
Aspect-Oriented Model-Driven Approach to
Architecture Design

Daniel Perovich?, Maŕıa Cecilia Bastarrica, and Cristian Rojas

Department of Computer Science, Universidad de Chile
{dperovic,cecilia,crirojas}@dcc.uchile.cl

Abstract. Software Architecture (SA) allows for early assessment of
and design for quality attributes of a software system, and it is play-
ing a critical role in current software development. However, there is no
consensus on fundamental issues such as design methods and represen-
tation organization and languages, and current proposals lack specificity
and preciseness. In this paper we define an architecture design method
that enables the systematic and assisted construction of the software
architecture of Enterprise Applications, taking into account major qual-
ity attributes involved in this family of systems. We apply Model-Driven
Engineering and Aspect-Oriented techniques to achieve this goal. The ar-
chitecture is treated as a model organized in Architectural Views, using
aspects to improve separation of concerns, and encoding the application
of design decisions in terms of model transformations. The architectural
rationale is explicitly registered as the set of transformations that yields
the complete SA from scratch. We illustrate the application of the ap-
proach by designing the SA of a case study from the literature.

1 Introduction

Since Perry and Wolf’s paper [22], an evolving community has actively studied
the theoretical and practical aspects of Software Architecture (SA). In the years
to follow, its adoption in industry has been broad and the research community
has grown [4]. Software development processes have turned into architecture-
centric either for dealing with complexity, risk management or effective resolu-
tion of quality attributes (QAs). SAs are built following Software Architecture
Design Methods (SADM), which mainly consist of three major activities [9, 12]:
Requirement Analysis, Decision Making and Architectural Evaluation. Figure 1
depicts this general method. The Decision Making activity is intrinsically the
core of a SADM; in it, requirements are resolved and the architecture is actu-
ally built. However, in order to be enacted successfully, the other two activities
should be carefully integrated [12]. There is a wide variety of SADMs, and while
some provide general guidelines and checklists, others also offer QA resolution
techniques [9]. However, no SADM is precise enough to encode all details on
how a software architecture must be manipulated when performing an activity
? The work of D. Perovich was partially funded by CONICYT Chile.



2 D. Perovich, M. C. Bastarrica and C. Rojas

Fig. 1. General Software Architecture Design Method.

of the design method and in some cases these details are somehow delegated to
a companion tool set. The architect’s experience is crucial for the success of ar-
chitecture construction, even though architectural knowledge is widely reported
in the literature. While a SADM encodes the knowledge on how to proceed to
build an architecture, patterns and tactics encode the knowledge of well-known
solutions to common problems or requirements. N-tier and Client/Server among
others, are examples of enormously successful architectural patterns [28]. Tac-
tics have less impact than patterns, but they are beginning to be used in indus-
try [2]. While patterns resolve general QAs mainly from a logical perspective,
tactics have a broader architectural impact. However, tool support is essential to
ease their systematic application on architecture representation, and to explore
different resolution alternatives.

The IEEE 1471 Standard [1] has placed the concepts of Architectural View
and Viewpoints as the crucial constituents of an architecture representation.
Though, there is no unified vision on which set of viewpoints must be used when
deciding the particular view set for a system architecture. Several proposals
of viewpoints are available [16, 23, 25], and some of them are particular to a
certain kind of applications. Furthermore, language constructs provided by each
viewpoint for specifying a view are not agreed upon. Although some authors
position UML as the one-fits-all architecture description language (ADL) [28],
other authors wonder to what extent it can be considered an ADL by itself [11].

An Architectural View tackles a particular set of concerns [25], and hence,
there are concerns that can be traced directly into a particular view. However,
architecture organization in terms of views provides a single mechanism for de-
composition and modularization. Then, to choose a specific set of views implies
that several concerns may cross-cut such division. Thus, while some concerns are
scattered throughout various views, views may end up incorporating tangled con-
cerns, yielding the tyranny of the dominant decomposition [30]. Consequently,
QA resolution generally spans across views and then, to resolve a QA implies to
update all pertinent views to incorporate the desired solution. Some techniques,
mainly inspired in Aspect-Orientation [24, 30], are emerging and improving sep-



Aspect-Oriented Model-Driven Approach to Architecture Design 3

aration of concerns at the architectural level. Moreover, architectural decisions
cross-cut the architecture representation, and such decisions lack first-class rep-
resentation and they are usually lost during architecture construction [4].

In this paper we present a systematic and tool-enabler approach for manip-
ulating the software architecture when performing the Decision Making activity
that presents the following features: (i) it conforms to current architectural rep-
resentation proposals, (ii) it encodes current architectural knowledge on quality
attribute resolution, (iii) it is evolvable by enabling the inclusion of new knowl-
edge, (iv) it enhances the separation of concerns, and (v) it preserves the archi-
tectural rationale and makes it traceable. Even though it is hard to define such
an approach for a general domain, it is feasible for Enterprise Applications. Not
only this family of systems share the expected quality attributes and there are
several proposed techniques to address them, but also specific architecture de-
scription proposals are available [25]. We apply Model-Driven Engineering [27]
and Aspect-Oriented techniques to specialize and enhance a SADM targeting
this family of systems. The architecture representation is treated as a model
organized in Architectural Views, using Model-Driven Architecture and Early
Aspects to improve separation of concerns. Also, we understand the application
of architectural decisions as model transformations which encode the architec-
tural knowledge on QA resolution. Thus, the architectural rationale is explicitly
recorded as the set of transformations that yields the complete SA from scratch.

The rest of the paper is structured as follows. Section 2 discusses related
work. Section 3 describes the proposed approach and Section 4 illustrates its
application to the design of the software architecture of a case study taken
from the literature. Finally, Section 5 summarizes the conclusions and suggests
directions for further work.

2 Related Work

Separation of Concerns. SoC is achieved by means of modularization and relies
on hiding significant decisions from each other, mainly those which are likely to
change. The ability to achieve quality and to facilitate maintenance and evolution
depends on the ability to keep separate all relevant concerns [30].

Aspect-oriented (AO) approaches propose an additional asymmetrical de-
composition mechanism, called aspect, to encapsulate cross-cutting concerns
which can be composed non-invasively. Early Aspects approaches focus on the
requirement and architectural level. [3] proposes to factor out concerns that
cross-cuts the architectural views in aspectual views, and in [26] a partially au-
tomated process for deriving an AO software architecture from AO requirements
using Model-Driven techniques.

Multi-dimensional SoC approaches use dimensions to encapsulate concerns.
As such dimensions can overlap by sharing constituent elements, composition
rules are also provided. In [21] Moreira et al. apply this approach to Require-
ment Engineering providing a uniform treatment of concerns regardless of their
nature and tackling traceability to architectural choices. Besides, Kandé et al.



4 D. Perovich, M. C. Bastarrica and C. Rojas

in [15] apply this technique at the architectural level. Also, Suvée et al. [29] pro-
pose a component architecture and a description language, namely FuseJ, which
allows the specification and construction of component based architectures. The
symmetric nature of the modularization technique may hinder comprehensibility.
In contrast, our approach is asymmetric as those of Early Aspects.

Model-Driven Development. The Model-Driven Architecture (MDA) is a frame-
work that separates platform independent from platform specific concerns to im-
prove reusability, portability and interoperability of software systems. It guides
the direction of model transformations from abstract to concrete models by in-
corporating technology-related details. In [31], Tekinerdoğan et al. consider MDA
and AO as complementary techniques for SoC, and develop a systematic analysis
of cross-cutting concerns within the MDA context. This work is strongly related
to ours, but we use model transformations not only for refining elements in higher
levels of abstractions into lower levels, but also for incrementally building the
software architecture of a system and documenting its rationale. Also, in [10]
Fuentes et al. identify the problems faced when applying these techniques to the
development of distributed collaborative applications. However, in contrast to
our work, theirs only deals with vertical model transformations.

MDD’s primary focus and work products are models, and combines Domain-
Specific Languages (DSLs) and transformation engines and generators. These
two mechanisms allow to encapsulate the knowledge of a particular domain. Soft-
ware Architecture has benefited from DSLs as several Architecture Description
Languages emerged in the last decade [5]. However, the application of model-
driven techniques are recently emerging in the discipline, and are mainly focused
on MDA [17]. In [20] Merilinna works on horizontal model transformations at the
platform independent abstraction level. He defines a language and supporting
tool set for specifying model transformations mainly concerned with the ap-
plication of architectural patterns. Besides, Matinlassi [19] aims automation of
his Quality-driven Architecture Model Transformation approach. He focuses on
transformations at the platform independent level of abstraction but is mainly
concerned on how the architecture model needs to be modified accordingly to
changes or variations in the required quality properties.

Architectural Design Decisions. Virtually all decisions m during architectural
design are implicitly present in the resulting software architecture, lacking a first-
class representation. Some approaches are emerging to overcome this problem.
Jansen et al. [13] present the Archium approach which defines the relationship
between design decisions and software architecture, proposing a meta-model for
stating such relationship, currently providing tool support [14]. Dueñas et al. [8]
study how to incorporate a Decision View to architecture descriptions, mainly to
Kruchten’s 4+1 Architectural Framework. They identify requirements for such
a view and define the elements that can be used to populate it.

All the previous approaches tackle views based on the Component & Con-
nector viewtype [6]. In contrast, our approach deals with various viewpoints
required in architecture description. Besides, we use MDD techniques for easing



Aspect-Oriented Model-Driven Approach to Architecture Design 5

11 11 Choose an 
element to 
decompose

22 22 Identify 
candidate 
architectural 
drivers

33 33 Choose a design 
concept that 
satisfies the 
architectural 
driver

44 44 Instantiate 
architectural 
elements

Allocate 
responsibilities

Fig. 2. Steps of the Attribute Driven Design method.

architecture manipulation, and also for constructing the software architecture
from scratch. Thus, the sequence of applied model transformations is a first-class
mechanism for expressing design decisions, explicitly stating the architecture ra-
tionale.

3 Aspect-Oriented Model-Driven Approach

A SADM is a process for designing a software architecture from the needs and
concerns of stakeholders, mainly the expected system QAs. Several techniques
have been proposed for tackling each major activity of such a process, being
the Decision Making the most demanding task. Intuitive design approaches are
effective in organizing and processing requirements but depend to a large ex-
tent on the architect to find solutions that meet the QAs. In particular, the
Attribute-Driven Design (ADD) [32] method follows a recursive design process
in which a part of the system is selected for decomposition, architectural drivers
are identified, architectural patterns and tactics that satisfy them are applied,
and pending requirements are refined in terms of the new organization; Figure 2
depicts the main steps of this method. The architect incrementally constructs
the software architecture by iteratively resolving the QAs. We define a special-
ization of the ADD method that systematizes and assists the Decision Making
activity.

In order to effectively systematize the method, in a way that tool-support
could be achieved, the architecture representation is precisely stated. To this end,
we use Rozanski et al. proposal [25] for Enterprise Application software architec-
ture representation. They define six Architectural Viewpoints, each addressing
a cohesive set of architectural concerns: Functional, Information, Concurrency,
Development, Deployment, and Operational. Each Viewpoint is defined in terms
of a set of models and activities to create these models. Although the authors
comment on different notations for each viewpoint, no precise language defini-
tion is provided. Then, we follow the recommendation in [6] that clearly states
which kinds of elements can be part of different types of views. When defining a
model, we select the viewtype that best suits the model intention. We use UML
notation for depicting models, and somehow complement the language defini-



6 D. Perovich, M. C. Bastarrica and C. Rojas

tions provided by the viewtype approach. A precise definition in terms of the
OMG’s four-layer meta-modeling approach is suggested as further work.

In order to enhance the SoC in the architecture representation, we apply
additional techniques to improve modularization. Following MDA, we structure
architectural views in three levels of abstraction. The most abstract level consist
of a Computation Independent perspective of the architecture (CIA), mainly
populated by the critical concerns specified as functional and quality scenarios.
The second level consists of a Platform Independent perspective of the archi-
tecture (PIA) in which those concerns are resolved without taking into account
the peculiarities of any underlying platform. This level is organized in terms of
views, and they are constructed by applying patterns and tactics that address
the identified concerns. The bottom-most level provides a Platform Specific per-
spective of the architecture (PSA). It embraces a technological solution to the
abstract architecture in the upper level. To populate the PSA platform specific
patterns are applied, as well as frameworks, middleware and COTS are selected
and incorporated. This vertical division not only organizes architectural views,
but also separates platform independent from platform specific architectural de-
cisions.

Orthogonal to this vertical division, we provide an horizontal mechanism of
modularization by applying EA techniques to enhance SoC. At the CIA level of
abstraction, we use aspectual scenarios to factorize and/or isolate requirements
that cross-cut the core scenarios. The impact of aspectual scenarios on core sce-
narios is also included in the architecture representation. In the PIA and PSA
levels, we append Aspectual Views to the architectural representation. An As-
pectual View focuses and describes in isolation a particular architectural concern
that otherwise would cross-cut the architecture representation. Our application
of aspect-orientation is asymmetric as we consider traditional views as the core
architectural representation, and aspectual views as separate views which refer
to elements in the core views. Hence, a glue section is also needed in order to
indicate how the aspectual views are bound to the core views. Different versions
of the PIA and PSA levels might be automatically obtained by using weaving
techniques in which the aspectual views are weaved into the core views. Particu-
larly, when building the PSA, while certain aspectual views at the PIA level may
be used, others may not be present as the concern they deal with is completely
addressed by a particular framework or COTS. We illustrate in Figure 3 the
Software Architecture Model we propose.

In order to assist the design of the decision making activity, we apply MDE
techniques to automate the manipulation of the architecture representation. To
this end, we consider the architecture representation as a model expressed in
DSLs that follow the structures depicted in Figure 3. Then, each step of the
recursive design method is encoded in terms of a model transformation which
transforms a version of the architecture into a subsequent one. Thus, given a
significant QA to be addressed, a particular architectural decision is made and
hence the corresponding model transformation is applied, resulting in a new
version of the SA in which the QA is resolved. Then, the method is understood



Aspect-Oriented Model-Driven Approach to Architecture Design 7

Software Architecture Model

Views

Core/base scenarios Aspectual scenarios Impact 
requirements

Aspectual Views

Computation 
Independent 
Architecture
(CIA)

Platform 
Independent 
Architecture

Application of 
patterns, tactics, 
perspectives

V
ie
w
 I
n
te
r-

re
la
ti
on

sh
ip

A
sp
ec
t 

co
m
p
os
it
io
n

Views

V
ie
w
 I
n
te
r-

re
la
ti
on

sh
ip

Platform
Specific 
Architecture
(PSA)

Architecture
(PIA)

Aspectual Views

A
sp
ec
t 

co
m
p
os
it
io
n

Application of 
platform-specific 
patterns, 
frameworks,
COTS

Fig. 3. Software Architecture Model for architecture description.

as the successive application of model transformations, starting from an empty
representation and ending with the complete architecture representation. Fig-
ure 4 illustrates this mechanism. Although architecture design is presented as
a sequence, they can actually be organized in a tree structure, following the
refinement of architectural elements.

The sequence of model transformations is, by itself, an explicit representa-
tion of the architecture rationale. Thus, a model transformation is a first-class
citizen construct to represent an architectural decision. Furthermore, so as to
integrate our approach in the contextual SADM, by defining additional model
transformations to obtain other artifacts such as models, diagrams, and input
artifacts for external tools. The automatic derivation of a working system skele-
ton depends of the completeness of the Software Architecture Model built and
the power of the available model transformations.

4 Applying the Approach

In order to exemplify the application of the defined approach, we address the
design of the software architecture of the Point-of-Sale case study, originally pre-
sented in [18]. To this end, we follow the work direction suggested in Figure 3.
First, we define the scenarios to be addressed in the Computation Independent
Architecture. Second, we resolve these scenarios by applying our approach. After
deciding which views we use to organize the Platform Independent Architecture,
we follow the Attribute-Driven Design method sketched in Figure 2, and particu-
larly using our systematized approach based on model transformations depicted
in Figure 4. For the sake of space, we do not illustrate all intermediate steps.



8 D. Perovich, M. C. Bastarrica and C. Rojas

Ø ...

Define view set Resolve architectural significant concerns (QA resolution)
time

Architecture
View Set

Ø

Empty
Architecture

...

Complete 
Architecture

External tool 
artifacts

Generation of artifacts for external tool

A
d
d
it
io
n
al
 c
ap
ab
ili
ty

Generation of work products (partial)

Models Diagrams SystemSAD

Fig. 4. Architecture Decision Making activity.

4.1 Computation Independent Architecture

The Point-of-Sale (POS) system is an Enterprise Application used, in part, to
record sales and handle payments in a retail store. The POS is a realistic case
study as retail stores and supermarkets do have computerized registers used by
cashiers to sell goods to customers. Such a system usually includes hardware
components such as a computer, a bar code scanner and receipt printers, and
the software to run it. Also, it generally interfaces with external services such
as third-party tax calculator and payment authorization systems. Even though
many scenarios need to be defined to develop a realistic version of the POS sys-
tem, we select a particular set of them that allows us to clearly illustrate the
defined approach; we provide a synopsis next.

Scenarios

FS1: Process Sale. A customer arrives at a checkout with items to purchase. The
cashier uses the POS system to record each purchased item. The system presents a run-
ning total and line-item details. The customer enters discounts, coupons and payment
information, which the system validates and records. The system updates inventory.
The customer receives a receipt from the system and then leaves with the items.

QS1: Persist Sale Data. The POS system must persist the sale information between
successive executions of the system. Sales data include date, item description, discounts
and coupons if used, and payment information.

QS2: Multiple Front-End Devices. A POS system must support multiple and
varied client-side terminals and interfaces. These include a thin-client Web browser
terminal, a regular personal computer with something like a form-based graphical user
interface, touch screen input, wireless PDAs, and so forth.

QS3: Mandatory User Authentication. The POS system accepts requests from
users only after they are authenticated.



Aspect-Oriented Model-Driven Approach to Architecture Design 9

new

enterItem
removeItem
changePrice

suspend

lookupItem cancelenterItem

close

void void

suspend

endpayByCash

payByCreditCard

validate

cancel

[denied]

[approved]

reprint
printGiftReceipt

suspend

resume

addDiscount

removeDiscount

addCoupon

removeCoupon

Information Flow

Fig. 5. Information Flow Model in the Information View.

AS1: Enable Authorization Overriding. Some requests can only be placed by
privileged users. For instance, removing items, discounts, and coupons, or voiding the
ongoing sale, can only be done by a supervisor, not by the cashier. The POS system
must allow authorization overriding for these particular request without signing out
the current user.

4.2 Platform Independent Architecture

Once the set of architectural significant scenarios is captured and documented
in the CIA, the set of views for the PIA must be selected. We define three
architectural views, namely Functional, Information and Deployment, based on
the homonymous Viewpoints of Rozanski et al. proposal. In addition, we define
a Security aspectual view to deal with this concern in isolation. Next, following
the ADD method, we address each of the scenarios documented in the CIA.

FS1: Process Sale. This scenario describes the user-system interaction to ap-
pend a new sale to the system. A thorough specification of this scenario is built
by means of an information structure and information flow models. While the
former is expressed in terms of conceptual classes and relationships, the latter
uses a state machine; Figure 5 depicts the state machine for this scenario. Then,
the first model transformation to be applied is such that incorporates both mod-
els to the Information View of the architecture; this transformation mainly clones
the input model into the architecture model.



10 D. Perovich, M. C. Bastarrica and C. Rojas

Functional Structure

...

...

...

...

Fig. 6. Functional Structure Model in the Functional View.

QS1 & QS2: Persist Sale Data & Multiple Front-End Devices. Consid-
ering these two quality scenarios, a three-layer architecture is decided to orga-
nized the Functional Structure Model of the Functional View; Figure 6 illustrate
this model. A model transformation is used to decompose the entire system in
terms of three components following the Layers pattern. We further refine this
first organization following Fowler’s enterprise application architectural patterns.
These patterns suggest different approaches to structure each of the layers. First,
provided the complexity of the POS domain, we decide the joint use of the Ta-
ble Module pattern to organize the Domain layer and the Table Data Gateway
pattern to organize the data access part of the Infrastructure layer. Then, two
model transformations are applied to achieve such a refinement. They not only
consider the current Functional Structure Model of the Functional View, but also
the Information Structure Model of the Information View which defines the ma-
jor concepts to be managed. Thus, a Table Module and a Table Data Gateway
component for each concept populates the two layers. Finally, provided QS2, dif-
ferent front-ends components are defined. We follow the Page Controller pattern
for easing development and apply the Application Controller pattern to factor
out common behavior of the page controllers.

In turn, a distributed runtime platform is also decided separating front-end
from back-end processing. We apply a model transformation that organizes the
Runtime Platform Model of the Deployment View in terms of the client/server
distribution pattern. We actually decided to split the back-end in an application
and a database server dedicated nodes. QS2 renders the need for in-site work-
stations (Register node) and a web server dedicated node for attending different



Aspect-Oriented Model-Driven Approach to Architecture Design 11

Runtime Platform

0..* 0..* 0..*

1

1

10..*

1

1

«device»

«device»

«device»

«device»

1

1

1
1

1
1

1

1

1

1

Fig. 7. Runtime Platform Model in the Deployment View.

thin-clients. Figure 7 illustrates the Runtime Platform Model. Different input and
output devices for the Register node are decided following the Process Sale (FS1)
functional scenario.

QS3: Mandatory User Authentication. We specify security related con-
cerns in the Security Aspectual View, and we use the Secure UML profile as the
specification language. To address QS3, we first identify the types of resources
that need to be protected, together with the actions that can be made on them.
Resources and actions are deduced by the architect from the models in the
Information View. A Security Resources Model is built to this end. Afterwards,
principals are identified together with the assigned permissions with respect to
the defined resources. Then, a Security Policies Model is built. A model trans-
formation is used to incorporate this models into the Security View; Figure 8
illustrates both models.

To address mandatory user authentication we apply the single sign-on tac-
tic. Then, we apply a model transformation that automatically appends a sign-in
and sign-out process to the Security View. Similar to the state machine in the
Information Flow Model, the transformation uses a state machine to state how
these processes proceed; it is illustrated in Figure 9. The transformation also
records the composition rules for this view: additional components in the pre-
sentation are required, the Application Controller must require sign-in if there
is no current user, security information data must be preserved by the system.
Then, this aspect can later be weaved into the Functional View by another model
transformation.

AS1: Enable Authorization Overriding. Finally, to address AS1 we apply
a model transformation that encodes the knowledge of how to provide autho-
rization override. Such transformation appends a parameterized state machine
to the Security Aspectual View and the binding information relies on the Secu-
rity Policies Model. Figure 10 depicts this state machine. Weaving this aspect



12 D. Perovich, M. C. Bastarrica and C. Rojas

Security Resources

«action types»

new end

resume suspend void

enterItem removeItem changePrice

close addDiscount removeDiscount

addCoupon removeCoupon payByCash

payByCreditCard validate

«resource type»

Security Policies

«constraints»

time.currentHour() > 8 and time.currentHour() < 22

«permisions»

new close end
enterItem removeItem [subtotal < 1000]
addDiscount addCoupon
payByCash payByCreditCard validate

«role»

«constraints»

time.currentHour() > 8 and time.currentHour() < 22

«permisions»

resume suspendvoid
removeItem changePrice
removeDiscount removeCoupon

«role»

Fig. 8. Security Resources and Policies Models in the Security View.

Single sign-on Authentication

sign-in

signinUser

[denied]

[approved]

cancel

Fig. 9. Single Sing-On Security Aspect.

into the Functional View implies to append this responsibility to the Application
Controller.

Decisions for the Deployment View. At each step of the defined approach,
an architectural concern is addressed and a set of architectural decisions are
made. The architecture model is automatically updated by applying the model
transformations corresponding to such decisions. The set of applied transforma-
tions is itself the rationale of the architecture built. We use a Feature Model
diagram to illustrate such a rationale. A Feature Model consists of one or more



Aspect-Oriented Model-Driven Approach to Architecture Design 13

Authorization Override

authorization
override

userOverride

[denied]

[approved]

cancel

trans : Transition, source : State, target : State

trans

userRestore

Fig. 10. Authorization Override Aspect.

Feature Diagrams (first level elements) which organizes features into hierarchies.
The Feature Model renders a tree which expressively states variability: such as
optional features (grey dots) or selection (grouped squares). A Feature Configu-
ration is an instance of a Feature in which a particular alternative is selected.

The Feature Model to the left of Figure 11 depicts all possible design decisions
with respect to the Deployment View. It states that the view consists of a Run-
time Platform model which uses a Distribution. Currently, only a Client/Server
distribution is provided in the diagram. Such a distribution enables several rich
clients possible holding devices, and several thin clients. In turn, servers can in-
clude a web server, an application server, and a database server dedicated node.
At the right of Figure 11, the particular Feature Configuration for the POS is
illustrated. Client/Server distribution is used, one rich client with four devices
and three thin clients were decided. Also, one server of each kind was selected,
including two external providers to the application server. This configuration
resumes the decisions made and can be clearly mapped into the architectural
elements present in the Deployment View.

5 Conclusions & Further Work

Architecture design is a creative task in which tradeoffs among different alter-
natives strongly rely on the architect experience and require some extent of
creativity, and are generally conditioned by resource constraints. For these rea-
son, a fully automated method seems unfeasible. However, this activity can be
systematized so as to enable actual tool-assistance that automates repetitive
tasks. Such automation not only reduces the architecture design effort, but also
it eases the exploration and evaluation of different design alternatives.

Our approach conceives the architecture representation as a model, under-
standing it as a well-structured self-contained representation of the system, ex-
pressed in a precise language. In this context, the architecture design activity
can be seen as a large model transformation which obtains from an initial empty



14 D. Perovich, M. C. Bastarrica and C. Rojas

Fig. 11. Deployment Decisions.

architecture the complete architecture for the system. This large transformation
is composed of a sequence of smaller sub-transformations, each encapsulating
the application of a design decision, i.e. the resolution of a particular architec-
tural concern. It is an interactive transformation as the software architect selects
which sub-transformation to apply next. Then, the set of sub-transformations
available to the architect can be regarded as the definition of a family of large
transformations, i.e. as all the possible ways to design the complete architec-
ture from scratch. Thus, by incorporating additional sub-transformations to this
set, a large number of architectures can be designed using the method. Then,
the application of Model-Driven techniques not only favors the evolution of the
approach, but also increases its power.

Although originally proposed in the Domain Analysis area and rarely used
in the SA discipline, features models proved to be useful when classifying de-
sign alternatives. As we illustrated in the application of the approach, feature
models’ ability to express variability allows us to concisely define the set of al-
ternative architectural mechanisms that can be used. Then, a configuration of a
feature model, i.e. a feature model in which no variants remain, can be seen as a
representation of the rationale that yields the complete architecture. In this con-
text, we envision that feature models can be useful to describe the design power
of the family of sub-transformations, and hence, as a mechanism for defining
the particular large transformation. We foresee that our approach can result in
a method for building software product lines [7] in which variation points are
present in the variety of alternatives available to resolve quality attributes.



Aspect-Oriented Model-Driven Approach to Architecture Design 15

By using additional mechanisms for separation of concerns, such as MDA
and EA, we may be making the architecture representation more complex and
thus hindering comprehensibility. However, the approach not only favors mod-
ularization and reuse, but also organizes and systematizes the architect’s task.
Moreover, the architect must learn additional DSLs as precise ones are required
to enable automation; however, model transformations ease the usage of such
languages as views are automatically built.

Directions for further work include to provide actual tool support for the
approach. We plan to develop a Computer-Aided Software Architecture Design
environment that deals with architecture representation and that provides an
evolvable set of model transformations. Also, we plan to formalize the DSLs for
architecture representation and particularly the aspectual views, mainly follow-
ing OMG’s four-layer meta-modeling architecture approach. By these means,
we enable the applicability of model transformation languages and tools, most
based on OMG’s Meta-Object Facility (MOF), easing the codification and in-
corporation new architectural knowledge to the tool.

References

1. IEEE Std 1471-2000, IEEE Recommended Practice for Architectural Description
of Software-Intensive Systems, 2000.

2. F. Bachmann, L. Bass, and M. Klein. Deriving Architectural Tactics: A Step
Toward Methodical Architectural Design. Technical Report CMU/SEI-2003-TR-
04, Software Engineering Institute, Carnegie Mellon University, 2003.

3. E. Baniassad, P. C. Clements, J. Araújo, A. Moreira, A. Rashid, and
B. Tekinerdoğan. Discovering Early Aspects. IEEE Software, 23(1):61–70, 2006.

4. J. Bosch. Software Architecture: The Next Step. In EWSA’2004, pages 194–199,
2004.

5. P. C. Clements. A Survey of Architecture Description Languages. In IWSSD’1996,
pages 16–25. IEEE Computer Society, 1996.

6. P. C. Clements, D. Garlan, L. Bass, J. Stafford, R. L. Nord, J. Ivers, and R. Little.
Documenting Software Architectures: Views and Beyond. Addison-Wesley Profes-
sional, 2002.

7. P. C. Clements and L. Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, 2001.

8. J. C. Dueñas and R. Capilla. The Decision View of Software Architecture. In
EWSA’2005, pages 222–230, 2005.

9. D. Falessi, G. Cantone, and P. Kruchten. Do Architecture Design Methods Meet
Architects’ Needs? In WICSA’2007, page 5, 2007.

10. L. Fuentes, M. Pinto, and A. Vallecillo. How mda can help designing component-
and aspect-based applications. In EDOC 2003, pages 124–135. IEEE Computer
Society, 2003.

11. D. Garlan, S.-W. Cheng, and A. J. Kompanek. Reconciling the Needs of Ar-
chitectural Description with Object-Modeling Notations. Science of Computer
Programming, 44(1):23–49, 2002.

12. C. Hofmeister, P. Kruchten, R. L. Nord, J. H. Obbink, A. Ran, and P. Amer-
ica. Generalizing a Model of Software Architecture Design from Five Industrial
Approaches. In WICSA’2005, pages 77–88, 2005.



16 D. Perovich, M. C. Bastarrica and C. Rojas

13. A. Jansen and J. Bosch. Software Architecture as a Set of Architectural Design
Decisions. In WICSA’2005, pages 109–120, 2005.

14. A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer. Tool support for
Architectural Decisions. In WICSA’2007, page 4, 2007.

15. M. M. Kandé and A. Strohmeier. On the Role of Multi-Dimensional Separation of
Concerns in Software Architecture. In OOPSLA’2000, 2000.

16. P. Kruchten. The 4+1 View Model of Architecture. IEEE Software, 12(6):42–50,
1995.

17. P. Kruchten, J. H. Obbink, and J. Stafford. The Past, Present, and Future for
Software Architecture. IEEE Software, 23(2):22–30, 2006.

18. C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Anal-
ysis and Design and Iterative Development. Prentice Hall PTR, third edition,
October 2004.

19. M. Matinlassi. Quality-driven software architecture model transformation: Towards
automation. PhD thesis, ESPOO: VTT Technical Research Centre of Finland,
2006. VTT Publications 608.

20. J. Merilinna. A Tool for Quality-Driven Architecture Model Transformation. Mas-
ter’s thesis, ESPOO: VTT Technical Research Centre of Finland, 2005. VTT
Publications 561, ISBN 951-38-6439-1;951-38-6440-5.

21. A. Moreira, A. Rashid, and J. Araújo. Multi-Dimensional Separation of Concerns
in Requirements Engineering. In RE’2005, pages 285–296. IEEE Computer Society,
2005.

22. D. E. Perry and A. L. Wolf. Foundations for the Study of Software Architecture.
SIGSOFT Software Engineering Notes, 17(4):40–52, 1992.

23. J. R. Putman. Architecting with RM-ODP. Prentice Hall PTR, 2000.
24. A. Rashid, A. Moreira, and B. Tekinerdoğan. Early Aspects: Aspect-oriented Re-

quirements Engineering and Architecture Design. IEE Proceedings - Software,
151(4):153–156, 2004.

25. N. Rozanski and E. Woods. Software Systems Architecture: Working With Stake-
holders Using Viewpoints and Perspectives. Addison-Wesley Professional, 2005.

26. P. Sánchez, J. Magno, L. Fuentes, A. Moreira, and J. Araújo. Towards mdd trans-
formations from ao requirements into ao architecture. In EWSA 2006, volume 4344
of Lecture Notes in Computer Science, pages 159–174. Springer, 2006.

27. D. C. Schmidt. Model-Driven Engineering. IEEE Computer, 39(2):25–31, 2006.
28. M. Shaw and P. C. Clements. The Golden Age of Software Architecture. IEEE

Software, 23(2):31–39, 2006.
29. D. Suvée, B. D. Fraine, and W. Vanderperren. A Symmetric and Unified Ap-

proach Towards Combining Aspect-Oriented and Component-Based Software De-
velopment. In CBSE’2006, pages 114–122, 2006.

30. P. L. Tarr, H. Ossher, W. Harrison, and S. M. S. Jr. N Degrees of Separation:
Multi-Dimensional Separation of Concerns. In ICSE’1999, pages 107–119, 1999.

31. B. Tekinerdoğan, M. Aksit, and F. Henninger. Impact of Evolution of Concerns in
the Model-Driven Architecture Design Approach. ENTCS, 163(2):45–64, 2007.

32. R. Wojcik, F. Bachmann, L. Bass, P. C. Clements, P. Merson, R. L. Nord,
and B. Wood. Attribute-Driven Design (ADD), Version 2.0. Technical Report
CMU/SEI-2006-TR-023, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, USA, 2006.


