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Summary. Meshing tools are highly complex software, and they have usually been
developed one at a time and with ad-hoc methodologies. Developing new tools is
thus expensive even though there may be similar tools already built. Counting on
a systematic method for reusing complex meshing tool components would enhance
productivity and enable trying new algorithms with a much lower cost. Software
Product Lines (SPL) is a well established strategy for massive reuse, and Domain
Analysis (DA) is the activity whose purpose is to identify potentially reusable assets
within a SPL. There exist some techniques for performing DA but all of them are
general and not necessarily appropriate for the particular case of a Meshing Tool
SPL. In this paper we propose a method for DA specially suited for the case of a
Meshing Tool SPL. We define the domain model, the process for building this model,
and the way the collected information could be used for building new products of the
SPL. We applied the method showing how it could support building two different
meshing tools.

1 Introduction

According to the SEI [19], a Software Product Line (SPL) is a set of software
intensive systems that share a managed set of characteristics, and that satisfies
the needs of a particular market segment or mission, being developed using a
set of common core assets in a preestablished fashion. These core assets in-
clude the product line architecture, reusable software components, and domain
models, among others. The ultimate purpose of a SPL is to provide a reuse
infrastructure that allows to achieve a high Return On Investment (ROI). In
a SPL we can identify two main technical stages [24]: Domain Engineering
where reusable core assets are developed, and Application Engineering where
particular products are built by combining the assets already developed. Un-
derstanding and identifying common and variable aspects play a central role
during the Domain Engineering stage. Commonalities are requirements that
must hold for all products in the SPL, while variabilities are requirements
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that may or may not be present in a particular product, and as such define
how SPL products may vary [31].

Domain analysis (DA) is the process through which commonalities and
variabilities are identified, captured and organized in a model with the pur-
pose of making it available for reuse in future developments [22]. It has been
identified as one of the most important factors for the success of software
reuse [1]. In the context of SPL, domain analysis is the first step within the
domain engineering stage, as shown in Figure 1 [24].

Analysis
Domain

Design
Domain Domain

Implementation

Fig. 1. Domain engineering stage

Meshing tools are sophisticated software due to the complexity of the con-
cepts involved, and the large number of interacting elements they manage.
Meshing tools complexity mainly relies on the components involved, as is the
case for all scientific computing software. Provided that meshing tools are
used in a variety of different application domains, they may require slightly
different functionalities. As these tools have usually been developed with ad
hoc methodologies, and without taking reuse as a goal, every new tool needs
to be developed from scratch even though it may involve algorithms already
implemented and data structures already designed, all of them also used and
tested. Meshing tools have a good opportunity for reuse, but a reuse frame-
work is required if the gains in productivity and quality are to be achieved.

The main steps of any mesh generation process are: generation of an ini-
tial mesh that fits the domain geometry, generation of an intermediate mesh
that satisfies the density requirements specified by the user, generation of an
improved mesh that satisfies the quality criteria, and generation of the final
mesh in an appropriate output format. These shared steps have been identified
as commonalities among all members of a meshing tool family. Variabilities
may be approached in two different dimensions: by including or not certain
steps, or by providing alternative implementations or algorithms for realizing
the same chosen functionality. Even though some authors have already ap-
proached building meshing tools with SPL concepts in mind [2, 3, 27, 28], to
the best of our knowledge, none of them has focus on DA with a systematic
methodology specially designed for this particular domain.

In this paper we propose a method for domain analysis specially suited for
the meshing tool domain. It uses features, goals and scenarios as a means for
capturing the domain characteristics and we organize them in a formal model.
We provide a method that organizes the way these elements are gathered and
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combined into a unified domain model, as well as clear iteration or termi-
nation conditions based on model consistency and completeness. We develop
a domain model for the meshing tool SPL following the proposed method,
validating it using two existing tools: Cubit and Triangle.

The rest of the paper is organized as follows. Related work about both,
domain analysis methodologies in general and for developing meshing tools in
particular are discussed in Section 2. In Section 3 we provide the definition of
the DA model, as well as the proposed method for building it, and a description
of how the DA model is used for producing the reusable assets. Section 4
describes the method applied and the DA model obtained for the meshing tool
SPL. Finally, some conclusions and future work are presented in Section 5.

2 Related Work

We here discuss different techniques proposed for domain analysis in gen-
eral, and for its application to meshing tools in particular as well as other
approaches that have been followed to build meshing tools.

2.1 Domain Analysis Techniques

Domain analysis is the process of identifying, collecting, organizing, and rep-
resenting the relevant information in a domain, based upon the study of exist-
ing systems and their development histories, knowledge captured from domain
experts, underlying theory, and emerging technology within a domain [24]. Al-
though it is a general purpose process, it has been identified as one of the most
appropriate forms of requirements engineering in the context of a SPL [10].

Coplien et al. propose SVC [8], a method for conceptually addressing do-
main analysis within SPLs. There, the identification of the Scope, Variabili-
ties and Commonalities of the product family are the main issues. There are
some notations and techniques proposed for realizing SVC such as FAST [31],
FORM [16] and PuLSE [4]. These methods are useful for any application
domain and they generally cover the whole domain engineering stage. More-
over, all these methods propose well defined processes for building the domain
model. Our approach goes a step further by formalizing the domain model
definition and thus we are also able to precisely define iteration/termination
conditions for our proposed method.

Smith and Chen have applied SVC to the meshing tool domain [28] using
FAST. Even though their approach is systematic, they do not take full advan-
tage of the meshing tool domain characteristics because they apply a general
DA method for scientific computing software [26]. For example, we have no-
ticed that the binding time for variabilities in meshing tools is fixed: which
features are included is always decided at product design time, and which
particular implementation is chosen for each included feature is decided at
compilation time. In this way, our documentation is more compact and the
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method is simpler because a default binding time is used. This default bind-
ing time allows us to make decisions at a higher level of abstraction, and thus
yielding simpler tools that would have a better performance.

In [17] a DA method based on goals and scenarios is proposed. It involved
four information levels: business, service, interaction and internal, each of
them refining the previous one. This method is appropriate for characteriz-
ing a domain where the expert has little experience on software engineering.
Meshing tool developers are usually knowledgeable in software engineering, so
we were able to simplify the domain model. Our model includes the business
goal for the SPL and a single level where the complete model is defined.

Park et al. [21] propose to use features, scenarios and goals for capturing
the characteristics of the domain, as we do. However, and since their approach
is general for any domain, they use a method that involves four successive
specification levels. We found that for our specific meshing tool domain, a
model with two levels is enough.

2.2 Developing Meshing Tools

Only in the last decade the development of meshing software has been ap-
proached from the software engineering point of view mainly applying object-
oriented design and programming. Some of the work include the development
of a software environment for the numerical solution of partial differential
equations (Diffpack) [7], the design of generic extensible geometry interfaces
between CAD modelers and mesh generators [20, 30], the design of object-
oriented data structures and procedural classes for mesh generation [18], the
computational geometry algorithm library CGAL [13], the definition of an op-
timal OO mesh representation that allows the programmer to build efficient
algorithms (AOMD) [23], and algorithms that can be used independently of
the concrete mesh representations [5], as well as a tool to support these al-
gorithms (Grid Algorithms Library) [6]. More recently, formal methods were
also used for improving reliability of mesh generation software [12].

In [32] a document driven approach for generating a family of parallel
meshing tools is provided. The information used is similar to that included
in our model, but the process presented is mainly a waterfall. Our process is
iterative and the model is built incrementally so that feedback can be system-
atically incorporated.

Smith and Chen [28] researched meshing tool requirements with a SPL
perspective, but no procedure is provided for using the products of this method
for actually building meshing tools. Also Bastarrica et al. [3] propose a product
line architecture for the meshing tool domain, and they show how tools could
be built [2] using it, but they do not focus on a systematic DA method.
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3 Domain Analysis

The domain model will be defined in terms of features, goals and scenarios;
Section 3.1 defines this model together with the relationships among its con-
stituent elements. In Section 3.2 we present the DA method, and Section 3.3
describes how the DA model is used within the Domain Engineering stage for
generating reusable assets.

3.1 Features, Goals and Scenarios

Our proposed method is based on features, goals and scenarios whose defi-
nition is taken and adapted from [21]. Features are characteristics and ab-
stractions of product functionalities, parameters and data storages in a SPL
visible for stakeholders, and thus they can be viewed as effects achieved by
some product behavior (external or internal). A feature is an attribute of a
system that directly affects end-users [15].

In the context of a product line a goal is an objective of the business, the
organization or the system that some stakeholder hopes to achieve with that
product line. A scenario is a possible behavior limited to a set of interactions
with the purpose of achieving some goals with the product line. Thus, a sce-
nario is generally composed of a sequence of one or more actions corresponding
to user or system interactions with products in a product line.

Feature

Scenario

enablesfulfills

achieved by

contains

Goal

Action

Fig. 2. Features, goals and scenarios

Figure 2, adapted from [21], represents the relationships that exist among
features, goals, scenarios and actions. Scenarios capture real requirements as
they describe real situations or concrete behaviors in terms of actions. Goals
can be achieved through the execution of scenarios. Product features and
goals are related indirectly, essentially through some behavior of scenarios,
i.e. actions contained in the scenarios. We consider GOAL, FEATURE, and
ACTION as primitive types. We define SCENARIO as a sequence of actions.

[GOAL,FEATURE ,ACTION ]
SCENARIO == seq ACTION
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The following Z schema [29] DomainModel defines the elements that form
part of our domain model. The DomainModel also includes the relationships
between goals and scenarios (By Scenario [a]), and between scenarios and
features (By Feature [b]); these relationships are inspired in [14].

DomainModel
Goals : P GOAL
Scenarios : P SCENARIO
Features : P FEATURE
Actions : P ACTION
By Scenario : GOAL↔ SCENARIO [a]
By Feature : SCENARIO ↔ FEATURE [b]

Actions = {a : ACTION | ∃ s ∈ Scenarios ∧ a ∈ ran s} [c]
dom By Scenario ⊆ Goals [d]
ran By Scenario ⊆ Scenarios [e]
dom By Feature ⊆ Scenarios [f]
ran By Feature ⊆ Features [g]

The only actions that are identified are those that are derived from an al-
ready identified scenarios [c]. Only those goals, scenarios and features that
have been identified as part of the DomainModel can be related by the
By Scenario and By Feature relations [d,e,f,g].

Although we may have a transient inconsistent domain model, at the end
it needs to be consistent. The following schema refines the prior one by adding
certain constraints. It also includes the definition of another relationship (At-
tached [h]) between actions and features that are necessary for fulfilling them.

ConsistentDomainModel
DomainModel
Attached : ACTION ↔ FEATURE [h]

dom By Scenario = Goals [i]
dom By Feature = ran By Scenario = Scenarios [j]
ran By Feature = Features [k]
dom Attached = Actions [l]
ran Attached = Features [m]

Within a ConsistentDomainModel, all identified Goals have a series of
related scenarios [i], all identified Scenarios contribute to a certain goal and
may also be fulfilled with the set of identified Features [j], and all Features
contribute to the fulfillment of at least one scenario [k]. Finally, all identified
Actions should be attached to at least one feature [l], and all Features are
attached to at least one action [m]. We will use these conditions as one of the
termination conditions of our proposed method.
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3.2 Domain Analysis Method

Figure 3 summarizes the elements in the domain model and their relationships.

Action

Optional
Alternative
Common

Goal

Development
Use

given

refined

Business goal

Scenario

composed

Feature

require/requiredachieved/achieve

fulfilled/enable

Fig. 3. Domain Analysis Products

The business goal establishes the purpose for developing products as a fam-
ily. This goal is unique for the whole SPL, but there may be several particular
goals. We distinguish two types of scenarios: development scenarios that are
those followed whenever a product of the SPL is built, and use scenarios that
are those followed by particular products once they are executed. Features are
those data storage, parameters or functionalities identified for the potential
products in the SPL; they may be either common, optional or alternative. We
use a feature model for specifying features following the notation proposed by
Czarnecki and Helsen [11], and structured English for goals and scenarios.

Figure 4 shows an activity diagram for the DA method we propose. The
domain expert and the domain analyst should interact in order to identify and
specify goals, features, scenarios and actions, as well as their relationships.
Once these activities are done, the domain expert checks for completeness by
analyzing if the model elements captured are enough for building all products
expected within the SPL scope. Meanwhile the domain analyst checks for
consistency by verifying that the domain model satisfies all the consistency
conditions. If any of these conditions (completeness or consistency) does not
hold, then the process iterates. Otherwise the domain model is ready and we
can proceed to the following step within the domain engineering stage.

The process is influenced by the characteristics of the Meshing Tool do-
main. This domain is stable, and thus it is possible to count on domain experts
that are familiar with good software engineering practices, so the model could
be simple. Also, there are several pre-implemented components, already tested
and with appropriately documented interfaces so it would not be extremely
difficult to identify them as features; in this way features are naturally mapped
to data storages, parameters or functionalities. Finally, the binding time for
variabilities in meshing tools is fixed to design time, so it is not necessary to
apply a completely general DA method, but a much simpler one.
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Consistency Completeness

Goals Features

Actions

Scenarios

Domain Analysis Model

Analysis Model

Tentative Domain

[consistent and complete]

Fig. 4. Domain Analysis Method

3.3 Domain Analysis and Engineering

The second step in the Domain Engineering is the Domain Design. In this
step, the product line architecture (PLA) is defined so that it can foster all
identified features, and allows all identified scenarios to be carried out. As the
goals refer to quality attributes, they influence the architectural style used for
the PLA design. For the meshing tool domain it is relevant to be able to reuse
several already developed software components so we also consider them when
designing the candidate PLA. The final step, the Domain Implementation,
mainly involves component implementation. According to the designed PLA,
the existing components, and the identified features, we must implement the
missing components according to the interfaces stated by the PLA.

During Application Engineering, we choose the features that will be in-
cluded in a particular product, and then the corresponding components will
be arranged following the structure of the PLA, using it as a roadmap.

4 Domain Analysis for Meshing Tools

In this section, we apply the DA method to build the meshing tool domain
model. We first obtained the business goal. Then we defined particular goals,
and then some scenarios and features. Some goals, scenarios and features were
related, but others were not. We proceeded with a second iteration mainly
because the feature model was found to be incomplete. In the second iteration
we advanced in the feature model (Figure 5).
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The relationships among goals, features and scenarios were stated in ta-
bles so that consistency checks would result easier. Only when the domain
expert and the domain analyst intuitively thought that the model could be
ready they proceeded to check for termination conditions. Thus finally our
domain analyst checked for domain model consistency using the Consistent-
DomainModel schema, and the domain expert checked for completeness by
determining if two candidates tools of the SPL could be built with the doc-
umented elements; in this case we use two already existing tools: Cubit and
Triangle.

4.1 Goals

We have identified the business goal and the particular goals for this domain.

Business Goal

Developing new robust meshing tools with minimum effort.

Goals

We have identified several particular goals in this domain. Here we present
nine representative ones.

G1: Generation of good quality meshes for a specific domain according to
certain given criteria that depend on the particular application.

G2: Generation of meshes with the minimum amount of points that fulfill
the application requirements.

G3: Generation of meshes in a reasonable CPU time.
G4: Generation of meshes using an efficient memory management.
G5: Scalability in the number of required mesh points.
G6: Scalability in the geometry complexity of the problems modeled.
G7: Make easy the interchange of different implementations for components

of the same type.
G8: Make easy to add a new kind of process to be applied to the mesh.
G9: Generation of meshes that fulfill the requirements of different numerical

methods.

4.2 Features

Figure 5 shows our feature model. The features Geometry, Output for-
mat, Visualize and Mesh are common to any meshing tool. Generate ini-
tial mesh, Algorithm, Criterion, Region, Evaluate and Postprocess
are optionals, i.e., they can be present or not in a particular meshing tool.
Moreover, the algorithms for Move Boundary, Refine, Improve, Opti-
mize and Derefine can be all or any subset in a particular tool. Finally, a
meshing tool must work with a Mesh in 2D or 3D, but no with both.
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Fig. 5. A feature model for Meshing Tool domain

4.3 Scenarios and Actions

We here detail a list of use and development scenarios for particular meshing
tools as well as their corresponding sequence of actions. Notice that some ac-
tions that take part of different scenarios have the same identification because
they are identical.

S0 : Generate an initial mesh for a specific domain.
A1 : Apply an algorithm for reading the geometry in the corresponding

format.
A2 : Apply an algorithm to generate the initial mesh.
A3 : Store the mesh in a specified output format.
A4 : Visualize the mesh.
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S1 : Generate a quality mesh from a domain geometry.
A1 : Apply an algorithm for reading the geometry in the corresponding

format.
A2 : Apply an algorithm to generate the initial mesh.
A5 : Select a quality criterion and a region where they will be applied.
A6 : Apply an improvement and/or optimization algorithm using the

specified quality criterion and region.
A7 : If desired, evaluate the quality of the mesh elements.
A3 : Store the mesh in a specified output format.
A4 : Visualize the mesh.

S2 : Generate a quality mesh with a minimal number of final mesh points.
A1 : Apply an algorithm for reading the geometry in the corresponding

format.
A2 : Apply an algorithm to generate the initial mesh.
A5 : Select a quality criterion and a region where they will be applied.
A8 : Apply a refinement, improvement and/or optimization algorithm

using the specified quality criterion and region.
A9 : If necessary, apply a derefinement algorithm using the specified qual-

ity criterion and region.
A3 : Store the mesh in a specified output format.
A4 : Visualize the mesh.

S3 : Generate a mesh with approximated quality as fast as possible.
A1 : Apply an algorithm for reading the geometry in the corresponding

format.
A2 : Apply an algorithm to generate the initial mesh.
A5 : Select a quality criterion and a region where they will be applied.
A10 : Apply the fastest improvement and/or optimization algorithm using

the specified quality criterion and region.
A3 : Store the mesh in a specified output format.
A4 : Visualize the mesh.

S4 : Generate a mesh with a minimal quality that optimizes the memory
used.
A1 : Apply an algorithm for reading the geometry in the corresponding

format.
A2 : Apply an algorithm to generate the initial mesh.
A5 : Select a quality criterion and a region where they will be applied.
A11 : Apply an memory efficient improvement and/or optimization algo-

rithm using the specified quality criterion and region.
A3 : Store the mesh in a specified output format.
A4 : Visualize the mesh.

S5 : Generate large meshes in a reasonable CPU time.
A1 : Apply an algorithm for reading the geometry in the corresponding

format.
A2 : Apply an algorithm to generate the initial mesh.
A5 : Select a quality criterion and a region where they will be applied.
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A12 : Apply the fastest refinement algorithm using the specified quality
criterion and region.

A3 : Store the mesh in a specified output format.
A4 : Visualize the mesh.

S6 : Generate an initial mesh for any complex geometry.
A1 : Apply an algorithm for reading the geometry in the corresponding

format.
A13 : Apply an algorithm to generate the initial mesh that can manage

any complex geometry.
A3 : Store the mesh in a specified output format.
A4 : Visualize the mesh.

S7 : Generate meshes for numerical method that require specific information
(postprocess).
A14 : Read an already generated mesh.
A15 : Store the mesh
A16 : Apply post-process to the mesh.
A3 : Store the mesh in a specified output format.
A4 : Visualize the mesh.

S8 : Evaluate meshes.
A14 : Read an already generated mesh.
A15 : Store the mesh
A17 : Evaluate the quality of the mesh.
A4 : Visualize the mesh.

S9 : Generate a quality mesh from any input mesh.
A14 : Read an already generated mesh.
A15 : Store the mesh
A5 : Select a quality criterion and a region where they will be applied.
A6 : Apply an improvement and/or optimization algorithm using the

specified quality criterion and region.
A7 : If desired, evaluate the quality of the mesh elements.
A3 : Store the mesh in a specified output format.
A4 : Visualize the mesh.

S10 : Incorporate a new visualizer.
A18 : Choose a new visualizer.
A19 : Implement the common interface in order to integrate the new

visualizer into the tool.
S11 : Incorporate a new algorithm to the existing ones.

A20 : Identify and implement the component that represents the algo-
rithm we want to add.

A21 : Implement the common interface in order to integrate the new
algorithm into the tool.

S12 : Incorporate a new kind of mesh processing.
A22 : Identify and implement the component that represents the process

we want to add.



Supporting Reuse in Meshing Tool Development using Domain Analysis 13

A23 : Implement the common interface in order to integrate the new
process into the tool.

S13 : Incorporate a new criterion for refine, improve, optimize and/or dere-
fine algorithms.
A24 : Define the criterion we want to add.
A25 : Implement the common interface for this criterion.

S14 : Incorporate a new approach to generate an initial mesh.
A26 : Design a new algorithm to generate an initial mesh.
A27 : Implement the common interface for any initial mesh algorithm.

Scenarios S0 to S9 are use scenarios, and S10 to S14 are development
scenarios. This division is not strict, provided that one use scenario could be
used for understanding how to build a product of the SPL.

4.4 Consistency

Table 1 establishes the relationship between goals and scenarios (By-Scenario).
We can see that all goals are achieved by at least one scenario, and that all
scenarios achieve at least one goal. Table 2 establishes that all actions are ful-
filled by at least one feature. By construction, the set of actions is the union of
all actions required for fulfilling the specified scenarios. Table 3 (By-Feature)
shows that every feature in the first level of the feature model is required for
fulfilling at least one scenario. So all conditions in ConsistentDomainModel
are satisfied.

Table 1. Relationships between Goals and Scenarios

Goals Scenario

G1, G2, G3, G4, G9 S0
G1, G9 S1

G2, G3, G4, G5, G9 S2
G1, G3, G9 S3

G1, G4 S4
G1, G3, G5, G9 S5

G6 S6
G1, G3, G9 S7
G1, G2, G9 S8

G1, G9 S9
G7 S10

G3, G4, G5, G7 S11
G3, G4, G5, G8 S12

G7 S13
G7 S14

It is necessary for a detailed consistency to advance in developing scenarios
and actions that include features of deeper detail levels.

4.5 Completeness

In order to check for completeness, our domain expert checked if two well know
meshing tools, Triangle [25] and Cubit [9], could be built with the elements
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Table 2. Relationship between Actions and Features

Action Features

A1 Geometry
A2 Generate initial mesh, Mesh
A3 Output Format, Mesh
A4 Visualize, Mesh
A5 Region, Criterion
A6 Algorithms, Criterion, Region, Mesh
A7 Evaluate, Mesh
A8 Algorithms, Criterion, Region, Mesh
A9 Algorithms, Criterion, Region, Mesh
A10 Algorithms, Criterion, Region, Mesh
A11 Algorithms, Criterion, Region, Mesh
A12 Algorithms, Criterion, Region, Mesh
A13 Geometry, Generate initial mesh, Mesh
A14 Geometry
A15 Mesh
A16 Postprocess, Mesh
A17 Evaluate, Mesh
A18 Visualize
A19 Visualize, Output Format, Mesh
A20 Algorithms
A21 Algorithms, Criterion, Region, Mesh
A22 Algorithms
A23 Algorithms, Criterion, Region, Mesh
A24 Algorithms, Criterion, Mesh
A25 Algorithms, Criterion, Mesh
A26 Geometry, Generate initial mesh, Mesh
A27 Geometry, Generate initial mesh, Mesh

Table 3. Relationship between Features and Scenarios

Feature Scenarios

Geometry S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S14
Generate initial mesh S0, S1, S2, S3, S4, S5, S6, S14

Algorithms S1, S2, S3, S4, S5, S9, S11, S12, S13
Output Format S0, S1, S2, S3, S4, S5, S6, S7, S9, S10

Criterion S1, S2, S3, S4, S5, S9, S11, S12, S13
Region S1, S2, S3, S4, S5, S9, S11, S12

Evaluate S1, S8, S9
Visualize S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10

Postprocess S7
Mesh S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11,

S12, S13, S14

specified in the domain model. Development scenarios are not present in this
analysis because the identification of the elements of the domain was done by
using the tools, and not by developing them.

Triangle

Triangle is a well known open source 2D mesh generator that allows the user
to generate quality 2D triangulations. As input it can read either a geometry
defined by a boundary representation (b-rep feature) or an already generated
mesh (dd-rep feature). In order to generate an initial mesh, it provides
two variations of the Delaunay 2D feature: the constrained Delaunay*
algorithm and the conforming Delaunay* algorithm. The mesh contains
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the Triangle and Vextex features. As criterion feature it provides two
alternatives: Maximum area* and Minimum angle. As Refine feature it
provides the Delaunay refinement* algorithm in order to generate refined
meshes. The same algorithm can also be used as an implementation of the
Improve feature. The Region feature is always the Whole domain. For the
Postprocess feature, there are two algorithms available: one for generating
and storing the Voronoi Diagram* of the generated triangulation and
another for checking the mesh consistency*. As output format it can
be the Triangle* format (.node and .ele) or the .off* format. The first one
requires that the visualize feature be ShowMe* and the second one requires
Geomview*.

The related scenarios are: S0, S1, S3, S4, S5, S6, S7, S9.
The Goals are: G1, G2, G3, G4, G5, G6, G9

Cubit

The Cubit tool suite provides an environment for geometry construction and
mesh generation. The main tools are: (a) the Cubit geometry and mesh gen-
eration toolkit for both the geometry modeling and for the generation of
quadrilateral and hexahedral meshes, (b) the Common Geometry Module for
providing the functionality of solid modeling engines allowing the creation
of the domain geometry, (c) the tool VEREDICT for mesh verification, (d)
the graphical user interface CLARO for the mesh visualization. For the gen-
eration of 3D hexahedral meshes, the geometry feature is implemented
as b-rep and is built by the Common Geometry Module. The algorithms
available for generating an initial mesh feature are 3D mapping*, hex
sweeping* and multi sweeping*. As optimizing features, we find the
Laplacian*, equipotential*, centroid-area pull* and Jacobian opti-
mization* algorithms, among others. As the criterion feature, it provides
the Jacobian*, aspect ratio, and minimum and maximum angle among
others. The mesh feature is represented by and hexahedral mesh with ver-
tex and physical value features. A postprocess feature is the conversion
of the mesh from hexahedra to tetrahedra*. As the input/output for-
mat, it provides ACIS sat*, sab*, STEP* and IGES*, among others. The
mesh evaluation feature is implements in the tool VEREDICT* and the
visualize feature with the graphical user interfaces CLARO*.

The related scenarios are: S0, S1, S3, S5, S7, S8.
The goals are: G1, G3, G5, G6, G9.

Completeness evaluation

All features are highlighted and those that are not present in the feature model
(Figure 5) also have an * attached. Since there are several of these features,
we conclude that our domain model is not complete. Then it is necessary, for
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completeness, to add the missing features to the feature model and probably
also adjust the scenarios and goals.

This incompleteness may lead us to think that our domain model is not
good. The description of the tools used for checking completeness is quite
detailed. But even though not all required features are found in the feature
model, we are able to easily identify them and find the right place where
the model should be extended. This quality is due to the iterativity of the
proposed DA method and the structured notation used.

As a consequence of the completeness evaluation, we must for example
include in the feature model of Figure 5 three new sub-features of feature
Visualize: ShowMe, Geomview and CLARO, as we show in Figure 6.

ShowMe

Visualize

CLARO

Geomview

Fig. 6. Sub-features for Visualize

With these new features, and according to our method, we need to iterate
again. It is clear that new features may probably need new scenarios and
goals because consistency would probably be affected with the inclusion of
new elements in the domain model. In the particular case of the Visualize
feature refined in Figure 6, the new features CLARO, Geomview and ShowMe
should be included in Features, and all scenarios related to Visualize should
be adapted to the existence of these features. Action A4 is related to feature
Visualize, as can be seen in Table 2. Then action A4 will be rewritten as
follows and replaced in all scenarios:

A4 : Visualize the mesh, choosing one of the following options: CLARO,
Geomview and ShowMe.

5 Conclusions

We presented a DA method specially suited for the meshing tool domain,
showing how its characteristics could be specified using a model based on
features, scenarios and goals. Our method proposes a process with clear ac-
tivities, roles and a clear termination condition. It is also customized avoiding
activities that general processes include but are not relevant here, such as
determining the binding time of the identified variabilities. We also use a
simplified domain model because in the meshing tool domain complexity is
encapsulated within components and domain experts generally are familiar
with software engineering practices.

Deciding when requirements are complete is generally a difficult issue. The
termination conditions provided in our method give a systematic means for
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verifying if the elements included in the domain model allow us to build all
the products included in the SPL scope.

We have implemented a set of software components that implements the
functionality identified by the features, but we still need to complete it. We
have also designed a candidate PLA. Once we finish this ongoing work we will
be able to let real meshing tool experts build their own tools.
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