
Adaptive (Analysis of) Algorithms
for Convex Hulls and Related Problems.

Jérémy Barbay

Departamento de Ciencias de la Computación (DCC),
Universidad de Chile, Santiago, Chile.

jbarbay@dcc.uchile.cl

Technical Reporte TR/DCC-2008-17
received on December 2nd, 2008
by the Departamento de Ciencias de la Computación (DCC),
Universidad de Chile, Santiago, Chile.
http://www.dcc.uchile.cl/1877/propertyvalue-11449.html

Abstract. Adaptive analysis is a well known technique in computational geometry, which re�nes the
traditional worst case analysis over all instances of �xed input size by taking into account some other
parameters, such as the size of the output in the case of output sensitive analysis. We present two
adaptive techniques for the computation of the convex hull in two and three dimensions and related
problems. The �rst analysis technique is based on the input order and yields results on the computation
of convex hulls in two and three dimensions, and the �rst adaptive algorithm for Voronoi and Delaunay
diagrams, through the entropy of a partition of the input in easier instances. The second analysis
technique is based on the structural entropy of the instance, and yields results on the computational
complexity of planar convex hull and of multiset sorting, through a generalization of output sensitivity
and a more precise analysis of the complexity of Kirkpatrick and Seidel's algorithm. Our approach yields
adaptive algorithms which perform faster on many classes of instances, while performing asymptotically
no worse in the worst case over all instances of �xed size.

1 Motivations

Worst Case Computational Complexity. The �eld of �Computational Complexity� in theoret-
ical computer science, and more particularly in computational geometry, is all about describing the
complexity of problems rather than algorithms. Traditionally, two types of complexities have been
studied: worst case and average case: we focus in this paper on the �rst one. Given a problem P
and a positive integer n, the worst case computational complexity of P over instances of size n is
the worst performance f(n) of the best algorithm possible over all instances of size n. The positive
integer function f implied by this de�nition is the �worst case computational complexity of P �, with
the underlying assumption that each worst case is chosen among instances of similar sizes.

Restricting the study to the set of instances of sizes n (or, without lack of generality, of sizes
at most n) reduces the analysis of the worst case complexity of a deterministic algorithm A to the
maximum of a �nite set, the set of the complexities of A over each instance of size n. In turn,
it reduces the analysis of the worst case complexity of a problem P to the computation of the
minimum of a maximum, leading to lower bound techniques and tight bounds on the computational
complexity. The concept is easily generalize to problems where the input size is not easily de�ned
by a single parameter (e.g. graphs with n vertices and m edges, or multisets of n numbers from
[σ] = {1, . . . , σ}).

The same approach can be taken with a �ner partitioning of the set of possible instances in
�nite subsets. Output sensitive results correspond to the application of this principle by separating
further the instances by the size h of their corresponding solution. This approach yields interesting
results for the computation of the convex hull in two and three dimensions, and for related problems
in computational geometry [8, 23]. Moreover, this type of analysis is a requirement to compare the
performances of pattern matching [32] and range searching data structures [1], in which the query
time is often of the form O(f(n)+h), where h is the number of matches satisfying the query, i.e. the
output size. Some problems present instances which are still of distinct di�culty while of same input
and output size. Since any correct algorithm must check the correctness of the solution it outputs,
one can require that each algorithm outputs a certi�cate of its solution in addition or instead of
its solution, permitting once again to perform an output sensitive analysis of the computational
complexity of the problem. This approach yields interesting results on the computation of the
description of the union of sorted sets [11], on the computation of a certi�cate of the intersection of
sorted arrays [4] or of the intersection of planar convex hulls [3]. In those cases, measuring the size
of the output in bits [11] or in words [3, 4] yields di�erent kind of analysis.

This technique can be applied even to NP-hard problems for which there is no computational
lower bound, via reductions between problems and the de�nition of classes of equivalences. For
instance, in some NP-hard problems each instance can be reduced in polynomial time to a �core�
instance of smaller size (say k), so that an upper bound on the cost to solve the original instance
is exponential in k but polynomial in n. Under the name of �Parameterized Complexity� [16, 30],
this approach yields interesting results and in particular a classi�cation theory of computational
problems which is more useful in practice than the polynomial hierarchy.

Input Order Adaptivity. All the previous examples can be seen as some sort of output sensitivity,
in some cases through rede�ning the output to include a certi�cate of correctness. Another approach

2

is to take advantage of the encoding of the input for those problems where the input can be encoded
in several distinct ways, and in particular where the input can be encoded in several orders.

One example of computational problem in this category is sorting: a set is more easily
sorted when it is input as an array already sorted or �almost sorted�, as in this case a lin-
ear algorithm su�ces to check the order and perform minor corrections [25]. Whereas any sort-
ing algorithm in the comparison model requires time Ω(n lg n) to sort n values in the worst
case1, several improvements have been demonstrated on more speci�c classes of instances, such
as instances formed by permutations formed of a small number of sorted blocks [29] (e.g.
(1 , 3 , 5 , 7 , 9 ,2,4,6,8,10) or (6 , 7 , 8 , 9 , 10 ,1,2,3,4,5)) , or permutations containing sorted sub-
sequences [27] (e.g. (1 ,6, 2 ,7, 3 ,8, 4 ,9, 5 ,10)) . Algorithms performing o(n lg n) comparisons on
such permutations, yet still O(n lg n) comparisons in the worst case over all instances of size n,
are achievable and obviously preferable: see Mannila's seminal paper [29] and Estivil-Castro and
Wood's review [14] for more details, formal reductions between measures of disorder, and additional
bibliography.

Given a �nite set S of points, its convex hull [34] is the smallest convex polyhedra containing S.
Computing the convex hull is equivalent to computing the lower and upper hull, as the convex
hull is the union of both, and one can deduce both from the convex hull. If the points are planar,
we consider its Voronoi diagram [35], de�ned as a a partition of the plane in regions of closest
neighborhood for S, and its Delaunay diagram, the dual partition of the Voronoi diagram of S.
The computation of the convex hull is a central problem in Computational Geometry, and was
one of the problems at the origin of the �eld [34, 35]. It has many applications, in particular to
the computation of Delaunay and Voronoi diagrams. The problem of computing the two and three
dimensional convex hull, of computing the Delaunay and Voronoi diagrams, and the problem of
sorting, are all closely connected in a chain of linear time reductions: any algorithm computing
three dimensional convex hulls can be used to compute Delaunay diagrams, which envelope is the
two dimensional convex hull, which in turn can be used to sort values. The convex hull of n points
in two and three dimensions can be obtained in output sensitive time Θ(n(1+ lg h)), where h is the
number of edges or faces which form the output. This yields a worst case complexity of Θ(n lg n)
for the computation of Delaunay and Voronoi diagrams, via a simple reduction mapping a set of
planar input points to a convex surface in three dimension [35]. Since the computational complexity
of the planar convex hull is linear when the input is sorted by abscissa, there is a direct relation
between sorting and the computation of planar convex hulls. Various �good� input orders are known
for the computation of Delaunay and Voronoi diagrams (and hence of planar convex hulls). If the
input points are ordered so that they form a simple [9, 35] or convex [2, 24] polygon, or a monotonic
histogram [12], then their Delaunay and Voronoi diagrams can be computed in linear time. This
shows the existence of �easy� instances, yet very few have tried to exploit those instances formally,
and the potential existence of �almost easy� instances. Levcopoulos et al. [26] de�ned an algorithm
computing the planar convex hull which is adaptive to the number χ of maximal simple subchains in
the sequence of input points, with a complexity of O(n lg(χ+2)). They also showed a much weaker
result, that a polygonal chain with κ proper intersection points can be transformed into a polygonal
chain without proper intersections by adding O(κ) new vertices in time O(n×min{

√
κ, lg n}+ κ),

hence yielding an algorithm computing the Delaunay diagram in this time.

1 The function lg(x) denotes the logarithm in base two, and the expression [x] denotes the set {1, . . . , x}.

3

Challenges. The worst case computational complexity over instances of size n is the same Θ(n lg n)
for a large family of problems, from sorting permutations to computing the convex hull of n points
in three dimensions, including the sorting of multisets, the computation of the convex hull in two
dimensions, the computation of Voronoi and Delaunay diagrams, the computation of kd trees, the
computation of continuous skeletons, etcetera. Given that we gained a better understanding of some
of those problems (e.g. sorting and computing the convex hull in two dimensions) through adaptive
analysis, it is only natural to try to gain a better of the other problems as well.

The worst case computational complexity over instances of �xed size of those problems are
reducible one to another, because sorting is a particular case of sorting multisets, which is a particular
case of the computation of a two dimensional convex hull, itself a particular case of the computation
of a Delaunay diagram, which can be performed through any algorithm computing the convex hull
in three dimensions. But those reductions do not imply similar ones on the worst case computational
complexity over restricted classes of instances. In particular, Seidel [36] showed that, contrarily to
the computation of the planar convex hull, sorting points in three dimensions by their coordinates
does not help to compute their Delaunay diagram nor their convex hull, and conversely that knowing
one of their triangulation (even if it is their Delaunay triangulation, more constrained and hence
holding more information) or their convex hull in three dimensions, does not help to sort their
coordinates in general.

Hence the question holds of de�ning adequate adaptive analysis for each of these problems,
and eventually reduce between themselves the pairs formed by problems and adaptive analysis, in
the spirit of common reduction techniques from parameterized complexity. This means not only
de�ning some adaptive analysis for the computation of Delaunay and Voronoi diagrams, for which
no such analysis currently exists, but also providing new adaptive analysis techniques for the other
problems, in order to get a better understanding of their computational complexity.

Our Results. We give a more precise analysis of the asymptotic computational complexity of
convex hulls in two and three dimensions through two new measures of di�culty, showing for
each upper and lower bounds and hence providing more precise information on the computational
complexity of those problems than the traditional worst case analysis over all instances of �xed size.

Our �rst measure of di�culty depends on the input order, through the entropy of a partition of
the input in subsequences corresponding to easier instances. We describe in Section 2 how to par-
tition a three dimensional instance of the convex hull into easier ones, and how to merge e�ciently
the solutions of those sub-instances by taking advantage of their relative sizes. This result implies
the existence of adaptive algorithms for many other problems than the computation of convex hulls
in two or three dimensions, including in particular the computation of Delaunay and Voronoi di-
agrams [35] and sorting of multisets. The projection of our adaptive analysis to the computation
of the planar convex hull is independent of both the number χ of maximal simple subchains and
of the number κ of proper intersection points in the sequence of input points, as de�ned by Lev-
copoulos et al. [26]: our results are not reducible to theirs, nor are their results reducible to ours.
The projection of our adaptive analysis to sorting is more precise than the number of �down-steps�
in the permutation [25], independent of the entropy of the associated partition of the instance [5],
and of all the measures of disorder (other than the number of down-steps) described in the survey
from Estivil-Castro and Wood's review [14].

Our second measure of di�culty is the structural entropy, which measures the repartition of
the planar points of the input relatively to their upper hull, relatively to their projection on the

4

abscissa axis. We show in Section 3 that the original algorithm from Kirkpatrick and Seidel [23] is
in fact optimally adaptive to the entropy of the geometric repartition of the input points relatively
to the edges of the upper hull. Additionally, this analysis permits to separate the performance
of Kirkpatrick and Seidel's algorithm from the performance of the algorithm proposed later by
Chan [8], which is optimally output sensitive (as Kirkpatrick and Seidel's) but is not adaptive to
the structural entropy. This measure of di�culty is completely independent of the order in which
the points are input, and hence independent from our other results.

Our approach yields algorithms which are asymptotically faster on many classes of instances,
while asymptotically no worse than traditional algorithms when considering the worst case over
instances of �xed size. In the spirit of other computational geometry algorithms [31], each of our
algorithms produces a certi�cate of its output, which can be used to check the validity of the
computation or to update the solution when the points in the input are moved. We use succinct
data structure techniques to insure that the length of those certi�cates is shorter than a mere
description of the computation itself for most instances, and that those description are navigable
in reasonable time. Our results are based on de�nitions and techniques from various �elds, such
as computational geometry for the partitioning of instances in easier ones [17, 28, 37], the merging
of convex hulls [10, 22], the notion of certi�cates of the results [31]; succinct data structures for
the succinct encoding of certi�cates [5]; adaptive sorting algorithms for the de�nition of di�culty
measures, adaptive lower bounds and adaptive reductions [14, 25, 29]; parameterized complexity for
the de�nition of reductions between pairs of problem and parameters [16]; and compression theory
for the design of optimal merging schemes [18, 19].

2 Input Order

The �rst measure of di�culty that we study is the entropy of a partition of the input in easier in-
stances, based on the order in which the input is given. We describe in Section 2.1 how to partition
an instance in easier ones, how to merge the solutions of those sub-instances adaptively in Sec-
tion 2.2, and some combinatoric results showing the adaptive optimality of the resulting algorithms
in Section 2.4.

2.1 Partitioning

Various �good� input orders are known for the computation of the Delaunay triangulation: if the
input points are ordered so that they form a simple [9, 35] or convex [2, 24] polygon, or a monotonic
histogram [12], then their Delaunay and Voronoi diagrams can be computed in linear time. In a
more general approach, Snoeyink and Kreveld [37] described how to encode a Delaunay diagram in
the order of the points, so that it can be decoded in linear time. Whereas those results seem a pri-
ori more related to the encoding of triangulations rather than to their computation, their decoding
algorithm is in fact computing the Delaunay diagram in linear time, suggesting the existence of an
adaptive algorithm, which complexity would gradually degrade from linear to worse time depending
of how distant the input order is from one of those de�ned by Snoeyink and Kreveld [37]. Denny
and Sohler [28] generalized Snoeyink and Kreveld's work [37] to the encoding of arbitrary triangu-
lations. Since there is much more �exibility in the edges chosen for a particular triangulation (not
as constrained as a Delaunay triangulation), their encoding requires that the instances is at least
of size 1090 to be able to encode the required information in the order of a subset of the points.
Trivially, Denny and Sohler's result could be used to encode the speci�c triangulation corresponding

5

to the projection in two dimensions of a three dimensional upper hull, although their encoding has
a lot of complications that we don't need when we have the z-coordinate of each point.

We de�ne a linear best case algorithm computing the Voronoi and Delaunay diagrams using the
edge algebra de�ned by Guibas and Stol� [17]. This algorithm can be used to detect if the input
is in an order which is not optimal, which is not explicitly the case in Snoeyink and Kreveld or
Denny and Sohler's decoding algorithms. From there, it is quite simple to partition the input into
smaller segments, for each of which the Delaunay diagram can be computed in linear time. More
generally, the two operators de�ned by Guibas and Stol� [17] also permit to represent and build the
(general) triangulation representing the projection of three dimensional upper hulls, as they support
the addition of a point p, the (adaptive) location of the projection F ′ of the face F in which the
projection p′ of p belongs, and the update and removal of the newly covered faces if p is above F .

We show that the existence of these good orders, which can be checked in linear time, implies
the existence of partitions of instances in easier one, and of linear time algorithms computing those
partitions. In this section and the following one, we describe the details of this approach for the
most general problem, the computation of convex hulls in three dimensions. We explore how a
similar approach can be applied to other problems such as the computation of the convex hull in
two dimensions and sorting in Section 2.3.

De�nition 1. Consider some non negative integer c ≥ 0, and a sequence S of points in three
dimensions. The sequence S = (x1, . . . , xn) is c-progressive if each point xi after the three �rst ones
satis�es the following conditions at the moment of its insertion:

1. xi is separated from its predecessor by at most c edges in the triangulation corresponding to the
projection of the upper hull of (x1, . . . , xi−1) on the horizontal plane; and

2. at most c faces need to be corrected between the upper hull of (x1, . . . , xi−1) into the upper hull
of (x1, . . . , xi).

This de�nition of c-progressive sequences capture the common notion between the two linear
encodings of triangulation mentioned above. The sequence of planar points in the order described
by Snoeyink and Kreveld [37] to encode their Delaunay diagram is a c-progressive sequence for
the computation of the convex hull in two dimensions. The sequence of points in three dimensions
in the order described by Denny and Sohler [28] to encode the triangulation corresponding to the
projection of their upper hull on the horizontal plane, is a c-progressive sequence for the computation
of the convex hull in three dimensions. Furthermore, the traversal of a complete binary search tree,
level by level, from right to left on odd levels and from left to right on even levels, is a 3-progressive
sequence for sorting.

More speci�cally, Snoeyink and Kreveld [37] showed that any point sequence can be reordered
into a c-progressive sequence for the computation of Delaunay diagrams, hence showing the exis-
tence of c-progressive sequences. Denny and Sohler's work [28] shows the existence of c-progressive
sequences for arbitrary triangulations, and hence for the computation of upper hulls of three dimen-
sions, which we exploit in the following lemma:

Lemma 1. Given a sequence S of n points in three dimensions and a non negative integer c ≥ 0,
there is an algorithm which partitions optimally S into c-progressive subsequences in time O(cn),
and which computes the convex hull of those subsequences at the same time.

Proof. (of Lemma 1) By de�nition, the insertion algorithm presented by Guibas and Stol� [17] does
not need to cross nor correct more than c edges for each new point considered, in the original input

6

order, on a c-progressive subsequence. Hence it su�ces to interrupt the incremental algorithm every
time that it performs more than c applications of the two operators de�ned by Guibas and Stol� [17]
for a single insertion, and reset it on the remaining points of the sequence. ut

The partitioning algorithm is already given by the de�nition of c-progressive sequences. The
interesting part concerns how to e�ciently merge the sub-solutions thus de�ned and built, which
we describe in the next section.

2.2 Merging

Once the input is partitioned into ρ subsequences for which the problem has already been solved,
one can trivially merge them two by two in time O(n lg ρ) using Kirkpatrick's algorithm in two
dimensions or Chazelle's algorithm in three dimensions, which yields an algorithm of complexity
O(n(c + lg ρ)). This result can be improved to take advantage of the cases where the convex hulls
of the sub-instances di�er greatly, by using a merging scheme inspired by the Hu�man tree from
coding theory [19].

Lemma 2. The union of ρ convex hulls in three dimensions, of respective sizes Runs = (n1, . . . , nρ)
summing to n =

∑
i∈[ρ] ni, can be computed in time O(n(1 +H(Runs)) + ρ lg ρ) ⊆ O(n(1 + lg ρ)) ⊆

O(n lg n), where H(Runs) =
∑

i∈[ρ]
ni
n lg n

ni
is the entropy of the size vector Runs.

Proof. (of Lemma 2) Given the ρ frequencies of a set of symbols, Hu�man [19] described how to
construct optimal codes for those frequencies in time O(ρ lg ρ). Given the sizes Runs = (n1, . . . , nρ)
of the Delaunay diagrams, the same technique can be used to produce in time O(ρ log ρ) an optimal
binary merging schedule. This schedule is such that L =

∑
`ini is minimal and smaller than

nH(Runs), where `i is the number of times the i-th sub-instance is merged, in a similar way to how
a Hu�man tree [19] optimizes the code bit of a symbol in function of its frequency.

This binary merging schedule can then be performed using linear time merging algorithms to
merge each pair of convex hulls of sizes n1 and n2 in time O(n1 +n2), with an output of size at most
n1+n2. One can use Chazelle's algorithm [10] to merge three dimensional convex hulls, Kirkpatrick's
algorithm[22] to merge Voronoi and Delaunay diagrams, or the traditional merge algorithm on sorted
arrays to merge two dimensional convex hulls. The optimality of the schedule means that the i-th
initial sub-instance of size ni will contribute at most `ini operations to the complexity of the merging.
By the properties of our merging schedule, the total complexity is O(n(1+H(Runs))+ρ lg ρ), which
is included in the class of asymptotic complexities O(n(1 + lg ρ)) by convexity of the logarithm
function, itself trivially included in the class of asymptotic complexities O(n lg n). ut

Using a more complex coding technique than the Hu�man tree, we can output a short encoding
of the certi�cate of the convex hull computed, which can be used to check the validity of the output
faster than by recomputing it in the spirit of the algorithms from the LEDA library [31], or which
can be used to maintain the convex hull adaptively when the points are moved.

Corollary 1. A succinct representation of the certi�cate of the output of the algorithm described
in Lemma 2 can be encoded in 2(nH(Runs) +

∑
i∈[ρ] lg ni + ρ) bits.

Proof. (of Corollary 1) Given the frequencies of a sequence of distinct symbols, Hu-Tucker's algo-
rithm [18] describes how to construct optimal codes for those frequencies in time O(ρ lg ρ), with
the additional property that the lexicographic order of the codes produced matches the original

7

order of the symbols. Replacing Hu�man's algorithm by Hu-Tucker's algorithm [18] hence permits
to describe succinctly all the merging operations performed.

The space then taken by the certi�cate is the sum of the encodings for the sizes of the sub-
instances, using 2

∑
i∈[ρ] lg ni bits (using a gamma code for each length, which codes in unary the

logarithm of the number to code, followed by the number itself in unary); the binary merging
scheme, using 2ρ bits (it is a binary tree with ρ leaves); the description of the mergings themselves
in 2nH(Runs), using two bits for each comparison, coding for the four following cases: (1) the point
from the �rst input is output, (2) the point from the second input is output, (3) the point from
the �rst input is skipped, (4) the point from the second input is skipped. The sum of those spaces
yields the result. ut

Note that one can navigate and search in the certi�cate as described in the proof of Corollary 1
by simply indexing it using well known succinct data-structures [15, 20], which would use at most
o(nH(Runs) +

∑
i∈[ρ] lg ni + ρ) bits, asymptotically in n.

2.3 Reduction from Sorting

Obviously, the convex hull in two dimensions is a particular case of convex hull in three dimensions.
In a similar way, sorting can be seen as a particular case of computation of the planar convex hull,
since it is easy to de�ne an order on the points of a planar convex hull.

Lemma 3. Given a positive integer c ≥ 0, any algorithm computing the convex hull of an instance
S of n points in three dimensions composed of ρ c-progressive subsequences of respective sizes Runs =
{n1, . . . , nρ} in time f(n,H(Runs)) can be used

� to compute the convex hull of an instance S of n planar points composed of ρ c-progressive
subsequences of respective sizes Runs = {n1, . . . , nρ} in time O(n) + f(n,H(Runs)); and

� to sort a sequence of n values composed of ρ c-progressive subsequences of respective sizes Runs =
{n1, . . . , nρ} in time O(n) + f(n,H(Runs)).

Proof. (of Lemma 3) One dimensional instances can be mapped to space by mapping each value
x to a point of coordinates (x, 0, 0), but then sorting those values is a degenerate case of the
computation of the convex hull in three dimensions. Better, we map each value x to a point in the
plane of coordinates (x, x2), and that planar point to a point in three dimensions of coordinates
(x, x2, x2 + x4). The projection on the horizontal plane of the convex hull of the points in three
dimensions yields the convex hull of the planar points, while the projection of this convex hull on
the abscissa axis yield the order of the values. ut

The decomposition of a permutation (or multiset) into c-progressive subsequences is exactly its
decomposition in increasing subsequences de�ned by Mannila [29] (among others) for c = 1, but is
much more general and interesting for values even as small as c = 3. The partition into 3-progressive
subsequences corresponds to a new type of partitioning: each subsequence corresponds to the level
traversal of a semi-complete binary search tree, which can be constructed in linear time using at
much three comparisons for the insertion of each element (see Figure 1 for an example).

8

2.4 Optimality

We show the adaptive optimality of our approach for sorting, which by the adaptive reduction shown
in the previous section implies the adaptive optimality of our approach for the convex hull in two
and three dimensions. Given two positive integers n and m such that n ≤ m and two sets of positive
integers X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , ym}, we say that X is at most Y if there is a
permutation π over [m] = {1, . . . ,m} such that xi ≤ yπ(i) ∀i ∈ [n].

Lemma 4. For any positive integer n > 0 and any comparison based sorting algorithm A (ran-
domized or deterministic), there is an instance composed of at most ρ c-progressive subsequences of
respective sizes at most Runs = {n1, . . . , nρ}, over which A performs Ω(n(1 + H(Runs))) compar-
isons.

Proof. (of Lemma 4) This is a simple adaptive reduction [29] from sorting adaptively to the entropy
of a permutation in ρ consecutive increasing subsequences of respective sizes at most Runs′ =
{n1, . . . , nρ}, for which Barbay and Navarro [5] proved a computational lower bound of Ω(n(1 +
H(Runs′))) ut

Of course, via the reductions de�ned in the previous section, this lower bound propagates to the
computation of the convex hull in two and three dimensions, as well as to the computation of the
Delaunay and Voronoi diagrams.

Corollary 2. For any positive constant c > 0 and integer n > 0 and any three dimensional con-
vex hull algorithm A (randomized or deterministic) in the algebraic decision tree model, there is
an instance composed of at most ρ c-progressive subsequences of respective sizes at most Runs =
{n1, . . . , nρ}, over which A performs Ω(n(1 +H(Runs))) operations.

Proof. (of Corollary 2) This is a simple parameterized complexity reduction [16] from sorting adap-
tively to the entropy of partitions in c-progressive subsequences, for which Lemma 4 proves a com-
putational lower bound of Ω(n(1 +H(Runs))) ut

Combining the main results of this section yields the following Theorem:

Theorem 1. Given a positive integer c ≥ 0, and a sequence S of n points in three dimensions com-
posed of ρ c-progressive subsequences of respective sizes Runs = {n1, . . . , nρ}, there is an algorithm
computing the convex hull of S in time O(n(c+H(Runs)+ρ lg ρ) ⊆ O(n(c+lg ρ)) ⊆ O(n(c+lg n)),
where H(Runs) =

∑
i∈[ρ]

ni
n lg n

ni
is the entropy of the size vector Runs. When c is chosen con-

stant, this is asymptotically optimal over all such instances, among all randomized or deterministic
algorithms in the algebraic decision tree model.

Beside the fact that we consider the convex hull in three dimension while Levcopoulos et al. [26]
considered the adaptive computation of the convex hull in two dimensions, it is important to note
that the projection of our measure of di�culty for the computation of the planar convex hull is
independent of both the number χ of maximal simple subchains and of the number κ of proper
intersection points in the sequence of input points, as de�ned by Levcopoulos et al. [26], for the
simple reason that there are some simple chains which are not c-progressive, and that for some
�nite c there are some c-progressive chains which are not simple. This means that our results are
not reducible to theirs, nor are their results reducible to ours.

9

The de�nition of c-progressive sequences can easily be extended to amortized c-progressive se-
quences, where points which are inserted very quickly yield some �credit� which can be used later
to insert more di�cult points, and points deleting points previously inserted further increase this
credit. Such sequences form instances which can still be solved in linear time, and generalize in the
plane �simple chains� used by Levcopoulos et al. [26]. Additionally, they are well de�ned in three
dimensions, whereas it is harder to de�ne �simple� chains in three dimensions. Our approach still
applies to those sequences without any modi�cation, but we prefer the more intuitive notion of
c-progressive sequences.

3 Structural Entropy

The adaptivity seen in the previous section is based on an astute division of the instance in smaller
ones which are so easy that they can be solved in linear time. Additionally, we saw how one can
take advantage of their relative sizes to merge them faster. Another adaptivity technique is to
divide the instance arbitrarily (e.g. in two) into chunks of similar size (e.g. n/2) and to study how
the di�culty of the original instance impacts the di�culty of the chunks thus obtained. We explore
such an approach in this section, where we divide the input into chunks of similar size, and consider
how the number of faces of the convex hull divides between those faces. In the worst case there
are as many convex hull edges in each chunk, which results in upper and lower bounds of Θ(n lg h)
on the computational complexity of planar upper hull [23]. But by de�nition the instances where
the imbalance is stronger are easier: measuring this imbalance yields a more precise analysis of the
computational complexity of the problem, and in particular of the complexity of Kirkpatrick and
Seidel's algorithm [23].

3.1 Marriage before Conquest

Kirkpatrick and Seidel [23] proposed the �rst optimally output sensitive planar convex hull algo-
rithms, which computes the h edges of the upper hull of n planar points in time O(n(1 + lg h)) ⊆
O(n lg n), so that the convex hull is obtained by unifying the upper and lower hulls. They introduced
through this algorithm the formal concept of output sensitivity: Jarvis [21] had already proposed
an algorithm to compute the convex hull in O(nh) orientation tests, but he was advertising it as
of complexity O(n2). Nielsen and Yvinec [33] generalized Kirkpatrick and Seidel's technique to the
convex merging of convex objects, and Edelsbrunner and Shi [13] generalized it to to the computa-
tion of the convex hull of points in three dimensions, thus yielding a O(n lg2 h) algorithm to compute
the convex hull in three dimensions, which is not optimal but is output sensitive. Chan [8] later
improved this last result to the optimal complexity of Θ(n(1 + lg h)) in two and three dimensions,
through a di�erent paradigm based on Jarvis [21]'s algorithm.

The common intuition between the algorithms from Kirkpatrick and Seidel [23], Nielsen and
Yvinec [33] and Edelsbrunner and Shi [13] is to focus on the upper hull, and to perform a kind of
reversal of the divide-and-conquer paradigm previously used to compute the convex hull [34], which
Kirkpatrick and Seidel namedmarriage-before-conquest. While a divide-and-conquer algorithm splits
the input into chunks of similar sizes, recursively solves them and then merges them; a marriage-
before-conquest algorithm splits the input into chunks, computes the bridge linking them, and then
only recurses in the reduced chunks. This inversion of the basic order of the operations is what yields
the output size sensitivity. Since each recursive call yields one edge of the output, there are at most
h recursive calls in total. Since each recursive call reduces the size of the problem by a constant c

10

(e.g. c = 1/2 in the original algorithm from Kirkpatrick and Seidel, and c = 3/4 for the algorithm
from Edelsbrunner and Shi), the subproblems considered at the i-th level of the recursion are of size
at most n ∗ ci, summing to O(n). The three analysis are all based on the fact that the worst case
occurs when there are exactly ci subproblems in each level of recursion up to the level dlg he: for
this worst case, there are at most dlg he levels of recursion and at most n points considered within
each level. In two dimensions, where the cost of each recursion is linear, it implies that the total
running time of the recursion is O(n lg h), yielding O(n(1 + lg h)) when taking into account the
linear preprocessing. In three dimensions, where the cost of each recursion is O(n(1+ lg h)) because
the algorithm uses the planar algorithm as a black box, it implies that the total running time of
the recursion is O(n(1 + lg2 h)).

The worst (output sensitive) case analysis presented above makes two assumptions, which study
permits to re�ne the analysis. The �rst assumption is that no point is eliminated by the computation
of a bridge before the last level of recursion. This supposes that the points which are not part of the
upper hull are very precisely positioned below half of the faces of the upper hull, which are exactly
alternating with the ones covering no other points below them. The second assumption is that the
chunks of equal sizes at each recursion step yield the same number of faces of the upper hull. Put in
other terms, it supposes that each face which eliminates points will eliminate on average the same
amount of points. The combination of those two assumptions describes worst case instances which
are extremely regular, where points which are not part of the upper hull are uniformly distributed
below half of the faces of the upper hull, and any instance which does not respect those assumptions
will be �easier� for the marriage-before-conquest algorithms. We describe in the following sections
a measure of �di�culty� for the computation of the planar upper hull. Our analysis is based on the
entropy of the repartition of the points not contributing to the upper hull, relatively to the edges of
the planar upper hull, which yields a more precise analysis of the complexity of the marriage-before-
conquest algorithms. The same analysis can be performed in three dimensions, but the results it
yields are not competitive

3.2 Structural Entropy

Consider a set S of n planar points, among which h form the upper hull, noted (p1, . . . , ph) where
the points are ordered by their abscissas. We count for each edge (pi, pi+1) of the upper hull the
number ni of points of the input which are in the �shadow� of this edge, i.e. which projection on
the abscissa axis is contained in the projection of this edge.

De�nition 2. The Structural Entropy H∗(S) of S is the entropy of the repartition of the abscissa
of its points among the projected edges of its upper hull: H∗(S) =

∑
i∈[h]

ni
n lg n

ni
, where the counters

∀i ∈ [h] are de�ned by ni = #{p ∈ S s.t. pi.x ≤ p.x < pi+1.x} (placing a virtual point ph+1 in�nitely
to the right in order to simplify the expressions). For ease of notation, we note Rep(S) = (n1, . . . , nh)
the repartition of S.

In the worst case over instances of upper hull of size h, each edge �covers� roughly the same
number of points and the structural entropy within a constant term of dlg he. But in other cases
the structural entropy is much smaller than dlg he, and the algorithm from Kirkpatrick and Seidel
takes automatically advantage of any large disequilibrium (i.e. by at least a constant factor) of the
repartition of the points.

Note that the structural entropy is re�ning the output size, but can also be considered inde-
pendently from it: there exists pairs (A,B) of instances such that A has a larger output size but

11

smaller structural entropy than B, in a similar way than some larger instances can be easier than
smaller ones.

Lemma 5. Given a set S of n planar points of structural entropy H∗(S) and upper hull of size h,
Kirkpatrick and Seidel's algorithm [23] is computing the upper hull of S in time O(n(1+H∗(S))) ⊆
O(n(1 + lg h)) ⊆ O(n lg n).

Proof. (of Lemma 5) Consider a set S of n planar points of structural entropy of upper hull of size h
and of H∗(S) =

∑
i∈[h]

ni
n lg n

ni
. We show that the complexity of the algorithm given by Kirkpatrick

and Seidel [23] is O(n(1 +H∗(S))).
Kirkpatrick and Seidel's algorithm basically �nds the points min and max of minimum and

maximum abscissa in linear time, and selects in additional linear time in S′ the points above or
on the line (min, max), to �nally call a recursive function Connect(min, max, S′) with those values,
which returns the upper hull of S′ and hence of S. The output sensitive result is essentially based
on the analysis of the complexity of the recursive function Connect(min, max, S), which computes
the upper hull of S from min to max; and of the function BRIDGE(S,m) which computes in linear
time the edge of the upper hull crossing the vertical line passing by m. We refer the reader to
Kirkpatrick and Seidel's de�nition and analysis of the BRIDGE function, and re�ne here the analysis
of the Connect function.

The Connect(min, max, S) function roughly goes as follows, when T is non empty. First it �nds
the median m of the points in S sorted by their abscissa (this can be done in linear time using the
algorithm from Blum et al. [6]). Then it �nds the (unique) edge (l, r) of the upper hull which crosses
the vertical line passing by m (a simple linear program �nds it in linear time). Then it partitions
S into the set L of points to the left of l, and the set R of points to the right of r, discarding all
the points of abscissa between those two points (which takes obviously linear time). Finally it calls
recursively Connect(min, l, L) and Connect(r, max, R). Since the non recursive operations typically
take time c|S| linear in the size of S for some positive constant c > 0, Kirkpatrick and Seidel
focused on the recursive function f(n, h) and showed that it was O(n lg h), yielding a complexity of
O(n(1 + lg h)) when taking into account the linear time preprocessing. Instead, we study the how
fast an edge of the upper hull is discovered in function of the number of points it �covers�.

The intuition goes as follows: imagine that each edge (l, r) of the upper hull is a �bucket� such
that, when m is in this bucket, (l, r) is discovered. The more points in the bucket corresponding to
(l, r), the faster it will be discovered by the algorithm, since the number of points considered by each
recursive call is divided by at least two at each new recursion. At the i-th recursive level the algorithm
has found the 2i buckets of size larger than n/2i, and has eliminated all the corresponding points. In
other words, the bucket i survives at most lg(ni/n) recursive phases, costing cni operations in each
of those phases, accounting for a total of cni lg(ni/n) operations. Summing over the h buckets yield
a complexity of c

∑
i∈[h] ni lg(ni/n), which, expressed in function of the structural entropy, yields

the �nal expression of cn×
∑

i∈[h]
ni
n lg(ni

n) ∈ O(nH∗), yielding a complexity of O(n(1 +H∗)) when
taking into account the linear time preprocessing. ut

One way to encode a certi�cate of the planar convex hull computed by the algorithm described in
Lemma 5 would be to reorder the points (or equivalently to code a permutation over [n], compressed
using one of Barbay and Navarro's compression schemes [5]) so that the points in the shadow of an
edge are immediately succeeding the points forming this edge: this might yield the most succinct
encoding of the certi�cate, but depends on the input order, on which we did not make any assumption

12

in this section. We describe another way, independent of the input order and taking advantage of
the structural entropy.

Corollary 3. A succinct representation of the certi�cate of the output of the algorithm described
in Lemma 5 can be encoded in n(2 +H∗(S)) bits.

Proof. (of Corollary 3) The idea is to assign to each edge of the upper hull a code of length decreasing
with the number of points it covers, and to code a string associating to each point the edge covering
it. One could use a Hu�man tree [19] based on the normalized repartition of the points to generate
an encoding of this string using nH∗(S) bits, but that would require to encode the dictionary
associating the Hu�man codes to each edge in h lg h bits. Instead, we simply use the Hu-Tucker
algorithm [18] to generate codes ordered in the same order than Rep, i.e. in the order of the edges
of the upper hull, which yield an encoding of the string using n(2 +H∗(S)) bits. ut

Performing a similar analysis in three dimension, based on the algorithm from Edelsbrunner
and Shi [13], yields an adaptive complexity of O(n(1 + H∗(S)) lg h), which is never better than
the complexity O(n(1 + lg h)) of Chan's algorithm [8]. There is no much hope to improve this
result without major changes in the algorithm from Edelsbrunner and Shi [13], which is not optimal
even over instances of �xed n and h. Their algorithm runs the two dimensional algorithm from
Kirkpatrick and Seidel on the projection of the points on two vertical planes. Two points, originally
in the shadow of the same single face of the upper hull in three dimension, can then be projected
into the shadow of di�erent edges of the planar convex hull on this plane. This implies that the
structural entropy of the planar instances generated is not correlated to the structural entropy of
the original instance in three dimensions.

3.3 Reductions and Lower Bounds

In this section we use the notion of reduction between pairs formed by a problem and a parameter
of the analysis, a notion borrowed from parameterized complexity [16]. The main idea is to make
sure that the reduction from (A,MA) to (B,MB) maps MA-easy instances from a problem A to
MB easy instances from the problem B.

We �rst prove that the adaptive analysis of sorting multisets in function of their entropy, is
reducible to the adaptive analysis of the computation of the convex hull in the plane in function of
the structural entropy. In particular, it means that an adaptive algorithm for the convex hull over
planar instances of �xed structural entropy yields an adaptive algorithm for sorting multisets over
instances of �xed entropy, and that an adaptive lower bound on the computational complexity of
sorting multisets of �xed entropy yields an adaptive lower for the computation of the convex hull
over instances of �xed structural entropy.

Lemma 6. Any algorithm computing the convex hull of an instance S of n points in the plane with
structural entropy H∗(S) in time f(n,H∗(S)) can be used to sort a multiset of n values and entropy
H in time O(n) + f(n,H).

Proof. (of Lemma 6) The reduction is quite simple: given a multiset of n values and entropy H,
map all the values to a set S of planar points via a function φ(x) = (x, x2), as usual in reductions
from sorting to the planar convex hull. Obviously this step takes linear time. The entropy H of the
original multiset is by de�nition exactly the structural entropy H∗(S) of S, so computing the convex
hull of S is done in time f(n,H) which yields the �nal complexity of O(n) + f(n,H). ut

13

We then prove an adaptive computational complexity lower bound for sorting multisets of �xed
entropy, which shows that our analysis in two dimensions is tight over all deterministic and ran-
domized algorithms in the algebraic decision tree model.

Lemma 7. Given a positive integer n, a positive real number H, and an algorithm A in the algebraic
decision tree model for the computation of the convex hull in the plane; there is one instance of input
size at most n and structural entropy at most H such that A performs Ω(n(1 +H)) operations to
compute its convex hull.

Proof. (of Lemma 7) This is a simple reduction from the sorting of multisets, which lower bound
can in turn be reduced to the encoding of multisets, itself obtained through a simple application of
the de�nition of the entropy. ut

Combining the main results of this section yields the following Theorem:

Theorem 2. Given a set S of n planar points of structural entropy H∗(S) and convex hull of size
h, there is an algorithm computing the planar convex hull of S in time O(n(1+H∗(S))) ⊆ O(n(1+
lg h)) ⊆ O(n lg n). This is asymptotically optimal over all such instances, among all randomized or
deterministic algorithms in the algebraic decision tree model.

Of course, since one can sort values using an algorithm for the planar convex hull, this yields an
entropy adaptive result for the sorting of multisets as well:

Corollary 4. Given a multiset S of n values taken from [h] = {1, . . . , h], there is an algorithm
sorting S and counting the number of occurrences of each value in it in time O(n(1 + H∗(S))) ⊆
O(n(1 + lg h)), where H(S) =

∑
i∈[h]

ni
n lg n

ni
and ∀i ∈ [h] ni = #{x ∈ S s.t. x = i}, and this is

optimal in the comparison model.

Not that although we prove the corollary above through a reduction, it is also easily proven
through the adaptive analysis of algorithms such as a deterministic Quick Sort (which is the exact
projection of Kirkpatrick and Seidel's convex hull algorithm), Merge Sort or an Insertion Sort using
Splay trees.

4 Comparisons between Analysis

In this section we use the notion of reduction between measures of di�culty, which was introduced
by Mannila [29] in order to compare measures of di�culty for a �xed problem.

Theorem 3. Any algorithm (optimally) adaptive to the structural entropy H∗ is (optimally) adap-
tive to the output size h.

Proof. (of Theorem 3) The fact that any algorithm adaptive to the structural entropy is adaptive
to the output size is trivial given that H ≤ lg h. The fact that any algorithm optimally adaptive to
the structural entropy is optimally adaptive to the output size comes from the lower bound from
Theorem 7 ut

A direct consequence of this reduction is that the algorithms which are not adaptive to the
output size (i.e. performing ω(n lg h) operations for at least one instance of input size n and output
size h) are not adaptive to the structural entropy. Hence it is easy to see that the naive imple-
mentations of quick-hull, divide and conquer, and other traditional algorithms are not adaptive to

14

the structural entropy. This has an important consequence over the performance of Chan's output
sensitive algorithm for the convex hull, which uses internally some traditional algorithms, albeit on
small groups of points.

Corollary 5. A straightforward implementation of Chan's algorithm is not adaptive to the struc-
tural entropy.

Proof. (of Corollary 5) Chan's algorithm [8] is based on a linear search on the value of dlgdlg hee,
where each test checks if the size of the convex hull is smaller than a parameter m in O(n lgm)
orientation tests. To achieve this complexity, each test computes the hull of n/m groups of m points
in O(n/m×m lgm) = O(n lgm) orientation tests, and tries to merge them all in a hull of m points
using a variant of Jarvis's walk, where each of the m edges is obtained through n/m binary searches
of lgm orientation tests, summing once again to O(n/m×m lgm) = O(n lgm).

Without loss of generality, assume that both the input size n and output size m = h are given to
the algorithm, which has only to compute the output in two phases, one computing the convex hull
of n/h groups of h points and then cover them with h edges. Assume that h is a constant fraction
of n, so that many points are not in the output. We give a speci�c instance formed by n points and
of output size h, such that if those points are given in some speci�c order the algorithm already
performs ω(nH) operations on this instance in the �rst phase, where H is the structural entropy of
the instance, by design much lower than lg h.

Consider an instance which convex hull is of size h and where all the points which are not in
the convex hull are covered by exactly two successive edges, the same for all points. By de�nition,
the structural entropy of the instance is H = n−h+1

n lg n−h+1
n + h−1

n lg 1
n ∈ O(1), corresponding

to a repartition of n − h + 1 points for one pair of edges and exactly one for each other. On the
other hand, the computation of the convex hull of the n/h groups of h points each takes Θ(n lg h)
orientation tests, whether the algorithm used recursively is adaptive to the output size or to the
structural entropy: the groups of h points can have arbitrary structural entropy and output size.

Hence Chan's algorithm [8] performs Θ(n lg h) operations (in fact, even Θ(n lg n)) on a particular
instance where any algorithm optimally adaptive to the structural entropy would perform only O(n)
operations. ut

Generalizing Chan's algorithm so that it takes into account the structural entropy of planar
instances might be the key to achieve an algorithm computing the three dimensional convex hull
adaptively to the structural entropy in three dimensions, but it is not clear how to do so. Alterna-
tively, Peyman Afshani has suggested that a di�erent technique based on random sampling might
yield adaptivity to the structural entropy in two and three dimensions, and potentially in higher
dimensions.

5 Discussions

5.1 Adaptive Analysis

Whereas our techniques are mostly computational, generic, and lacking in geometrical intuition, our
results are geometric in essence and answer many questions asked by computational geometrists, in
personal communication (Olivier Devillers, Luca Castelli-Aleardi, Hee-Kap Ahn, Yoshio Okamoto)
or in publications (Levcopoulos et al. [26]).

15

It is important not to deduce from this that adaptive analysis beyond output sensitivity in-
herently lacks geometric intuition: for each problem where there is a large gap between the worst
and best case computational complexities, one can search for and �nd an explanation of this gap,
formalize it through a measure of di�culty in order to produce a more precise analysis. There is
no doubt that many of those �explanations� will be of geometric nature: in this our work is only
preliminary, aiming to be generic so that others can adapt our technique to their own problem.

The development of more precise analysis techniques is required in order to bridge the widening
gap between theory in practice, and it can only be initiated by theoreticians. Certainly, not all
adaptive measures of di�culty correspond to realistic conditions on the input: between two given
di�culty measures, the preferences must go to the most practical one. But since currently a few or
no other measure of di�culty than the input size are known for most problems, we must study any
di�culty measure to �rst increase our understanding and later focus on more practical one.

5.2 Application to Other Problems

Our techniques concerning the adaptivity to the input order can be generalized to any problem for
which there is an incremental algorithm with best case complexity O(n) (the worst case complexity
does not really matter, in our example it was O(n2)), and a linear time merging algorithm. A
good inspiration for such a work on computational geometry would be the similar e�ort to generate
�generic merge-sort algorithms� from Estivil-Castro and Wood [14].

Through our de�nition of adaptive reductions, our adaptive results on both the input order and
the structural entropy can be applied in di�erent settings provided through adequate mappings.
Hopefully such reductions will yield to the de�nition of useful classes of equivalences, such that any
improvement on some given computational problem can be propagated to similar problems without
further work.

5.3 Open Problems

We distinguish three types of open problems: those related to the search of other adaptive measures
of di�culty, those relative to the generalization of the marriage-before-conquest paradigm, and those
relative to the generalization of the problems themselves, to higher dimension.

Inspiration from Adaptive Sorting. The reduction of sorting (multisets or permutation) to
the computation of the convex hull in two dimensions (or to other problems above in the network
of reductions) implies some �projection� of adaptive analysis from convex hull to sorting. Such
�projected� adaptive analysis can be trivial: the output sensitivity analysis of the convex hull does
not yield any improvement on the analysis of sorting permutations (although it does in a minor
way for the analysis of sorting multisets). But there are many adaptive analysis and algorithms for
sorting permutations. It seems likely that those analysis have equivalents in more complex problems
such as the convex hull, of which they are only projections.

Combining (elegantly) distinct analysis. It is trivial to combine two algorithms adaptively
optimal for distinct measures of di�culty into a single asymptotically optimally adaptive algorithm
to both measures: one just needs to run both algorithms (each optimal for its own adaptive measure
of di�culty) in parallel, and to stop the computation as soon as one of them terminates. In the

16

case of the computation of the planar convex hull, a more elegant way can be achieved by running
the linear time partitioning algorithm described in Lemma 1 to produce ρ solved sub-instances, and
then use Nielsen and Yvinec's [33] algorithm to compute the convex hull of those convex objects.
In the case of the computation of the convex hull in three dimensions, a more elegant way can be
achieved by combining a variant of the partitioning of Lemma 1, where the longest branches of the
merging scheme are rebalanced with neglectable impact on the performance following a technique
initiated by Buro [7]; with a variant of Chan's algorithm, rewritten as a merging tree, to yield an
algorithm running in time O(n(1 + min{lg h,H(Runs)})).

Marriage before Conquest. The paradigms of �marriage before conquest� introduced by Kirk-
patrick and Seidel [23] and of �merging and spanning� introduced by Chan [8] both yield an output
sensitive O(n lg h) complexity for the computation of the convex hull in two dimensions. The known
algorithms implementing those two paradigms di�er in two aspects:

� Kirkpatrick and Seidel's algorithm yields a better adaptive complexity for the computation of the
convex hull in two dimensions, whereas Chan's algorithm can be easily generalized to compute
the convex hull in three dimensions.

� The performance of Kirkpatrick and Seidel's algorithm is rotation dependant, for both the
output sensitive analysis and the structural entropy analysis, whereas the performance of Chan's
algorithm is rotation independent.

It does not seem impossible to generalize the �marriage before conquest� from Kirkpatrick and
Seidel to compute the convex hull in three dimensions. The main di�culty resides in the fact
that each �bridge� consists in a sequence of faces, which lengths should be taken into account in
the di�culty of the instance, which will exacerbate even further the rotation dependency of the
complexity of the algorithm

The real challenge consists in �nding an algorithm which would be adaptive to a rotation in-
dependent de�nition of the structural entropy. One way to achieve this could be to combine the
two paradigms into the same algorithm in a more elegant way than simulating both algorithms in
parallel, but it does not seem trivial.

Generalization to Higher Dimensions. Another sizable challenge concerns similar problems in
higher dimensions. The worst case complexity of known algorithms over instances of �xed size grows
exponentially with the dimension of the space, along with the worst case size of the input. Since
instances in lower dimensions are mere particular cases of the instances in higher dimension, the gap
between the best and worst case complexities is also increasing exponentially with the dimension.
This should create many opportunities for adaptive analysis, to separate �easy� instances from
di�cult ones in a continuous way. An example would be to consider instances of high dimensionality
formed from the union of a few sub-instances of lower dimensionality can be solved faster, reducing
the di�culty for such instances to the search for their decomposition in simpler instances.

Acknowledgements:
This paper would probably never have been started without the encouragements from Luca

Castelli Aleardi, Olivier Devillers, Jack Snoeyink, Therese Biedl and many others from the commu-
nity of Computational Geometry. It would never have been terminated either without the productive
comments from Peyman Afshani and Luca Castelli Aleardi. Thanks to all of them.

17

8⇒ 8

4

⇒ 8

4 12

⇒ 8

4 12

14

⇒ 8

4 12

10 14

⇒ 8

4

6

12

10 14

⇒ 8

4

2 6

12

10 14

⇒ 8

4

2

1

6

12

10 14

⇒

8

4

2

1 3

6

12

10 14

⇒ 8

4

2

1 3

6

5

12

10 14

⇒ 8

4

2

1 3

6

5 7

12

10 14

⇒ 8

4

2

1 3

6

5 7

12

10

9

14

⇒ 8

4

2

1 3

6

5 7

12

10

9 11

14

⇒

8

4

2

1 3

6

5 7

12

10

9 11

14

13

⇒ 8

4

2

1 3

6

5 7

12

10

9 11

14

13 15

Fig. 1. A 3-progressive sequences for sorting: Consider the sequence (8, 4, 12, 14, 10, 6, 2, 1, 3, 5, 7, 9, 11, 13, 15). The
insertion of those values in a binary search tree yields a perfectly balanced tree, without the need of any rebalancing
operation. Supporting the parent operator and maintaining a pointer to the last node created, at most 3 comparisons
are required for each new values, by simple application of Snoeyink and Kreveld [37]'s result.

18

Bibliography

[1] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In Advances in
Discrete and Computational Geometry, pages 1�56. American Mathematical Society, 1999.

[2] A. Aggarwal, L. Guibas, J. Saxe, and P. Shor. A linear time algorithm for computing the
voronoi diagram of a convex polygon. In STOC '87: Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 39�45, New York, NY, USA, 1987. ACM.

[3] J. Barbay and E. Chen. Adaptive planar convex hull algorithm for a set of convex hulls.
In Proceedings of the 20th Annual Canadian Conference on Computational Geometry, CCCG
2008, August 20-22, 2008, Montreal, Canada, 2008.

[4] J. Barbay and C. Kenyon. Alternation and redundancy analysis of the intersection problem.
ACM Trans. Algorithms, 4(1):1�18, 2008.

[5] J. Barbay and G. Navarro. Compressed representations of permutations, and applications. In
Proceedings of STACS, to appear, 2009.

[6] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Linear time bounds for
median computations. In STOC '72: Proceedings of the fourth annual ACM symposium on
Theory of computing, pages 119�124, New York, NY, USA, 1972. ACM.

[7] M. Buro. On the maximum length of hu�man codes. Information Processing Letters, 45:219�
223, 1993.

[8] T. Chan. Optimal output-sensitive convex hull algorithms in two and three dimensions. GE-
OMETRY: Discrete & Computational Geometry, 16, 1996.

[9] B. Chazelle. Triangulating a simple polygon in linear time. Discrete Comput. Geom., 6(5):485�
524, 1991.

[10] B. Chazelle. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM
J. Comput., 21(4):671�696, 1992.

[11] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set intersections, unions, and
di�erences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 743�752, 2000.

[12] H. Djidjev and A. Lingas. On computing the Voronoi diagram for restricted planar �gures. In
Proc. 2nd Worksh. Algorithms and Data Structures, pages 54�64. Springer-Verlag, LNCS 519,
1991.

[13] H. Edelsbrunner and W. Shi. An o(n log2h) time algorithm for the three-dimensional convex
hull problem. SIAM J. Comput., 20(2):259�269, 1990.

[14] V. Estivill-Castro and D. Wood. A survey of adaptive sorting algorithms. ACM Computing
Surveys, 24(4):441�476, 1992.

[15] P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of se-
quences and full-text indexes. ACM Transactions on Algorithms (TALG), 3(2):article 20, 2007.

[16] J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer
Science. An EATCS Series). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[17] L. Guibas and J. Stol�. Primitives for the manipulation of general subdivisions and the com-
putation of voronoi diagrams. ACM Trans. Graph., 4(2):74�123, 1985.

[18] T. Hu and A. Tucker. Optimal computer-search trees and variable-length alphabetic codes.
SIAM Journal of Applied Mathematics, 21:514�532, 1971.

[19] D. Hu�man. A method for the construction of minimum-redundancy codes. Proceedings of the
I.R.E., 40(9):1090�1101, 1952.

[20] J. Jansson, K. Sadakane, and W.-K. Sung. Ultra-succinct representation of ordered trees. In
Proceedings of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 575�
584. ACM, 2007.

[21] R. Jarvis. On the identi�cation of the convex hull of a �nite set of points in the plane.
Information Processing Letters, 2:18�21, 1973.

[22] D. G. Kirkpatrick. E�cient computation of continuous skeletons. In SFCS '79: Proceedings
of the 20th Annual Symposium on Foundations of Computer Science (sfcs 1979), pages 18�27,
Washington, DC, USA, 1979. IEEE Computer Society.

[23] D. G. Kirkpatrick and R. Seidel. The ultimate planar convex hull algorithm? SIAM J. Comput.,
1986. 15(1):287�299.

[24] R. Klein and A. Lingas. A linear-time randomized algorithm for the bounded voronoi diagram
of a simple polygon. In SCG '93: Proceedings of the ninth annual symposium on Computational
geometry, pages 124�132, New York, NY, USA, 1993. ACM.

[25] D. E. Knuth. Art of Computer Programming, Volume 3: Sorting and Searching (2nd Edition).
Addison-Wesley Professional, April 1998.

[26] C. Levcopoulos, A. Lingas, and J. S. B. Mitchell. Adaptive algorithms for constructing convex
hulls and triangulations of polygonal chains. In SWAT '02: Proceedings of the 8th Scandinavian
Workshop on Algorithm Theory, pages 80�89, London, UK, 2002. Springer-Verlag.

[27] C. Levcopoulos and O. Petersson. Sorting shu�ed monotone sequences. Inf. Comput.,
112(1):37�50, 1994.

[28] C. S. M. Denny. Encoding a triangulation as a permutation of its point set. In 9th Canadian
Conference on Computational Geometry, 1997.

[29] H. Mannila. Measures of presortedness and optimal sorting algorithms. In IEEE Trans. Com-
put., volume 34, pages 318�325, 1985.

[30] D. Marx. Parameterized complexity of constraint satisfaction problems. In Proceedings of 19th
Annual IEEE Conference on Computational Complexity, pages 139�149, 2004.

[31] K. Mehlhorn and S. Näher. Leda: a platform for combinatorial and geometric computing.
Commun. ACM, 38(1):96�102, 1995.

[32] E. Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and �exible word searching on
compressed text. ACM Transactions on Information Systems (TOIS), 18(2):113�139, 2000.

[33] F. Nielsen and M. Yvinec. Output-sensitive convex hull algorithms of planar convex objects.
Internat. J. Comput. Geom. Appl, 8:39�65, 1995.

[34] F. P. Preparata and S. J. Hong. Convex hulls of �nite sets of points in two and three dimensions.
Commun. ACM, 20:87�93, 1977.

[35] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,
1985.

[36] R. Seidel. A method for proving lower bounds for certain geometric problems. Technical report,
Cornell, Ithaca, NY, USA, 1984.

[37] J. Snoeyink and M. van Kreveld. Good orders for incremental (re)construction. In SCG '97:
Proceedings of the thirteenth annual symposium on Computational geometry, pages 400�402,
New York, NY, USA, 1997. ACM.

20

