−1(i) ≤ A[`+ 1], can also be computed
in O(1 + log σ) time. Thus the whole structure uses 2n(1 +H(SUS)) + o(n log σ) +O(σ log n) bits
and supports π(i) and π−1(i) in time O(1 + log σ).

The obstacles to achieve the claimed average time are the operations on the wavelet tree of S, and
the binary search in A. The former can be reduced to O(1+ log σ

log logn) by using the improved wavelet
tree representation by Ferragina et al. (§2). The latter is reduced to constant time by representing
A with a bitmap A′[1, n] with the bits set at the values A[`] + 1, so that A[`] = select(A′, `)− 1,
and the binary search is replaced by ` = rank1(A′, (π′)−1(i)). With Raman et al.’s structure (§2),
A′ needs O(σ log n

σ) bits and operates in constant time. �

Again, we might prefer a simplified result when SUS has no interesting distribution.

Corollary 6 There is an encoding scheme using at most 2n lg σ(1 + o(1)) + σ lg n
σ +O(σ) bits to

encode a permutation π over [n] covered by σ shuffled upsequences. It supports the operations π(i)
and π−1(i) in time O(1 + log σ) for any value of i ∈ [n].

9

We also achieve an improved result on sorting, better than the known O(n(1 + log σ)).
Proof: Do as in Thm. 3, but use for S a wavelet tree without compression of the bitmaps, and use
Cor. 1 instead of Thm. 1 to represent π′. Raman et al.’s representation for A′ takes, more precisely,
σ lg n

σ +O(σ) + o(n) bits. �

Corollary 7 We can sort an array of length n, covered by σ shuffled upsequences of lenghts SUS,
in time O(n(1 + H(SUS))), which is worst-case optimal, in the comparison model, among all per-
mutations decomposable into σ shuffled upsequences of lenghts SUS such that σ log n = o(nH(SUS)).

Proof: Our construction in Thm. 3 finds and separates the subsequences of π, and sorts them
in π′, all within this time. Note the method applies to an array, not only a permutation, where
equal consecutive elements do not break runs. This is optimal because there are at least n!

n1!n2!...nσ !
different permutations covered by σ shuffled upsequences of lengths SUS = 〈n1, n2, . . . , nσ〉: These
are all the ways of assigning a label in [σ] to each element in [n], so that there are ni elements
with label i. These labels define the positions corresponding to each upsequence. Now rename
the labels so that a lower label has its first occurrence later than the first occurrence of a higher
label. Now write down the numbers 1, 2, . . . at the consecutive (left to right) positions of the
first label, then continue with the second label, and so on. The resulting permutation has σ upse-
quences and is unique up to label renaming, thus there are n!

σ!n1!n2!...nσ ! different permutations and
nH(SUS)−Θ(σ log n) comparisons are necessary to sort them. The term Ω(n) is also necessary to
read the input. �

Levcopoulos and Petersson [LP94] generalized to a decomposition into shuffled monotone se-
quences (SMS), which is more powerful and seems more natural.

Definition 6 A Shuffled Monotone Subsequence of a permutation π over [n] is a subsequence
{i, . . . , j} of positions forming a monotone sequence (i.e., an increasing or decreasing run). The
minimum number of shuffled monotone subsequences covering π is noted σ′.

Unfortunately, computing the minimum number σ′ of shuffled monotone sequences composing a
permutation is NP-hard [KSW96], so partitioning the permutation optimally into SMS is too hard
to be practical, in exchange of a small improvement over σ inside a logarithmic term.

3.4 Comparison between Measures

Since a strict run is also a run, a run is also an upsequence, and an upsequence is a monotone
sequence, we have the inequalities σ′ ≤ σ ≤ ρ ≤ τ . As for the entropies, we have the following
results, which show that all of our sophistications over the basic result of Thm. 1 can be competitive
in different scenarios.

First, Thm. 2 can be competitive: τH(HRuns) ≤ nH(Runs) because the latter is the entropy of
the run lengths, whereas the former is obtained by keeping only the strict run heads from those runs.
Removing one element from the runs is equivalent to subtracting 1 from some element ni of Runs.
The change to nH(Runs) is−n lg n+(n−1) lg(n−1)+ni lg ni−(ni−1) lg(ni−1) = −∆(n)+∆(ni) < 0
since ∆(x) = x lg x− (x− 1) lg(x− 1) is the difference of the concave function x lg x.

Second, Thm. 3 can be competitive: nH(SUS) ≤ nH(Runs) because the former is a concatena-
tion of runs from the latter, and concatenating runs reduces the entropy: ni lg ni + nj lg nj − (ni +
nj) lg(ni + nj) ≤ 0 since x lg x is concave.

10

Note that the basic result of Thm. 1 is also competitive as it carries less overhead than the others.
In turn, strict runs and shuffled upsequences are not comparable: In sequence (1, 5, 2, 6, 3, 7, 4, 8)
we have τH(HRuns) = 8 lg 8 = 24 and n ln(SUS) = 2 lg 2 = 2 (so even with the 2 factor it is better).
In sequence (5, 6, 7, 8, 1, 2, 3, 4) we have τH(HRuns) = 2 lg 2 = 2 and n ln(SUS) = 8 lg 2 = 8, so the
former is better even after adding the overhead τ lg n

τ = 2 lg 4 = 4.
Finally we note that, given the symmetry of the operations we provide (π(i) and π−1(i) within

the same time), we could decide to represent π−1 instead of π. This is irrelevant for strict runs
and shuffled upsequences, as τ , SRuns, σ, and SUS are the same for π and π−1. However, if π has a
sequence of ρ runs Runs, then π−1 contains a sequence of σ = ρ shuffled upsequences with lengths
SUS = Runs. These upsequences form indeed strict runs. The converse is also true, which shows
that there is no interest in considering “strict” shuffled upsequences, as it is preferable to work
(with less overhead) on the runs of the inverse permutation.

4 Applications

4.1 Inverted Indexes

Consider a full-text inverted index which gives the word positions of any word in a text. This
is a popular data structure for natural language text retrieval [BYR99, WMB99], as it permits
for example solving phrase queries without accessing the text. For each different text word, an
increasing list of its text positions is stored.

Let n be the total number of words in a text collection T [1, n] and ρ the vocabulary size (i.e.,
number of different words). An uncompressed inverted index requires (ρ+n)dlg ne bits. It has been
shown [MN07b] that, by δ-encoding the differences between consecutive entries in the inverted lists,
the total space reduces to nH0(T) + ρdlg ne, where H0(T) is the zero-order entropy of the text if
seen as a sequence of words (§2). We note that the empirical law by Heaps [Hea78], well accepted
in Information Retrieval, establishes that ρ is small: ρ = O(nβ) for some constant 0 < β < 1
depending on the text type.

Several successful methods to compress natural language text take words as symbols and use
zero-order encoding, and thus the size they can achieve is lower bounded by nH0(T) [MNZBY00].
If we add the differentially encoded inverted index in order to be able of searching the compressed
text, the total space is at least 2nH0(T). Some schemes to reduce even further the inverted index
have been proposed, but they pose significant penalties on the performance [NMN+00].

Now, the concatenation of the ρ inverted lists can be seen as a permutation of [n] with ρ runs,
and therefore Thm. 1 lets us encode it in n(2 + H0(T))(1 + o(1)) + O(ρ log n) bits. Within the
same space we can add ρ numbers telling where the runs begin, in an array V [1, ρ]. Now, in order
to retrieve the list of the i-th word, we simply obtain π(V [i]), π(V [i] + 1), . . . , π(V [i+ 1]− 1), each
in O(1 + log ρ) time. Moreover we can extract any random position from a list, which enables
binary-search-based strategies for list intersection [BY04, ST07, CM07]. In addition, we can also
obtain a text passage from the (inverse) permutation: To find out T [j], π−1(j) gives its position in
the inverted lists, and a binary search on V finds the interval V [i] ≤ π−1(j) < V [i+ 1], to output
that T [j] = ith word, in O(1 + log ρ) time.

This result is very interesting, as it constitutes a true word-based self-index [NM07] (i.e., a
compressed text index that contains the text). Similar results have been recently obtained with
rather different methods [BFLN08, CN08]. The cleanest one is to build a wavelet tree over T

11

with compression [FMMN07], which achieves nH0(T) + o(n log ρ) + O(ρ log n) bits of space, and
permits obtaining T [i], as well as extracting the jth element of the inverted list of the ith word
with selecti(T, j), all in time O(1 + log ρ

log logn).
Yet, one advantage of our approach is that the extraction of ` consecutive entries π−1([i, i′])

takes O(`(1 + log ρ
`)) time if we do the process for all the entries as a block: Start at range [i, i′]

at the root bitmap B, with position p ← 0, and bitmap size s ← n. Go down to both left and
right children: to the left with [i, i′]← [rank0(B, i), rank0(B, i′)], same p, and s← rank0(B, s); to
the right with [i, i′]← [rank1(B, i), rank1(B, i′)], p← p+ rank0(B, s), and s← rank1(B, s). Stop
when the range [i, i′] becomes empty or when we reach a leaf, in which case report all answers p+k,
i ≤ k ≤ i′. By representing the inverted list as π−1, we can extract long inverted lists faster than
the existing methods.

Corollary 8 There exists a representation for a text T [1, n] of integers in [1, ρ] (regarded as word
identifiers), with zero-order entropy H0, that takes n(2 + H0)(1 + o(1)) +O(ρ log n) bits of space,
and can retrieve the text position of the jth occurrence of the ith text word, as well as the value
T [j], in O(1 + log ρ) time. It can also retrieve any range of ` successive occurrences of the ith text
word in time O(`(1 + log ρ

`)).

We could, instead, represent the inverted list as π, so as to extract long text passages efficiently,
but the wavelet tree representation can achieve the same result. Another interesting functionality
that both representations share, and which is useful for other list intersection algorithms [BLOL06,
BGMR07], is that to obtain the first entry of a list which is larger than x. This is done with rank
and select on the wavelet tree representation. In our permutation representation, we can also
achieve it in O(1 + log ρ) time by finding out the position of a number x within a given run. The
algorithm is similar to those in Thm. 1 that descend to a leaf while maintaining the offset within
the node, except that the decision on whether to descend left or right depends on the leaf we want
to arrive at and not on the bitmap content (this is actually the algorithm to compute rank on
binary wavelet trees [NM07]).

Finally, we note that our inverted index data structure supports in small time all the operations
required to solve conjunctive queries on binary relations.

4.2 Suffix Arrays

Suffix arrays are used to index texts that cannot be handled with inverted lists. Given a text
T [1, n] of n symbols over an alphabet of size ρ, the suffix array A[1, n] is a permutation of [n] so
that T [A[i], n] is lexicographically smaller than T [A[i + 1], n]. As suffix arrays take much space,
several compressed data structures have been developed for them [NM07]. One of interest for us
is the Compressed Suffix Array (CSA) of Sadakane [Sad03]. It builds over a permutation Ψ of [n],
which satisfies A[Ψ[i]] = (A[i] mod n) + 1 (and thus lets us move virtually one position forward
in the text) [GV06]. It turns out that, using just Ψ and O(ρ log n) extra bits, one can (i) count
the number of times a pattern P [1,m] occurs in T using O(m log n) applications of Ψ; (ii) locate
any such occurrence using O(s) applications of Ψ, by spending O(n logn

s) extra bits of space; and
(iii) extract a text substring T [l, r] using at most s+ r− l applications of Ψ. Hence this is another
self-index, and its main burden of space is that to represent permutation Ψ.

Sadakane shows that Ψ has at most ρ runs, and gives a representation that accesses Ψ[i] in
constant time by using nH0(T) +O(n log log ρ) bits of space. It was shown later [NM07] that the

12

space is actually nHk(T) +O(n log log ρ) bits, for any k ≤ α logρ n and constant 0 < α < 1. Here
Hk(T) ≤ H0(T) is the kth order empirical entropy of T [Man01].

With Thm. 1 we can encode Ψ using n(2+H0(T))(1+o(1))+O(ρ log n) bits of space, whose extra
terms aside from entropy are better than Sadakane’s. Those extra terms can be very significant in
practice. The price is that the time to access Ψ is O(1 + log ρ) instead of constant. On the other
hand, an interesting extra functionality is that to compute Ψ−1, which lets us move (virtually) one
position backward in T . This allows, for example, displaying the text context around an occurrence
without having to spend any extra space. Still, although interesting, the result is not competitive
with recent developments [FMMN07, MN07a].

An interesting point is that Ψ contains τ ≤ min(n, nHk(T) + ρk) strict runs, for any k [MN05].
Therefore, Cor. 4 lets us represent it using τdlg ρe(1+o(1))+2τ lg n

τ +O(τ)+o(n) bits of space. For
k limited as above, this is at most nHk(T)(lg ρ+2 lg 1

Hk(T) +O(1))+o(n log ρ) bits, which is similar
to the space achieved by another self-index [MN05, SVMN08], yet again it is slightly superseded
by its time performance.

4.3 Iterated Permutation

Munro et al. [MRRR03] described how to represent a permutation π as the concatenation of its
cycles, completed by a bitvector of n bits coding the lengths of the cycles. As the cycle represen-
tation is itself a permutation of [n], we can use any of the permutation encodings described in §3
to encode it, adding the binary vector encoding the lengths of the cycles. It is important to note
that, for a specific permutation π, the difficulty to compress its cycle encoding π′ is not the same
as the difficulty to encode the original permutation π.

Given a permutation π with c cycles of lengths 〈n1, . . . , nc〉, there are several ways to encode it
as a permutation π′, depending on the starting point of each cycle (Πi∈[c]ni choices) and the order
of the cycles in the encoding (c! choices). As a consequence, each permutation π with c cycles of
lengths 〈n1, . . . , nc〉 can be encoded by any of the Πi∈[c]i× ni corresponding permutations.

Corollary 9 Any of the encodings from Theorems 1, 2 and 3 can be combined with an additional
cost of at most n + o(n) bits to encode a permutation π over [n] composed of c cycles of lengths
〈n1, . . . , nc〉 to support the operation πk(i) for any value of k ∈ Z, in time and space function of
the order in the permutation encoding of the cycles of π.

The space “wasted” by such a permutation representation of the cycles of π is
∑

lg ni + c lg c
bits. To recover some of this space, one can define a canonical cycle encoding by starting the
encoding of each cycle with its smallest value, and by ordering the cycles in order of their starting
point. This canonical encoding always starts with a 1 and creates at least one shuffled upsequence
of length c: it can be compressed as a permutation over [n−1] with at least one shuffled upsequence
of length c+ 1 through Thm 3. A finer combinatoric analysis might yield better results.

4.4 Integer Functions

Munro and Rao [MR04] extended the results on permutations to arbitrary functions from [n] to [n],
and to their iterated application fk(i), the function iterated k times starting at i. Their encoding is
based on the decomposition of the function into a bijective part, represented as a permutation, and
an injective part, represented as a forest of trees whose roots are elements of the permutation: the

13

summary of the concept is that an integer function is just a “hairy permutation”. Combining the
representation of permutations from [MRRR03] with any representation of trees, supporting the
level-ancestor operator and an iterator of the descendants at a given level, yields a representation
of f using (1 + ε)n lg n+O(1) bits to support fk(i) in O(1 + |fk(i)|) time, for any fixed ε, integer
k ∈ Z and i ∈ [n], where |fk(i)| = 1 if k ≥ 0 and |fk(i)| ≥ 0 if k < 0.

Janssen et al. [JSS07] defined the degree entropy of an ordered tree T with n nodes, having ni
nodes with i children, as H∗(T) = H(〈n1, n2, . . .〉), and proposed a succinct data structure for T
using nH∗(T) + O(n(lg lg n)2/ lg n) bits to encode the tree and support, among others, the level-
ancestor operator. Obviously, the definition and encoding can be generalized to a forest of k trees
by simply adding one node whose k children are the roots of the k trees.

Encoding the injective parts of the function using Janssen et al.’s [JSS07] succinct encoding,
and the bijective parts of the function using one of our permutation encodings, yields a compressed
representation of any integer function which supports its application and the application of its
iterated variants in small time.

Corollary 10 There is a representation of a function f : [n]→ [n] that uses n(1+dlg ρe+H∗(T))+
o(n lg n) bits to support fk(i) in O(log ρ+ |fk(i)|) time, for any integer k and for any i ∈ [n], where
T is the forest representing the injective part of the function, and ρ is the number of runs in the
bijective part of the function.

Proof: We distinguish via a binary vector of n bits which integers are part of a cycle of f (the other
ones being children of a node in a tree): the rank and select operators on this bit vector map the
nodes of the cycle to a permutation encoding, which is represented using ndlg ρe(1+o(1))+O(log n)
bits through Corollary 1. On the other hand, we represent as a single tree the forest of trees cor-
responding to the injective part of f , along with the nodes of the cycles which are not roots of
trees, by adding a virtual node of the tree parent to each integer of the cycles. The cost of encoding
this tree is nH∗(T)+O(n(lg lg n)2/ lg n). Adding up both spaces and simplifying yields the result. �

5 Conclusion

Bentley and Yao [BY76], when introducing a family of search algorithms adaptive to the position
of the element searched (aka the “unbounded search” problem), did so through the definition of a
family of adaptive codes for unbounded integers, hence proving that the link between algorithms
and encodings was not limited to the complexity lower bounds suggested by information theory.
There is no reason why this interesting relation would not have applications to other algorithms in
the comparison models and other encodable objects, such as sorting algorithms and permutations.

In this paper, we have considered the relation between the difficulty measures of adaptive
sorting algorithms and some measures of “entropy” for compression techniques on permutations.
In particular, we have shown that some concepts originally defined for adaptive sorting algorithms,
such as runs and shuffled upsequences, are useful in terms of the compression of permutations; and
conversely, that concepts originally defined for data compression, such as the entropy of the sets
of sizes of runs, are a useful addition to the set of difficulty measures that one can consider in the
study of adaptive algorithms.

Note that the encoding schemes and sorting algorithms presented in this paper do not take
advantage of some other easy instances such as the reverse of the identity (n, n−1, . . . , 3, 2, 1), or

14

more generally permutations containing blocks or sequences sorted in reverse order. It is easy to
generalize our results on runs and strict runs to take advantage of permutations which are a mix of
up and down runs or strict runs (e.g. (1 , 3 , 5 , 7 , 9 ,10,8,6,4,2), with only a linear extra computa-
tional and/or space cost. The generalization of our results on shuffled upsequences to SMS [LP94],
permutations containing mixes of subsequences sorted in increasing and decreasing orders (e.g.
(1 ,10, 2 ,9, 3 ,8, 4 ,7, 5 ,6)) is sligthly more problematic, because it is NP hard to optimally de-
compose a permutation into such subsequences [KSW96], but any approximation scheme [LP94]
would yield a good encoding.

Interestingly our encoding techniques for permutations compress both the permutation and its
index. This is to be opposed to previous work [MRRR03] on the encoding of permutations, whose
index size varied with the size of the cycles of the permutation, but whose data encoding was fixed;
and to previous works [BHMR07] where the data itself can be compressed but not the index, to
the point where the space used by the index dominates that used by the data itself. This direction
of research is promising, as in practice it is more interesting to compress the whole succinct data
structure or at least its index, rather than just the data.

Our encodings are simple enough to be practical. We plan to implement and experiment on
some of those, for example to achieve new inverted indexes or compressed suffix arrays.

References

[ANS06] D. Arroyuelo, G. Navarro, and K. Sadakane. Reducing the space requirement of LZ-
index. In Proc. 17th Annual Symposium on Combinatorial Pattern Matching (CPM),
LNCS 4009, pages 319–330, 2006.

[BFLN08] N. Brisaboa, A. Fariña, S. Ladra, and G. Navarro. Reorganizing compressed text. In
Proc. 31st Annual International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (SIGIR), pages 139–146, 2008.

[BGMR07] Jérémy Barbay, Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Adap-
tive searching in succinctly encoded binary relations and tree-structured documents.
Theor. Comput. Sci., 387(3):284–297, 2007.

[BHMR07] Jérémy Barbay, Meng He, J. Ian Munro, and S. Srinivasa Rao. Succinct indexes for
strings, binary relations and multi-labeled trees. In Proceedings of the 18th ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 680–689. ACM, 2007.

[BLOL06] Jérémy Barbay, Alejandro López-Ortiz, and Tyler Lu. Faster adaptive set intersections
for text searching. In Proceedings of the 5th International Workshop on Experimental
Algorithms (WEA), volume 4007 of Lecture Notes in Computer Science (LNCS), pages
146–157. Springer Berlin / Heidelberg, 2006.

[BY76] Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for
unbounded searching. Information processing letters, 5(3):82–87, 1976.

[BY04] R. Baeza-Yates. A fast set intersection algorithm for sorted sequences. In Proc. 15th
Annual Symposium on Combinatorial Pattern Matching (CPM), LNCS 3109, pages
400–408, 2004.

15

[BYR99] R. Baeza-Yates and B. Ribeiro. Modern Information Retrieval. Addison-Wesley, 1999.

[CK80] C.R. Cool and D.J. Kim. Best sorting algorithm for nearly sorted lists. Communication
of ACM, 23:620–624, 1980.

[Cla96] D. Clark. Compact Pat Trees. PhD thesis, University of Waterloo, Canada, 1996.

[CM07] J. Culpepper and A. Moffat. Compact set representation for information retrieval. In
Proc. 14th International Symposium on String Processing and Information Retrieval
(SPIRE), pages 137–148, 2007.

[CN08] F. Claude and G. Navarro. Practical rank/select queries over arbitrary sequences. In
Proc. 15th International Symposium on String Processing and Information Retrieval
(SPIRE), LNCS. Springer, 2008.

[ECW92] Vladimir Estivill-Castro and Derick Wood. A survey of adaptive sorting algorithms.
ACM Computing Surveys, 24(4):441–476, 1992.

[FMMN07] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representa-
tions of sequences and full-text indexes. ACM Transactions on Algorithms (TALG),
3(2):article 20, 2007.

[Fre75] M. L. Fredman. On computing the length of longest increasing subsequences. Discrete
Math., 11:29–35, 1975.

[GGV03] R. Grossi, A. Gupta, and J. Vitter. High-order entropy-compressed text indexes. In
Proc. 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
841–850, 2003.

[GHSV06] A. Gupta, W.-K. Hon, R. Shah, and J.S. Vitter. Compressed data structures: Dictio-
naries and data-aware measures. In Proc. 16th Data Compression Conference (DCC),
pages 213–222, 2006.

[GMPR77] L.J. Guibas, E.M. McCreight, M.F. Plass, and J.R. Roberts. A new representation of
linear lists. In Proc. 9th Annu. ACM Symp. Theory Comput., pages 49–60, 1977.

[GMR06] Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on
large alphabets: a tool for text indexing. In Proceedings of the 17th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 368–373. ACM, 2006.

[Gol06] A. Golynski. Optimal lower bounds for rank and select indexes. In Proc. 33th Inter-
national Colloquium on Automata, Languages and Programming (ICALP), LNCS v.
4051, pages 370–381, 2006.

[Gup07] A. Gupta. Succinct Data Structures. PhD thesis, Dept. of Computer Science, Duke
University, 2007.

[GV06] R. Grossi and J. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM Journal on Computing, 35(2):378–407,
2006.

16

[Hea78] H. Heaps. Information Retrieval - Computational and Theoretical Aspects. Academic
Press, NY, 1978.

[HT71] T. Hu and A. Tucker. Optimal computer-search trees and variable-length alphabetic
codes. SIAM Journal of Applied Mathematics, 21:514–532, 1971.

[Huf52] D. Huffman. A method for the construction of minimum-redundancy codes. Proceed-
ings of the I.R.E., 40(9):1090–1101, 1952.

[JSS07] Jesper Jansson, Kunihiko Sadakane, and Wikg-Kin Sung. Ultra-succinct representa-
tion of ordered trees. In Proceedings of the 18th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 575–584. ACM, 2007.

[Knu98] Donald E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching
(2nd Edition). Addison-Wesley Professional, April 1998.

[KSW96] André E. Kézdy, Hunter S. Snevily, and Chi Wang. Partitioning permutations into
increasing and decreasing subsequences. J. Comb. Theory Ser. A, 73(2):353–359, 1996.

[LP94] Christos Levcopoulos and Ola Petersson. Sorting shuffled monotone sequences. Inf.
Comput., 112(1):37–50, 1994.

[Man85] Heikki Mannila. Measures of presortedness and optimal sorting algorithms. In IEEE
Trans. Comput., volume 34, pages 318–325, 1985.

[Man01] G. Manzini. An analysis of the Burrows-Wheeler transform. Journal of the ACM,
48(3):407–430, 2001.

[Meh79] Kurt Mehlhorn. Sorting presorted files. In Springer, editor, Proceedings of the 4th GI-
Conference on Theoretical Computer Science, volume 67 of Lecture Notes in Computer
Science, pages 199–212, 1979.

[MN05] V. Mäkinen and G. Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40–66, 2005.

[MN07a] V. Mäkinen and G. Navarro. Implicit compression boosting with applications to
self-indexing. In Proc. 14th International Symposium on String Processing and Infor-
mation Retrieval (SPIRE), LNCS 4726, pages 214–226. Springer, 2007.

[MN07b] V. Mäkinen and G. Navarro. Rank and select revisited and extended. Theoretical
Computer Science, 387(3):332–347, 2007.

[MNZBY00] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and flexible word
searching on compressed text. ACM Transactions on Information Systems (TOIS),
18(2):113–139, 2000.

[MR04] J. Ian Munro and S. Srinivasa Rao. Succinct representations of functions. In Pro-
ceedings of the International Colloquium on Automata, Languages and Programming
(ICALP), volume 3142 of Lecture Notes in Computer Science (LNCS), pages 1006–
1015. Springer-Verlag, 2004.

17

[MRRR03] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
representations of permutations. In Proceedings of the 30th International Colloquium
on Automata, Languages and Programming (ICALP), volume 2719 of Lecture Notes
in Computer Science (LNCS), pages 345–356. Springer-Verlag, 2003.

[Mun96] I. Munro. Tables. In Proc. 16th Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), LNCS v. 1180, pages 37–42, 1996.

[NM07] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing Surveys,
39(1):article 2, 2007.

[NMN+00] G. Navarro, E. Moura, M. Neubert, N. Ziviani, and R. Baeza-Yates. Adding compres-
sion to block addressing inverted indexes. Information Retrieval, 3(1):49–77, 2000.

[RRR02] R. Raman, V. Raman, and S. Rao. Succinct indexable dictionaries with applications
to encoding k-ary trees and multisets. In Proc. 13th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 233–242, 2002.

[Sad03] K. Sadakane. New text indexing functionalities of the compressed suffix arrays. Jour-
nal of Algorithms, 48(2):294–313, 2003.

[Ski88] S. S. Skiena. Encroaching lists as a measure of presortedness. BIT, 28(4):775–784,
1988.

[ST85] D. Sleator and R. Tarjan. Self-adjusting binary search trees. Journal of the ACM,
32(3):652–686, 1985.

[ST07] P. Sanders and F. Transier. Intersection in integer inverted indices. In Proc. 9th
Workshop on Algorithm Engineering and Experiments (ALENEX), 2007.

[SVMN08] J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro. Run-length compressed indexes
are superior for highly repetitive sequence collections. In Proc. 15th International
Symposium on String Processing and Information Retrieval (SPIRE), LNCS. Springer,
2008.

[WMB99] I. Witten, A. Moffat, and T. Bell. Managing Gigabytes. Morgan Kaufmann Publishers,
2nd edition, 1999.

18

