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Abstract

Straight-line programs offer powerful text compression by representing a text T [1, u] in terms
of a context-free grammar of n rules, so that T can be recovered in O(u) time. However, the
problem of operating the grammar in compressed form has not been studied much. We present
the first grammar representation able of extracting text substrings, and of searching the text
for patterns, in time o(n). Its size is of the same order of that of a plain SLP representation,
and it can be of independent interest for other grammar-based problems. We also give some
byproducts on representing binary relations.

1 Introduction and Related Work

Grammar-based compression is a well-known technique since at least the seventies [53, 50, 3, 28, 47],
and still a very active area of research stimulated by the recent interest in XML compression
[33, 22, 37]. The main idea is to replace a given text T [1, u] by a context-free grammar (CFG) from
which T can be derived. In fact, two different approaches fall under the same name [28]. In the
first, there is a unique grammar G that can generate all the valid texts we wish to compress. Then
the compressed file just indicates which rules must be applied to derive T from G. This approach
is useful when the class of texts of interest has some structure that can be exploited in order to
compress them, for example program code (following the syntax of a language) or XML files that
follow a DTD [8, 31, 33].

A second approach to grammar-based compression aims at deriving, from T , a specific grammar
G that generates the single string T , and then storing G instead of T . Some examples are LZ78
[53], Re-Pair [32] and Sequitur [44], among many others [9]. This technique does not assume that
T belongs to a class of texts with special properties, and it has been shown to be a universal
compression method [28]. This is our focus in this paper.

When a CFG deriving a single string is converted into Chomsky Normal Form, the result is
essentially a Straight-Line Program (SLP), that is, a grammar where each nonterminal appears
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once at the left-hand side of a rule, and can either be converted into a terminal or into the con-
catenation of two previous nonterminals. SLPs are thus as powerful as CFGs for our purpose, and
the grammar-based compression methods mentioned in the previous paragraph can be straightfor-
wardly translated, with no significant penalty, into SLPs. SLPs are in practice competitive with
the best compression methods [18].

There are textual substitution compression methods which are more powerful than those CFG-
based. Collage Systems [27] is a formalism that encompasses several operations to describe strings.
SLPs (and CFGs) are equivalent to a subclass called regular collage systems in the taxonomy. More
general collage systems include operations like prefix/suffix truncation and repetitions, which allow
them to express schemes like LZ77 [52], that cannot be directly expressed using CFGs. Yet, an
LZ77 parsing can be converted into an SLP with an O(log u) penalty factor in the size of the
grammar, which might be preferable as SLPs are much simpler to manipulate [48].

SLPs have received attention because, despite their simplicity, they are able to capture the
redundancy of highly repetitive strings. Indeed, an SLP of n rules can represent a text exponentially
longer than n. They are also attractive because decompression is easily carried out in linear time.
Compression, instead, is more troublesome. Finding the smallest SLP that represents a given text
T [1, u] is NP-complete [48, 9]. Moreover, some popular grammar-based compressors such as LZ78,
Re-Pair and Sequitur, can generate a compressed file much larger than the smallest SLP [9]. Yet, a
simple method to achieve an O(log u)-approximation is to parse T using LZ77 and then converting
it into an SLP [48]. This has the additional advantage that the SLP is balanced: the height of the
derivation tree for T is O(log u). (Also, any SLP can be balanced by paying an O(log u) space
penalty factor.)

Given a compressed text T [1, u], one could aim at extracting only a portion of it, or at deter-
mining the presence of substrings P [1,m] in it, and even see a context around each occurrence,
all without decompressing T (which would require O(u) time overall). This would permit knowing
whether it is worth to decompress T . Compressed pattern matching [1] is the problem of finding the
occurrences of P in T from a compressed representation of T . Fully compressed pattern matching
is the variant where P is compressed as well. After much research by the community on specific
compression methods [16, 2, 35, 26, 12, 29, 18, 43], Kida et al. [27] showed that, for general SLP
(and CFG) compression, compressed pattern matching can be carried out in O(n + m2 + occ) time
to output the occ occurrences. Fully compressed pattern matching requires time O(n2 + mn log n),
where here m is the size of the SLP representing P (the occurrences are represented in a compact
form) [23]. Some slightly worse results were obtained for more general collage systems.

Despite there has been a substantial amount of work on pattern matching on text compressed
using different types of textual substitution compression methods, we note that all those approaches
refer to sequential pattern matching, that is, one has to traverse the whole compressed text. In
this paper we focus on indexed searching, which is the only practical choice when managing large
compressed text collections. In indexed text searching, some data structures are built on the text
so as to permit searching in sublinear time (o(n) in our case). A related issue is that of efficient
random access to a grammar-based compressed file, without having to decompress the whole of it
[17].

In fact, there has been much work on compressing and indexing natural language text collections
[51, 42] and also general texts [41], but not based on grammar-based compression. The only
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exception are those based on LZ78-like compression [40, 14, 46]. These are self-indexes, meaning
that the compressed text representation itself is powerful enough to support indexed searches.
Recently, several self-indexes were tested on a scenario of highly repetitive text collections, modeling
a genomics application [49], concluding that none of the existing self-indexes was able to capture
these redundancies. Even the LZ78-based ones failed, which is not surprising given that LZ78
can output a text exponentially larger than the smallest SLP. This type of application claims for
self-indexes based on stronger compression methods, such as general SLPs.

In this paper we introduce the first SLP representation that allows for (a) extracting any
substring of T , and (b) obtaining the positions of the occurrences of an uncompressed pattern P in
T . More precisely, a plain SLP representation takes 2n log n bits1, as each new rule expands into
two other rules. Our representation takes O(n log n) + n log u bits. It can extract any substring
T [l, r] in time O((h + r − l) log n), where h is the height of the derivation tree. It can output occ
occurrences of P [1,m] in time O((m(m + h) + h occ) log n) (see the detailed results in Thm. 5).
A part of our index is a representation for SLPs which takes 2n log n(1 + o(1)) bits and is able of
retrieving any rule in time O(log n), but also of answering other queries on the grammar within
the same time, such as finding the rules mentioning a given non-terminal. We also show how to
represent a labeled binary relation which in addition permits a kind of range queries. These results
are of independent interest.

In practical terms, our result constitutes a self-index building on much stronger compression
methods than the existing ones, and as such it has the potential of being extremely useful to
implement compressed text databases, in particular the very repetitive ones (such as biological
sequences or versioned documents), by combining good compression and efficient indexed searching.
In theoretical terms, ours is the first result on representing an SLP in such a way that searching in
time sublinear in the SLP size is possible.

2 Basic Concepts

2.1 Succinct Data Structures

We make heavy use of succinct data structures for representing sequences with support for rank/select
and for range queries.

Given a sequence S of length n, drawn from an alphabet Σ of size σ:

• rankS(a, i) counts the occurrences of symbol a ∈ Σ in S[1, i], rankS(a, 0) = 0.

• selectS(a, i) finds the i-th occurrence of symbol a ∈ Σ in S, selectS(a, 0) = 0.

We also require that data structures representing S provide operation accessS(i) = S[i].
For the special case Σ = {0, 1}, the problem has been solved using n + o(n) bits of space while

answering the three queries in constant time [10]. This was later improved to use O(m log n
m

)+o(n)
bits, where m is the number of bits set in the bitmap [45].

The general case has been proved to be a little harder. Wavelet trees [20] achieve n log σ +
o(n) log σ bits of space while answering all the queries in O(log σ) time. This was later improved

1In this paper log stands for log
2

unless stated otherwise.
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[15] with multiary wavelet trees to achieve O(1 + log σ
log log n

) time within the same space. Another
interesting proposal [19], focused on large alphabets, achieves n log σ + no(log σ) bits of space and
answers rank and access in O(log log σ) time, while select takes O(1) time. Another tradeoff within
the same space [19] is O(1) time for access, O(log log σ) time for select, and O(log log σ log log log σ)
time for rank.

Now we describe the wavelet tree, and its extension to support range queries. The wavelet tree
reduces the rank/select/access problem for general alphabets to those on binary sequences. It is a
perfectly balanced tree that stores a bitmap of length n at the root; every position in the bitmap
is either 0 or 1 depending on whether the symbol at this position belongs to the first half of the
alphabet or to the second. The left child of the root will handle the subsequence of S marked with
a 0 at the root, and the right child will handle the 1s. This decomposition into alphabet subranges
continues recursively until reaching level ⌈log σ⌉, where the leaves correspond to individual symbols.

Mäkinen and Navarro [34] showed how to use a wavelet tree to represent a permutation π of [1, n]
so as to answer range queries. We give here an almost identical version we use in this paper. Given
a general sequence S[1, n] over alphabet [1, σ], we use the wavelet tree of S to find all the symbols
of S[i1, i2] (1 ≤ i1 ≤ i2 ≤ n) which are in the range [j1, j2] (1 ≤ j1 ≤ j2 ≤ σ). The operation takes
O(log σ) to count the number of results [34], see Algorithm 1. This is easily modified to report
each such occurrence in O(log σ) time by tracking each result upwards in the wavelet tree to find
its position in S, and downwards to find its symbol in [1, σ] [34].

Algorithm: Range(v, [i1, i2], [j1, j2], [t1, t2])

if i1 > i2 or [t1, t2] ∩ [j1, j2] = ∅ then return 0
if [t1, t2] ⊆ [j1, j2] then return i2 − i1 + 1
tm← ⌊(t1 + t2)/2⌋
[il1, il2]← [rankBv

(0, i1 − 1) + 1, rankBv
(0, i2)]

[ir1, ir2]← [rankBv
(1, i1 − 1) + 1, rankBv

(1, i2)]
return Range(vl, [il1, il2], [j1, j2], [t1, tm]) + Range(vr, [ir1, ir2], [j1, j2], [tm + 1, t2])

Algorithm 1: Range query algorithm: v is the wavelet tree node, Bv the bitmap stored at v,
and vl/vr its left/right children. It is invoked with Range(root, [i1, i2], [j1, j2], [1, σ]).

2.2 Straight-Line Programs

We now define a Straight-Line Program (SLP) and highlight some properties.

Definition 1 [26] A Straight-Line Program (SLP) G = (X = {X1, . . . ,Xn},Σ) is a grammar that
defines a single finite sequence T [1, u], drawn from an alphabet Σ = [1, σ] of terminals. It has n
rules, which must be of the following types:

• Xi → α, where α ∈ Σ. It represents string F(Xi) = α.

• Xi → XlXr, where l, r < i. It represents string F(Xi) = F(Xl)F(Xr).

We call F(Xi) the phrase generated by nonterminal Xi, and T = F(Xn).
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Definition 2 [48] The height of a symbol Xi in the SLP G = (X,Σ) is defined as height(Xi) = 1
if Xi → α ∈ Σ, and height(Xi) = 1 + max(height(Xl), height(Xr)) if Xi → XlXr. The height of
the SLP is height(G) = height(Xn).

As some of our results will depend on the height of the SLP, it is interesting to recall the
following theorem, which establishes the cost of balancing an SLP.

Theorem 1 [48] Let an SLP G generate text T [1, u] with n rules. We can build an SLP G′ gener-
ating T , of O(n log u) rules, with height(G′) = O(log u), in O(n log u) time.

Finally, as several grammar-compression methods are far from optimal [9], it is interesting that
one can find in linear time a reasonable (and balanced) approximation.

Theorem 2 [48] Let G be the minimal SLP generating a text T [1, u] over integer alphabet, with
n rules. We can construct an SLP G′ generating T , of O(n log u) rules, for which height(G′) =
O(log u), in O(u) time.

3 Labeled Binary Relations with Range Queries

In this section we introduce a data structure for labeled binary relations with range query capa-
bilities. Consider a binary relation R ⊆ A × B, where A = {1, 2, . . . , n1}, B = {1, 2, . . . , n2}, a
function L : A × B → L ∪ {⊥}, which maps every pair in R to a label in L = {1, 2, . . . , ℓ}, ℓ ≥ 1,
and pairs not in R to ⊥. We support the following queries:

• L(a, b).

• A(b) = {a, (a, b) ∈ R}.

• B(a) = {b, (a, b) ∈ R}.

• R(a1, a2, b1, b2) = {(a, b) ∈ R, a1 ≤ a ≤ a2, b1 ≤ b ≤ b2}.

• L(l) = {(a, b) ∈ R, L(a, b) = l}.

• The sizes of the sets: |A(b)|, |B(a)|, |R(a1, a2, b1, b2)|, and |L(l)|.

We build on an idea by Barbay et al. [5]. We define, for a ∈ A, s(a) = b1b2 . . . bk, where bi < bi+1

for 1 ≤ i < k and B(a) = {b1, b2, . . . , bk}. We build a string SB = s(1)s(2) . . . s(n1) and write
down the cardinality of each B(a) in unary on a bitmap XB = 0|B(1)|10|B(2)|1 . . . 0|B(n1)|1. Another
sequence SL lists the labels L(a, b) in the same order they appear in SB: SL = l(1)l(2) . . . l(n1),
l(a) = L(a, b1)L(a, b2) . . .L(a, bk). Table 1 shows an example. We also store a bitmap XA =
0|A(1)|10|A(2)|1 . . . 0|A(n2)|1.

We represent SB using wavelet trees [20], L with the structure for large alphabets [19], and XA

and XB in compressed form [45]. Calling r = |R|, SB requires r log n2 + o(r) log n2 bits, L requires
r log ℓ + r o(log ℓ) bits (i.e., zero if ℓ = 1), and XA and XB use O(n1 log r+n1

n1
+ n2 log r+n2

n2
) + o(r +

n1 + n2) = O(r) + o(n1 + n2) bits. We answer queries as follows:
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H
H

H
H

HH
A

B
1 2 3

1 1 2

2 2 2

3 1

SB 1 2 2 3 2

SL 1 2 2 2 1

XB 0 0 1 0 0 1 0 1

XA 0 1 0 0 0 1 0 1

Table 1: Example of a labeled relation (left) and our representation of it (right). Labels are slanted
and the elements of B are in typewriter font.

• |A(b)|: This is just selectXA
(1, b) − selectXA

(1, b − 1)− 1.

• |B(a)|: It is computed in the same way using XB .

• L(a, b): Compute y ← selectXB
(1, a − 1) − a + 1. Now, if rankSB

(b, y) = rankSB
(b, y

+ |B(a)|) then we know a and b are not related and return ⊥. Otherwise, we return
SL[selectSB

(b, rankSB
(b, y + |B(a)|))].

• A(b): We first compute |A(b)| and then retrieve the i-th element by doing yi ← selectSB
(b, i)

and returning 1 + selectXB
(0, yi)− yi.

• B(a): This is SB [selectXB
(1, a − 1)− a + 2 . . . selectXB

(1, a)− a].

• R(a1, a2, b1, b2): We first determine which elements in SB correspond to the range [a1, a2].
We set a′1 ← selectXB

(1, a1 − 1) − a1 + 2 and a′2 ← selectXB
(1, a2) − a2. Then, using range

queries in a wavelet tree [34] (recall Algorithm 1), we retrieve the elements from SB[a′1, a
′
2]

which are in the range [b1, b2].

• L(l): We retrieve consecutive occurrences of l in SL. For the i-th occurrence we find yi ←
selectSL

(l, i), then we compute b ← SB [yi] and a ← 1 + selectXB
(0, yi) − yi. Determining

|L(l)| is done via rankSL
(l, r).

We note that, if we do not support queries R(a1, a2, b1, b2), we can use also the faster data
structure [19] for SB.

Theorem 3 Let R ⊆ A×B be a binary relation, where A = {1, 2, . . . , n1}, B = {1, 2, . . . , n2}, and
a function L : A×B → L∪{⊥}, which maps every pair in R to a label in L = {1, 2, . . . , ℓ}, ℓ ≥ 1, and
pairs not in R to ⊥. Then R can be indexed using (r+o(r))(log n2+log ℓ+o(log ℓ)+O(1))+o(n1+n2)
bits of space, where r = |R|. Queries can be answered in the times shown below, where k is
the size of the output. One can choose (i) rnk(x) = acc(x) = log log x and sel(x) = 1, or (ii)
rnk(x) = log log x log log log x, acc(x) = 1 and sel(x) = log log x, independently for x = ℓ and for
x = n2.
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Operation Time (with range) Time (without range)

L(a, b) O(log n2 + acc(ℓ)) O(rnk(n2) + sel(n2) + acc(ℓ))
A(b) O(1 + k log n2) O(1 + k sel(n2))
B(a) O(1 + k log n2) O(1 + k acc(n2))
|A(b)|, |B(a)| O(1) O(1)
R(a1, a2, b1, b2) O((k + 1) log n2) —
|R(a1, a2, b1, b2)| O(log n2) —
L(l) O((k + 1)sel(ℓ) + k log n2) O((k + 1)sel(ℓ) + k acc(n2))
|L(l)| O(rnk(ℓ)) O(rnk(ℓ))

We note the asymmetry of the space and time with respect to n1 and n2, whereas the function-
ality is symmetric. This makes it always convenient to arrange that n1 ≥ n2.

4 A Powerful SLP Representation

We provide in this section an SLP representation that permits various queries on the SLP within
essentially the same space of a plain representation.

Let us assume for simplicity that all the symbols in Σ are used in the SLP, and thus σ ≤ n
is the effective alphabet size. If this is not the case and max(Σ) = σ′ > n, we can always use a
mapping S[1, σ′] from Σ to the effective alphabet range [1, σ], using rank and select in S. By using
Raman et al.’s representation [45], S requires O(σ log σ′

σ
) = O(n log σ′

n
) bits. Any representation of

such an SLP would need to pay for this space.
A plain representation of an SLP with n rules requires at least 2(n − σ)⌈log n⌉ + σ⌈log σ⌉ ≤

2n⌈log n⌉ bits. Based on our labeled binary relation data structure of Thm. 3, we give now an
alternative SLP representation which requires asymptotically the same space, 2n log n + o(n log n)
bits, and is able to answer a number of interesting queries on the grammar in O(log n) time. This
will be a key part of our indexed SLP representation.

Recall that the SLP has n rules of the form Xi → XlXr or Xi → α. We first transform the
SLP into an equivalent one enforcing two simple conditions: (1) there are no repeated right hand
sides in the rules, (2) rules of the form Xi → α are ordered, that is, if Xi → α1 and Xj → α2, then
i < j iff α1 < α2. Both are easily enforced by renaming rules.

In our binary relation representation, every row represents a symbol Xl and every column a
symbol Xr. Pairs (l, r) are related, with label i, whenever there exists a rule Xi → XlXr. Since
A = B = L = {1, 2, . . . n} and |R| = n, the structure uses 2n log n + o(n log n) bits. We note also
that function L is invertible, thus |L(l)| = 1.

To handle the rules of the form Xi → α, we set up a bitmap Y [1, n] so that Y [i] = 1 if and
only if Xi → α for some α ∈ Σ. We also store a bitmap C[1, σ], where we set C[α] = 1 for those
α. Thus we know Xi → α in constant time because Y [i] = 1 and α = selectC(1, rankY (1, i)). The
total space is (n + σ)(1 + o(1)) = O(n) bits [10].

This representation lets us answer the following queries.

• Access to rules: Given i, find l and r such that Xi → XlXr, or α such that Xi → α. If
Y [i] = 1 we obtain α in constant time as explained. Otherwise, we obtain L(i) = {(l, r)}
from the labeled binary relation, in O(log n) time.
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• Reverse access to rules: Given l and r, find i such that Xi → XlXr, if any. This is done in
O(log n) time via L(l, r) (if it returns ⊥, there is no such Xi). We can also find, given α, the
Xi → α, if any, in constant time using i = selectY (1, rankC(1, α)) (if C[α] = 0, there is no
such Xi).

• Rules using a left/right symbol: Given i, find those j such that Xj → XiXr (left) or Xj →
XlXi (right) for some Xl, Xr. The first is answered using {L(i, r), r ∈ B(j)} and the second
using {L(l, i), l ∈ A(j)}, in O(log n) time per each Xi found.

• Rules using a range of symbols: Given l1 ≤ l2, r1 ≤ r2, find those i such that Xi → XlXr for
any l1 ≤ l ≤ l2 and r1 ≤ r ≤ r2. This is answered, in O(log n) time per symbol retrieved,
using {L(a, b), (a, b) ∈ R(l1, l2, r1, r2)}.

Again, if the last operation is not provided, we can choose the faster representation [19] (alter-
native (i) in Thm. 3), to achieve O(log log n) time for all the other queries.

Theorem 4 An SLP G = (X = {X1, . . . ,Xn},Σ), Σ = [1, σ], σ ≤ n, can be represented using
2n log n + o(n log n) bits, such that all the queries described above (access to rules, reverse access
to rules, rules using a symbol, and rules using a range of symbols) can be answered in O(log n)
time per delivered datum. If we do not support the rules using a range of symbols, times drop to
O(log log n). For arbitrary integer Σ one needs additional O(n log max(Σ)

n
) bits.

5 Indexable Grammar Representations

We now provide an SLP-based text representation that permits indexed search and random access.
We assume our text T [1, u], over effective alphabet Σ = [1, σ], can be represented with an SLP of
n rules.

Definition 3 A Grammar-Compressed Text (GCT) G = (X,Σ, s) is a grammar with nonterminals
X = {X1,X2, . . . ,Xn}, terminals Σ, and two types of rules: (i) Xi → α, where α ∈ Σ, (ii)
Xi → XlXr, such that:

1. The Xis can be renumbered X ′
i in order to obtain an SLP.

2. F(Xi) � F(Xi+1), 1 ≤ i < n, being � the lexicographical order.

3. There are no duplicate right hands in the rules.

4. Xs is mapped to X ′
n, so that G represents the text T = F(Xs).

It is clear that every SLP can be transformed into a GCT, by removing duplicates and lexico-
graphically sorting the expanded phrases.

We will represent a GCT G using a variant of Thm. 4. The rows will represent Xl as before, but
these will be sorted by reverse lexicographic order, as if they represented F(Xl)

rev. The columns
will represent Xr, ordered lexicographically by F(Xr). We will also store a permutation πR, which
maps reverse to direct lexicographic ordering. This must be used to translate row positions to
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nonterminal identifiers. We use Munro et al.’s representation [39] for πR, with parameter ǫ = 1
log n

,

so that πR can be computed in constant time and π−1
R in O(log n) time, and the structure needs

n log n + O(n) bits of space.
With the SLP representation and πR, the space for the GCT is 3n log n + o(n log n) bits. We

add other n log u bits for storing the lengths |F(Xi)| for all the nonterminals Xi.

5.1 Extraction of Text from a GCT

To expand a substring F(Xi)[j, j
′], we first find position j: We recursively descend in the parse

tree rooted at Xi until finding its jth position. Let Xi → XlXr, then if |F(Xl)| ≥ j we descend to
Xl, otherwise to Xr, in this case looking for position j − |F(Xl)|. This takes O(height(Xi) log n)
time. In our way back from the recursion, if we return from the left child, we fully traverse the
right child left to right, until outputting j′ − j + 1 terminals.

This takes in total O((height(Xi) + j′ − j) log n) time, which is at most O((h + j′ − j) log n),
where h = height(G). This is because, on one hand, we will follow both children of a rule at most
j′ − j times. On the other, we will follow only one child at most twice per tree level, as otherwise
two of them would share the same parent.

5.2 Searching for a Pattern in a GCT

Our problem is to find all the occurrences of a pattern P = p1p2 . . . pm in the text T [1, u] defined
by a GCT of n rules. As in previous work [25], except for the special case m = 1, occurrences can
be divided into primary and secondary. A primary occurrence in F(Xi), Xi → XlXr, is such that
it spans a suffix of F(Xl) and a prefix of F(Xr), whereas each time Xi is used elsewhere (directly
or transitively in other nonterminals that include it) it produces secondary occurrences. In the case
P = α, we say that the primary occurrence is at Xi → α and the other occurrences are secondary.

Our strategy is to first locate the primary occurrences, and then track all their secondary
occurrences in a recursive fashion. To find primary occurrences of P , we test each of the m − 1
possible partitions P = PlPr, Pl = p1p2 . . . pk and Pr = pk+1 . . . pm, 1 ≤ k < m. For each partition
PlPr, we first find all those Xls such that Pl is a suffix of F(Xl), and all those Xrs such that
Pr is a prefix of F(Xr). The latter forms a lexicographic range [r1, r2] in the F(Xr)s, and the
former a lexicographic range [l1, l2] in the F(Xl)

revs. Thus, using our GCT representation, the
Xis containing the primary occurrences correspond those labels i found within rows l1 and l2, and
between columns r1 and r2, of the binary relation. Hence a query for rules using a range of symbols
will retrieve each such Xi in O(log n) time. If P = α, our only primary occurrence is obtained in
O(1) time using reverse access to rules.

Now, given each primary occurrence at Xi, we must track all the nonterminals that use Xi in
their right hand sides. As we track the occurrences, we also maintain the offset of the occurrence
within the nonterminal. The offset for the primary occurrence at Xi → XlXr is |F(Xl)| − k + 1 (l
is obtained with an access to rule query for i). Each time we arrive at the initial symbol Xs, the
offset gives the position of a new occurrence.

To track the uses of Xi, we first find all those Xj → XiXr for some Xr, using query rules using
a left symbol for π−1

R (i). The offset is unaltered within those new nonterminals. Second, we find all
those Xj → XlXi for some Xl, using query rules using a right symbol for i. The offset in these new
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nonterminals is that within Xi plus |F(Xl)|, where again πR(l) is obtained from the result using
an access to rule query. We proceed recursively with all the nonterminals Xj found, reporting the
offsets (and finishing) each time we arrive at Xs.

Note that we are tracking each occurrence individually, so that we can process several times the
same nonterminal Xi, yet with different offsets. Each occurrence may require to traverse all the
syntax tree up to the root, and we spend O(log n) time at each step. Moreover, we carry out m− 1
range queries for the different pattern partitions. Thus the overall time to find the occ occurrences
is O((m + h occ) log n), where h = height(G).

We remark that we do not need to output all the occurrences of P . If we just want occ occur-
rences, our cost is proportional to this occ. Moreover, the existence problem, that is, determining
whether or not P occurs in T , can be answered just by counting the primary occurrences, and it
corresponds to occ = 0. The remaining problem is how to find the range of phrases starting/ending
with a suffix/prefix of P . This is considered next.

5.3 Prefix and Suffix Searching

We present different time/space tradeoffs, to search for Pl and Pr in the respective sets.

Binary search based approach. We can perform a binary search over the F(Xi)s and over the
F(Xi)

revs to determine the ranges where Pr and P rev
l , respectively, belong. We do the first binary

search in the nonterminals as they are ordered in the GCT. In order to do the string comparisons,
we extract the first m terminals of F(Xi), in time O((m+h) log n) (Sec. 5.1). As the binary search
requires O(log n) comparisons, the total cost is O((m+h) log2 n) for the partition PlPr. The search
within the reverse phrases is similar, except that we extract the m rightmost terminals and must
use πR to find the rule from the position in the reverse ordering. This variant needs no extra space.

Compact Patricia Trees. Another option is to build Patricia Trees [38] for the F(Xi)s and for
the F(Xi)

revs (adding them a terminator so that each phrase corresponds to a leaf). By using the
cardinal tree representation of Benoit et al. [7] for the tree structure and the edge labels, each such
tree can be represented using 2n log σ+O(n) bits, and traversal (including to a child labeled α) can
be carried out in constant time. The ith leaf of the tree for the F(Xi)s corresponds to nonterminal
Xi (and the ith of the three for the F(Xi)

revs, to XπR(i)). Hence, upon reaching the tree node
corresponding to the search string, we obtain the lexicographic range by counting the number of
leaves up to the node subtree and past it, which can also be done in constant time [7].

The difficult point is how to store the Patricia tree skips, as in principle they require other
4n log u bits of space. If we do not store the skips at all, we can still compute them at each
node by extracting the corresponding substrings for the leftmost and rightmost descendant of the
node, and checking for how many more symbols they coincide [11]. This can be obtained in time
O((ℓ + h) log n), where ℓ is the skip value (Sec. 5.1). The total search time is thus O(m log n +
mh log n) = O(mh log n).

Instead, we can use k bits for the skips, so that skips in [1, 2k−1] can be represented, and a skip
zero means ≥ 2k. Now we need to extract leftmost and rightmost descendants only when the edge
length is ℓ ≥ 2k, and we will work O((ℓ− 2k + h) log n) time. Although the ℓ− 2k terms still can
add up to O(m) (e.g., if all the lengths are ℓ = 2k+1), the h terms can be paid only O(1 + m/2k)
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times. Hence the total search cost is O((m + h + mh
2k ) log n), at the price of at most 4nk extra bits

of space. We must also do the final Patricia tree check due to skipped characters, but this adds
only O((m+h) log n) time. For example, using k = log h we get O((m+h) log n) time and 4n log h
extra bits of space.

As we carry out m− 1 searches for prefixes and suffixes of P , as well as m− 1 range searches,
plus occ extraction of occurrences, we have the final result.

Theorem 5 Let T [1, u] be a text over an effective alphabet [1, σ] represented by an SLP of n rules
and height h. Then there exists a representation of T using n(log u + 3 log n + O(log σ + log h) +
o(log n)) bits, such that any substring T [l, r] can be extracted in time O((r − l + h) log n), and
the positions of occ occurrences of a pattern P [1,m] in T can be found in time O((m(m + h) +
h occ) log n). By removing the O(log h) term in the space, search time raises to O((m2+occ)h log n).
By further removing the O(log σ) term in the space, search time raises to O((m(m + h) log n +
h occ) log n). The existence problem is solved within the time corresponding to occ = 0.

Compared with the 2n log n bits of the plain SLP representation, ours requires at least 4n log n+
o(n log n) bits, that is, roughly twice the space. More generally, as long as u = nO(1), our repre-
sentation uses O(n log n) bits, of the same order of the SLP size. Otherwise, our representation
is superlinear in the size of the SLP (almost quadratic in the extreme case n = O(log u)). Yet, if
u = nω(1), our representation takes uo(1) bits, which is anyway extremely small compared to the
original text size.

5.4 Construction

We have not discussed construction times for our index (given the SLP). Those are O(n log n)
for the binary relation part, and all the lengths |F(Xi)| could be easily obtained in O(n) time.
Sorting the strings lexicographically, as well as constructing the tries, however, can take as much as
∑n

i=1 |F(Xi)|, which can be even ω(u). Yet, as all the phrases are substrings of T [1, u], we can build
the suffix array of T in O(u) time [24], record one starting text position of each F(Xi) (obtained by
expanding T from the grammar), and then sorting them in O(n log n) time using the inverse suffix
array permutation (the ordering when one phrase is a prefix of the other is not relevant for our
algorithm). To build the Patricia trees we can build the suffix tree in O(u) time [13], mark the n
suffix tree leaves corresponding to phrase beginnings, prune the tree to the ancestors of those leaves
(which are O(n) after removing unary paths again), and create new leaves with the corresponding
string depths |F(Xi)|. The point to insert the new leaves are found by binary searching the
string depths |F(Xi)| with level ancestor queries [6] from the suffix tree leaves. The process takes
O(u + n log n) time and O(u log u) bits of space. Reverse phrases are handled identically.

5.5 Faster Locating

We are right now locating each occurrence individually, even if they share the same phrase (albeit
with different offsets). We show now that, if one can have some extra space for the query process,
the O(h occ log n) term can be turned to O(min(h occ, n) log n + occ), thus reducing the time when
there are many occurrences to report.
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We set up a min-priority queue H, where we insert the phrases Xi where primary occurrences
are found. We do not yet propagate those to secondary occurrences. The priority of Xi will be
|F(Xi)|. For each such Xi, with Xi → XlXr, we store l and r; the minimum and maximum offset
of the primary occurrences found in Xi; left and right pointers, initially null and later pointing to
the data for Xl and Xr, if they are eventually inserted in H; and left and right offsets associated to
those pointers. The data of those Xi will be kept in a fixed memory position across all the process,
so we can set pointers to them, which will be valid even after we remove them from H (H contains
just pointers to those memory areas). The left and right pointers point to those areas. Separately,
we store a balanced binary search tree that, given i, gives the memory position of Xi, if it exists
(and it permits freeing all the memory areas at the end).

Now, we repeatedly extract an element Xi with smallest |F(Xi)| from H, we find using our
binary relation data structures all the others Xj that mention Xi in their rule. We use the balanced
tree to determine whether Xj is already in H (and where is its memory area) or not. In the second
case, we allocate memory for Xj and insert it into H (note that Xj could already be in H, for
example if it has its own internal occurrences). Now, if Xj → XiXr, then we set the left pointer of
Xj (1) to the left pointer of Xi if Xi does not have primary occurrences nor right pointer, setting
the left offset of Xj to that of Xi; (2) to the right pointer of Xi if Xi does not have primary
occurrences nor left pointer, setting the left offset of Xj to the right offset of Xi; (3) to Xi itself
otherwise, setting the left offset of Xi to zero. If Xj → XlXi, we assign the right pointer and
offset of Xj in the same way, except that we add |F(Xl)| to the right offset. Note that the priority
queue ordering implies that all the occurrences descending from Xj are already processed when we
process Xj itself.

The process finishes when we extract the initial symbol from H and H becomes empty. At this
point we are ready to report all of the occurrences with a recursive procedure starting at the initial
symbol. Moreover, we can report them in text order: To report Xi → XlXr, we first report the
occurrences at the left pointer of Xi (if not null), shifting their values by the left offset of Xi; then
the primary occurrences of Xi (if any); and then the occurrences at the right pointer of Xi (if not
null), shifting their values by the right offset of Xi. Those shifts accumulate as recursion goes down
the tree, and become the true occurrence positions at the end.

To display all the primary occurrences of a node knowing only the first and last positions, we
notice that these positions must overlap, and thus we know the full text content of the area where
the primary occurrences other than the first and the last may appear. By preprocessing the pattern
in O(m) time we can obtain those occurrences in constant time each: Let last−first = d, so last−d
is the first primary occurrence. This means that P [d + 1,m] = P [1,m − d]. Assume there exists
d′ < d such that P [d′ + 1,m] = P [1,m − d′]; then last − d′ is also a primary occurrence, and vice
versa. If we know all the d′ values for which the condition on P holds, and store a table O[1,m]
with O[d] storing the largest valid d′ < d, we report each primary occurrence in constant time by
doing d← last − first , reporting last − d, then d← O[d], reporting last − d, and so on until d = 0,
that is, we have reported last .

Table O[1,m] can be computed in O(m) time using a variant of KMP algorithm [30], which
searches P$ for P (where $ is a special symbol not ocurring in P ) and keeps track of the positions
where P is aligned when the “text” pointer is at the “$” (those are called the “borders” of P ).

Let us now analyze the algorithm. Although each primary occurrence can trigger h insertions
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into H, nodes are not repeated in H, and thus there are at most O(min(h occ, n)) elements in H.
Thus the space is in the worst case O(min(h occ, n) log u + m log m) bits (the second part is for O).
As for the time, we pay O(log n) time to insert each primary occurrence into H and compute its
associated data, O(log n) time to extract it from H, and O(log n) time to find each of its parents
and insert them into H (each parent Xi → XlXr is processed at most twice, from Xl and from
Xr). Thus the overall cost of filling and emptying H is O(min(h occ, n) log n).

As for the process of reporting once H is emptied, note that the left and right pointers can be
traversed in constant time and, because in the tree induced by the left/right pointers each pointed
node either has at least one distinct primary occurrence, or it has two children, it follows that
the total traversal time is O(occ). Reporting all the primary occurrences can also be done in time
O(occ).

Overall, the time is O(min(h occ, n) log n+occ), provided we can afford the extra space at search
time.

6 Application to Re-Pair

Re-Pair [32] is a grammar-based compression method based on repeatedly replacing the most
frequent pair of (terminal or nonterminal) symbols in the text by a new nonterminal, until the
most frequent pair appears once. The result of Re-Pair compression is a dictionary D of d rules
plus a sequence C of n (terminal or nonterminal) symbols.

As such, we can handle Re-Pair by adding n−1 rules to the dictionary, so that the initial symbol
of the resulting SLP produces the sequence. We must also create σ rules that produce the terminals.
The resulting SLP has n′ = σ+d+n−1 rules and, if we create those n−1 rules in balanced fashion,
it will have height h′ = h + log n, where h is the maximum rule height in the dictionary. Thus
Theorem 5 can handle it using, for example (n + d+ σ)(log u+ 3 log(n + d+ σ)+ o(log(n + d+ σ)))
bits, and searching in time O((m(m + h + log n) log(n + d + σ) + (h + log n) occ) log(n + d + σ)).

We show next that this can be improved by specializing our solution a bit. Our data structures
will be as follows:

1. We use our binary relation data structure to represent just the dictionary, which is a forest,
that is, a set of trees. We add the σ rules to generate the terminals. Thus it will require
(d + σ)(log u + 3 log(d + σ) + o(log(d + σ))) bits of space, according to Theorem 3.

2. The sequence C is be represented with the structure for sequences over large alphabets [19].
This will require n(log(d+σ)+o(log(d+σ)) bits of space and carry out access in O(log log(d+
σ)) time and select in O(1) time.

3. We store a bitmap B[1, u] marking the positions of T where the symbols of C begin. It can be
represented in compressed form [21, Thm. 17 p. 153] such that it uses n log u

n
+O(n log log u

n
)

bits and supports rank and select in O(log n) time.

4. We store another labeled binary relation of (d + σ) rows and n columns. Value 1 ≤ i ≤ d + σ
is related to 1 ≤ j ≤ n with label 2 ≤ k ≤ n if the suffix of T that starts at the k-th symbol
of C is at lexicographical position j among all such suffixes, and the lexicographic position of
F(C[k − 1])rev , among all the distinct reversed nonterminals (and terminals), is i. We wish
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to carry out range searches on this binary relation. Yet, as there is exactly one point per
column, we do not need in practice bitmaps XA and XB . We choose constant-time access for
SL. This binary relation takes 2n(log n + o(log n)) bits of space, according to Theorem 3.

Thus the total space is n(log u + log n + log(d + σ)) + o(log n + log(d + σ)) + O(log log u
n
)) +

(d + σ)(log u + 3 log(d + σ) + o(log(d + σ))). This can be up to half the space of the trivial solution
if n >> d + σ, and in no case can be asymptotically larger.

The search for P proceeds just like for SLPs, paying time O((m(m+h) log(d+σ)+h occ) log(d+
σ)). However, this will only find occurrences inside dictionary symbols. For each occurrence with
offset o within symbol Xi, we look for all the positions pj = selectC(Xi, j), for j = 1, 2, . . ., and
report the text position select1(B, pj) + o, within overall time O(occ log n).

It remains to find the occurrences that overlap two or more entries in C. To find each of them just
once, we will find the partition PlPr such that Pl is the suffix of a single entry in C and Pr is the prefix
of a suffix in C. We already know the lexicographical range of each P rev

l within the F(Xi)
revs. We

now binary search each corresponding Pr within the n suffixes starting at phrase beginnings. The
contents of the t-th lexicographical suffix is obtained by accessing C[SL[t] . . .] and expanding each
symbol of C using the dictionary representation. This gives overall time O(m(m+h) log(d+σ) log n)
for the m binary searches. Now given the m lexicographical ranges of the suffixes, we carry out
the m range searches in O(m log n) time, and extract each occurrence in O(log n) time. To this we
must add the O(log n) time to map from position in C to position in T via bit vector B.

Overall, the search time can be written as O((m(m+h) log(n+d+σ)+h occ) log(d+σ))+occ log n.
This can be up to O(log n) times faster than the trivial approach (if n >> d+σ), and never worse.

7 Conclusions and Future Work

We have presented the first indexed compressed text representation based on Straight-Line Pro-
grams (SLP), which are as powerful as context-free grammars. It achieves space close to that of
the bare SLP representation (in many relevant cases, of the same order) and, in addition to just
uncompressing, it permits extracting arbitrary substrings of the text, as well as carrying out pat-
tern searches, in time usually sublinear on the grammar size. We also give interesting byproducts
related to powerful SLP and binary relation representations.

We regard this as a foundational result on the extremely important problem of achieving self-
indexes built on compression methods potentially more powerful than the current ones [41]. As
such, there are many lines open to future research:

1. Our space complexity has an n log u term, which can be superlinear on the SLP size for very
compressible texts. We tried hard to remove this term, for example by storing the sizes for
some sampled nonterminals and computing it for the others, but did not succeed in producing
a suitable sampling on the grammar DAG. The problem is related to minimum cuts in graphs
[4], which is not easy.

2. We have an O(h) term in the time complexities, which in case of very skewed grammar trees
can be as bad as O(n). There exist methods to balance a grammar to achieve h = O(log u)
[48], but it introduces a space penalty factor of O(log u), which is too large in practice. It
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would be interesting to achieve less balancing (e.g., h = O(
√

u) in exchange for a much lower
space penalty.

3. We have an O(m2) term in the search time. It would be interesting to try to reduce it to
O(m), as done for LZ78-based compressed indexes [46]. We could also use longest common
prefixes (LCPs) to try to reduce an O(m log n) to O(m+log n) in the binary search [36]. The
LCPs between successive elements in the F(Xi)s or F(Xi)

revs could be obtained via lowest
common ancestor (LCA) queries on the compressed trees [7].

4. Finally, as in other compressed indexes, there is the challenge of updating the SLP and the
index upon changes in the text, of working efficiently on secondary memory, and of allowing
more complex searches [41]. Extending the technique to LZ77-based compression [52] is also
an interesting challenge.
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