
Locally Compressed Suffix Arrays

Rodrigo González and Gonzalo Navarro
Dept. of Computer Science, University of Chile.

{rgonzale,gnavarro}@dcc.uchile.cl

Compressed text (self-)indexes have matured up to a point where they can replace a text by a
data structure that requires less space and, in addition to giving access to arbitrary text passages,

support indexed text searches. At this point those indexes are competitive with traditional text
indexes (which are very large) for counting the number of occurrences of a pattern in the text. Yet,
they are still hundreds to thousands of times slower when it comes to locating those occurrences
in the text. In this paper we introduce a new, local, compression scheme for suffix arrays which
permits locating the occurrences extremely fast, while still being much smaller than classical
indexes. The core of our contribution is the identification of the regularities exploited by the
compression based on function Ψ, used for long time in compressed text indexing, with those
exploited by Re-Pair on the differential suffix array. The latter enjoys the locality properties that
the former methods lack. As another consequence of this locality, we show that our index can be
implemented in secondary memory, where its access time improve thanks to compression, instead
of worsening as is the norm in other self-indexes. Finally, some byproducts of our work, such as
a compressed dictionary representation for Re-Pair, can be of independent interest.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems—Pattern matching, Computations on discrete structures,
Sorting and searching; H.2.1 [Database management]: Physical design—Access methods; H.3.2
[Information storage and retrieval]: Information storage—File organization; H.3.3 [Infor-

mation storage and retrieval]: Information search and retrieval—Search process

General Terms: Algorithms

Additional Key Words and Phrases: Compressed text indexing, compressed suffix arrays, Re-Pair

1. INTRODUCTION AND RELATED WORK

Compressed text indexing has become a popular alternative to cope with the prob-
lem of giving indexed access to large text collections without using up too much
space. Reducing space is important because it gives one the chance of maintaining
the whole collection in main memory. The current trend in compressed index-
ing is full-text compressed self-indexes [Navarro and Mäkinen 2007; Ferragina and
Manzini 2005; Grossi et al. 2003; Sadakane 2003; Navarro 2004; Ferragina et al.
2007]. Such a self-index (for short) replaces the text by providing fast access to
arbitrary text substrings, and in addition gives indexed access to the text by sup-

Partially supported by Yahoo! Research grant “Compressed data structures” (Chile) and Mil-
lennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan, Chile. An early partial
version of this article appeared in Proc. 18th Combinatorial Pattern Matching (CPM), LNCS
4580, pp. 216–227, 2007.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–27.

2 ·

porting fast search for the occurrences of arbitrary patterns. These indexes take
little space, usually from 30% to 150% of the text size (note that this includes the
text). This is to be compared with classical indexes such as suffix trees [Weiner
1973] and suffix arrays [Manber and Myers 1993], which require at the very least 10
and 4 times, respectively, the space of the text, plus the text itself. In theoretical
terms, to index a text T = t1 . . . tn over an alphabet of size σ, the best self-indexes
require nHk + o(n log σ) bits for any k ≤ α logσ n and any constant 0 < α < 1,
where Hk ≤ log σ is the k-th order empirical entropy of T [Manzini 2001; Navarro
and Mäkinen 2007]1. Just the uncompressed text alone would need n log σ bits,
and classical indexes require O(n log n) bits on top of it.

The search functionality is given via two operations. The first is, given a pattern
P = p1 . . . pm, count the number of times P occurs in T . The second is to locate
the occurrences, that is, list their positions in T . Current self-indexes achieve a
counting performance that is comparable in practice with that of classical indexes.
In theoretical terms, for the best self-indexes the complexity is O(m(1 + log σ

log log n))

and even O(1 + m
logσ n), compared to O(m log σ) of suffix trees and O(m log n) or

O(m+log n) of suffix arrays. Locating, on the other hand, is far behind, hundreds to
thousands of times slower than their classical counterparts. While classical indexes
pay O(occ) time to locate the occ occurrences, self-indexes pay O(occ logε n), where
ε can in theory be any constant larger than zero but is in practice larger than
1. Worse than that, the memory access patterns of self-indexes are highly non-
local, which makes their potential secondary-memory versions rather unpromising.
Extraction of arbitrary text portions is also quite slow and non-local compared to
having the text directly available as in classical indexes. The only implemented
self-index which has more local accesses and faster locate is the LZ-index [Navarro
2004], yet its counting time is not competitive.

In this paper we propose a suffix array compression technique that builds on well-
known regularity properties that show up in suffix arrays when the text they index is
compressible (more precisely, the runs in the Ψ function of the suffix array, or which
is the same, the number of equal-letter runs in the Burrows-Wheeler transform of
the text [Navarro and Mäkinen 2007]). This regularity has been exploited in several
ways in the past [Mäkinen 2003; Grossi and Vitter 2006; Grossi et al. 2003; Sadakane
2003; Mäkinen and Navarro 2005], but we present a completely novel technique to
take advantage of it. We represent the suffix array using differential encoding, which
converts the regularities into true repetitions. Those repetitions are then factored
out using Re-Pair [Larsson and Moffat 2000], a compression technique that builds a
dictionary of phrases and permits fast local decompression using only the dictionary
(whose size one can limit at will, at the expense of losing some compression). We
then introduce novel techniques to further compress the Re-Pair dictionary, which
can be of independent interest. We also use specific suffix array properties to obtain
a much faster compression method that loses just up to 1% of compression ratio.

Our so-called locally compressed suffix array (LCSA) is shown to reduce the suffix
array to 20–70% of its original size, depending on the compressibility of various text
types. This reduced index can still extract any portion of the suffix array very fast

1In this paper log stands for log2.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

by adding a small set of sampled absolute values. By using the deep connection
with function Ψ, we prove that the size of the result is O(Hk log 1

Hk
n log n) + o(n)

bits2 for any k ≤ α logσ n and any constant 0 < α < 1. Note that this reduced
suffix array is not yet a self-index as it cannot reproduce the text.

This structure can be used in two ways. One way is to attach it to a self-index
able of counting, which in this process identifies as well the segment of the (virtual)
suffix array where the occurrences lie. We can then locate the occurrences by
decompressing that segment using our structure. The result is a self-index that
needs 1–3 times the text size (that is, considerably larger than current self-indexes
but also much smaller than classical indexes) and whose counting and locating
times are competitive with those of classical indexes, far better for locating than
current self-indexes. In theoretical terms, assuming for example the use of an
alphabet-friendly FM-index [Ferragina et al. 2007] for counting, our index needs
O(Hk log 1

Hk
n log n+n) bits of space, counts in time O(m(1+ log σ

log log n)) and locates

the occ occurrences of P in time O(occ + log n). In practice, even letting classical
self-indexes use the same amount of space to speed up their locating time, they are
much slower than our LCSA for reporting more than a few occurrences (2–10).

A second and simpler way to use the structure is, together with the plain text, as
a replacement of the classical suffix array. In this case we must not only use it for
locating the occurrences but also for binary searching. The binary search is done
over the samples first and then we decompress the area between two consecutive
samples to finish the search. This yields a very practical alternative requiring 0.8–
2.4 times the text size (as opposed to 4) plus the text, in exchange for being just
2–28 times slower for locating.

On the other hand, if the text is very large, even a compressed index must reside
on disk. Performing well on secondary memory with a compressed index has proved
extremely difficult, because of their non-local access pattern. Thanks to its local
decompression properties, our reduced suffix array performs very well on secondary
memory. It needs the optimal ⌈ occ

B ⌉ disk accesses for locating the occ occurrences,
being B the disk block size measured in integers. On average, if the compression
ratio (compressed divided by uncompressed suffix array size) is 0 ≤ c ≤ 1, we
perform ⌈ c·occ

B ⌉ accesses. That is, our index actually performs better, not worse
(as it seems to be the norm), thanks to compression. We show how to build this
structure almost I/O-optimally in secondary memory for large suffix arrays.

Achieving compressed indexes able of counting in competitive time was the first
important breakthrough in this area. We believe our work is a first important step
towards compressed indexes with practical locating times. This is up to date the
major concern for adopting compressed indexes in practical applications.

This paper is organized as follows. In Section 2 we describe our LCSA. In sec-
tion 3 we analyze its compression ratio, relating it to the compressibility of the text.
In Section 4 we show how to use the LCSA as part of various indexing schemes. In
Section 5 we carry out several experimental tunings and comparisons with alterna-
tive compressed and classical indexes. In Section 6 we give a secondary memory

2This result is meaningful for Hk = o(1). The general result is O(N(1 + log n
N

) log n) bits, where

N is the number of runs in Ψ. Acording to Mäkinen and Navarro [2005], N ≤ min(n, nHk + σk)
for any k.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·

construction algorithm for the LCSA when the structures do not fit in main mem-
ory. Finally, in Section 7 we give our conclusions and future work directions.

2. A LOCALLY COMPRESSED SUFFIX ARRAY (LCSA)

Given a text T = t1 . . . tn over alphabet Σ of size σ, where for technical reasons we
assume tn = $ is smaller than any other character in Σ and appears nowhere else
in T , a suffix array A[1, n] is a permutation of [1, n] such that TA[i],n ≺ TA[i+1],n

for all 1 ≤ i < n, being “≺” the lexicographical order. By Tj,n we denote the suffix
of T that starts at position j. Since all the occurrences of a pattern P = p1 . . . pm

in T are prefixes of some suffix, a couple of binary searches in A suffice to identify
the segment in A of all the suffixes that start with P , that is, the segment pointing
to all the occurrences of P . Thus the suffix array permits counting the occurrences
of P in O(m log n) time and reporting the occ occurrences in O(occ) time. With
an additional array of integers, the counting time can be reduced to O(m + log n)
[Manber and Myers 1993].

Suffix arrays turn out to be compressible whenever T is. The k-th order empirical
entropy of T , Hk [Manzini 2001], shows up in A in the form of large segments
A[i, i + ℓ] that appear elsewhere in A[j, j + ℓ] with all the values shifted by one
position, A[j + s] = A[i + s] + 1 for 0 ≤ s ≤ ℓ. Actually, one can partition A into
runs of maximal segments that appear repeated (shifted by 1) elsewhere, and the
number of such runs is at most nHk + σk for any k [Mäkinen and Navarro 2005;
Navarro and Mäkinen 2007].

This property has been used several times in the past to compress A. Mäkinen’s
Compact Suffix Array (CSA) [Mäkinen 2003] replaces runs with pointers to their
definition (copy) elsewhere in A, so that the run can be recovered by (recursively)
expanding the definition and shifting the values. Mäkinen and Navarro [2005] use
the connection with FM-indexes (runs in A are related to equal-letter runs in the
Burrows-Wheeler transform of T , basic building block of FM-indexes) and run-
length compression. Yet, the most successful technique to take advantage of those
regularities has been the definition of function Ψ(i) = A−1[A[i] + 1] (or A−1[1] if
A[i] = n). It can be seen that Ψ(i) = Ψ(i− 1) + 1 within runs of A, and therefore
a differential encoding of Ψ is highly compressible [Grossi et al. 2003; Sadakane
2003].

2.1 Basic LCSA Idea

We present a completely different method to compress A. We first represent A in
differential form A′:

Definition 1. Let A[1, n] be an array of integers. Then we define A′[1, n] as
follows: A′[1] = A[1] and A′[i] = A[i]−A[i− 1] for all 1 < i ≤ n.

The next simple lemma shows that runs of A become true repetitions in A′.

Lemma 1. Consider a run of A of the form A[j +s] = A[i+s]+1 for 0 ≤ s ≤ ℓ.
Then A′[j + s] = A′[i + s] for 1 ≤ s ≤ ℓ.

Proof. A′[j + s] = A[j + s]−A[j + s− 1] = (A[i + s] + 1)− (A[i + s− 1] + 1) =
A[i + s]−A[i + s− 1] = A′[i + s].

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

We can now exploit those repetitions using any classical compression method. In
particular, we seek a method that allows fast local decompression of A′.

We resort to Re-Pair [Larsson and Moffat 2000], a dictionary-based compression
method based on the following algorithm:

(1) Identify the most frequent pair A′[i]A′[i + 1] in A′, let ab be such pair.

(2) Create a new integer symbol s, larger than all existing symbols in A′, and add
rule s→ ab to a dictionary R.

(3) Replace every occurrence of ab in A by s.3

(4) Iterate until every pair has frequency 1.

The result of the compression algorithm is the dictionary of rules R plus the
sequence C of (original and new) symbols into which A′ has been compressed. Note
that R can be easily stored as a vector of pairs, so that rule s→ ab is represented
by R[s− n] = a : b.

Any portion of C can be easily decompressed in optimal time and fast in practice.
To decompress C[i], we first check if C[i] ≤ n. If it is, then it is an original symbol
of A′ and we are done. Otherwise, we obtain both symbols from R[C[i]− n], and
expand them recursively (they can in turn be original or created symbols, and so
on). We reproduce u cells of A′ in O(u) time, and the accesses pattern is local if R
is small.

Since R grows by 2 integers (a, b) for every new pair, we could stop creating
pairs when the most frequent one appears only twice. R can be further reduced by
preempting this process, which trades its size for overall compression ratio.

Apart from R and C, we need a few more structures to recover the values of A:

—An array S such that S[i] = A[i· l], that is, a sampling of absolute values of A at
regular intervals l.

—A bitmap L[1, n], marking the positions where each symbol of C (which could
represent several symbols of A′) starts in A′.

—o(n) further bits to answer rank queries on L in constant time [Jacobson 1989;
Navarro and Mäkinen 2007], where rank(L, i) is the number of 1’s in L[1, i].

With this structure, the algorithm to retrieve A[i, j] is as follows:

(1) Check if there is a multiple of l in [i, j], extending i to the left or j to the right
to include such a multiple if necessary.

(2) Use the mechanism to decompress one symbol in C (described above) to obtain
A′[i, j], by expanding C[rank(L, i), rank(L, j)]. We expand from right to left,
so the first symbol may be not totally expanded.

(3) Use any absolute sample of A included in S[⌊i/l⌋, ⌊j/l⌋] to obtain, using the
differences in A′[i, j], the values A[i, j].

(4) Return the values in the original requested interval [i, j].

3If a = b it might be impossible to replace all occurrences, e.g. aa in aaa. But, in such case, one
can at least replace each other occurrence in a row.

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·

The overall time complexity of this decompression is the output size plus what
we have expanded the interval to include a multiple of l (i.e., O(l)) and to ensure
an integral number of symbols in C. The latter can be controlled by limiting the
length of the uncompressed version of the symbols we create.

2.2 Compression using Ψ

A weak point of using Re-Pair is its compression speed and space usage. Re-Pair
can be implemented in O(n) time, but this needs too much space [Larsson and
Moffat 2000]. Instead of using the original Re-Pair, we opt for a technique that
needs less space and usually runs in O(n log n) time. This technique is not too
interesting (and we do not describe it) except as a control value to test our more
important contribution: We introduce a fast approximate technique specialized to
compressing suffix arrays A. We show that Ψ (which is easily built in O(n) time
from A) can be used to obtain a much faster compression algorithm, which in
practice compresses almost as much as the original Re-Pair.

Recall that Ψ(i) tells where in A is the value A[i]+1. The idea is that, if A[i, i+ℓ]
is a run such that A[j +s] = A[i+s]+1 for 0 ≤ s ≤ ℓ (and thus A′[j +s] = A′[i+s]
for 1 ≤ s ≤ ℓ), then Ψ(i + s) = j + s for 0 ≤ s ≤ ℓ. Thus, by following permutation
Ψ we have a good chance of finding repeated pairs in A′. The basic idea is to
choose the pairs while following permutation Ψ, cycling several times over A′, until
no further replacements can be done. This does not guarantee to choose the same
pairs of the original Re-Pair, but we expect them to be sufficiently good.

Data Structures. To compress using Ψ we need only two arrays and one bitmap.

—An array D[1, n], which initially stores the suffix array of text T in differential
form, D[i] = A′[i] ∀i. At the end, we compact the valid values of D to obtain C.

—An array P [1, n], which initially stores the values of function Ψ of text T , P [i] =
Ψ(i) ∀i.

—The bitmap L[1, n], where L[i] = 1 indicates that D[i] is a valid value. In the
beginning L[i] = 1 ∀i. At the end, L can be preprocessed for rank queries and
is ready for querying.

When we replace a pair with a new symbol, array D becomes sparse. A way to
find the next valid symbol in constant time is as follows: If a valid symbol D[i] is
followed by an invalid symbol D[i + 1] (that is, L[i, i + 1] = 10), then D[i + 1] can
be used to store the distance i′ − i to the next valid symbol D[i′] (we use i′ with
this meaning, for any i, in the next algorithm description). This permits obtaining
any pair of the sparse D in constant time.

In practice, it turns out to be faster to calculate i′ = selectnext(L, i), which
returns the position of the first 1 in L[i + 1, n], by scanning the bitmap word-wise.

Algorithm. We make a number of passes over D. Each pass starts at i = 1 (where
value A′[1] = A[1] = n will not be replaced by Re-Pair as it is unique). For each i
visited along the pass, we see if D[i]D[i′] = D[P [i]]D[P [i]′]. If this does not hold,
we move on to i← P [i] and iterate. If, instead, equality holds, we start a chain of
replacements: We add a new pair s → D[i]D[i′] to R, make the replacements at i
and P [i] (invalidating i + 1 and P [i] + 1), and move on to i← P [i], continuing the

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

replacements until the pair changes. In this process, when a position P [j] becomes
invalid, we set P [j] ← P [P [j]], so that the position is skipped in the next pass.
When the pair finally changes, that is, D[i]D[i′] 6= D[P [i]]D[P [i]′], we restart the
process with i ← P [i], looking again for a new pair to create. We keep running
passes over D (using P) as long as we replace at least αn′ pairs in a pass, where
0 < α < 1 is a constant and n′ is the number of valid elements in D in the previous
pass. Figure 1 shows a more detailed pseudocode.

Algorithm Compress(D, P , α)
s← n, R← ∅
for i← 1 . . . n do L[i]← 1
n′ ← n, rep← 0
do n′ ← n′ − rep

rep← 0
j ← 1, j′ ← selectnext(L, j)
do

do i← j, i′ ← j′

while L[P [i]] = 0 do P [i]← P [P [i]]
j ← P [i], j′ ← selectnext(L, j)

while j 6= 1 and D[i]D[i′] 6= D[j]D[j′]
if j 6= 1 then

ab← D[i]D[i′], s← s + 1, R← R ∪ {s→ ab}
D[i]← s, L[i′]← 0, rep← rep + 1
do D[j]← s, L[j′]← 0, rep← rep + 1

i← j, i′ ← j′

while L[P [i]] = 0 do P [i]← P [P [i]]
j ← P [i], j′ ← selectnext(L, j)

while j 6= 1 and ab = D[j]D[j′]
while j 6= 1

while (rep > αn′)
j ← 1

for i← 1 . . . n do

if L[i] = 1 then D[j]← D[i], j ← j + 1
return (C[1, n′] = D, R, L)

Fig. 1. Algorithm to compress D = A′ using P = Ψ in O(n) time.

Cost. Let ni be the number of elements in the i-th pass, then ni+1 ≤ (1 − α)ni.
Since n0 = n, it holds ni ≤ (1−α)in. The i-th pass costs O(ni) time. Let k be the
number of passes doing more than αn′ replacements. So the total cost is at most

k
∑

i=0

(1 − α)in + (1− α)kn ≤ n
∑

i≥0

(1 − α)i + (1− α)kn ≤

(

1 +
1

α

)

n = O(n).

Thus our algorithm achieves linear time while requiring only the space for D
(overwritten on A′ and finally leaving there C), for P (overwritten on Ψ), and for
L (which is also needed in the final structure). It is also simple and fast in practice.

2.3 Stronger Compression based on Ψ

The only advantage of using the original Re-Pair is that it yields better compression
and enforces the property that each new rule in the dictionary removes no more

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·

pairs than the previous rule. The latter comes from the fact that the pairs in Re-
Pair are replaced in decreasing order of frequency. This prevents less frequent pairs
to break longer chains of replacements. We now modify the algorithm that uses
Ψ to obtain compression ratios as close to Re-Pair’s as desired, at the expense of
O(n log n) complexity (multiplied by a constant that increases as the compression
ratio improves). The key idea is to replace longer chains first.

Algorithm. The algorithm is as follows:

—We make one pass searching for the longest chain of equal pairs obtained by
following Ψ, let f be its length.

—We apply the previous algorithm, yet we only replace the chains of length at least
t0 = δ · f , where 0 < δ < 1 is a constant.

—Again we apply the previous algorithm using t1 = δ · t0 then t2 = δ · t1 and so
on, until ti ≤ γ. At this point we decrement ti one by one until we reach ti = 1.
Here γ is another parameter.

Cost. We already know that the total cost of all passes that replace more than
(1 − α)n′ elements adds up to O(n). The number of passes where we replace less
than (1 − α)n′ pairs, on the other hand, is at most logδ f + γ. This is, logδ f for
the part where t(·) decreases by a δ fraction, plus γ for the part where t(·) decreases
one by one. Thus the total cost is at most:

1

α
n + (logδ f + γ) n.

Now, if we choose a constant s, α = 1/(s· log n), and γ = log n, the total time is
O(n log n). Choosing other values of s, δ and γ we obtain better complexities, but
worsen the compression quality. Within O(n log n) complexity, we can improve the
compression ratio by tuning δ and s.

2.4 Compressing the Dictionary

We now develop a technique to reduce the dictionary of rules R without affecting
C. This can be of independent interest for Re-Pair in general. We note that the
dictionary compression methods in the original Re-Pair article [Larsson and Moffat
2000] achieve much more compression. The advantage of our scheme is that we can
decompress parts of the text without uncompressing the dictionary. This permits
handling larger dictionaries in main memory.

A first observation is that, if we have a rule s → ab and s is only mentioned
in another rule s′ → sc, then we could perfectly remove rule s → ab and rewrite
s′ → abc. This gives a net gain of one integer, but now we have rules of varying
length. This is easy to manage, but we prefer to go further. We develop a technique
that permits eliminating every rule definition that is used within R, once or more,
and gain one integer for each such rule eliminated. The key idea is to write down
explicitly the binary tree formed by expanding the definitions (by doing a preorder
traversal and writing 1 for internal nodes and 0 for leaves), so that not only the
largest symbol (tree root) can be referenced later, but also any subtree.

For example, assume the rules R = {s→ ab, t→ sc, u→ ts}, and C = tub. We
could first represent the rules by the bitmap RB = 100100100 (where s corresponds

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

to position 1, t to 4, and u to 7) and the sequence RS = ab1c41 (we are using letters
for the original symbols of A′, and bitmap positions as the identifiers of created
symbols). We express C as 47b. To expand, say, 4, we go to position 4 in RB

and compute rank0(RB, 4) = 2 (number of zeros up to position 4, rank0(i) =
i − rank(i)). Thus the corresponding symbols in RS start at position 2 + 1 = 3.
We extract one new symbol from RS for each new zero we traverse in RB, and
stop when the number of zeros traversed exceeds the number of ones (this means
we have completed the subtree traversal). This way we obtain the definition 1c for
symbol 4.

More generally, R can be seen as R = {s1 → a1b1, s2 → a2b2, . . . , sk → akbk},
where indeed sk = n + k (as n = A′[1] = A[1] is the maximum value in A′). Thus,
we write down RB, RS and the new C as follows (note that positions in RB are
written in RS shifted by n to distinguish them from the original symbols):

—RB = (100)k.

—RS = a1b1a2b2 . . . akbk = r1r2r3 . . . r2k, except that if ri > n we set it to ri =
n + 1 + 3(ri − n− 1), so that they point to the 1’s in RB.

—C = c1c2 . . . cn′ undergoes the same transformation: if ci > n, we set it to
ci = n + 1 + 3(ci − n− 1).

Let us now reduce the dictionary, in our example, by expanding the definition of
s within t (even if s is used elsewhere). The new bitmap is RB = 11000100 (where
t = 1, s = 2, and u = 6), the sequence is RS = abc12, and C = 16b. We can now
remove the definition of t by expanding it within u. This produces the new bitmap
RB = 1110000 (where u = 1, t = 2, s = 3), the sequence RS = abc3 and C = 21b.
Further reduction is not possible because u’s definition is only used from C.4 At
the cost of storing at most 2|R| bits (for RB), we can reduce R by one integer for
each definition that is used at least once within R.

The reduction can be easily implemented in linear time, avoiding the successive
renamings of our example, as follows: We first check for each rule if it is used
within R, marking this in a bitmap U . Then we traverse R and only write down
(the bits of RB and the sequence RS for) the entries that are not used within R.
We recursively expand those entries, appending the resulting tree structure to RB

and leaf identifiers to RS . Whenever we find a created symbol that does not yet
have an identifier, we give it as identifier the current position in RB and recursively
expand it. We store these new identifiers in an array NV . Otherwise the expansion
finishes and we write down a leaf (a "0") in RB and the identifier in RS . Then we
rewrite C using the renamed identifiers. Figure 2 shows detailed pseudocode.

We can further compress the dictionary, if we take into account that a rule
only uses previous rules or original symbols. That is, the i-th rule can only point
to elements with representation of length ⌈log2 i⌉ bits. With a simple arithmetic
computation we can directly access any rule.

Another way to further compress the dictionary, yet with a time penalty, is
as follows: Instead of using the position i of a rule inside bitmap RB, use j =

4It is tempting to replace u in C, as it appears only once, but our example is artificial: A symbol
that is not mentioned in R must appear at least twice in C.

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·

Algorithm Compress Dictionary(R = {s1 → a1b1, . . . , sk → akbk}, C = c1 . . . cn′)
for i← 1 . . . k do U [i]← 0
for i← 1 . . . k do

if ai > n then U [ai − n]← 1
if bi > n then U [bi − n]← 1

for i← 1 . . . k do NV [i]← 0
j ← 1, RB ← 〈〉, RS ← 〈〉
LRB ← 0 // length in bits of bitmap RB

for j ← 1 . . . k do

if U [j] = 0 then Expand Rule(j)
for i← 1 . . . n′ do

if ci > n then ci ← NV [ci − n] + n
return (RB , RS , C)

Algorithm Expand Rule(j)
RB ← RB : 1, LRB ← LRB + 1
NV [j]← LRB

if aj ≤ n then

RS ← RS : aj , RB ← RB : 0, LRB ← LRB + 1
else if NV [aj − n] > 0 then

RS ← RS : NV [aj − n] + n, RB ← RB : 0, LRB ← LRB + 1
else Expand Rule(aj − n)
if bj ≤ n then

RS ← RS : bj , RB ← RB : 0, LRB ← LRB + 1
else if NV [bj − n] > 0 then

RS ← RS : NV [bj − n] + n, RB ← RB : 0, LRB ← LRB + 1
else Expand Rule(bj − n)

Fig. 2. Algorithm to compress the dictionary R and to update C in O(n) time.RB , RS , NV , and
LRB act as global variables. “〈〉” is the empty sequence and “:” the concatenation operator.

rank1(RB, i). Given that j, we find the position in RB where the rule starts with
i = select1(RB , j). We gain at least 1 bit per rule in the dictionary and in the text.

3. ANALYSIS OF COMPRESSION RATIO

We analyze the compression ratio of our data structure, first for the exact and then
for our approximate method based on Ψ.

Let N be the number of runs in Ψ. As shown in [Mäkinen and Navarro 2005;
Navarro and Mäkinen 2007], N ≤ min(n, nHk + σk) for any k ≥ 0. Except for the
first cell of each run, we have that A′[i] = A′[Ψ(i)] within the run. Thus, we cut off
the first cell of each run, to obtain up to 2N runs in A′. Every pair A′[i]A′[i + 1]
contained in such runs must be equal to A′[Ψ(i)]A′[Ψ(i) + 1], thus the only pairs
of cells A′[i]A′[i + 1] that are not equal to the “next” pair are those where i is the
last cell of its run. This shows that there are at most 2N different pairs in A′, as
a traversal following Ψ permutation will change pairs only 2N times.

Exact Re-Pair. Since there are at most 2N different pairs, the most frequent
pair appears at least n

2N times. Because of overlaps, it could be that only each
other occurrence can be replaced, thus the total number of replacements in the first
iteration is at least βn, for β = 1

4N .
After we choose and replace the most frequent pair, we end up with at most

n(1− β) integers in A′. The number of runs has not varied, because a replacement

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

cannot split a run. Thus, the same argument shows that the second time we end
up with at most n(1− β)2 symbols, and so on.

After M iterations, the length of C is at most n(1 − β)M and the length of R
is 2M . Assume for a while N/n ≤ 1/4, thus βn ≥ 1. The total size is optimized

for M∗ =
lnn+ln ln 1

1−β
−ln 2

ln 1

1−β

, where it is
2(ln n+ln ln 1

1−β
−ln 2+1)

ln 1

1−β

. (Re-Pair shortens the

total file size in each new iteration, so the final result cannot be worse than that
after M∗ iterations.) Since ln 1

1−β = ln 4N
4N−1 = 1

4N (1 + O(1
N)), we have M∗ =

ln n
4N + O(1) and the total size is 8N ln n

4N + O(N) integers. Since N ≤ Hkn + σk,
if we stick to k ≤ α logσ n for any constant 0 < α < 1, it holds σk = O(nα) and
N/n ≤ Hk + O(nα−1). If Hk + O(nα−1) < 1/e the space formula is increasing as
a function of N , thus the total space is O((nHk + O(nα)) log 1

Hk+O(nα−1) + nHk +

O(nα)) = O(nHk log 1
Hk+O(nα−1) + nα log n) integers. As h log 1

h+x = h log 1
h +

h log 1
1+x/h = h log 1

h + O(x), the space is O(nHk log 1
Hk

+ nα log n) integers. This

is O(Hk log 1
Hk

n logn)+ o(n) bits, as even after the M∗ replacements the numbers

need Θ(log n) bits. The result is interesting only for N = o(n) and Hk = o(1), in
which case all of our conditions on N and Hk hold. Yet, note that the results hold
anyway for larger Hk and N .

Theorem 1. After running exact Re-Pair, our structure represents A′ using
R and C in O(N(1 + log n

N)) integers, where N is the number of runs in Ψ. If
Hk = o(1), this is O(Hk log 1

Hk
n log n) + o(n) bits, for any k ≤ α logσ n and any

constant 0 < α < 1. Otherwise the space is O(n log n) bits.

As a comparison, Mäkinen’s CSA [Mäkinen 2003] needs O(Hkn log n) bits of
space [Navarro and Mäkinen 2007], which is always better as a function of Hk. Yet,
both tend to the same space as Hk goes to zero. Other self-indexes are usually
smaller.

Approximate Re-Pair. We now show that the simplified replacement methods of
Sections 2.2 and 2.3 reach the same asymptotic space complexity. Assume as before
that N and Hk are sufficiently small.

Just as for the exact method, the traversal using Ψ will create up to 2N pairs per
pass. Assume for simplicity that, as we find each new pair in the traversal using
Ψ, we always replace the pair, even if this involves creating it in R for just one
occurrence in C (this is never better than the real algorithm). Thus we try to make
all the |A′| replacements, but we may fail because replacements overlap. That is,
assume we have abcd and first replace s→ bc. In the new sequence asd we cannot
make a replacement s′ → ab nor s′ → cd. Indeed, in the best case we can carry
out ⌊|A′|/2⌋ replacements, whereas in the worst case this is only ⌊|A′|/3⌋ (when we
first choose all multiples of 3 as initial pair positions).

This shows that, in the first pass over Ψ, we add up to 4N integers to R and
remove at least n/3 integers from A′. For the next pass, the key point is that the
number of runs is still limited by 2N : If we had that A′[i] = A′[Ψ(i)], the fact stays
valid after we replace both A′[i] and A′[Ψ(i)] by a new symbol (cells A′[i + 1] and
A′[Ψ(i) + 1] are invalid for the next pass). Therefore we can analyze the process
using recurrence S(n) = 4N + S(2n/3). If we repeat the process i times and then
call C the remaining cells of A′, we get S(n) = 4Ni + (2/3)in, which is optimized

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·

for i∗ = log3/2(n/4N) − 1 iterations, where we get S(n) = O(N log n
N) integers.

Even after adding O(Ni∗) new symbols these integers need Θ(log n) bits.

Stronger approximate Re-Pair. This analysis is similar to that of exact Re-Pair.
The relevant invariant, which is easy to check from the description of Section 2.3, is
as follows: The approximate algorithm always replaces a pair that appears at least
δ · f times, being f the frequency of the currently most frequent pair. In this sense,
the algorithm acts as a δ-approximation.

In exact Re-Pair, we first replace the most frequent pair, which appears at least
n

2N times. In this case, we first replace a pair that appears at least δn
2N times. This

gives us a total number of replacements in the first iteration of at least β′n, where
β′ = δβ = δ

4N . The same occurs at each stage of the algorithm. Applying the
same arguments of the analysis of exact Re-Pair with this new β′, and the fact that
0 < δ < 1 is a constant, we obtain the same result as in Theorem 1.

Theorem 2. The process of replacing pairs following permutation Ψ, in either
of its variants, achieves a data structure that fits in O(N(1+log n

N)) integers, where
N is the number of runs in Ψ. If Hk = o(1), this is O(Hk log 1

Hk
n log n) + o(n)

bits, for any k ≤ α logσ n and any constant 0 < α < 1. Otherwise, the space is
O(n log n) bits.

4. TOWARDS A TEXT INDEX

As explained in the Introduction, the LCSA is not by itself a text index. We explore
now some alternatives to upgrade it to a full-text index.

4.1 A Smaller Classical Index

A simple and practical alternative is to use our LCSA just like the classical suffix
array, that is, not only for locating but also for searching, keeping the text in
uncompressed form as well. This is not really a compressed index, but a practical
alternative to a classical index.

The binary search of the interval that corresponds to P will start over the absolute
samples of our LCSA. Only when we have identified the interval between consecutive
samples of A where the binary search must continue, we decompress the whole
interval and finish the binary search. If the two binary searches finish in different
intervals, we will also need to decompress the intervals in between for locating all
the occurrences. For displaying, the text is at hand.

The cost of this search is O(m log n) plus the time needed to decompress the
portion of A between two absolute samples. We can easily force the compressor to
make sure that no symbol in C spans the limit between two such intervals, so that
the complexity of this decompression can be controlled with the sampling rate l.
For example, l = O(log n) guarantees a total search time of O(m log n + occ), just
as the suffix array version that requires 4 times the text size (plus text).

Theorem 3. There exists a full-text index for text T of length n over an alphabet
of size σ and k-th order entropy Hk, which requires O(Hk log 1

Hk
n logn+n log1−ǫ n)

bits of space in addition to T , for any constant 0 ≤ ǫ ≤ 1, any k ≤ α logσ n and
any constant 0 < α < 1. It can count the occurrences of a pattern of length m in
time O(m log n) and locate its occ occurrences in time O(occ + logǫ n).

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

The theorem is obtained by considering that C and R use O(Hk log 1
Hk

n log n +

nα log2 n) bits, to which we must add O((n/l) log n) bits for the absolute samples
in A′, and the extra cost to limit the formation of symbols that represent very long
sequences. If we limit such symbol lengths to l as well, we have an overhead of
O((n/l) log n) bits, as this can be regarded as inserting spurious symbols every l
positions in A′ to prevent the formation of longer symbols. By choosing l = logε n
we have O(Hk log 1

Hk
n log n + n log1−ε n) bits of space. The time is O(m log n +

logε n) for counting, and O(occ + logε n) for locating the occurrences.

4.2 A Compressed Self-Index

Another choice to achieve a full-text index is to plug our LCSA to any of the many
self-indexes able of giving the suffix array range of the occurrences of P within
little space [Ferragina and Manzini 2005; Ferragina et al. 2007; Sadakane 2003;
Grossi et al. 2003]. Given the area [i, j] where the occurrences lie in A, locating the
occurrences boils down to decompressing A[i, j] from our LCSA structure.

To fix ideas, consider the alphabet-friendly FM-index [Ferragina et al. 2007]. It
takes nHk + o(n log σ) bits of space for any k ≤ α logσ n and constant 0 < α < 1,
and can count in time O(m(1 + log σ

log log n)). Our additional structure dominates the

space complexity, requiring O(Hk log 1
Hk

n log n + n log1−ε n) bits.
Extracting substrings can be done with the same FM-index, but the time to dis-

play ℓ text characters is, using n log1−ε n additional bits of space, O((ℓ+logε n)(1+
log σ

log log n)). By using instead the structure proposed by González and Navarro [2006]

we have other nHk + o(n log σ) bits of space for k = o(logσ n) (this space is asymp-
totically negligible) and can extract the characters in optimal time O(1 + ℓ

logσ n).

Theorem 4. There exists a self-index for text T of length n over an alphabet of
size σ and k-th order entropy Hk, which requires O(Hk log 1

Hk
n log n+n log1−ε n)+

o(n log σ) bits of space, for any 0 ≤ ε ≤ 1. It can count the occurrences of a
pattern of length m in time O(m(1 + log σ

log log n)) and locate its occ occurrences in

time O(occ + logε n). For k = o(logσ n) it can display any text substring of length
ℓ in time O(1 + ℓ

logσ n). For larger k ≤ α logσ n, for any constant 0 < α < 1, this

time becomes O((ℓ + logε n)(1 + log σ
log log n)).

4.3 A Secondary Memory Index

In this section we design an LCSA structure that works in secondary memory, re-
trieving the occ occurrences with ⌈ occ

B ⌉ accesses to disk. This is worst-case optimal.
Assume table R is small enough to fit in main memory. This always can be

achieved at the price of losing some compression, by simply preempting the process
when the size of the dictionary exceeds the alloted memory. During construction,
by using an extra bit per rule, we can predict exactly the final size the dictionary
R will have after applying the compression method of Section 2.4, without yet
carrying out that compression: When we create a rule, its extra bit is set to 0 and
the space usage is increased by three bits (RB) plus two integers (RS). Then, every
time we use a rule a inside another one, we check the extra bit of a. If the bit is
still 0, we set it to 1 and decrease the space usage of R by one bit (RB) and one
integer (RS). Otherwise, we do nothing.

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·

To retrieve an interval of the suffix array, we read its corresponding area of C
from disk, and uncompress each cell in memory by using R without any further
disk access. We need a sample of the suffix array inside each read block to undo
the differential form of A′; this sample can be stored within the same disk block.
To determine the disk block where the desired area of C lies, we also need an in-
memory binary search over an array storing the absolute position of the first C cell
of each disk block. All these amount to a couple of extra integer values per disk
block, which is negligible (a B-tree-like structure could be used in the unlikely case
the absolute positions array does not fit in main memory).

On average, if we achieved compression ratio c ≤ 1, we will need to read c · occ
cells from C, at a cost of ⌈ c·occ

B ⌉. Therefore, we achieve for the first time a locating
complexity that is better thanks to compression, not worse. Note that Mäkinen’s
CSA [Mäkinen 2003] would not perform well at all under this scenario, as the
decompression process is highly non-local.

González and Navarro [2007] describe an index that uses O(n
Bt ·σ log n+ n

B log n)
bits in main memory and nHk(T) + O(σk+1 log n) + O(n

B ·σ log(t ·B log n)) bits in
secondary memory, where B is the number of bits in a disk block and t a parameter.
It can identify the suffix array area containing the occurrences of a pattern of length
m (and thus count its occurrences) using at most 2(m− 1) accesses to disk. This
structure can be enhanced to an index able of locating by plugging a secondary
memory version of our LCSA.

To extract text passages of length ℓ in optimal time one can use compressed
sequence mechanisms like that of González and Navarro [2006], which easily adapts
to disk and offers local decompression [González and Navarro 2007].

Similarly, other secondary memory data structures relying on suffix arrays can
benefit from replacing it by our secondary-memory LCSA. Some examples are the
Compact Pat Tree (CPT) [Clark and Munro 1996], which represents a suffix tree
in secondary memory in compact form, storing in its leaves the suffix array values;
the String B-tree [Ferragina and Grossi 1999], based on a combination between
B-trees and Patricia tries, which can be used as a suffix array; the backward-
searched Compressed Suffix Array [Mäkinen et al. 2004], which uses Ψ on secondary
memory for counting but has no good solution for locating; and the disk-based Suffix
Array [Baeza-Yates et al. 1996], a suffix array on disk with some memory-resident
structures that improve the the search, which needs at the end to complete the
search on a chunk of the suffix array read from disk.

5. EXPERIMENTAL RESULTS

We present three series of experiments in this section. The first one regards com-
pression performance, the second the use of our technique as a classical index using
reduced space, and the third the use as a plug-in for boosting the locating perfor-
mance of a compressed self-index.

We use text collections obtained from the PizzaChili site5. This site offers a
collection of texts of various types and sizes. We use all the types available (XML,
English, Source Code, Proteins, DNA and Pitches) and use sizes of 50MB and

5http://pizzachili.dcc.uchile.cl/

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

100MB for our experiments. The experiments were run on a Pentium IV, 2.0 GHz
with 2GB RAM using Linux with kernel 2.4.31 and g++ with -O3 optimization.

Compression performance. In Section 2.2 we mentioned that the compression
time of exact Re-Pair would be an issue, and gave two approximate methods based
on Ψ which should be faster.

In this section we call RP our implementation of the exact Re-Pair compression
algorithm6, RPΨ0 the Ψ-based approximation that runs in O(n) time (Section 2.2),
and RPΨ the Ψ-based approximation that runs in O(n log n) time (Section 2.3).
We also include the methods RPSP, RPΨ0SP, and RPΨSP. These forbid a rule
to cross a 256-cell boundary. In all cases, we take absolute A′ samples each 64
positions.

In practice, RPΨ0 and RPΨ0SP are very fast in comparison with the rest of the
methods, yet compress less. Considering this, we could relax the stopping condition
with the aim of better balancing these factors. In Figure 3 we show space reduction
achieved from one pass to the next, using RPΨ0SP. For example, in the case of
xml (the one needing the most passes), we remove 45% of the file in the first pass,
and 40% of that in the second, but after 8 passes the compression gain is less than
0.01%. Considering this, we force at least 8 passes after reaching less than αn′

replacements per pass. We use α = 1/4, which gives good results.

 0

 10

 20

 30

 40

 50

 0 2 4 6 8 10

C
om

pr
es

si
on

 p
er

 p
as

s,
 a

s
pe

rc
en

t

Pass Number

Compression per pass

xml
english

dna

Fig. 3. Compression achived per pass using RPΨ0SP. We use files of size 100MB.

To tune the parameters of the approximate variant RPΨSP, we test different
values on two small files (english and xml, truncated to 50MB). We show, among
several we carried out, the following experiments, as they best reflect the choice
of parameters. Table I shows that the compression gain for increasing s loses
importance for s > 8. Table II, on the other hand, shows that increasing δ does
not give any gain on english, yet it slightly improves compression ratio on xml. A
fair choice of parameters for RPΨSP, which we use for the rest of the experiments,
is s = 8, δ = 3/4 and γ = log n.

Table III shows that the compression ratio varies widely. On xml data we achieve
23.5% compression (the reduced suffix array is smaller than the text!), whereas
compression is extremely poor on dna. In many text types of interest we slash the

6Those we could find freely available did not work properly.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·

s Compr. ratio Compr. ratio Compr. time Compr. time
xml english (sec) xml (sec) english

1 26.03% 55.47% 766 1,374
2 25.95% 55.35% 905 1,475
4 25.91% 55.32% 1,080 1,621
8 25.89% 55.30% 1,241 1,837

16 25.88% 55.29% 1,344 2,028
32 25.87% 55.28% 1,519 2,425
64 25.87% 55.28% 1,645 2,801

128 25.87% 55.28% 1,717 3,213

Table I. Compression ratio obtained using different values of s for the approximation RPΨSP. In
this case we use δ = 1/2. The percentage is computed by comparing with the 4n bytes required
by a standard suffix array implementation.

δ Compr. ratio Compr. ratio Compr. time Compr. time
xml english (sec) xml (sec) english

1/2 25.89% 55.30% 1,241 1,837
3/4 25.81% 55.29% 1,573 2,159
7/8 25.74% 55.29% 2,091 2,786

15/16 25.68% 55.29% 2,835 4,184
31/32 25.60% 55.29% 4,185 7,150

Table II. Compression obtained using different values of δ using approximation RPΨSP. In this
case we use s = 8.

suffix array to around half of its size. Below the name of each collection we wrote
the percentage H3/H0, which gives an idea of the compressibility of the collection
independent of its alphabet size (e.g. it is very easy to compress dna to 25% because
there are mainly 4 symbols but one chooses to spend a byte for each symbol in the
uncompressed text, otherwise dna is almost incompressible). The measure turns
out to be an excellent predictor of the compression, except for proteins where we
are closer to H5/H0.

We exclude dna to state the following numbers, because of its poor compression
ratio. The approximation RPΨ0 runs up to 180 times faster and just loses 3.3%–
17.8% in compression ratio compared to RP. The approximation RPΨ runs up to 25
times faster and just loses up to 3.5% in compression ratio. RP runs at 25 to 1000
sec/MB, RPΨ0 runs at 5 to 10 sec/MB and RPΨ runs at 31 to 56 sec/MB. Suffix
array construction is the same in all the methods and takes around 100 seconds
overall in all cases. Thus, most of the indexing time shown in Table III is spent by
the compression methods.

Other statistics are also available in Table III. In column 6 we measure the
average length of a cell of C if we choose uniformly in A (longer cells are in addi-
tion more likely to be chosen for decompression). Those numbers explain the times
obtained for the next series of experiments. Note that they are related to compress-
ibility, but not as much as one could expect. Rather, the numbers obey to a more
detailed structure of the suffix array: they are higher when the compression is not
uniform across the array. In every case, we can limit the maximum length of a C
cell. The SP variants show how this impacts compression ratio and decompression
speed. We can see that their compression ratio is almost the same, worsening at
most by 6.37% (RP), 12.68% (RPΨ0), or 9.17% (RPΨ) on dna (and much less on
others).

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

Coll. size Method Index size Compr. Compr. Expected Dict. Compr. 2%
(MB),H3/H0 (MB) ratio time (s) decompr. compr. in RAM
xml,100, RP 93.56 23.39% 29,800 6,936.54 57.22% 34.08%
26.28% RPSP 99.52 24.88% 25,472 134.91 58.29% 35.84%

RPΨ0 103.06 25.76% 625 7,570.49 57.46% 91.42%
RPΨ0SP 116.13 29.03% 651 83.79 58.68% 91.59%
RPΨ 94.26 23.56% 3,547 6,948.85 57.18% 36.15%
RPΨSP 102.90 25.73% 3,598 95.83 58.23% 40.63%

dna,100, RP 336.53 84.13% 8,511 5.01 79.49% 92.45%
97.02% RPSP 337.11 84.28% 8,402 4.25 79.72% 92.56%

RPΨ0 342.52 85.63% 931 4.73 78.20% 99.17%
RPΨ0SP 343.11 85.78% 899 4.04 78.44% 99.18%
RPΨ 336.37 84.09% 4,279 5.03 79.19% 93.19%
RPΨSP 336.96 84.24% 4,260 4.28 79.41% 93.30%

english,100, RP 227.59 56.90% 87,285 238.31 59.27% 88.15%
53.05% RPSP 230.04 57.51% 86,273 30.37 59.71% 88.33%

RPΨ0 249.03 62.26% 974 202.79 59.70% 98.56%
RPΨ0SP 252.08 63.02% 944 26.83 60.19% 98.56%
RPΨ 227.74 56.94% 4,621 215.12 59.17% 88.92%
RPΨSP 230.26 57.56% 4,600 29.99 59.60% 89.12%

pitches,50, RP 116.58 58.29% 11,454 33.96 69.51% 67.41%
61.37% RPSP 117.61 58.81% 11,067 17.00 70.08% 67.78%

RPΨ0 126.56 63.28% 279 26.38 66.86% 97.32%
RPΨ0SP 127.83 63.91% 535 14.21 67.23% 97.34%
RPΨ 117.98 58.99% 1,618 28.89 68.67% 70.17%
RPΨSP 119.18 59.59% 1,807 15.66 69.00% 71.03%

proteins,100, RP 284.61 71.15% 2,642 58.98 79.72% 75.63%
97.21% RPSP 285.94 71.48% 2,732 13.87 80.09% 76.00%

RPΨ0 294.08 73.52% 1,045 52.52 75.16% 92.13%
RPΨ0SP 296.24 74.06% 1,032 10.79 75.03% 92.30%
RPΨ 285.94 71.49% 5,719 58.46 78.98% 76.77%
RPΨSP 287.73 71.93% 5,764 11.92 78.80% 77.31%

sources,100, RP 154.88 38.72% 107,371 2,041.88 57.63% 65.16%
40.74% RPSP 159.34 39.83% 103,292 60.48 58.33% 65.85%

RPΨ0 181.38 45.34% 684 1,778.79 58.09% 96.67%
RPΨ0SP 187.52 46.88% 677 50.97 58.80% 96.70%
RPΨ 156.18 39.04% 4,380 1,928.86 57.48% 68.00%
RPΨSP 161.21 40.30% 4,778 56.89 58.13% 69.15%

Table III. Index size and build time using Re-Pair and its Ψ-based approximations. We also
include versions with rules up to length 256 (SP extension). Compression ratio compares with the
4n bytes needed by a plain suffix array representation.

In column 7 we show the compression ratio achieved on the dictionary part using
the technique of Section 2.4, charging it the bitmap introduced as well. It can be
seen that the technique is rather effective, approaching in some cases the limit of
50% to its possible effectiveness. (We remark that the compression ratios of previous
columns do account for the dictionary space and all the necessary structures to
operate.)

The last column shows how much compression we would achieve if the structures
that must reside on RAM were limited to 2% of the original suffix array size (recall
Section 4.3). We still obtain attractive compression performance on texts like xml,
sources and pitches (recall that on secondary memory the compression ratio
translates almost directly to decompression performance). As expected, RPΨ0

does a much poorer job here, as it does not choose the best pairs early, but RPΨ
achieves almost the same performance as RP.

A classical reduced index. We test RPΨSP (from now on LCSA) as a replacement
of the suffix array, that is, adding it the text and using it for binary searching,
as explained in Section 4.1. We compare it with a plain suffix array (SA) and

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 ·

Mäkinen’s CSA (MakCSA [Mäkinen 2003]), as the latter operates similarly.
Fig. 4 shows the result. MakCSA offers space-time tradeoffs, whereas those

of our index (sample rate for absolute values) did not significantly affect the time.
Our structure stands out as a relevant space/time tradeoff, especially when locating
many occurrences (i.e., on short patterns). In particular, LCSA is usually noticeably
faster than MakCSA for the same space, yet the latter is able of using less space
(at least on english). Compared to a plain suffix array, LCSA requires 0.9–2.4
times the text size (as opposed to 4) plus the text, at the price of being 2–28 times
slower for locating. Compared to current state of the art in compressed indexing,
this slowdown is rather modest.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e(
se

c
pe

r
10

6 lo
c)

IndexSize/TextSize-1

Locate over xml

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e(
se

c
pe

r
10

6 lo
c)

IndexSize/TextSize-1

Locate over english

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e(
se

c
pe

r
10

6 lo
c)

IndexSize/TextSize-1

Locate over proteins

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.5 1 1.5 2 2.5 3 3.5 4

T
im

e(
se

c
pe

r
10

6 lo
c)

IndexSize/TextSize-1

Locate over sources

LCSA m=05
MakCSA m=05

SA m=05
LCSA m=10

MakCSA m=10
SA m=10

LCSA m=15
MakCSA m=15

SA m=15

Fig. 4. Simulating a classical suffix array to binary search and locate the occurrences. Each file is
of size 100MB.

A plugin for self-indexes. Section 4.2 considers using our reduced suffix array as
a plugin to provide fast locate on existing self-indexes. In this experiment we plug
our structure to the counting structures of the alphabet-friendly FM-index (AFI
[Ferragina et al. 2007]), and compare the result against the original AFI, Sadakane’s
CSA [Sadakane 2003] and the SSA [Ferragina et al. 2007; Mäkinen and Navarro
2005], all from PizzaChili. We increased the sampling rate of the locating structures
of AFI, CSA and SSA, to match the size of our LCSA.

Fig. 5 shows the results. We only show four texts, as the others yield similar
conclusions. The experiment consists in choosing random ranges of the suffix array
and obtaining the values. This simulates a locating query where we can control

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 19

the amount of occurrences to locate. Our reduced suffix array has a constant time
overhead (which is related to column 6 in Table III and the sample rate of absolute
values) and from then on the cost per cell located is very low. As a consequence,
it crosses sooner or later all the other indexes. For example, it becomes the fastest
on xml after locating 2 occurrences, and after 8 occurrences it becomes the fastest
on proteins. Particularly on xml, this success owes to the fact that our LCSA
uses the RPΨSP variant (cutting phrases at length 256 as explained). If instead we
used RPΨ to gain a little further compression, the result would be very inefficient
due to the long phrases that need to be uncompressed. In the case of xml, RPΨ
becomes the fastest only after locating 3,800 occurrences, not 2. In other texts
where compression is not so good, there is not much difference between RPΨ and
RPΨSP (both in time and space).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20

tim
e(

se
c

pe
r

10
4 e

xt
ra

ct
io

ns
)

Extracted Size

Extract over xml

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20

tim
e(

se
c

pe
r

10
4 e

xt
ra

ct
io

ns
)

Extracted Size

Extract over english

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5 10 15 20

tim
e(

se
c

pe
r

10
4 e

xt
ra

ct
io

ns
)

Extracted Size

Extract over proteins

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

tim
e(

se
c

pe
r

10
4 e

xt
ra

ct
io

ns
)

Extracted Size

Extract over sources

LCSA
SSA

AF-index
CSA

Fig. 5. Time to locate occurrences, as a function of the number of occurrences to locate. Each
file is of size 100MB.

6. LCSA CONSTRUCTION IN SECONDARY MEMORY

Particularly for the application described in Section 4.3, where the LCSA does not
fit in main memory, a natural question is whether is it possible to efficiently build
it in secondary memory. Secondary memory algorithms to build the suffix array A
are well-known [Kärkkäinen and Rao 2003; Crauser and Ferragina 2002; Dementiev
et al. 2005], yet the algorithms we have presented in Section 2 for compressing A′

are highly non-local. We now show that the algorithms to compress A′ by using

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 ·

Ψ can be adapted efficiently to secondary memory, and also how to compress the
dictionary in secondary memory.

6.1 Compressing the Differential Suffix Array

When we compress in main memory by using Ψ (Sections 2.2 and 2.3), we notice
that Ψ traverses the suffix array in increasing values of A[·]. That is, if j is the
position where A[j] = 1, then A[Ψ[j]] = 2, A[Ψ[Ψ[j]]] = 3 and so on. The idea is
to store for each position i of A′ the information that permits us to compress A′[i]
after we sort it by increasing values of A, that is, by text order. For each position
in A′ we define:

—A′[i] = A[i]−A[i− 1], 1 < i ≤ n; A′[1] = A[1]. This is the differential form of A.

—A′′[i] = A′[i + 1], 1 < i < n; A′′[n] =⊥ denotes an invalid value.

—V ′[i] = A[i], 1 ≤ i ≤ n. We will use this array to sort the rest.

—NV ′[i] = A[i + 1], 1 ≤ i < n; NV ′[n] =⊥. This is the position of the next valid
symbol of A′[i] after sorting.

—N2V ′[i] = A[i+2], 1 ≤ i < n− 1; NV ′[n− 1] = NV ′[n] =⊥. This is the position
of the next-next valid symbol of A′[i] after sorting.

—PV ′[i] = A[i − 1], 1 < i ≤ n; PV ′[1] =⊥, the position of the previous valid
symbol of A′[i] after sorting.

Now we sort {A′[i], A′′[i], V ′[i], NV ′[i], N2V ′[i], PV ′[i]}1≤i≤n by the values of
V ′ = A. Given that A is a permutation of {1, . . . , n}, the effect of the sorting
is that of composing the arrays with A−1. We call the reordered arrays as follows:

—Ã′[j] = A′[A−1[j]] = A[A−1[j]] − A[A−1[j] − 1], 1 ≤ j ≤ n, j 6= A[1]; Ã′[A[1]] =
A[1].

—Ã′′[j] = A′′[A−1[j]] = A[A−1[j] + 1]− A[A−1[j]], 1 ≤ j ≤ n, j 6= A[n]; Ã′′[A[n]] =
⊥.

—V [j] = V ′[A−1[j]] = A[A−1[j]] = j, 1 ≤ j ≤ n.

—NV [j] = NV ′[A−1[j]] = A[A−1[j] + 1], 1 ≤ j ≤ n, j 6= A[n]; NV [A[n]] =⊥.

—N2V [j] = N2V ′[A−1[j]] = A[A−1[j] + 2], 1 ≤ j ≤ n, j 6= A[n], j 6= A[n −
1]; NV [A[n− 1]] = NV [A[n]] =⊥.

—PV [j] = PV ′[A−1[j]] = A[A−1[j]− 1], 1 ≤ j ≤ n, j 6= A[1]; PV [A[1]] =⊥.

Now that we have the arrays {V [j], Ã′[j], Ã′′[j], NV [j], N2V [j], PV [j]}1≤j≤n, the
sequential traversal of these arrays is equivalent to navigating the original ones
using Ψ. More precisely, let j = A[i] (and thus i = A−1[j]), then Ã′[j] = A′[i] and
Ã′′[j] = A′′[i] = A′[i+1]. Moreover, Ã′[j+1] = A′[Ψ(i)] and Ã′′[j+1] = A′[Ψ(i)+1].
Hence the check for pair equality between A′[i]A′[i + 1] and A′[Ψ(i)]A′[Ψ(i) + 1]
reduces to checking whether Ã′[j]Ã′′[j] = Ã′[j + 1]Ã′′[j + 1], which can be carried
out sequentially on Ã′ and Ã′′.

The other arrays are used to maintain consistency upon changes in A′: When we
change Ã′[j] and Ã′′[j], corresponding to A′[i] and A′[i + 1], we have the problem
that the pair A′[i− 1]A′[i], which is explicitly stored at Ã′[PV [j]] and Ã′′[PV [j]],
must be updated as well. Similarly, NV serves to locate the place where the pair
corresponding to A′[i + 1]A′[i + 2] is stored after the sorting. Thus, as the arrays

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 21

are now sorted by j = A[i], arrays PV and NV serve as a doubly-linked list to let
us move to i− 1 and i + 1 in the sorted array. Those lists must be updated upon
removals across the compression process, and they are also useful to maintain the
current values of Ã′′[j] up to date when elements in the chain are removed.

Let τ be the total size in integers of these arrays. We divide them into l chunks
of size τ/l and, for each chunk, we keep in main memory a buffer of b̃ integers. Let
M be the size in integers of the main memory, then τ/l + l· b̃ ≤ M must hold (we
consider later the case where M is smaller). The algorithm to carry out a single
pass on A′ in secondary memory is as follows. Note that this is the main subroutine
of both approximate methods based on Ψ (Sections 2.2 and 2.3).

(1) We read the first chunk from disk and initialize empty buffers.

(2) We find sequentially in the chunk the first j satisfying Ã′[j]Ã′′[j] = Ã′[j +
1]Ã′′[j +1]. If no such j is found we go on with the next chunk. In the stronger
approximate method we require equality between several Ã′[j+r]Ã′′[j+r] pairs
before proceeding to the next step.

(3) From that j, we start a chain of replacements: We add a new pair s ←
Ã′[j]Ã′′[j] to R, make the replacements at j and j + 1 and move on with
j ← j + 1, replacing until the pair changes. When the pair changes, that is
Ã′[j]Ã′′[j] 6= Ã′[j + 1]Ã′′[j + 1], we restart the search for pairs at Step (2).

(4) If we reach the end of the block, the replacement chain may continue at the
next one.

To consistently perform a replacement Ã′[j] : Ã′′[j]← s :⊥ in Step (3), maintain-
ing also the linked lists, we must carry out the following actions (in parallel; we over-
line variables to indicate that we use their original values prior to any assignment):
(a) Ã′[j] ← s, (b) Ã′[NV [j]] ←⊥, (c) Ã′′[j] ← Ã′′[NV [j]], (d) NV [j] ← N2V [j],
(e) PV [N2V [j]] ← j, (f) N2V [j] ← N2V [NV [j]], (g) Ã′′[PV [j]] ← s, and (h)
N2V [PV [j]] ← N2V [j]. From those, only (a) and (d) can be executed locally,
whereas the others may require reading/writing data from/to other chunks not yet
in main memory. If this is the case, we “send messages” to read/update other
chunks. Those will be stored in their corresponding buffers, and carried out right
before those chunks are processed. (If a buffer gets full it is written out to disk into
a log of actions the chunk must execute.) Some of those messages will then send
messages back to the current chunk to update its values, and this update will be
executed when the current chunk is read again. This is not a problem because we
will not access cell j again until the next pass. (The updates that happen to belong
to the current chunk, instead, must be executed immediately.)

Each message is of the form action(dest, parameters), where dest is the destina-
tion position that determines the chunk ⌈dest/l⌉ that will execute it; see Table IV
for the meaning of each action. The global instructions we described are then trans-
lated into the following instructions and messages sent: (a) Ã′[j] ← s, (b) send
DL(NV [j], j) (will solve (c) and (f) in the next pass), (d) NV [j] ← N2V [j], (e)
send UP (N2V [j], j), (g) send UA′′(PV [j], s), and (h) send UN2(PV [j], N2V [j]).
Figure 6 shows the operations that are performed after a replacement; this occurs
in three steps. Thus, at the end of the pass, we must carry out two extra passes
in order to process the messages sent and their responses, before finishing the pass

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·

PV [j] j NV [j] N2V [j]

Ã′ s ← (a)

Ã′′

PV

NV N2V [j]

N2V (d)

(b,c,f) DL(NV [j], j)(g) UA′′(PV [j], s)

(e) UP (N2V [j], j)(h) UN2(PV [j], N2V [j])

(I)

PV [j] j NV [j] N2V [j]

Ã′ s ← (a) ⊥ ← (b)

Ã′′ s ← (g)

PV j(e) →

NV N2V [j] ← (d)

N2V N2V [j] ← (h)

(c) UA′′(j, Ã′′[NV [j]])

(f) UN2(j, N2V [NV [j]])

(II)

PV [j] j NV [j] N2V [j]

Ã′ s ← (a) ⊥ ← (b)

Ã′′ s ← (g) Ã′′[NV [j]] ← (c)

PV j(e) →

NV N2V [j] ← (d)

N2V N2V [j] ← (h) N2V [NV [j]] ← (f)

(III)

Fig. 6. Operations generated by a replacement. (I) shows the replacement and the messages
generated by it. (II) shows the effect of the messages, one of which generates two more messages.
(III) shows the final state product of a replacement.

properly.

action parameter what it does at position dest

UA′ sym Updates Ã′ to sym, Ã′[dest]← sym.

UA′′ sym Updates Ã′′ to sym, Ã′′[dest]← sym.
UN2 next Updates N2V to next, N2V [dest]← next.
DL from Marks dest as deleted and responds with

UA′′(from, Ã′′[dest]) and UN2(from, N2V [dest])
UP prev Updates PV to prev, PV [dest]← prev.

Table IV. Message types and meanings used by the secondary memory construction algorithm.

The invalid entries we produce must be compacted for the next passes. Apart
from removing the invalid entries, we must update the pointers NV , N2V , and
PV . We first sort all the arrays by the NV values. The result will be an increasing
sequence of NV [i] values, with some missing integers due to the removed entries.
Thus we assign NV [i]← i to effectively remove the invalid entries. We repeat the

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 23

process of sorting and reassigning for N2V and PV . Finally we sort again by V ,
and are ready for the next pass.

Thus, each pass of the original algorithm over an array of size n′ costs us, in
I/O terms, O(n′/b̃) for the traversal plus O((n′/b̃) logM/b̃(n

′/M)) = O(Sort(n′))

for the sortings. It is easy to see that, because the n′s are of the form (1 − α)in,
the linear-time algorithm of Section 2.2 costs O(Sort(n)) in secondary memory.
Similarly, the O(n log n) time algorithm of Section 2.3 costs O(Sort(n) log n) time.
This is almost I/O optimal with respect to the original algorithms.

As a practical note, Figure 3 shows that indeed 8 passes are sufficient, even on
xml, to achieve most of the compression on the variants we tried.

With respect to the extra secondary memory needed, it is O(n) words for the
arrays, plus the message logs. Since each position can receive O(1) messages from
elsewhere, all the message logs add up to O(n) words as well.

Finally, we consider the case τ/l + l· b̃ > M , that is, there is no space to store
one disk page per chunk in main memory. In this case we replace the in-memory
buffers by a secondary-memory priority queue, where the messages are inserted
with priority given by dest. Those sent from a chunk i to a position dest < i
will be inserted with priority n + dest, so that they are processed in a second
traversal. Each new chunk reads from the priority queue (by means of extracting
minima) all the messages that correspond to it, and inserts new messages. As there
are overall O(n) messages, optimal-I/O priority queues (e.g. [Brengel et al. 2000])
yield O((n′/b̃) logM/b̃(n

′/b̃)) overall time, which raises only slightly the O(Sort(n′))
time per pass we had.

6.2 Compressing the Dictionary

When we compress the dictionary in main memory, we start expanding the first (i.e.
earliest) rule sj that has not been used by another one, U [j] = 0 (see Section 2.4).
Then we expand the next rule sj′ that has U [j′] = 0, and so on. The idea here is
to group together all the rules that are used in the same expansion of a rule with
value U [·] = 0, so that when we expand it we will have almost all the information
needed to do the expansion in main memory.

We can regard the dictionary as R = {s1 → a1b1, s2 → a2b2, . . . , sν → aνbν},
where si = i + n. For each rule we define:

—R0[i] = si, the value of the i-th rule.

—R1[i] = ai, the left symbol of the i-th rule. It can be a rule or an original symbol.

—R2[i] = bi, the right symbol of the i-th rule. It can be a rule or an original
symbol.

—Q[i] =

{

min{sj , si is used by sj ∧ U [j] = 0} if U [i] = 1,
si otherwise.

The min is the lowest (i.e. earliest) rule that contains si and has value U [·] = 0.
Rules with the same value of Q will be used in the same expansion, so Q will be
a kind of group identifier.

Given the non-locality of reference between rules, to calculate the values of Q
we need to send messages of the form UQ(dest, parameter), to achieve Q[dest] ←

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 ·

parameter, with 1 ≤ dest, parameter ≤ ν. Note that a position dest could receive
multiple messages and that always dest < parameter.

We maintain a secondary-memory priority queue PQ, where the messages are
inserted with priority given by dest (larger first). We process the arrays from
higher values of R0 first, i.e., in reverse order. To process cell i we extract from
PQ all the messages for dest = i and set Q[i] to the minimum parameter for that
i. If there are no messages for i, we assign a new Q[i] ← si (i.e., we do not need
to store U). Then we insert message UQ(R1[i], Q[j]) (UQ(R2[i], Q[j])) into PQ, if
R1[i] (R2[i]) is not an original symbol. Since any rule R0[j] that uses rule R0[i] has
been visited before we reach position i, necessarily the message UQ(R0[i], Q[j]) is
in PQ by that time. Thus we compute array Q in one pass.

Now we sort these arrays by increasing values of the pair (Q[i], R0[i]), i.e., by Q
and using R0 to break ties, obtaining Q̃, R̃0, R̃1, R̃2. These arrays can be partitioned
into η groups, each one with the same value of Q. Let ηk be the position where
the k-th group finishes. Note that if the length of the longest phrase is µ then any
group has at most µ elements. Now, for each group, we compress the dictionary
almost the same way as in algorithm Expand Rule (see Figure 2, page 10). There
are four differences with the original algorithm:

(1) We write down RB and RS to disk instead of maintaining them in main memory.
The array NV is not used.

(2) We expand R̃0[ηk], the last element of the k-th group, because by construction
these rules use all the other rules in the same group.

(3) To process rule R̃0[i], which is expanded to R̃1[i]R̃2[i], we do as follows. If R̃1[i]
is not an original symbol, and it does not belong to the same group of R̃0[i],
then it must have been defined in a previous group. Hence we must not expand
it further, but instead write its final value in RS . Yet this value is only know
within the other group. We send message NRS(pos, R̃1[i]), where pos is the
current position where we are writing in RS . The same goes for R̃2[i].

(4) We also write down to disk the pair (sj , LRB[sj]) (second line of algorithm
Expand Rule), where sj is the rule and LRB[sj] is its final value (i.e., the
current value of variable LRB).

After carrying out the previous steps, we still need to execute the messages NRS

to update RS . We sort the messages by dest (their first component) obtaining
NRS = (dest, parameter), and sort the pairs (sj , LRB[sj]) by its first coordinate,
obtaining (sj , LRB). Because the compressed dictionary will hold at least ν integers
in RAM, we can use that RAM space across the process. From now on LRB will
reside completely in main memory, so we can access it at random. To apply the
messages we traverse NRS and RS making the necessary replacements in RS , that
is, RS [dest[i]] = LRB [parameter[i]−n]. These replacements are done by increasing
values of dest, so we traverse only once the arrays NRS and RS . Using again LRB

we traverse C, changing the values of the rules to their final ones.
Let M be the size in integers of the main memory. The breakdown of the cost is

as follows:

—When we calculate Q there are overall O(ν) messages. Using optimal-I/O priority
queues (e.g. [Brengel et al. 2000]) yields O((ν/b̃) logM/b̃(ν/b̃)) time.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 25

—When we expand a rule we need to find both children. Each such search within
their group takes at most log µ CPU time. Overall there are at most 2ν of these
searches, totalizing O(ν log µ) CPU time.

—We take O(ν/b̃) I/Os to read/write all the needed arrays from disk.

—There are three sortings, which in total take O(Sort(ν)) time.

—Updating C to the new rule values takes O(n′/b̃) I/Os .

Overall, time is O((ν/b̃) logM/b̃(ν/b̃) + n′/b̃) I/Os. The extra space on disk is

O(ν) integers. Note that 4µ ≤ M must hold to be able to compress a group in
main memory.

If LRB does not fit in main memory, we pre-process the messages first, that is,
we first sort NRS by parameter, then we traverse it in synchronization with LRB

updating parameter ← LRB(parameter), and then we sort again NRS by dest.
Now we only need to traverse RS and NRS together, to update RS . This add an
extra O(Sort(ν)) time to the cost, which does not affect our complexity. Something
similar can be done to update C, which incurs an extra cost of O(Sort(n′)). This
would affect the complexity, but is still within the cost paid in Section 6.1 to build
C.

7. CONCLUSIONS AND FUTURE WORK

We have presented a suffix array compression method that retains fast locating of
the occurrences of a pattern. We have proved analytically that the resulting size
is related to the k-th order entropy of the text. The method has been used to
obtain a compressed self-index with fast locate (where the norm is to be extremely
slow), a small index that is a viable alternative to classical suffix arrays, and a
secondary-memory version that works optimally and whose access time improves
due to compression (where worsening is the norm). Our experiments show that the
structure is very practical and relevant.

As a byproduct, we have presented Re-Pair algorithms tailored to suffix array
differences, which exploit the structure of Ψ to run much faster and using much less
memory than the general algorithm. Those new algorithms are approximations, yet
we show that their compression loss is negligible. We also presented a secondary
memory construction for those approximations, which run almost I/O-optimally
and extends the applicability of the methods to compress suffix arrays that do not
fit in main memory.

Another byproduct, which might be of general interest, is a compact data struc-
ture to represent the Re-Pair dictionary. This structure can reduce the dictionary
space by up to 50%, and operates in compressed form, that is, it permits decom-
pressing parts of the text without uncompressing the dictionary.

Our work leaves several future development lines. In the short term, we seek to
improve the performance of the smaller classical index via algorithm engineering,
and implement the secondary memory index, which is right now a theoretical pro-
posal. In this latter line, we are working on merging the CPT structure presented
by Clark and Munro [1996] with our structure. We believe the result would be
extremely competitive in practice.

In the longer term, we believe this is a first step towards compressed text indexes
with competitive locating times, in particular via locality of access. The key was to

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 ·

build on the runs in Ψ, which have been used in the past to achieve compression yet
not locality of access. We showed that the regularities that Re-Pair exploits on the
differential suffix array are closely related to those runs in Ψ. Thus we could take
advantage of the locality properties of Re-Pair, and also used the close relation with
Ψ to analyze the compression achieved and design faster Re-Pair variants for this
case. Our resulting index is still far from achieving the space used by the smallest
self-indexes, which are however extremely slow to locate. Is there a fundamental
lower bound to the tradeoff one can achieve between space and time for locating?
Is there a limit to what can be achieved via local compression?

REFERENCES

Baeza-Yates, R., Barbosa, E. F., and Ziviani, N. 1996. Hierarchies of indices for text searching.
Information Systems 21, 6, 497–514.

Brengel, K., Crauser, A., Ferragina, P., and Meyer, U. 2000. An experimental study of
priority queues in external memory. ACM Journal of Experimental Algorithmics 5, 17.

Clark, D. and Munro, I. 1996. Efficient suffix trees on secondary storage. In Proc. 7th SODA.
383–391.

Crauser, A. and Ferragina, P. 2002. A theoretical and experimental study on the construction
of suffix arrays in external memory. Algorithmica 32, 1, 1–35.

Dementiev, R., Kärkkäinen, J., Mehnert, J., and Sanders, P. 2005. Better external memory
suffix array construction. In Proc. 7th Workshop on Algorithm Engineering and Experiments
(ALENEX) (2007-01-30). 86–97.

Ferragina, P. and Grossi, R. 1999. The string B-tree: A new data structure for string search
in external memory and its applications. Journal of the ACM 46, 2, 236–280.

Ferragina, P. and Manzini, G. 2005. Indexing compressed texts. J. of the ACM 52, 4, 552–581.

Ferragina, P., Manzini, G., Mäkinen, V., and Navarro, G. 2007. Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms (TALG) 3, 2, article 20.

González, R. and Navarro, G. 2006. Statistical encoding of succinct data structures. In Proc.
17th CPM. LNCS 4009. 295–306.

González, R. and Navarro, G. 2007. A compressed text index on secondary memory. In Proc.
18th IWOCA. College Publications, UK, 80–91.

Grossi, R., Gupta, A., and Vitter, J. 2003. High-order entropy-compressed text indexes. In
Proc. 14th SODA. 841–850.

Grossi, R. and Vitter, J. 2006. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM Journal on Computing 35, 2, 378–407.

Jacobson, G. 1989. Space-efficient static trees and graphs. In Proc. 30th FOCS. 549–554.

Kärkkäinen, J. and Rao, S. 2003. Algorithms for Memory Hierarchies. LNCS v. 2625. Springer,
Chapter 7: Full-text indexes in external memory, 149–170.

Larsson, J. and Moffat, A. 2000. Off-line dictionary-based compression. Proc. IEEE 88, 11,
1722–1732.

Mäkinen, V. 2003. Compact suffix array — a space-efficient full-text index. Fundamenta Infor-
maticae 56, 1–2, 191–210.

Mäkinen, V. and Navarro, G. 2005. Succinct suffix arrays based on run-length encoding. Nordic
J. of Computing 12, 1, 40–66.

Mäkinen, V., Navarro, G., and Sadakane, K. 2004. Advantages of backward searching —
efficient secondary memory and distributed implementation of compressed suffix arrays. In
Proc. 15th ISAAC. LNCS v. 3341. 681–692.

Manber, U. and Myers, G. 1993. Suffix arrays: a new method for on-line string searches. SIAM
J. Computing 22, 5, 935–948.

Manzini, G. 2001. An analysis of the Burrows-Wheeler transform. J. of the ACM 48, 3, 407–430.

Navarro, G. 2004. Indexing text using the Ziv-Lempel trie. J. of Discrete Algorithms 2, 1,
87–114.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 27

Navarro, G. and Mäkinen, V. 2007. Compressed full-text indexes. ACM Computing Sur-

veys 39, 1, article 2.

Sadakane, K. 2003. New text indexing functionalities of the compressed suffix arrays. J. of
Algorithms 48, 2, 294–313.

Weiner, P. 1973. Linear pattern matching algorithm. In Proc. 14th IEEE Symp. on Switching
and Automata Theory. 1–11.

Received Month Year; revised Month Year; accepted Month Year.

ACM Journal Name, Vol. V, No. N, Month 20YY.

