
Quickheaps: Simple, Efficient, and Cache-Oblivious ⋆

Gonzalo Navarro and Rodrigo Paredes

Dept. of Computer Science, University of Chile.
{gnavarro,raparede}@dcc.uchile.cl

Abstract. We present the Quickheap, a simple and efficient data structure for implementing priority
queues in main and secondary memory. Quickheaps are comparable with classical binary heaps in sim-
plicity, but are more cache-friendly. This makes them an excellent alternative for a secondary memory
implementation. We show that the average amortized CPU cost per operation over a Quickheap of m
elements is O(log m), and this translates into O((1/B) log(m/M)) I/O cost with block size B, in a
cache-oblivious fashion. Our experimental results show that Quickheaps are very competitive with the
best alternative external memory heaps.

1 Introduction

A priority queue is a data structure which allows maintaining a set of elements in a partially ordered
way. Assume the elements are of the form (key, item), where key is the priority. Let us focus on
min-priority queues, which support the following basic operations: insert(key, item), which inserts
element (key, item) in the queue; findMin(), which returns an element of the queue with lowest
key value; and extractMin(), which in addition removes that lowest key value element.

The set of operations can be extended to construct a priority queue from a given array A
(heapify), increment or decrement the key of an element in the queue (increaseKey and de-
creaseKey, respectively), answer whether an arbitrary element belongs to the queue (find), delete
an arbitrary element from the queue (delete), and so on.

Inspired by the IncrementalQuicksort algorithm (IQS) [13], we develop a novel data struc-
ture for implementing priority queues, coined Quickheaps. Quickheaps enable efficient element in-
sertion, minimum extraction, deletion of arbitrary elements and modification of the priority of
elements within the heap. They are as simple to implement as classical binary heaps, and require
only O(log m) extra integers for a queue of m elements. Furthermore, they exhibit a local access
pattern, which makes them excellent alternatives for a secondary memory implementation.

Interestingly, our algorithms are unaware of the disk transfers, so the result is cache-oblivious.
Cache obliviousness [9, 5] means that the algorithm is designed for the RAM model but analyzed
under the I/O model, assuming an optimal offline page replacement strategy. Cache-oblivious algo-
rithms for secondary memory are not only easier to program than their cache-aware counterparts,
but they adapt better to arbitrary memory hierarchies.

We prove that the average amortized complexity of the basic operations is O(log m) CPU time
and O((1/B) log(m/M)) I/O time, being B the disk block size, if M = Ω(B log m). This is close
to the lower bound O((1/B) logM/B(m/B)), where M is the main memory size, and matches some
cache-oblivious lower bounds for sorting [5].

We experimentally compare Quickheaps with state-of-the-art external priority queue implemen-
tations, showing that they are extremely competitive.

For space limitations, we do not give results on operations delete, increaseKey and de-
creaseKey, which can be included in Quickheaps without altering our complexity results.

⋆ This work has been funded by a grant of Yahoo! Research Latin America.

2 Related Work

2.1 Priority Queues

The classical implementation of a priority queue uses a binary heap [16]. It allows operations
insert, findMin, extractMin, and heapify. Other operations such as delete, decreaseKey
and increaseKey can be added if we have a dictionary to know the position of the element to
modify. The associated algorithms can be found in most textbooks [7]. There are dozens of other
priority queue implementations described in the literature.

Many classical data structures have been adapted to work efficiently on secondary memory [15],
and priority queues are not an exception. Some examples are buffer trees [2, 11], M/B-ary heaps [12,
8], and Array Heaps [6], which achieve the lower bound of O((1/B) logM/B(m/B)) amortized I/Os
per operation [15]. Those structures, however, are rather complex to implement and heavyweight
in practice (in extra space and time) [4]. Other techniques are simple but do not perform so well
(in theory or in practice), for example those that use B-trees [3].

A practical comparison of existing secondary memory priority queues was carried out by Brengel
et al. [4], where in addition they adapt two-level radix heaps [1] to secondary memory (R-Heaps),
and also simplify Array-Heaps [6]. The latter stays optimal in the amortized sense and becomes
simple to implement. The experiments in [4] show that R-Heaps and Array-Heaps are by far the best
choices for secondary memory. In the same issue, Sanders introduced sequence heaps [14], which
can be seen as a simplification of the improved Array-Heaps of [4]. Sanders reports that sequence
heaps are faster than the improved Array-Heaps, yet the experiments only consider caching in main
memory.

2.2 Incremental Sorting

The incremental sorting problem can be stated as follows: Given a set A of m numbers, output the
elements of A from smallest to largest, so that the process can be stopped after k elements have
been output, for any k that is unknown to the algorithm. In [13] we introduced the Incremen-

talQuicksort algorithm, which can solve this problem in O(m + k log k) optimal expected time,
and performs better in practice than previous approaches.

To output the k smallest elements, IQS calls Quickselect [10] to find the smallest element of
arrays A[0,m − 1], A[1,m − 1], . . ., A[k − 1,m − 1]. This leaves the k smallest elements sorted in
A[0, k − 1]. IQS avoids the O(kn) complexity by reusing the work across calls to Quickselect.

Note that when we call Quickselect on A[1,m − 1], a decreasing sequence of pivots has already
been used to partially sort A in the previous call on A[0,m − 1]. IQS uses this sequence to reuse
previous work: It uses a stack S of decreasing pivot positions that are relevant for the next calls
to Quickselect. Fig. 1 shows how IQS searches for the smallest element (12) of an array by using
a stack initialized with a single value m = 16. To find the next minimum, we first check whether
p, the top value in S, is the index of the element sought, in which case we pop it and return A[p].
Otherwise, because of previous partitionings, it holds that elements in A[1, p − 1] are smaller than
all the rest, so we run Quickselect on that portion of the array, pushing new pivots into S. As can
be seen in Fig. 1, the second minimum (18) is the pivot on the top of S, so we pop it and return
A[1]. Later, to extract the third element (whose index is 2), it is enough to work on the first chunk
({29, 25}), which is the chunk of elements in A[2, S.top()−1] = A[2, 3]. Fig. 2 shows algorithm IQS.

The next lemma shows that it is correct to search for the minimum just within A[i, S.top()−1],
from which the correctness of IQS immediately follows.

2

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15_ _

12 18 29 25 S = {16, 8, 4, 1}

12 S = {16, 8, 4, 1, 0}

51 81 74 12 58 92 86 25 67 33 18 41 49 63 29 37 S = {16}

33 37 29 12 49 41 18 25 51 67 86 92 58 63 74 81 S = {16, 8}

18 25 29 12 33 41 49 37 S = {16, 8, 4}

 18 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {16, 8, 4, 1}

_

_

_0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_

_

Fig. 1. Example of how IQS finds the first element of an array. Each line corresponds to a new partition of a sub-
array. Note that all the pivot positions are stored in stack S. In the example we use the first element as the pivot
but it could be any other element of the first partition. The bottom line shows the array with the three partitions
generated by the first call to IQS, and the pivot positions stored in S.

IQS (Set A, Index idx, Stack S)
1. If idx = S.top() Then S.pop(), Return A[idx]
2. pidx← random[idx, S.top()−1]
3. pidx′ ← partition(A, A[pidx], idx, S.top()−1)
4. S.push(pidx′)
5. Return IQS(A, idx, S)

Fig. 2. Algorithm Incremental Quicksort (IQS). Stack S is initialized as S ← {|A|}. Both S and A are modified
and rearranged during the algorithm. Note that the search range is limited to the array segment A[idx, S.top()−1].
Procedure partition returns the position of pivot A[pidx] after the partition completes. Note that the tail recursion
can be easily removed.

Lemma 1 (pivot invariant [13]) After i minima have been obtained in A[0, i− 1], (1) the pivot
indices in S are decreasing bottom to top, (2) for each pivot position p 6= m in S, A[p] is not smaller
than any element in A[i, p − 1] and not larger than any element in A[p + 1,m − 1].

3 Quickheaps

Fig. 3 shows the last line of Fig. 1, where pivots are enclosed in ovals, and we have added an extra
∞ mark signaling a fictitious pivot at the end of the array. By virtue of the pivot invariant, we see
the following structure in the array: If we read the array from right to left, we start with a pivot
(the fictitious pivot ∞ at position 16) and at its left side there is a chunk of elements smaller than
it. Next, we have another pivot (pivot 51 at position 8) and another chunk, and so on, until we
reach the last pivot (pivot 18 at position 1) and a last chunk (in this case, without elements).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8 18 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {16, 8, 4, 1}

 _ _ _ __

Fig. 3. Last line of Fig. 1.

3

so they are also free cells
idx other pivots free cellsS[0]

the heap continues in the first cell

extracted elements,

Fig. 4. A quickheap example. The quickheap is placed over an array heap of size capacity. The quickheap starts at
cell idx, there are three pivots, and the last cell of the heap is marked by the fictitious pivot S[0]. There are some cells
after S[0], which are free cells to store new elements. There are also free cells that correspond to extracted elements,
which will be used when the quickheap turns around the circular array.

This resembles a heap structure, in the sense that objects in the array are partially ordered. From
now on we explain how to implement a min-priority queue, which we call Quickheap (QH), over
an array processed with algorithm IQS. Naturally, we can symmetrically obtain a max-quickheap.

3.1 Data Structures for Quickheaps

To implement a quickheap we need the following structures:

1. An array heap to store elements. In Fig. 3, heap is {18, 29, . . . , 81,∞}.
2. A stack S to store the positions of pivots partitioning heap. Thus S[0] is the fictitious pivot ∞,

and S.top() is the smallest pivot. In Fig. 3, S is {16, 8, 4, 1}.
3. An integer idx to indicate the first cell of the quickheap. In Fig. 3, idx = 1.
4. An integer capacity to indicate the size of heap. As we need a cell for the fictitious pivot ∞ we

can store up to capacity − 1 elements in the quickheap.

Fig. 4 illustrates the structure. We add elements at the tail of the quickheap (the cell heap[S[0] mod
capacity]), and perform min-extractions from the head of the quickheap (the cell heap[idx mod
capacity]). So, the quickheap slides from left to right over array heap as the operation progresses.
In order to handle arbitrarily long sequences of insertions and deletions, we need to use heap as a
circular array. So, we slightly modify IQS so as to take into account that an object whose position
is pos is actually located at cell pos mod capacity of the circular array heap.

3.2 Quickheap Operations

We explain now how to implement the basic quickheap operations. We omit the expression mod
capacity in order to simplify the reading, but keep it in the pseudocodes given in Fig. 5.

Creation of Empty Quickheaps. We create the array heap of size capacity with no elements, and
initialize both S = {0} and idx = 0. The value of capacity must be sufficient to store simultaneously
all the elements we need in the heap. Note that it is not necessary to actually place the ∞ mark in
heap[S[0]], as we never access the S[0]-th cell.

Quick-heapifying an Array. We copy the array A to heap, and initialize both S = |A| and
idx = 0. The value of capacity must be at least |A| + 1. Note that this operation can be done in
time O(1) if we can take array A and use it as array heap.

4

Quickheap(Integer N) // constructor of an empty quickheap
1. capacity ← N + 1, heap← new Array[capacity], S ← {0}, idx← 0

Quickheap(Array A, Integer N) // constructor of a quickheap from an array A
1. capacity ← max{N, |A|}+ 1, heap← new Array[capacity], S ← {|A|}
2. idx← 0, heap.copy(A)

findMin()
1. IQS(heap, idx, S)
2. Return heap[idx mod capacity]

extractMin()
1. IQS(heap, idx, S), idx← idx + 1, S.pop()
2. Return heap[(idx− 1) mod capacity]

insert(Elem x)
1. pidx← 0
2. While true Do // moving pivots, starting from pivot S[pidx]
3. heap[(S[pidx] + 1) mod capacity]← heap[S[pidx] mod capacity]
4. S[pidx]← S[pidx] + 1
5. If (|S| = pidx + 1) or // we are in the first chunk

(heap[S[pidx + 1] mod capacity] ≤ x) Then // we found the chunk
6. heap[(S[pidx]− 1) mod capacity]← x, Return

7. Else

8. heap[(S[pidx]−1)mod capacity]← heap[(S[pidx+1]+1)mod capacity]
9. pidx← pidx + 1 // go to next chunk

Fig. 5. Basic quickheap operations. N is an integer number giving the desired capacity of the heap. In operations
findMin and extractMin we use a variant of IQS, that takes into account that array heap is circular and does not
perform operation pop of line 1 of Fig. 2.

Finding the Minimum. Note that idx indicates the first cell used by the quickheap, and the
pivots stored in S delimit chunks of partially ordered elements. Thus, the minimum of the heap
must be placed within the first chunk (heap[idx, S.top() −1]). So, to find the minimum, we simply
call a variant of IQS(heap, idx, S) and then return the element heap[idx]. This variant of IQS
takes into account that the array is circular, and does not perform the pop() in line 1 of Fig. 2.

Extracting the Minimum. We call the same IQS variant of above to make sure that the
minimum is located at cell heap[idx]. Next, we increase idx, pop S, and return heap[idx − 1].

Inserting Elements. To insert a new element x into the quickheap we need to find the chunk
where we can insert x in fulfillment of the pivot invariant. Then, we need to create an empty cell
within this chunk in the array heap. A naive strategy will move every element in the array one
position to the right, with an O(m) worst-case complexity. Note, however, that it is enough to move
only some pivots and elements to create an empty cell in the appropriate chunk.

We first move the fictitious pivot, updating its position in S, without comparing it with the new
element x, so we have a free cell in the last chunk. Next, we compare x with the pivot at cell S[1].
If the pivot is smaller than or equal to x we place x in the free place left by pivot S[0]. Otherwise,
we move the element at the right of pivot S[1] to the free place left by pivot S[0], and move pivot
S[1] one place to the right, updating its position in S. We repeat the process with the pivot at S[2],
and so on until we find the place where x has to be inserted, or we reach the first chunk.

5

4 Analysis of Quickheaps

We can prove that, along any sequence of operations including insert, extractMin, and findMin,
the amortized cost of each of those operations is O(log m) on average, where m is the current size
of the quickheap. Although the sequence of operations can be arbitrary, the analysis assumes that
the elements inserted distribute uniformly across the set. The analysis also shows that the size of
the stack (and hence the number of chunks) is O(log m) on average. For lack of space we will omit
the proof of Lemma 2 1.

This analysis is based on a key observation: quickheaps follow a self-similar structure, which
means that the distribution of elements within a quickheap seen from the last chunk towards the
first chunk is the same as the distribution within such quickheap seen from the second last chunk
towards the first chunk, and so on. We start by proving that self-similarity property. Then, we
introduce the potential debt method for amortized analysis. Finally, exploiting the self-similarity
property, we analyze quickheaps using the potential debt method.

4.1 The Quickheap’s Self-Similarity Property

In this section we introduce a formal notion of self-similarity for quickheaps. We show that this
property is true at the beginning, and that it holds after extractions of minima, as well as insertions
of elements that fall at independent and uniformly distributed positions in the heap. It follows that
the property holds after arbitrary sequences of those operations, yet the positions of insertions
cannot be arbitrary but uniformly distributed.

From now on, we consider that array segments are delimited by idx and the cell just before
each pivot position S[pidx] (heap[idx . . . S[pidx]−1], thus segments overlap), and array chunks are
composed by the elements between two consecutive pivot positions (heap[S[pidx]+1 . . . S[pidx−1]−
1]) or between idx and the cell preceding the pivot on top of S (heap[idx . . . S.top()−1]). We call
heap[idx . . . S.top()−1] the first chunk, and heap[S[1] + 1 . . . S[0]− 1] the last chunk. Analogously,
we call heap[idx . . . S.top()−1] the first segment, and heap[idx . . . S[0] − 1] the last segment. The
pivot of a segment will be the rightmost pivot within such segment (this is the one used to split
the segment at the time partition was called on it). Thus, the pivot of the last segment is S[1],
whereas the first segment is the only one not having a pivot.

Using the traditional definition of the median of an n-element set —if n is odd the median is
the n+1

2 -th element, else it is the average of the values at positions n
2 and n

2 + 1—, let us call an
element not smaller than the median of the array segment heap[idx . . . S[pidx]− 1] a large element
of such segment. Analogously, let us call an element smaller than the median a small element.

The self-similarity property is the following:

Theorem 1 (quickheap’s self-similarity property) Given a segment heap[idx . . . S[pidx]−1],
the probability of its pivot being large is smaller than or equal to 1

2 , that is, P(pivot is large) ≤ 1
2 .

To prove the property we need some notation. Let Pi,j,n, 1 ≤ i ≤ n, j ≥ 0, n > 0, be the
probability that the i-th element of a given segment of size n is the pivot of the segment after
the j-th operation (Pi,j,n = 0 outside bounds). Then, in the following we prove by induction on j
that Pi,j,n ≤ Pi−1,j,n, for all 2 ≤ i ≤ n, j, n, after performing any sequence of operations insert,
findMin and extractMin. That is, the probability of the element at cell i being the pivot is

1 This proof of Lemma 2 is left in an appendix to this submission in case the referee wishes to check them.

6

non-increasing from left to right. Later, we use this to prove the self-similar property and some
consequences of it.

Note that new segments with pivots are created when operations extractMin or findMin split
the first segment. Note also that, just after a partitioned segment is created, the probabilities are
Pi,0,n = 1

n , because the pivot is chosen at random from it, so we have proved the base case.

Lemma 2 For each segment, the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after inserting a
new element x at a uniformly chosen positition [1, n].

In order to analyze whether the property Pi,j,n ≤ Pi−1,j,n is preserved after operations findMin
and extractMin we need consider how IQS operates on the first segment. For this sake we intro-
duce operation pivoting, which partitions the first segment with a pivot and pushes it into stack
S. We also introduce operation takeMin, which increments idx, pops stack S and returns element
heap[idx − 1]. Using these operations, we rewrite operation extractMin as: execute pivoting as
many times as we need to push idx in stack S and next perform operation takeMin. Likewise, we
rewrite operation findMin as: execute pivoting as many times as we need to push idx in stack S
and next return element heap[idx].

Operation pivoting creates a new segment and converts the previous first segment (with no
pivot) into a segment with pivot, and where all the probabilities Pi,0,n = 1

n . The next lemma shows
that after taking the minimum the property holds.

Lemma 3 For each segment, the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after taking the
minimum element of the quickheap.

Proof. Due to previous calls to operation pivoting, the minimum is the pivot placed in idx. Once
we pick it, the first segment vanishes. After that, the new first segment may be empty, but all
the others have elements. For the empty segment the property is trivially true. Else, within each
segment the probabilities change as follows: Pi,j,n = Pi+1,j−1,n+1

n+1
n .

This gives us Theorem 1: When the segment is created, all the probabilities Pi,j,n = 1
n . Lemmas

2 and 3 guarantee that the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after inserting elements or
taking the minimum. So, the property is preserved after any sequence of operations insert, findMin
and extractMin. Therefore, adding up the probabilities Pi,j,n for the large elements, that is, for
the

(⌈
n
2

⌉
+ 1

)
-th to the n-th element, we obtain that P(pivot is large) =

∑n
i=⌈n

2
⌉+1

Pi,j,n ≤ 1
2 .

In the following, we use the self-similarity property to show two additional facts we use in the
analysis of quickheaps. They are (i) the height of stack S is O(log m), and (ii) the sum of the size
of the array segments is Θ(m).

Lemma 4 The expected value of the height H of stack S is O(log m).

Proof. Assume that the quickheap has m elements. Also, notice that the number H of pivots in the
stack is monotonically non decreasing with m. Let us make some pessimistic simplifications. Let us
take the largest value of the probability P(pivot is large), which is 1

2 . Furthermore, let us assume
that if the pivot is taken from the large elements then it is the maximum element. Likewise, if it is
taken from the small elements, then it is the element immediately previous to the median.

With these simplifications we have the following. When partitioning, we add one pivot to stack
S. Then, with probabilities 1

2 and 1
2 the left partition has m− 1 or

⌊
m
2

⌋
elements. So, we write the

7

following recurrence: H = T (m) = 1 + 1
2T (m − 1) + 1

2T
(⌊

m
2

⌋)
, T (1) = 1. Once again, using the

monotonicity on the number of pivots, the recurrence is simplified to T (m) ≤ 1+ 1
2T (m)+ 1

2T
(

m
2

)
,

which can be rewritten as T (m) ≤ 2 + T
(

m
2

)
≤ . . . ≤ 2j + T

(
m
2j

)
. As T (1) = 1, choosing j =

log2(m) we obtain that H = T (m) ≤ 2 log2 m + 1. Finally, adding the fictitious pivot we have that
H = 2(log2 m + 1) = O(log m).

Lemma 5 The expected value of the sum of the sizes of array segments is Θ(m).

Proof. Using the same reasoning of Lemma 4, but considering that, when partitioning, we perform
m− 1 key comparisons, we write the following recurrence: T (m) = m− 1+ 1

2T (m− 1)+ 1
2T

(⌊
m
2

⌋)
,

T (1) = 0. Using the monotonicity of T (m) and neglecting the term −1, the recurrence is simplified
to T (m) ≤ m + 1

2T (m) + 1
2T

(
m
2

)
, which can be rewritten as T (m) ≤ 2m + T

(
m
2

)
≤ . . . ≤

2m + m + m
2 + m

22 + . . . + m
2j−2 + T

(
m
2j

)
. As T (1) = 0, choosing j = log2(m) we obtain that

T (m) ≤ 3m + m
∑

∞

i=1
1
2i ≤ 4m = Θ(m). Therefore, the expected value of the sum of the array

segment sizes is Θ(m).

4.2 The Potential Debt Method

To perform the amortized analysis of quickheaps we use a variant of the potential method, which
we call the potential debt method. In this case, the potential function represents a total cost that
has not yet been paid. At the end, this total debt must be split among all the performed operations.
The potential debt is associated with the data structure as a whole.

The potential debt method works as follows. It starts with an initial data structure D0 on which
operations are performed. Let ci be the actual cost of the i-th operation and Di the data structure
that results after applying the i-th operation to Di−1. A potential debt function Φ maps each data
structure Di to a real number Φ(Di), which is the potential debt associated with data structure Di

up to then. The amortized cost c̃i of the i-th operation with respect to potential debt function Φ is
defined by

c̃i = ci − Φ(Di) + Φ(Di−1) . (1)

Therefore, the amortized cost of i-th operation is the actual cost minus the potential debt
variation due to the operation. Thus, the total amortized cost for N operations is

N∑

i=1

c̃i =

N∑

i=1

(ci − Φ(Di) + Φ(Di−1)) =

N∑

i=1

ci − Φ(Dn) + Φ(D0) . (2)

If we define a potential function Φ so that Φ(DN) ≥ Φ(D0), then the total amortized cost∑N
i=1 c̃i is a lower bound on the total actual cost

∑N
i=1 ci. However, if we sum a positive cost

Φ(DN) − Φ(D0) to the amortized cost
∑N

i=1 c̃i, we compensate for the debt and obtain an upper

bound on the actual cost
∑N

i=1 ci. Thus, in Eq. (3) we write an amortized cost ĉi considering the
potential debt, by assuming that we perform N operations during the process, and the potential
due to these operations is Φ(DN).

ĉi = c̃i +
Φ(DN) − Φ(D0)

N
= ci − Φ(Di) + Φ(Di−1) +

Φ(DN) − Φ(D0)

N
(3)

This way, adding up for all the N operations, we obtain that

N∑

i=1

ĉi =

N∑

i=1

(
ci − Φ(Di) + Φ(Di−1) +

Φ(DN) − Φ(D0)

N

)
=

N∑

i=1

ci.

8

4.3 Average-case Amortized Analysis of Quickheaps

In this section, we consider that we operate over a quickheap qh with m elements in its heap and
a pivot stack S of average height H = O(log m), see Lemma 4.

We define the quickheap potential debt function as the sum of the sizes of the partitioned
segments delimited by idx and pivots in S[0] to S[H− 1] (note that the last pivot is not counted).
Eq. (4) shows the potential function Φ(qh).

Φ(qh) =

H−1∑

i=0

(S[i] − idx) = Θ(m) on average, by Lemma 5 (4)

Thus, the potential debt of an empty quickheap Φ(qh0) is 0, and the average potential debt of
an m-elements quickheap is Θ(m), see Lemma 5. Note that if we start from an empty quickheap
qh, for each element within qh we have performed at least operation insert, so we can assume
that there are more operations than elements in the quickheap, N ≥ m. Therefore, in the case
of quickheaps, the term Φ(qhN)−Φ(qh0)

N is O(1) on average. So, we can omit this term, writing the
amortized costs directly as ĉi = ci − Φ(qhi) + Φ(qhi−1).

Operation insert. The amortized cost of operation insert is defined by ĉi = ci −Φ(qhi)+Φ(qhi−1).
The difference of the potential debt Φ(qhi−1) − Φ(qhi) (< 0) depends on how many segments are
extended due to the insertion. Note that for each segment we extend —which increases by 1 the
potential debt—, we also pay one key comparison, but in the first segment there is no increase.
Thus, it holds ci − Φ(qhi) + Φ(qhi−1) ≤ 1. Then, the amortized cost of operation insert is O(1).

Creation of a quickheap. The amortized cost of constructing a quickheap from scratch is O(1).
Instead, the amortized cost of constructing a quickheap from an array A of size m is O(m), as we
can see this as an initialization plus a sequence of m O(1) amortized cost element insertions. Note
that the potential debt of the quickheap is 0, as there is only one pivot in S.

Operation extractMin. To analyze this operation, we again use auxiliary operations pivoting and
takeMin (see Section 4.1). Thus, we consider that operation extractMin is a sequence of zero or
more calls to pivoting, until pushing idx in stack S, and then a single call to takeMin.

Each time we call operation pivoting, the actual cost corresponds to the size of the first segment,
which is not yet accounted in the potential debt. On the other hand, once we push the pivot, the
potential debt increases by an amount which is exactly the size of the partitioned segment. Thus, the
amortized cost of operation pivoting is zero. With respect to operation takeMin, its actual cost is
O(1), and the potential debt decreases by H−1, as all the segments considered in the potential are
reduced in one cell after taking the minimum. As the expected value of H = O(log m), see Lemma
4, the amortized cost of operation takeMin is O(log m). Therefore, adding the amortized cost of
pivoting and takeMin we obtain that the amortized cost of operation extractMin is O(log m).

Operation findMin. Using operation pivoting, we rewrite operation findMin as: execute pivoting
as many times as we need to push idx in stack S (with amortized cost zero) and then return element
heap[idx] (also with cost zero). Then, the amortized cost of operation findMin is O(1).

9

5 Quickheaps in Secondary Memory

Quickheaps exhibit high locality of reference. On one hand, we have the stack S, which is small
and accessed sequentially. On the other hand, each pivot in S points to a position in the array
heap. Array heap is only modified at those positions, and the positions themselves increase at most
by one at each insertion. The only remaining operation is IQS, which sequentially accesses the
elements of the first chunk.

Under the cache-oblivious assumption, we will consider that we keep in main memory: (i) the
stack S; (ii) for each pivot in S, the disk block containing its current position in heap; and (iii) the
longest possible prefix of heap[idx,N], containing at least one disk block. According to Lemma 4,
all this requires on average to hold M = Ω(B log m) integers in main memory. Say that we have
twice the main memory required for (i) and (ii), so that we still have Θ(M) cells for (iii).

Let us first consider operation insert. Assume that entry heap[i] is stored at disk block ⌈i/B⌉.
Note that once a disk page is loaded because a pivot position is incremented from i = B · j to
i+1 = B ·j +1, we have disk page j +1 in main memory. From then, at least B increments of pivot
position i are necessary to load another disk page. Therefore, the amortized cost of an element
insertion is H/B. According to the results of the previous section, this is O(log(m)/B) on average.

The other operations are findMin and extractMin, which essentially translate into a sequence
of pivoting actions. Each such action sequentially traverses heap[idx, S.top()−1]. Let ℓ = S.top()−
idx be the length of the area to traverse. The area to traverse spans ⌈ℓ/B⌉ disk blocks. As we have
in main memory at least the first block of heap[idx,N], we have to load at most ⌈ℓ/B⌉ − 1 ≤ ℓ/B
disk blocks. On the other hand, the CPU cost of such traversal is O(ℓ). According to the previous
section, all those traversals cost O(log m) amortized CPU time on average. Hence, the amortized
I/O cost is O(log(m)/B) on average. Maintaining a prefix of a given size in main memory is easily
done in O(1/B) amortized time per operation, since idx grows by one per extractMin.

However, the result is better. As we have M ′ = Θ(M) integers of main memory to store the prefix
of array heap, it is not hard to see, by the self-similarity property (Theorem 1), that on average the
first Θ(log M) pivots will always be in main memory, and therefore accessing them will be I/O-free.
Similarly, pivoting is I/O-free over the first M ′ elements of heap. If in the previous section we had
defined the potential function Φ as the sum of of segment sizes minus M ′ for those longer than M ′,
and assumed that the accesses were free over the first M ′ positions, the analysis would have been
very similar except that takeMin would have costed O(log m − log M ′) = O(log(m/M)). Still the
argument that at most one out of B of all those operations can force a disk access applies.

Theorem 2 If the Quickheap is operated in external memory as described, so that we maintain
M = Ω(log m) disk blocks in main memory, operations findMin, extractMin and insert have
an average amortized I/O cost of O((1/B) log(m/M)), where m is the maximum heap size along
the process.

We note that this result is similar to the lower bounds given in [5] for cache-oblivious sorting.

6 Experimental Results

We carry out a brief experimental validation of our data structure, and also compare it with the
results presented in [4], which report the number of blocks read/written for different sequences of

10

 262144

 65536

 16384

 4096

 1024

 256

 1 2 4 8 16 32 64 128 256

I/O
 c

os
t

m = amount of elements [x 10e6]

Quickheap’s number of I/Os varying available RAM, ins^m del^m

QH 4MB RAM
QH 16MB RAM
QH 64MB RAM

QH 256MB RAM
Radix Heap 16MB RAM
Array Heap 16MB RAM

Fig. 6. I/O cost comparison of performing m random insertions followed by m minima extractions.

operations on the most promising secondary memory implementations. We use their same parame-
ters M = 16 megabytes and B = 32 kilobytes, and run a sequence of N random insertions followed
by N minima extractions. We consider different M values to show how M affects the performance
of quickheaps.

The results are shown in Fig. 6. As it can be seen, quickheaps achieve a performance com-
parable with the best structures in [4] already with 4 megabytes of RAM. When using the same
16 megabytes, our structure performs 1.03 to 3.4 times fewer I/O accesses. Moreover, the best
alternative structure is the R-Heap, which only works if the priorities of extracted elements from a
nondecreasing sequence. If we consider the best alternative that works with no restriction (Array-
Heaps), QuickHeaps perform 1.38 to 5.8 fewer I/Os. Other tests in [4] are harder to reproduce
2.

We also notice the logarithmic dependence on m = Θ(N) and on M (the plots are log-log), as
expected from our analysis.

In addition, we note that a good part of the accesses carried out by Quickheaps are indeed local,
as they come from partition, which sequentially traverses the first chunk. Currently our simulator
does not give separate accounting for bulk and random I/Os, but this should be ready for the final
version.

2 For example, they also report real times, but those should be rerun in our machine and we do not have access to
LEDA, which is mandatory to run their code.

11

7 Conclusions

We have introduced Quickheaps, a simple and efficient data structure implementing priority queues.
Quickheaps are as simple to implement as classical binary heaps, need almost no extra space, are
efficient in practice, and exhibit high locality of reference. We exploit this last property to design
a cache-oblivious version that performs nearly optimally on secondary memory. We prove that the
average amortized cost per operation is O(log m) in main memory and O((1/B) log(m/M)) on disk,
where m is the maximum heap size achieved, B the block size, and M the main memory size.

Our experimental results show that Quickheaps are extremely competitive in practice: using the
same amount of memory, they perform 1.03 to 3.4 fewer I/O accesses than the best alternatives
tested in the survey by Brengel et al. [4].

Future work considers more thorough experiments, including other sequences of accesses and
real CPU and I/O times. We also plan to achieve amortized worst-case guarantees for the data
structure, for example by replacing the randomized pivoting by an order statistic on the first
chunk.

References

1. R. Ahuja, K. Mehlhorn, J. Orlin, and R. Tarjan. Faster algorithms for the shortest path problem. Journal of the
ACM, 37(2):213–223, 1990.

2. L. Arge. The buffer tree: A new technique for optimal i/o-algorithms (extended abstract). In Proc. 4th Interna-
tional Workshop on Algorithms and Data Structures (WADS’95), LNCS 995, pages 334–345, 1995.

3. R. Bayer and E. McCreight. Organization and maintenance of large ordered indices. Acta Informatica, 1:173–189,
1972.

4. K. Brengel, A. Crauser, P. Ferragina, and U. Meyer. An experimental study of priority queues in external memory.
ACM Journal of Experimental Algorithmics, 5(17), 2000.

5. G. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In Proc. 35th Annual ACM Symposium on
Theory of Computing (STOC’03), pages 307–315, 2003.

6. G. Brodal and J. Katajainen. Worst-case external-memory priority queues. In Proc. 6th Scandinavian Workshop
on Algorithm Theory (SWAT’98), LNCS 1432, pages 107–118, 1998.

7. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press, 2nd
edition, 2001.

8. R. Fadel, K. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort on secondary storage. Theoretical
Computer Science, 220(2):345–362, 1999.

9. M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In Proc. 40th Annual
Symposium on Foundations on Computer Science (FOCS’99), pages 285–297, 1999.

10. C. A. R. Hoare. Algorithm 65 (find). Comm. of the ACM, 4(7):321–322, 1961.
11. D. Hutchinson, A. Maheshwari, J. Sack, and R. Velicescu. Early experiences in implementing buffer trees. In

Proc. 2nd International Workshop on Algorithmic Engineering (WAE’97), pages 92–103, 1997.
12. V. Kumar and E. Schwabe. Improved algorithms and data structures for solving graph problems in external

memory. In Proc. 8th IEEE Symposium on Parallel and Distributed Processing (SPDP’96), page 169, 1996.
13. R. Paredes and G. Navarro. Optimal incremental sorting. In Proc. 8th Workshop on Algorithm Engineering and

Experiments and 3rd Workshop on Analytic Algorithmics and Combinatorics (ALENEX-ANALCO’06), pages
171–182. SIAM Press, 2006.

14. P. Sanders. Fast priority queues for cached memory. ACM Journal of Experimental Algorithmics, 5(7), 2000.
15. J. Vitter. External memory algorithms and data structures: dealing with massive data. ACM Computing Surveys,

33(2):209–271, 2001. Version revised at 2007 from http://www.cs.duke.edu/∼jsv/Papers/Vit.IO survey.pdf.
16. J. Williams. Algorithm 232 (heapsort). Comm. of the ACM, 7(6):347–348, 1964.

12

A Proof of Lemma 2 — to be read at the discretion of the reviewer

This appendix is included in case the referee wishes to check the omitted proof, but it is not necessary
to follow the paper. The proof will probably not fit in a final version, but will be included in a
techreport referenced from the paper.

Proof of Lemma 2
We suppose that after the (j − 1)-th operation the segment has n − 1 elements. As we insert

x in the j-th operation, the resulting segment contains n elements. The probability that after the
insertion the pivot p is at cell i depends on whether p was at cell i − 1 and we have inserted x in
any of first i− 1 positions 1, . . . , i− 1, so the pivot moved to the right; or the pivot already was at
cell i and we have inserted x in any of last n − i positions i + 1, . . . , n. So, we have the recurrence
of Eq. (5).

Pi,j,n = Pi−1,j−1,n−1
i − 1

n
+ Pi,j−1,n−1

n − i

n
(5)

From the inductive hypothesis we have that Pi,j−1,n−1 ≤ Pi−1,j−1,n−1. Multiplying both sides
by n−i

n , adding Pi−1,j−1,n−1
i−1
n and rearranging terms we obtain the inequality of Eq. (6), whose

left side corresponds to the recurrence of Pi,j,n.

Pi−1,j−1,n−1
i − 1

n
+ Pi,j−1,n−1

n − i

n
≤ Pi−1,j−1,n−1

i − 2

n
+ Pi−1,j−1,n−1

n + 1 − i

n
(6)

By the inductive hypothesis again, Pi−1,j−1,n−1 ≤ Pi−2,j−1,n−1, for i > 2. So, replacing on the right
side above we obtain the inequality of Eq. (7), where, in the right side we have the recurrence for
Pi−1,j,n.

Pi,j,n ≤ Pi−2,j−1,n−1
i − 2

n
+ Pi−1,j−1,n−1

n + 1 − i

n
= Pi−1,j,n (7)

With respect to i = 2, note that the term Pi−2,j−1,n−1
i−2
n from Eq. (7) vanishes. Thus, this

equation can be rewritten as P2,j,n ≤ P1,j−1,n−1
n−1

n . Note that the right side is exactly P1,j,n

according to the recurrence Eq. (5) evaluated for i = 1.

13

