
Feature Model to Product Architectures:
Applying MDE to Software Product Lines

Pedro O. Rossel, Daniel Perovich, and Maŕıa Cecilia Bastarrica

Department of Computer Science, Universidad de Chile
{prossel,dperovic,cecilia}@dcc.uchile.cl

Abstract. A Software Product Line (SPL) is a portfolio of similar soft-
ware products that target a particular domain. SPL methodologies gen-
erally use Feature Modeling to express requirements including variabil-
ity, and provide a prescribed way to develop particular products from
reusable assets. These methodologies do not explicitly preserve design
rationale, which is implicitly stated in the SPL architecture. Having a
systematic, tool-enabler, scalable and evolvable method for generating
family members is desirable. In this paper, we use Feature Configuration
Models (FCM) as the DSL for specifying particular product require-
ments, and we apply MDE techniques for systematizing the process of
product generation. We use model transformations for stating how the
Product Architecture is built from the FCM, and for integrating the
reusable components. Such transformations share a common but evolv-
able set of rules, and conform an explicit representation of the SPL ra-
tionale. We apply our approach for developing a Meshing Tool SPL.

1 Introduction

Software Product Lines (SPL) is an approach to develop related systems reusing
a managed set of core assets sharing functionality and quality attributes [4].
Most SPL development processes identify three stages. In the Domain Engi-
neering (DE) stage reusable assets are developed and maintained, and the scope
and production plan are defined. In Application Engineering (AE) particular
product requirements are gathered, and the product is built by arranging the
reusable assets according to the production plan. If some product requirements
fall beyond the scope the Management stage determines whether the product
will be built or not. The DE stage is formed by three activities: Domain Anal-
ysis, Domain Design, and Domain Implementation [18]. The Domain Analysis
produces the Domain Model. This model is used during Domain Design as a
basis for designing the Product Line Architecture (PLA) and the catalogue of
software components that will populate it. In the Domain Implementation, the
designed components are built. Both, the Domain Model and the PLA capture
commonalities and variabilities of the SPL. The Domain Model gathers all the
potentially required features for any particular product in the SPL. The PLA is
built in such a way that it articulates all the identified features according to the

quality requirements for the whole SPL. Counting on a Domain Model, a PLA
and a component catalogue, the AE consists of choosing the desired features,
eliminating variabilities from the PLA yielding a product architecture (PA),
and selecting the appropriate component implementations. These components
are put together according to the PA obtaining the desired product.

Traditional approaches to SPLs are well defined. However, the design de-
cisions that must be made, such as designing the PLA, require to take into
account the whole information the domain analysis may produce. This situation
puts stress on the domain analysis activity and the artifacts it produces. Feature
models are a widely used approach to domain analysis capturing commonalities
and variabilities [6], and there are several methods and notation for generating
them [1, 11]. But still having a well documented domain analysis, the architect
has a huge responsibility on the success of the SPL: if the PLA he/she designs is
not appropriate, all products will be flawed. This makes the PLA design a hard
task. What is even worse, the PLA may become inadequate if the SPL scope
evolves since the rationale of the PLA design is usually lost in the design pro-
cess, and the PLA should be redesigned from scratch [7]. There have been some
successful experiences in automating product generation in SPLs [9, 14], most of
them targeting specific domains. Automation is thus desirable and also feasible.
Tools supporting product generation should be scalable, traceable, and manage
consistency and visualization for variability among different artifacts [2].

We define a SPL development process based on the Praise reference pro-
cess [18]. We apply MDE [17] techniques to provide a systematization of the
DE stage, which enables the automation of the AE stage. To this end, we con-
sider features in the Feature Model to represent main functional areas. Archi-
tectural decisions are explicitly recorded as model transformation rules attached
to each feature. For each component either an implementation or a generator is
implemented. Therefore, generating a particular product consists of defining a
particular Feature Configuration Model only. The actual Product Architecture
is automatically generated by applying the set of rules of the selected features.
The actual product is built by using the implementations and generators of those
components participating in the product architecture.

The rest of the paper is structured as follows. Section 2 presents the defined
development process, including first its rationale, and then detailing the activities
and artifacts involved in both, the DE and the AE stages. We successfully applied
this process by addressing the Meshing Tool domain1, and report a key part of
this experience in Section 3. Related work is reviewed in Section 4. Finally,
Section 5 concludes with a discussion and suggests further work directions.

2 Model-Driven Development of Software Product Lines

In this work, we define a process based on the Praise reference process [18]
for SPLs. We only deal with Domain Engineering and Application Engineering,

1 http://mate.dcc.uchile.cl/research/tools/mddofspl/

D
o
m
ai
n
 E
n
g
in
ee
ri
n
g

D
o
m
ai
n
 E
n
g
in
ee
ri
n
g

D
o
m
ai
n
 E
n
g
in
ee
ri
n
g

D
o
m
ai
n
 E
n
g
in
ee
ri
n
g

Domain
Analyst

Domain
Analysis

Domain
Design

Domain
Designer

Domain
Implementation

Domain
Implementer

Feature Model
Feature-to-Architecture
Transformation Rule

[one set of rules per feature]

Component
Generator

[one per internal-
node feature]

Component
Implementation

[one per leaf-
node feature]

A
p
p
lic
at
io
n
 E
n
g
in
ee
ri
n
g

A
p
p
lic
at
io
n
 E
n
g
in
ee
ri
n
g

A
p
p
lic
at
io
n
 E
n
g
in
ee
ri
n
g

A
p
p
lic
at
io
n
 E
n
g
in
ee
ri
n
g

Product
Design

Product
Analyst

Product
Analysis

Product
Implementation

Feature
Configuration ProductProductProductProduct

ArchitectureArchitectureArchitectureArchitecture
FeatureFeatureFeatureFeature----totototo----ArchitectureArchitectureArchitectureArchitecture

TransformationTransformationTransformationTransformation

ProductProductProductProduct
ImplementationImplementationImplementationImplementation

ProductProductProductProduct
GeneratorGeneratorGeneratorGenerator

Fig. 1. Model-Driven Development Process of Software Product Lines.

both organized in terms of three major activities. First, Analysis uses features to
explicitly define functionality, and also variability in the case of DE. Second, De-
sign is architecture-centric, and tackles critical structural and quality-addressing
decisions. Third, Implementation deals with actual component and product de-
velopment. Figure 1 illustrates the proposed process.

The major goal of our process is automating AE. Particularly, once the func-
tionality of the new product is defined in the Feature Configuration Model, the
Product Architecture is automatically derived from it, and the product imple-
mentation supporting such an architecture can also be automatically generated.
To achieve such a goal, we define a systematic process to perform DE and we
apply MDE [17] techniques. We conceive all participating artifacts as models,
rendering rigorous and unambiguous artifacts amenable to be manipulated by
tools. A metamodeling approach is used to define the DSLs needed to express
each participating artifact. Altogether, the automation of AE is achieved by
means of model transformations that are automatically derived from the models
defined in DE, and applied during AE.

2.1 Process Rationale

Features represent functionality. We constrain Feature Models only to features
representing services, functionalities, parameters or data storages. Quality at-
tributes need to be documented in a separated artifact as they are needed for
design. However, as proposed in [13], a Feature Model can be refined into one
that only refers to functional capabilities identifying quality attributes also as
features.

Features lead component architecture construction. Domain Design focuses on the
construction of the PLA that embodies the critical design decisions that address
functionality and quality, and also commonality and variability. In our approach,
we organize these decisions in terms of the features in the Feature Model, which
in turn, guide the compositional structure of the architectural components. Each
feature inspires an architectural component that encapsulates the set of decisions
that guides the component internal organization. Decisions are made locally to
each particular feature, only considering its direct member features. Quality-
related decisions are associated with features near the root of the Feature Model,
while functional-specific decisions are associated with features near the leaves.

Record the architecting activity, not the architecture. In the traditional approach,
the Domain Design develops the PLA, usually yielding complex architecture
definitions in non-standard ADLs. During Product Design, all variabilities in
the PLA are resolved to obtain a particular Product Architecture (PA). While
Product Analysis resolves variability at the feature level, Product Design resolves
variability at the architectural level; then, the effort is somehow duplicated. Hav-
ing no direct traceability from features to architectural components, and mainly
to architectural decisions, hardens tool-assistance in the construction of a PA.
Besides, such an approach lacks first-class representation for design decisions.
Although they are implicit in the resulting architecture artifact, the underlying
rationale is scattered among the participating components and the general struc-
ture. In our approach, we record the product line architecting activity instead of
the PLA. For each feature in the Feature Model, we preserve the set of decisions
involved in providing this feature by the architecture. Such decisions are explic-
itly recorded as the set of actions that must be performed on a PA to include
the feature support. This actions are described in terms of model transforma-
tion rules that output a fragment of the PA model when the particular feature
is present in the product. Then, the whole set of model transformation rules are
the core of the model transformation that produces a particular PA from the
product capabilities description, namely the Feature Configuration Model.

Components lead implementation. In the traditional approach, the Domain Im-
plementation develops, refactors or buys the component implementations that
participate in particular product implementations. Besides, a generator program
is usually built so as to automate this task. In our approach, we modularize such
a generator in terms of the components in the PAs. There are two kinds of com-
ponents: those not further decomposed and whose component implementations
are developed, and those further decomposed, and hence, the architectural de-
scription defines how they are designed in terms of the other components. For
each compound component, the Domain Implementation develops a component
generator which assembles it, considering the variations in its internal composi-
tion as described by the transformation rules. Then, there is traceability from
architectural components to component implementations or component genera-
tors. The integration of all component generators can be regarded as the general
generator of the traditional approach. Such an integration conforms the model
transformation that obtains a product implementation from a particular PA.

Incrementally develop the product line. In our process the defined DE artifacts
can be built incrementally. While a complete Feature Model is usually built
during Domain Analysis, the other artifacts can be produced incrementally by
addressing only those features that are required by each particular product under
development. The modularization strategy not only favors incrementality, but
also scalability as changes in the SPL scope have restricted impact on other de-
veloped artifacts. The development effort would be greater for the first products
as the top-most features and most of the compound components will probably
participate in all products and hence, need to be tackled early in the process.

Abstract underlying technology. As the defined approach relies on MDE, partic-
ular technologies need to be used for constructing our artifacts. For instance, a
particular model transformation language is required to define the set of rules
that produces the PA. Also, a particular language is required for coding compo-
nent generators. To achieve evolvability, we abstract away the underlying tech-
nology in the metamodels, enabling the seamless integration of new technologies.

2.2 Development Process Activities and Artifacts

As illustrated in Figure 1, our process involves the Domain Engineering and
Application Engineering, and organizes each of them in three activities: Analysis,
Design and Implementation. Although these activities are sequentially presented,
they are strongly related and they can be performed incrementally. First, we
describe DE with its activities and core assets. Then we describe how in AE the
desired product is selected and its design and implementation is automatically
built using the core assets of DE.

Domain Engineering

Domain Analysis. Feature Models have shown to be useful and widely-used for
documenting domain analysis [2, 5]. Thus, the goal of this activity is to produce
a Feature Model such that:
– The leaf features include those that can be encapsulated in a single coherent

unit. Thus, the leaf nodes of the model must represent specific functionality
provided by a product, parameterization of such a functionality, user interac-
tion, or access to data storage.

– The internal features include those with subfeatures. Thus, the internal nodes
of the model must represent functional areas of the SPL that can be provided
by means of the interaction or combination of the functionality provided by
the features they depend on, i.e. their children features.

The metamodel we use for building Feature Models is a simplification of the
metamodel proposed by Czarnecki et al. [6]; we depict it in Figure 2. All Features
in the Feature Model have distinct names and may have composing members.
Root features are used to modularize the model; they cannot be members of
other features, and exactly one of them must be marked as main in the model.

Feature Model Metamodel

name : String

lower : Natural

upper : UNatural
main : Boolean

0..*1

lower : Natural

upper : UNatural

0..*1

members

0..*

1

members

Fig. 2. Feature Model Metamodel.

Solitary and Grouped features represent those that are ungrouped and grouped,
respectively. Members of composed features can be Solitary, Reference to a partic-
ular Root feature, or Group. A Group consists of a group of Grouped or Reference
features. Variability is represented by the cardinality. For Solitary features, car-
dinality indicates how many times it can be used to compose the owner feature.
For Groups, cardinality indicates how many members can be actually used.

Domain Design. The goal of Domain Design is to make the critical decisions
on the product architectural structure and the resolution of quality attributes.
Architectural patterns are used in order to address the quality and functional
requirements which are documented in requirement specification artifacts. The
Feature Model is used to organize the decision making activity in the Domain De-
sign. Provided that features in the Feature Model represent functional aspects,
we follow the tree-structure of such a model to modularize the architectural
decisions. Our approach is centered in explicitly recording the architecting ac-
tivity, not simply the architectural products. The goal of Domain Design is to
record for each feature the architectural decisions that are made to address the
functionality and variability represented by such a feature in the architecture.
Quality attributes are also considered, mainly when recording design decisions
associated to those features near the root of the Feature Model.

We understand Product Design as a model transformation from a Feature
Configuration Model to a Product Architecture. Thus, the architectural decisions
made during Domain Design are recorded as fragments of this model transforma-
tion. Each fragment consists of a set of rules encapsulating the knowledge of how
to build the Product Architecture when the corresponding feature is present in
the Feature Configuration Model. The Product Architecture is organized in terms
of a single architectural view based on the Component & Connector viewtype [3].
Then, the rules populate such an artifact with components whose provided and
required interfaces are assembled by connectors. Leaf features probably yield
component interfaces or components that are not further decomposed. Internal

name : String

0..*1

rules

Feature-to-Architecture Transformation Rule Metamodel

(from ATL-0.2)

1

1

top

0..1

0..*

owner

members

0..*1

declarations

(from ATL-0.2) (from ATL-0.2)

(from ATL-0.2) (from ATL-0.2)

helper0..10..1calledRule

{xor}

0..*variables outPattern0..1 actionBlock0..1

(from OCL::Expressions)

0..1 filter

Fig. 3. Feature-to-Architecture Transformation Rule Metamodel.

features yield components that are further decomposed in terms of intercon-
nected subcomponents which correspond to some of their subfeatures.

Domain Design produces a Feature-to-Architecture Transformation Rule arti-
fact, expressed in terms of the metamodel in Figure 3. A PLA element is formed
by a set of declarations and a top feature. Each Declaration corresponds to a
general declaration that can be used by the rules attached to each feature. Fea-
tures have distinct names, and are organized in a tree-structure inspired by the
Feature Model. The name of the Feature is used for matching purposes with the
features in an input Feature Configuration Model. Each Feature has a set of rules
to indicate how to affect an output Product Architecture when the given feature
is present in an input Feature Configuration Model. Declaration and Rule meta-
classes are abstract for evolvability purposes. Specializations of the metamodel
can be made, targeting different model transformation technologies. In Figure 3,
we also illustrate one of such specializations targeting the Atlas Transforma-
tion Language (ATL). An ATLDeclaration can include either a CalledRule or a
Helper, both metaclasses of the ATL metamodel. A particular ATLRule consists
of: (i) a filter OCLExpression to distinguish among different cases of the input
feature (e.g. whether a particular child feature is present or not), (ii) various
RuleVariableDeclarations for rule-specific constants, (iii) an OutPattern indicat-
ing the elements in the target Product Architecture model that must be present,
and (iv) an ActionBlock for imperative actions for the rule. These metaclasses are
defined in the ATL metamodel and they conform the core composing elements
of a general ATL rule in such a metamodel.

Domain Implementation. The goal of Domain Implementation is to develop the
components participating in the architecture of the SPL products. The prod-
uct line implementation (PLI) is organized as a model expressed in terms of the

name : String

Component Implementations and Generators

deployment : String

11

top

10..1

archive

members

0..1

owner

1..*

deployment : String

implementations

component

1

1..*

archive

0..11

{xor}

generators

component

1
1..*

Fig. 4. Component Implementations and Generators Metamodel.

metamodel in Figure 4. It is modularized in terms of Components, inspired by
the logical components resulting from the rules in Feature-to-Architecture Trans-
formation Rule. There are two kinds of Components: Terminal or Composed. (i)

A Terminal component is not further decomposed in the architecture, and for
which only its interfaces are specified. For each component of this kind, one
or more Implementations must be available. (ii) A Composed component is fur-
ther decomposed into interconnected subcomponents. For each component of
this kind, the composing member components are preserved, and one or more
Generators must be developed. To this end, a script, program or transformation
is developed which is able to generate the component implementation for the
corresponding component. A Generator encapsulates the knowledge of how to
implement a Composed component, joining the implementations of the mem-
bers components and generating any necessary glue code. For both cases (i) and
(ii), Implementations and Generators can be targeted to any particular platform,
which is annotated in their deployment property. In particular, in the metamodel
in Figure 4 we include the specialization targeting the Java platform for which
both JavaImplementations and JavaGenerators are coded in a Java Archive.

Application Engineering

Product Analysis. The goal of Product Analysis is the selection of the desired fea-
tures for a particular product. These features are selected from those provided by
the SPL, considering variability constraints. Thus, a Feature Configuration Model
defines which configuration of the Feature Model represents the product to be
developed and consists of Features composed by subfeatures. Feature Configura-

Feature Configuration Model Metamodel

name : String 0..*

0..1owner

members

Fig. 5. Feature Configuration
Model Metamodel.

Product Architecture Metamodel

name : String

name : String

kind : ConnectorKind

name : String

0..*0..1

requirer required

Delegate

Assembly

«enumeration»

0..*0..1

provider provided

source

0..*

1 1

0..*

target

0..*

1owner

connectors

0..*

owner

0..1

components

Fig. 6. Product Architecture Metamodel.

tion Model is an instance of the metamodel in Figure 5; it is the Feature Model
that constrains which Feature Configuration Models can be actually developed.

Product Design. The goal of Product Design is to define the Product Architecture
for the particular product being developed, considering its desired features de-
fined in the Feature Configuration Model. The architectural decisions made during
Domain Design must be used to produce the Product Architecture; the subset
of transformation rules corresponding to the features included in the product
under development are used to derive the architecture.

To this end, a meta-transformation is defined which takes a particular Feature-
to-Architecture Transformation Rule artifact targeting a given technology, and
produces a Feature-to-Architecture Transformation for that transformation tech-
nology. One meta-transformation is required for each technology used to special-
ize Feature-to-Architecture Transformation Rule. However, once developed, this
meta-transformation can be reused in any SPL development project. Provided
our ATL specialization, we implement the corresponding meta-transformation
that transforms a Feature-to-Architecture Transformation Rule artifact to an ATL
transformation. This derived transformation is then applied to the Feature Con-
figuration Model to obtain the particular Product Architecture. By this means,
the Product Design activity is fully automated. The resulting architecture is an
instance of the metamodel in Figure 6. This metamodel is a simplification of the
Composite Structure metapackage of the UML 2.11 Superstructure Specification.

Product Implementation. The goal of Product Implementation is to build the
actual product, considering the architectural organization defined in the Prod-
uct Architecture. Once decided a particular target technology, the corresponding
Component Implementations and Generators developed during the Domain Im-
plementation must be used to obtain the implementation of the product.

To this end, a Product Generator that is capable of generating the Product
Implementation must be built. Proceeding analogously to the Product Design,

the Product Generator can be automatically derived from the set of Component
Generators developed by defining a meta-transformation that uses them accord-
ing to which component implementations need to be generated. Then, such a
Product Generator takes the particular Product Architecture and generates all
the component implementations of the composed components, which, in turn,
rely on the Component Implementations for the terminal components. Provided
this meta-transformation and the component implementations for the terminal
components, the Product Implementation activity is fully automated.

3 Addressing the Meshing Tool Domain

We applied the process to the development of a Meshing Tool SPL [15]. In this
section we briefly overview the key aspects of the analysis and design activities
of both DE and AE. In order to make our experiment repeatable, we provide a
complete guide which thoroughly describes the involved activities, artifacts and
tools in http://mate.dcc.uchile.cl/research/tools/mddofspl/. The case study
was developed using the ATL Bundle 2.0 UML2 Version for Windows consist-
ing of Eclipse 3.3.0 with the ATL plug-in pre-installed. Also, the FeaturePlugin
r0.6.6 and OrangevoltXSLT 1.0.7 plug-ins are required. We defined all meta-
models using KM3 so as to generate the corresponding ECore version. Also,
text-to-model and model-to-text transformations were implemented in XSLT,
and model-to-model and meta-transformations were coded in ATL.

Meshes are used for numerical modeling, visualizing and/or simulating ob-
jects or phenomena. A mesh is a discretization of a certain domain geometry
that can be either composed by a unique type of element, such as triangles,
tetrahedra or hexahedra, or by a combination of different types of elements.
Meshing tools generate and manage these discretizations. Such tools are inher-
ently sophisticated software due to the complexity of the concepts involved, the
large number of interacting elements they manage, and the application domains
where they are used. Provided that meshing tools are used in a variety of differ-
ent application domains, they may require slightly different functionalities. As
these tools have usually been developed with ad hoc methodologies, and with-
out taking reuse as a goal, every new tool needs to be developed from scratch
even though it may involve algorithms already implemented and data structures
already designed, all of them also used and tested. Meshing tools have a good
opportunity for reuse, and hence their development using SPL is promising.

3.1 Domain Engineering.

During Domain Analysis we use the FeaturePlugin to define the Feature Model;
we illustrate this artifact in Figure 7, which describes the six functional areas
involved in a Meshing Tool. The User Interface feature represents all possible
user interfaces for a product. Geometry indicates different mechanisms to load
into the tool a representation of the object to be modeled, in different input
formats. Generate initial mesh provides several algorithms for transforming an

Derefine
Move

Boundary

Algorithms

Refine

Improve

Optimize

Hexahedral

3D Mesh

Tetrahedral
element

3D MixedTriangle

Quadrilateral

2D Mesh

2D Mixed

element

Mesh

shared vertices

Polyhedra with Medit Tool

Meshing Tool

PLC
PLSG

Output

Format

Mandatory feature

Optional feature

Inclusive−or features

Alternative features

Symbols

Geometry

CSG
b−rep

dd−rep

User Interface

Manipulation

Direct

initial mesh
Generate

Octree

Advancing

front 3DIntersection

based approachAdvancing

front 2D

2D

Quadtree

Sphere−packing

Delaunay 2D

3D

Delaunay 3D

Meshing Tool

Language Form Fill−in
Command

Menu Selection

Fig. 7. Feature Model for Meshing Tools.

Fig. 8. Feature Config-
uration Model for a
Meshing Tool.

input geometry to a Mesh. These algorithms generate 2D or 3D meshes. The
initial mesh could need to be changed, both in quantity and size of its elements;
here we can use different Algorithms. Finally, the mesh can be saved in different
Output Formats. We developed a text-to-model transformation which transforms
the XML file produced by the FeaturePlugin to the corresponding model instance
of the metamodel in Figure 2.

During Domain Design the Feature-to-Architecture Transformation Rule ar-
tifact is built. First, we use a model-to-model transformation we developed to
create an initial version of this model from the Feature Model, only containing all
defined features and their member relationship. Second, the model is manually
augmented to include the required declarations, together with the rules for each
feature. We present in Figure 9 a fragment of one of the rules using the ATL
specialization of our metamodel illustrated in Figure 3, using textual notation.

The rule corresponds to the Meshing Tool feature (line 1) in the case where the
optional Algorithms feature is selected (line 2); f represents the Feature element
of the source Feature Configuration Model. In this rule we encode the decision of
which architectural patterns govern the overall structure of the product archi-
tectures. The rule requires a component c to be present in the target Product
Architecture model (line 5), with the same name as the feature and whose sub-
components are those generated by the rules corresponding to the subfeatures
of f (line 6). The connectors for c are those defined in this rule. Two examples
are included in the figure: a connector linking the User Interface and Geometry
subcomponents (lines 9-13), and several connectors linking the User Interface to
each provided interface of the Algorithms component (lines 14-18).

1 ATLRule for ’Meshing Tool’ {
2 filter f.members→select(fi |fi.name = ’Algorithms’)→notEmpty();
3 variable inames : Sequence(String) = thisModule.getAlgorithmFeatures(f)→collect(fa |fa.name)→asSequence();
4 out {
5 c : PAMM!Component (
6 name ←f.name, components ←f.members,
7 connectors ←Set{xgeometry, xgenerate, xgeneratemesh, xoutput, xoutputmesh, xalg, xalgmesh},
8),
9 xgeometry : PAMM!Connector (

10 name ←’Geometry’, kind ←#Assembly,
11 source ←c.components→any(ci |ci.name = ’User Interface’).required→any(ii |ii.name = ’IGeometry’),
12 target ←c.components→any(ci |ci.name = ’Geometry’).provided→first()
13),
14 xalg : distinct PAMM!Connector foreach(iname in inames) (
15 name ←iname, kind ←#Assembly,
16 source ←c.components→any(ci |ci.name = ’User Interface’).required→any(ii |ii.name = ’I’ + iname),
17 target ←c.components→any(ci |ci.name = ’Algorithms’).provided→any(ii |ii.name = ’I’ + iname)
18),
19 ...
20 }
21 }

Fig. 9. Feature-to-Architecture Transformation Rule for the Meshing Tool feature.

3.2 Application Engineering.

During Product Analysis we use the FeaturePlugin to create the Feature Con-
figuration Model defining the desired features in the new product being built;
Figure 8 illustrates the selected features. We use a text-to-model transformation
to obtain this model as an instance of the metamodel shown in Figure 5.

During Product Design, the meta-transformation is used to generate from the
Feature-to-Architecture Transformation Rule the Feature-to-Architecture Transfor-
mation artifact. This transformation is then applied to the Feature Configuration
Model to automatically generate the Product Architecture. Figure 10 illustrates
a fragment of the resulting Product Architecture model generated by the rule
shown in Figure 9. The Meshing Tool component is organized by the subcom-
ponents generated by the rules attached to the subfeatures of the Meshing Tool
feature. Such an organization follows a hybrid architectural style, based on the
3-tier pattern where the two bottom-most tiers follow the shared-data pattern.

4 Related Work

Several authors have proposed approaches to relate feature models and prod-
uct architectures. A good review about approaches for overcoming this gap is
found in [10]. For Berg et al. [2], approaches for variability management relating
requirements and solutions should be consistent, scalable, traceable an provide
visualization media. They state that, as there is no standard for feature model-
ing, their consistency could not be enforced, and also that as models grow they
become complex and thus non-scalable and not traceable either. Visualization
is the only aspect fulfilled by feature models. In our approach, the incremen-
tal construction of the product architecture enhances scalability and the use of
Feature-to-Architecture Transformation Rules makes it also traceable.

Product Architecture

IGeometry

IGenerate

IGeometry

IGenerate IMesh

IRefine IImprove IOptimize IOutput

IMeshIMesh

IMesh

IRefine IImprove IOutputIOptimize

Fig. 10. Product Architecture - fragment for Meshing Tool feature.

Liu and Mei [13] present an approach for mapping requirements stated as
feature models to software architecture, looking for traceability and consistency.
They include both functional and non-functional features. We only consider func-
tional features as part of the feature model, while quality attributes should be
recorded in another requirement artifact, and used by the architect when build-
ing the Feature-to-Architecture Transformation Rules. In [13] features are mapped
to the conceptual, logical and deployment architectural views. In our process the
architect can only choose an architectural style in the C&C viewtype although
this is not an intrinsical limitation. Liu and Mei do not establish a mapping
between requirements and architecture in the different views, but they show the
real possibility of doing it. Also, the authors do not deal with variation points.

Savolainen et al. [16] also map requirements, features and architectural assets.
However, they locate features in the solution domain instead of the problem
domain, thinking of features with an implementation perspective. This work is
similar to ours in two ways: our architectural assets are located in the leaves of
the feature model, and mapping rules are explicitly designed for features in any
level in the feature model (internal or leaf features).

Laguna et al. [12] focus on traceability between features and architectural
models based on UML. Their approach associates each feature to a package con-
taining classes and relationships, thus, some features are transformed into classes
and others into packages. Their transformations are defined in QVT similarly
as we defined ours in ATL. Besides, both methods preserve rationale using a
slightly different feature meta-model. One of the strengths of this work is the
transformation to UML models. Their approach deals with transformations at
the class level while ours deals with the component level.

In [9] features are considered as transformations that modify programs when-
ever they are included in the product under development. Their approach is

similar to ours, but they skip the product architecture and focus on product
implementation directly.

5 Conclusions & Further Work

In this work we applied MDE techniques to define a SPL development process
that systematizes Domain Engineering so that Application Engineering is auto-
mated. Our experience applying the process to the Meshing Tool domain was
successful in building product architectures. However, implementation was only
addressed at the process level because only some of the component implementa-
tions were available and not all of them satisfied the required interfaces.

In the traditional approach to SPL, the PLA is designed considering the
complete feature model, so changes in a feature affect the whole design. In our
approach we make architectural decisions only considering the information about
the children features, so changes in a feature have a local impact. However, we
realize that it may be useful to also consider some information about siblings or
a complete subtree in order to make better decisions; e.g., in the case study it
was necessary to know which Algorithms were chosen in order to select the right
User Interface features. However, if much is considered, we may end up following
the traditional approach.

SPL approaches are centered in architecture, so it is highly recommended
to assess the PLA. Our approach does not provide an explicit PLA, it is in-
stead implicitly defined by the Feature-to-Architecture Transformation Rule arti-
fact. Therefore, our PLA cannot be assessed with SPL methods. Our process
generates explicit product architectures that can be assessed with traditional
methods [8], but it could be expensive if the number of products in the SPL is
large. This design approach is independent of the particular architectural repre-
sentation that is decided for organizing the Product Architecture. Although we
currently use a single architectural view based on the C&C viewtype for repre-
senting the PA, any other representation could be used. We only need to redefine
our Product Architecture Metamodel to include others viewtypes. However, the
more complex the representation, the greater the effort to define the set of rules
and to preserve consistency will be.

Domain implementation may generate DSLs to aid building particular SPL
members by defining its syntax and building the supporting tools. With our ap-
proach it is necessary to design the DSL syntax, but not to implement any tool.
We only implement transformations from the DSL metamodel to the Feature Con-
figuration Model Metamodel, taking advantage of our process and infrastructure.

Currently quality attributes are specified in separated artifacts. We recognize
the need to systematically incorporate their management and we suggest it as
further work. Also, it would be desirable to count on an integrated tool support
for the complete process.

References

1. T. Asikainen, T. Männistö, and T. Soininen. A Unified Conceptual Foundation
for Feature Modelling. In 10th International Software Product Line Conference
(SPLC 2006), pages 31–40, 2006.

2. K. Berg, J. Bishop, and D. Muthig. Tracing Software Product Line Variability:
From Problem to Solution Space. In Conference of the South African Institute
of Computer Scientists and information technologists on IT research in developing
countries (SAICSIT ’05), pages 182–191, 2005.

3. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and
J. Stafford. Documenting Software Architectures. Views and Beyond. SEI Series
in Software Engineering. Addison-Wesley, 2002.

4. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
SEI Series in Software Engineering. Addison-Wesley, 2001.

5. K. Czarnecki and U. W. Eisenecker. Generative Programming. Methods, Tools,
and Applications. Addison Wesley, 2000.

6. K. Czarnecki, S. Helsen, and U. W. Eisenecker. Staged Configuration Using Fea-
ture Models. In Third International Software Product Lines Conference Software
Product Lines (SPLC 2004), volume 3154 of LNCS, pages 266–283, 2004.

7. D. Dikel, D. Kane, S. Ornburn, W. Loftus, and J. Wilson. Applying Software
Product-Line Architecture. IEEE Computer, 30(8):49–55, 1997.

8. L. Dobrica and E. Niemelä. A Survey on Software Architecture Analysis Methods.
IEEE Transactions on Software Engineering, 28(7):638–653, 2002.

9. G. Freeman, D. Batory, and G. Lavender. Lifting Transformational Models of Prod-
uct Lines: Case Study. In 1st International Conference on Model Transformations,
(ICMT’2008), Zurich, Switzerland, 2008.

10. M. Galster, A. Eberlein, and M. Moussavi. Transition from Requirements to Archi-
tecture: A Review and Future Perspective. In Seventh International Conference on
Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing (SNPD 2006), pages 9–16, 2006.

11. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson.
Feature-Oriented Domain Analysis (FODA). Feasibility Study. Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute, Nov. 1990.

12. M. A. Laguna, B. González-Baixauli, and J. M. Marqués. Seamless Development
of Software Product Lines. In 6th International Conference on Generative Pro-
gramming and Component Engineering (GPCE ’07), pages 85–94, 2007.

13. D. Liu and H. Mei. Mapping requirements to software architecture by feature-
orientation. In Second International SofTware Requirements to Architectures
Workshop (STRAW’03), pages 69–76, 2003.

14. F. Losilla, C. Vicente-Chicote, B. Álvarez, A. Iborra, and P. Sánchez. Wireless Sen-
sor Network Application Development: An Architecture-Centric MDE Approach.
In ECSA 2007, volume 4758 of LNCS, pages 179–194, 2007.

15. S. J. Owen, May 2007. http://www.andrew.cmu.edu/user/sowen/mesh.html.
16. J. Savolainen, I. Oliver, M. Mannion, and H. Zuo. Transitioning from Product

Line Requirements to Product Line Architecture. In 29th Annual International
Computer Software and Applications Conference (COMPSAC’05) Volume 1, pages
186–195, 2005.

17. D. C. Schmidt. Model-Driven Engineering. Computer, 39(2):25–31, Feb. 2006.
18. F. van der Linden. Software Product Families in Europe: The Esaps & Café

Projects. IEEE Software, 19(4):41–49, 2002.

