
Universidad de Chile

Facultad de Ciencias F́ısicas y Matemáticas
Escuela de Postgrado

Graphs for Metric Space Searching

by

Rodrigo Paredes

Submitted to the Universidad de Chile in fulfillment
of the thesis requirement to obtain the degree of

Ph.D. in Computer Science

Advisor : Gonzalo Navarro

Committee : Nancy Hitschfeld
: Marcos Kiwi
: Patricio Poblete
: Peter Sanders

(External Professor,
Universität Karlsruhe, Germany)

This work has been supported in part by Millennium Nucleus Center for Web
Research, Grant P04-067-F, Mideplan, Chile & Yahoo! Research Center Latin
America

Departamento de Ciencias de la Computación - Universidad de Chile
Santiago - Chile

April 2008

Abstract

[Who doesn’t understand a glance, won’t understand a long
explanation either.]

– Arab proverb

The problem of Similarity Searching consists in finding the elements from a set which
are similar to a given query under some criterion. If the similarity is expressed by means
of a metric, the problem is called Metric Space Searching. In this thesis we present new
methodologies to solve this problem using graphs G(V,E) to represent the metric database.
In G, the set V corresponds to the objects from the metric space and E to a small subset
of edges from V × V , whose weights are computed according to the metric of the space
under consideration.

In particular, we study k-nearest neighbor graphs (knngs). The knng is a weighted
graph connecting each element from V —or equivalently, each object from the metric
space— to its k nearest neighbors.

We develop algorithms both to construct knngs in general metric spaces, and to use
them for proximity searching. These results allow us to use a graph to index a metric
space, requiring a moderate amount of memory, with better search performance than that
of classical pivot-based algorithms.

Finally, we show that the graph-based approach offers a great potential for
improvements, ranging from fully dynamic graph-based indices to optimizations tuned
for metric space searching.

The high amount of computational resources required to build and traverse these
graphs also motivated us to research on fundamental algorithmic problems, such as
incremental sorting and priority queues. We propose new algorithms for these problems
which, in practice, improve upon the state-of-the-art solutions in many cases, and are
useful in many other algorithmic scenarios. As a matter of fact, they yield one of the
fastest Minimum Spanning Tree (MST) construction algorithms for random graphs.

These basic algorithms not only open new research lines, for instance, MST
construction algorithms for arbitrary graphs; but also they turn out to be appealing to be
applied directly in production environments.

iii

Contents

1 Introduction 1

1.1 Contributions of the Thesis . 5

1.2 Thesis Organization . 6

2 Basic Concepts 7

2.1 Basic Algorithms . 7

2.1.1 Quicksort and Quickselect . 8

2.1.2 Incremental Sorting . 9

2.1.2.1 Related Work on Incremental Sorting 9

2.1.3 Priority Queues . 10

2.1.3.1 Binary Heaps . 11

2.1.3.2 Related Work on Priority Queues 12

2.1.4 External Memory Priority Queues 14

2.1.4.1 Related Work on External Memory Priority Queues 15

2.1.5 The Potential Method for Amortized Analysis 15

2.2 Graph Tools and Definitions . 17

2.2.1 Basic Definitions . 17

2.2.2 Graph Representations . 18

2.2.3 Shortest Paths . 19

2.2.3.1 Dijkstra’s Single-source Shortest Path Algorithm 20

2.2.3.2 Floyd’s All-pairs Shortest Path Algorithm 21

2.2.4 Minimum Spanning Trees . 22

2.2.4.1 Kruskal’s MST Algorithm 23

2.2.4.2 Prim’s MST Algorithm . 24

2.2.4.3 Further Work on the MST Problem 25

2.2.5 k-Nearest Neighbor Graphs . 26

2.2.5.1 Related Work on knng Construction Algorithms 26

2.2.6 t-Spanners . 27

2.2.6.1 Related Work on t-Spanner Construction Algorithms . . . 27

2.3 A Summary of Metric Spaces . 28

2.3.1 Proximity Queries . 28

2.3.2 Vector Spaces . 30

2.3.3 A Notion of Dimensionality in Metric Spaces 31

2.3.4 Current Solutions for Metric Space Searching 31

v

Contents

2.3.4.1 Pivot-based Algorithms . 32
2.3.4.2 Compact-Partition based Algorithms 33

2.3.5 Approximating Eliminating Search Algorithm (AESA) 34
2.3.6 Non-exact Algorithms for Proximity Searching 35

2.4 Graphs and Metric Space Searching . 36
2.4.1 Graph-based Metric Space Indices 36

2.4.2 Shasha and Wang’s Algorithm . 37
2.4.3 t-Spanners and Metric Spaces . 37

2.4.3.1 Simulating AESA Search over a t-Spanner 38
2.4.4 knng and Metric Spaces . 39

2.4.4.1 Related Work on knng Construction Algorithms for Metric
Spaces . 39

2.4.4.2 Related Work on Using the knng for Proximity Searching 40

3 Fundamental Algorithms 43
3.1 Optimal Incremental Sorting . 43

3.2 Analysis of IQS . 47
3.2.1 IS Worst-case Complexity . 47

3.2.2 IQS Expected-case Complexity . 49
3.3 Quickheaps . 51

3.3.1 Data Structures for Quickheaps . 52
3.3.2 Creation of Empty Quickheaps . 53
3.3.3 Quick-heapifying an Array . 53

3.3.4 Finding the Minimum . 53
3.3.5 Extracting the Minimum . 54

3.3.6 Inserting Elements . 55
3.3.7 Deleting Arbitrary Elements . 55

3.3.8 Decreasing a Key . 57
3.3.9 Increasing a Key . 58

3.3.10 Further Comments on Quickheaps 59
3.4 Analysis of Quickheaps . 60

3.4.1 The Quickheap’s Self-Similarity Property 60
3.4.2 The Potential Debt Method . 65

3.4.3 Expected-case Amortized Analysis of Quickheaps 66
3.5 Quickheaps in External Memory . 69

3.5.1 Adapting Quickheap Operations to External Memory 70
3.5.2 Analysis of External Memory Quickheaps 71

3.5.2.1 A Simple Approach . 71
3.5.2.2 Considering the Effect of the Prefix 72

3.6 Boosting the MST Construction . 75
3.6.1 IQS-based Implementation of Kruskal’s MST Algorithm 75

3.6.2 Quickheap-based Implementation of Prim’s MST Algorithm 76
3.7 Experimental Results . 77

3.7.1 Evaluating IQS . 78
3.7.2 Evaluating Quickheaps . 80

vi

Contents

3.7.2.1 Isolated Quickheap Operations 81
3.7.2.2 Sequence of Insertions and Minimum Extractions 81

3.7.2.3 Sequence of Minimum Extractions and Key Modifications . 83
3.7.3 Evaluating External Memory Quickheaps 84

3.7.4 Evaluating the MST Construction 86

4 k-Nearest Neighbor Graphs 91

4.1 A General knng Construction Methodology 92
4.1.1 The Main Data Structure . 92

4.1.2 Management of NHA . 93
4.1.3 Using NHA as a Graph . 93

4.1.4 d is Symmetric . 93
4.1.5 U is Fixed . 93

4.1.6 Check Order Heap (COH) . 94
4.1.7 The Recipe . 94

4.2 knng Construction Algorithms . 95
4.2.1 Basic knng Construction Algorithm 96
4.2.2 Recursive-Partition-Based Algorithm 97

4.2.2.1 First Stage: Construction of DCT 97
4.2.2.2 Second Stage: Computing the knng 99

4.2.3 Pivot-based Algorithm . 102
4.2.3.1 First Stage: Construction of the Pivot Index 102

4.2.3.2 Second Stage: Computing the knng 103
4.3 Using the knng for Proximity Searching . 107

4.3.1 knng-based Range Query Algorithms 107
4.3.1.1 Using Covering Radii . 108

4.3.1.2 Propagating in the Neighborhood of the Nodes 109
4.3.1.3 Working Evenly in All Graph Regions 110

4.3.1.4 First Heuristic for Range Queries (knngRQ1) 111
4.3.1.5 Second Heuristic for Range Queries (knngRQ2) 113

4.3.2 knng-based Query Algorithms for Nearest Neighbors 114
4.4 Experimental Results . 118

4.4.1 Uniformly distributed Vectors under Euclidean Distance 120

4.4.1.1 Construction . 121
4.4.1.2 Searching . 124

4.4.2 Gaussian-distributed Vectors under Euclidean Distance 125
4.4.2.1 Construction . 127

4.4.2.2 Searching . 129
4.4.3 Strings under Edit Distance . 131

4.4.3.1 Construction . 131
4.4.3.2 Searching . 132

4.4.4 Documents under Cosine Distance 134
4.4.4.1 Construction . 135

4.4.4.2 Searching . 135
4.4.5 Discussion of the Experimental Results 137

vii

Contents

5 Conclusions 141
5.1 Contributions of this Thesis . 142

5.1.1 Fundamental Algorithms . 142
5.1.2 k-Nearest Neighbor Graphs . 144

5.2 Further Work . 145
5.2.1 Fundamental Algorithms . 145
5.2.2 k-Nearest Neighbor Graphs . 146

Bibliography 149

viii

List of Figures

2.1 Quicksort algorithm . 8

2.2 Quickselect . 9

2.3 Binary heap example. 11

2.4 Basic binary heap operations . 13

2.5 Undirected weighted graph. 18

2.6 Adjacency list of the graph of Figure 2.5 . 19

2.7 Dijkstra’s single-source shortest path algorithm. 20

2.8 Floyd’s all-pairs shortest path algorithm. 22

2.9 The basic version of Kruskal’s MST algorithm 23

2.10 Kruskal’s algorithm with incremental sorting 24

2.11 The basic version of Prim’s MST Algorithm 25

2.12 Proximity queries . 29

2.13 Algorithm AESA . 35

2.14 Upper bounding the distance in the graph. 36

2.15 Algorithm t-AESA . 39

2.16 Cases where Sebastian and Kimia’s algorithm does not work 41

3.1 Example of how IQS finds the first element of an array 45

3.2 Example of how IQS finds the third element of the array. 45

3.3 Example of how IQS finds the sixth element of an array. 46

3.4 Algorithm Incremental Quicksort (IQS) . 46

3.5 Algorithm Incremental Sort (IS) . 47

3.6 IS partition tree for incremental sorting . 48

3.7 Partition work performed by QSS. 51

3.8 Last line of Figure 3.1. 52

3.9 A quickheap example . 53

3.10 Creation of quickheaps, and operations findMin and extractMin 54

3.11 Inserting a new element into a quickheap 56

3.12 Inserting elements to a quickheap. 56

3.13 Deleting elements from a quickheap. 57

3.14 Decreasing a key in a quickheap. 58

3.15 Increasing a key in a quickheap. 59

3.16 Segments and chunks of a quickheap. 61

3.17 Deleting an inner pivot of a quickheap. 63

ix

List of Figures

3.18 The potential debt function of a quickheap 66
3.19 External quickheap . 70

3.20 The I/O potential debt function of a external quickheap 73

3.21 Our Kruskal’s MST variant . 76
3.22 Our Prim’s MST variant . 77

3.23 Performance comparison of IQS as function of k 79

3.24 Key comparisons for IQS as a function of k 80
3.25 IQS CPU time as a function of k and m . 80

3.26 Performance of quickheap operations . 82

3.27 Performance of sequences interleaving operations ins and del 84
3.28 Performance of sequences interleaving operations del and ik/dk 85

3.29 I/O cost comparison for the sequence insm delm 85

3.30 MST construction CPU times, depending on ρ 87
3.31 Memory used by Kruskal3, iMax, Prim2 and Prim3 88

3.32 Evaluating MST construction algorithms, dependence on |V | 89

3.33 Evaluating MST construction algorithms, depending on |V |. Lollipop graph 90

4.1 U is fixed . 94
4.2 Sketch of the methodology. 95

4.3 Basic knng construction algorithm (KNNb) 96

4.4 Auxiliary procedure division . 98
4.5 Using the DCT to solve NNk(q) queries . 99

4.6 Auxiliary procedure extractFrom . 100

4.7 Recursive-partition-based algorithm (KNNrp) 102
4.8 Procedures finishkNNQ and computeDistance 103

4.9 Solving queries with pivot-based indices . 104

4.10 Auxiliary procedure extractFrom . 105
4.11 Pivot-based algorithm (KNNpiv) and its auxiliary procedures 106

4.12 Approximating the distances in an arbitrary graph 108

4.13 Using the knng features . 109
4.14 Auxiliary procedure useContainerRQ . 109

4.15 Auxiliary procedure checkNeighborhood 110

4.16 knngRQ1’s auxiliary procedures . 112
4.17 Implementing heuristics for knngRQ1 . 113

4.18 Our first range query algorithm (knngRQ1) 114

4.19 Our second range query algorithm (knngRQ2) 115
4.20 Auxiliary procedures useContainerNNQ and traverse 116

4.21 Navigational schema for nearest neighbor queries 117

4.22 Our first nearest neighbor query algorithm (knngNNQ1) 118
4.23 Our second nearest neighbor query algorithm (knngNNQ2) 119

4.24 knng construction algorithms in vector spaces 123

4.25 knng based search algorithms in vector spaces, varying dimension 124
4.26 knng based search algorithms in vector spaces, varying the index size and

query outcome size . 126

4.27 knng construction algorithms in Gaussian spaces 128

x

List of Figures

4.28 knng based search algorithms in Gaussian spaces, varying cluster size . . . 129
4.29 knng based search algorithms in Gaussian spaces, varying the index size

and query outcome size . 130
4.30 knng construction algorithms in the string space 132
4.31 knng based search algorithms in the string space 133
4.32 knng construction algorithms in the space of documents 136
4.33 knng based search algorithms in the space of documents. Distance

computations . 137
4.34 knng based search algorithms in the space of documents. Elapsed time . . 138

xi

List of Tables

2.1 Operation costs of some priority queues. 14
2.2 Adjacency matrix of the graph of Figure 2.5. 19

3.1 Weighted least square fittings for IQS . 79
3.2 Least square fittings for Quickheaps operations 82
3.3 Weighted least-square fittings for MST construction algorithms 87

4.1 KNNrp and KNNpiv least square fittings for vector metric spaces 121
4.2 KNNrp and KNNpiv least square fittings for Gaussian metric spaces . . 127

xiii

– Piled Higher & Deeper, #921, by Jorge Cham

xv

Chapter 1

Introduction

Make your choice, adventurous Stranger;
Strike the bell and bide the danger,
Or wonder, till it drives you mad,
What would have followed if you had.

– The Magician’s Nephew,
by C. S. Lewis

Searching is a fundamental problem in Computer Science, present in virtually every
application. The traditional notion of exact search consists in finding an element whose
identifier corresponds exactly to a given search key. The natural extension of this notion
is similarity searching, or proximity searching, which aims at finding an element from a
database which is close enough to a search key.

Traditional databases are designed and optimized to solve exact queries efficiently
by performing comparisons among simple elements, such as numbers or strings. Typical
examples are, given a registration number, obtaining the car’s information (manufacturer,
model, color, year, engine number, current owner, and so on) from the National Registry;
or obtaining the definition of a given word from the dictionary. Nowadays, non-traditional
applications have given rise to databases containing unstructured data. In these new
databases, it is not always possible to define a small, meaningful search key for each
database element. In many cases we must use the whole element as the search key, requiring
many arithmetical and I/O operations to process a query (think, for instance, in the case
where we are looking for similar tunes in a audio database). Moreover, we might want to
search the database for elements similar enough to a query object, even if the query itself
does not belong to the database. This scenario arises in a vast number of applications.
Some examples are:

• Non-traditional databases. New so-called multimedia data types such as images,
audio and video, cannot be meaningfully queried in the classical sense. In multimedia

1

Chapter 1 Introduction

applications, all the queries ask for objects relevant —that is, similar— to a given
one, whereas comparison for exact equality is very rare. Some example applications
are image, audio or video databases, face recognition, fingerprint matching, voice
recognition, medical databases, and so on.

• Text retrieval. Huge text databases with low quality control have emerged (being the
Web the most prominent example), and typing, spelling or OCR (optical character
recognition) errors are commonplace in both the text and the queries. Documents
which contain a misspelled word are no longer retrievable by a correctly written query
or vice versa. Thus, many text search engines aim to find text passages containing
close variants of the query words. There exist several models of similarity among
words (variants of the “edit distance” [NR02]) which capture very well those kinds
of errors. Another related application is spelling checkers, where we look for close
variants of a misspelled word in a dictionary.

• Information retrieval. Although not considered as a multimedia data type,
unstructured text retrieval poses problems similar to multimedia retrieval. This is
because textual documents are in general not structured to easily provide the desired
information. Although text documents may be searched for strings that are present or
not, in many cases it is more useful to search them for semantic concepts of interest.
The problem is basically solved by retrieving documents similar to a given query
[BYRN99], where the query can be a small set of words or even another document.
Some similarity approaches are based on mapping a document to a vector of real
values, so that each dimension is a vocabulary word and the relevance of the word
to the document (computed using some formula) is the coordinate of the document
along that dimension. Similarity functions are then defined on that space. Notice,
however, as the vocabulary can be arbitrarily large, the dimensionality of this space
is usually very high (thousands of coordinates).

• Computational biology. DNA and protein sequences are basic objects of study in
molecular biology. They can be modeled as strings (symbol sequences), and in
this case many biological quests translate into finding local or global similarities
between such sequences, in order to detect homologous regions that permit predicting
functionality, structure or evolutionary distance. An exact match is unlikely to
occur because of measurement errors, minor differences in genetic streams with
similar functionality, and evolution. The measure of similarity used is related to
the probability of mutations such as reversals of pieces of the sequences and other
rearrangements (global similarity), or variants of edit distance (local similarity).

• There are many other applications, such as machine learning and classification, where
a new element must be classified according to its closest existing element; image
quantization and compression, where only some vectors can be represented and those
that cannot must be coded as their closest representable point; function prediction,
where we want to search for the most similar behavior of a function in the past so
as to predict its probable future behavior; and so on.

2

Chapter 1 Introduction

All those applications have some common characteristics, captured under the metric
space model [CNBYM01, HS03, ZADB06, Sam06]. There is a universe X of objects, and
a nonnegative distance function d defined among them. The distance function gives us a
dissimilarity criterion to compare objects from the database. Thus, the smaller the distance
between two objects, the more “similar” they are. This distance satisfies the properties
that make (X, d) a metric space, that is, strict positiveness, symmetry, reflexivity and the
triangle inequality.

We have a finite database U ⊆ X, of size n = |U|, which is a subset of the universe
of objects. Later, given a new object from the universe, a query q ∈ X, we must
retrieve similar elements found in the database. There are two typical similarity queries:
(i) Range query (q, r), which retrieves all elements that are within distance r to q; and
(ii) k-Nearest neighbor query NNk(q), which retrieves the k elements from U that are
closest to q.

The distance is assumed to be expensive to compute (as is the case in most of the
applications mentioned). Hence, it is customary to define the complexity of the search as
the number of distance evaluations performed.

Note that, if we can translate X to a 1-dimensional space still preserving the distances
among objects, then there is a simple way to solve the problem. A 1-dimensional space,
for instance R, admits total order, thus, it is enough to index objects in U by sorting them.
Later, given a query q ∈ X, in this case q ∈ R, we use binary searching to retrieve the object
uq in U closest to q. Finally, we perform a sequential scanning around uq until fulfilling the
query. Else, if it is possible to translate X to a vector space of low dimensionality D ∈ [1, 8],
we can take advantage of the coordinates by using spatial search methods such as kd-trees
[Ben75, Ben79], R-trees [Gut84], quad-trees [Sam84] and X-trees [BKK96]. For further
references to these techniques see [Sam84, WJ96, GG98, BBK01, Sam06]. Otherwise, for
medium and higher dimensionality (D ≤ 8), or when it is not possible to map X to a vector
space, we are left with the metric space search approach, where we only have a distance
function to compare the objects.

Given the metric database U, proximity queries can be trivially answered by
performing n evaluations of the distance function. However, this mechanism is
unacceptable in most applications, as the distance function is usually expensive to compute.
Therefore, metric space search algorithms are devoted to minimizing the number of
computations of the distance function when solving a similarity query.

A natural methodology to face the problem consists in building offline an index I so
as to improve the performance of online queries. Current solutions consider two kinds of
indices [CNBYM01]: pivot based and compact-partition based. As we can only compare
objects by computing the distance between them, the index can be seen, in abstract terms,
as a subset of cells from the full distance matrix U × U, or, more generally, as somehow
summarizing the distance information of cells from U×U. Then, given a query object, we
can use the index and the triangle inequality in order to avoid some distance computations
to solve the proximity query.

3

Chapter 1 Introduction

In this thesis we present new methodologies to solve the metric space search problem
using graphs G(V,E) as the representation of the metric database U. In G, each vertex of
V represents an object of U, and the edge set E corresponds to a small subset of weighted
edges from the full set V ×V . That is, E is a subset from U×U, and the edge weights are
the distances between the connected nodes according to function d. We emphasize that,
for practical reasons concerning memory and CPU time, we will use graphs with small
edge sets.

The earliest work in graphs for metric space searching we are aware of used arbitrary
graphs [SW90], and the results were not promising. Much better results were achieved
by designing the graphs so that they ensure some desiderable properties: our MSc Thesis
explored the use of t-spanners for metric space searching, with very encouraging results
[Par02, NP03, NPC02, NPC07]. Still, however, the development on using a graph as
the representation of the metric database is under-explored and has not reached its full
potential. This is the main subject of this thesis.

We exhaustively explore k-nearest neighbor graphs (knngs). The knng is a directed
weighted graph connecting each element to its k nearest neighbors. We develop algorithms
both to construct knngs and to use them to solve proximity queries. knngs offer
an indexing alternative which requires a moderately amount of memory (O(kn) space)
obtaining reasonably good performance in the search process. In fact, in low-memory
scenarios, which only allow small values of k (that is, considering few neighbors per
element), the search performance of knng-based proximity query algorithms in real-world
metric spaces is better than using the classical pivot-based indexing alternative.

The performance of knng-based proximity query algorithms improves as we have
more space to index the dataset, which means considering more and more neighbors in
the graph. However, there is an optimal value k∗ of neighbors per node which offers the
best search performance. Nevertheless, if we have more space we can still use graph-
based metric space indices: The t-spanner-based approach always improves the search
performance as we allow it to use more memory in the index [NPC02, NPC07].

Graph algorithms make heavy use of fundamental algorithms and data structures,
and we have faced several basic algorithmic challenges throughout this work. Apart from
the cost of computing distances, further so-called side computations cannot be neglected
in graph-based approaches. It is important to keep the extra CPU time under control, for
instance, when computing shortest paths over a graph index. Therefore, we also researched
on fundamental algorithmic problems, such as incremental sorting and priority queues.

These basic algorithms help us to improve the CPU performance of side computations
of our graph-based approach. On the other hand, these basic algorithms also improve
upon the current state of the art on many other algorithmic scenarios. For instance,
we plug our basic algorithms in the classic Minimum Spanning Tree (MST) techniques
[Wei99, CLRS01], obtaining two solutions that are competitive with the best (and much
more sophisticated) current implementations: We use the incremental sorting technique
to boost Kruskal’s MST algorithm [Kru56], and the priority queue to boost Prim’s MST
algorithm [Pri57].

4

Chapter 1 Introduction 1.1 Contributions of the Thesis

1.1 Contributions of the Thesis

Never follow the beaten track, it leads only where others
have been before.

– Alexander Graham Bell

As we said above, this thesis is devoted to the development of metric space search
techniques based on graphs. We have been concerned not only about reducing the
number of distance computations, but also in keeping under control the CPU time of
side computations when using a graph as the underlying index structure. Our specific
contributions are as follows:

1. Design, implementation and experimental evaluation of knng construction
algorithms. This has already been published in the 5th Workshop of Experimental
Algorithms (WEA’06) [PCFN06].

2. Design, implementation and experimental evaluation of knng-based algorithms to
solve proximity queries. This has already been published in the 12th International
conference on String Processing and Information Retrieval (SPIRE’05) [PC05].

3. Design, implementation and experimental evaluation of a new incremental sorting
algorithm, coined Incremental Quicksort (IQS). This has already been published
in the 8th Workshop on Algorithm Engineering and Experiments (ALENEX’06)
[PN06].

4. Design, implementation and experimental evaluation of a priority queue for both
main and secondary memory based on our incremental sorting algorithm, coined
Quickheap.

5. Design, implementation and experimental evaluation of MST construction algorithms
based on IQS and Quickheaps. Part of this research has been published in [PN06].

Our contributions widen the spectrum of tools for metric space searching, approaching
the problem from a novel and successful point of view consisting in using knngs to speed
up metric queries. For this sake, we give not only knng constructing algorithms, but also
several search algorithms that exploit both the metric properties and the features of the
knng index.

We also contribute with fundamental algorithmic tools. As a matter of fact, in this
work we give several simple, efficient and general-purpose algorithms and data structures
for priority queues and incremental sorting. For instance, using these ideas we have
obtained two MST construction algorithms which are competitive with the state of the
art. Indeed, on random graphs our MST algorithms display the best performance we are
aware of.

5

1.2 Thesis Organization Chapter 1 Introduction

1.2 Thesis Organization

La perfection est atteinte non quand il ne reste rien à
ajouter, mais quand il ne reste rien à enlever. [Perfection is
achieved not when there is nothing more to add, but when
there is nothing left to take away.]

– Antoine de Saint-Exupéry

This document is divided into five chapters. A summary of the content of the rest of
chapters follows.

In chapter Basic Concepts, we introduce the background necessary to follow the thesis
and a brief survey of related work that is relevant to our approach. We develop four content
lines. The first is devoted to basic algorithmic issues, the second to concepts and tools from
graph theory, the third to metric spaces, and the fourth to the relation between metric
spaces and graphs.

In chapter Fundamental Algorithms, we introduce a novel incremental sorting
technique and its applications. Among them, a new priority queue implementation is
obtained, as well as algorithms to build graph MSTs.

In chapter k-Nearest Neighbor Graphs, we present a general methodology to construct
knngs, and to use them for proximity searching. We develop two concrete knng

construction algorithms following our general methodology.

In chapter Conclusions, we review our results with a more global perspective. We
finish with some directions for further work.

Finally, the bibliography includes over 100 references to relevant publications.

6

Chapter 2

Basic Concepts

“The time has come,” the Walrus said,
“To talk of many things:
Of shoes – and ships – and sealing-wax –
Of cabbages – and kings –
And why the sea is boiling hot –
And whether pigs have wings.”

– L. Carroll

In this chapter we give the background needed to read this thesis. We start in Section 2.1
by reviewing fundamental algorithmic aspects. We continue in Section 2.2 by introducing
some definitions, data structures and algorithms from graph theory. Next, in Section
2.3, we describe the metric space model and current solutions for the metric space search
problem. Finally, in Section 2.4, we explain how to use graph concepts in metric space
searching, and the related work on this subject.

2.1 Basic Algorithms

Classic: a book which people praise and don’t read.

– Mark Twain

In this section we review some basic algorithmic concepts used throughout the thesis. These
consider algorithms for sorting, incremental sorting, priority queues and the potential
method for amortized analysis.

7

2.1 Basic Algorithms Chapter 2 Basic Concepts

2.1.1 Quicksort and Quickselect

Quicksort [Hoa62] —one the most famous computer algorithms— is an in-place randomized
sorting method with worst-case time O

(
m2
)
, when working over an input array of m

numbers. Nevertheless, its expected complexity is O(m log m) (more precisely, it performs
2(m + 1)Hm − 4m element comparisons [GBY91], where Hm corresponds to the m-th
harmonic number Hm =

∑m
i=1

1
i = ln n + γ + O(1/m)

)
. In practice Quicksort is the most

efficient algorithm to sort a given set in main memory.

Quicksort works as follows. Given an array A of m numbers and the indices first
and last bounding the array segment where it will work, Quicksort chooses a position
pidx at random between first and last, reads p = A[pidx], and partitions A[first . . . last]
so that elements smaller than p are allocated to the left-side partition, and the others
to the right side. After the partitioning, p is placed in its correct position pidx′. Next,
Quicksort performs recursive calls on the left and right partitions, that is, in segments
A[first . . . pidx′ − 1] and A[pidx′ + 1 . . . last]. The recursion stops when first ≥ last.
Figure 2.1 shows the algorithm. The first call is Quicksort(A, 0,m − 1).

Quicksort (Array A, Index first, Index last)
1. If first ≥ last Then Return
2. pidx← random(first, last)
3. pidx′ ← partition(A, pidx, first, last)
4. Quicksort(A, first, pidx′ − 1)
5. Quicksort(A, pidx′ + 1, last)

Figure 2.1: Quicksort algorithm. A is modified during the algorithm. Procedure partition
returns the resulting position pidx′ of pivot p = A[pidx] after the partition completes. Note
that the tail recursion can be easily removed.

Based on Quicksort, it is easy to obtain a linear expected-time selection algorithm.
Given an integer k, a selection algorithm returns the k-th smallest element from an unsorted
array A. The selection algorithm based on Quicksort is known as Quickselect [Hoa61]. It
also has worst-case time O

(
m2
)
, but good (and linear-time) performance in practice.

Quickselect works as follows. Assume we have a set A of m numbers and an integer
k ≥ 0. Once again, let first and last be the bounds of the array segment where Quickselect
will operate. Quickselect starts by choosing a position pidx at random between first and
last, and partitions A[first . . . last] just like Quicksort, placing the chosen pivot p at its
correct position pidx′. Then, if pidx′ is equal to k, Quickselect returns p = A[pidx′] and
finishes. Otherwise, if k < pidx′ it recursively processes the left partition A[first . . . pidx′−
1], else the right partition A[pidx′ + 1 . . . last]. In the second recursive call it looks for the
(k − pidx′ − 1)-th element of array A[pidx′ + 1 . . . last]. Figure 2.2 shows the algorithm.
The first call is Quickselect(A, k, 0,m − 1).

8

Chapter 2 Basic Concepts 2.1 Basic Algorithms

Quickselect (Array A, Index k, Index first, Index last)
1. If first > last Then Return null // k > m
2. pidx← random(first, last)
3. pidx′ ← partition(A, pidx, first, last)
4. If pidx′ = k Then Return A[pidx′]
5. Else If pidx′ < k Then Return Quickselect(A, k, first, pidx′ − 1)
6. Else Return Quickselect(A, k, pidx′ + 1, last)

Figure 2.2: Quickselect. A is modified during the algorithm. Procedure partition returns the
resulting position pidx′ of the pivot p = A[pidx] after the partition completes. Note that the
recursion can be easily removed.

2.1.2 Incremental Sorting

There are cases where we need to obtain the smallest elements from a fixed set without
knowing how many elements we will end up needing. Prominent examples are Kruskal’s
Minimum Spanning Tree (MST) algorithm [Kru56] and ranking by Web search engines
[BYRN99]. Given a graph, Kruskal’s MST algorithm processes the edges one by one,
from smallest to largest, until it forms the MST. At this point, remaining edges are not
considered. Web search engines display a very small sorted subset of the most relevant
documents among all those satisfying the query. Later, if the user wants more results, the
search engine displays the next group of most relevant documents, and so on. In both
cases, we could sort the whole set and later return the desired objects, but obviously this
is more work than necessary.

This problem can be called Incremental Sorting. It can be stated as follows: Given
a set A of m numbers, output the elements of A from smallest to largest, so that the
process can be stopped after k elements have been output, for any k that is unknown to
the algorithm. Therefore, Incremental Sorting is the online version of a variant of the
Partial Sorting problem: Given a set A of m numbers and an integer k ≤ m, output the
smallest k elements of A in ascending order.

2.1.2.1 Related Work on Incremental Sorting

In 1971, J. Chambers introduced the general notion of Partial Sorting [Cha71]: Given an
array A of m numbers, and a fixed, sorted set of indices I = i0 < i1 < . . . < ik−1 of size
k ≤ m, arrange in-place the elements of A so that A[0, i0 − 1] ≤ A[i0] ≤ A[i0 + 1, i1 − 1] ≤
A[i1] ≤ . . . ≤ A[ik−2 + 1, ik−1 − 1] ≤ A[ik−1] ≤ A[ik−1 + 1,m − 1]. This property is
equivalent to the statement that A[i] is the i-th order statistic of A for all i ∈ I.

We are interested in the particular case of finding the first k order statistics of a given
set A of size m > k, that is, ij = j. This can be easily solved by first finding the k-th
smallest element of A using O(m) time Select algorithm [BFP+73], and then collecting

9

2.1 Basic Algorithms Chapter 2 Basic Concepts

and sorting the elements smaller than the k-th element. The resulting complexity,
O(m + k log k), is optimal under the comparison model, as there are mk = m!/(m− k)!
possible answers and log

(
mk
)

= Ω(m + k log k).

A practical version of the above method uses Quickselect and Quicksort as the
selection and sorting algorithms, obtaining O(m + k log k) expected complexity. Recently,
it has been shown that the selection and sorting steps can be interleaved. The result has
the same average complexity but smaller constant terms [Mar04].

To solve the online problem (incremental sort), we must select the smallest element,
then the second smallest, and so on until the process finishes at some unknown value
k ∈ [0,m − 1]. One can do this by using Select to find each of the first k elements, for an
overall cost of O(km). This complexity can be improved by transforming A into a min-
heap [Wil64] in time O(m) [Flo64] (see Section 2.1.3.1), and then performing k extractions.
This premature cut-off of the heapsort algorithm [Wil64] has O(m + k log m) worst-case
complexity. Note that m + k log m = O(m + k log k), as they can differ only if k = o

(
mc
)

for any c > 0, and then m dominates k log m. However, according to experiments this
scheme is much slower than the offline practical algorithm [Mar04] if a classical heap is
used.

P. Sanders [San00] proposes sequence heaps, a cache-aware priority queue, to solve
the online problem. Sequence heaps are optimized to insert and extract all the elements
in the priority queue at a small amortized cost. Even though the total CPU time used for
this algorithm in the whole process of inserting and extracting all the m elements is pretty
close to the time of running Quicksort, this scheme is not so efficient when we want to sort
just a small fraction of the set.

2.1.3 Priority Queues

A priority queue is a data structure which allows maintaining a set of elements in a partially
ordered way, enabling efficient insertions and extractions of particular elements as well as
obtaining the minimum (or alternatively the maximum) of the set. For simplicity we focus
on obtaining minima and suppose that elements are of the form (key, item), where the
keys can be ordered. The basic priority queue supports the following operations:

• insert(key, item): inserts element (key, item) in the queue.

• findMin(): returns the element of the queue with the lowest key value.

• extractMin(): removes and returns the element of the queue with the lowest key
value.

The set of operations can be extended to construct a priority queue from a given
array A (heapify), increment or decrement a key (increaseKey and decreaseKey,
respectively), answer whether an arbitrary element belongs to the element set (find),

10

Chapter 2 Basic Concepts 2.1 Basic Algorithms

delete an arbitrary element from the priority queue (delete), retrieve the successor or
predecessor of a given key (successor and predecessor, respectively), merge priority
queues (merge), and a long so on.

2.1.3.1 Binary Heaps

The classic implementation of a priority queue uses a binary heap [Wil64], which is an
array A satisfying some properties. A can be viewed as a binary tree with all its levels
complete except the bottom level, which can be incomplete. The bottom level is filled
from the leftmost to rightmost leaf. All the elements inside the binary heap are stored
contiguously and levelwise, starting from cell A[1], which is the root of the tree. Figure 2.3
illustrates. Using the array representation, it is easy to obtain the left and right children
of a given node with index x: its left child is at cell 2x, and its right child at cell 2x + 1.
Naturally, x’s parent is at cell

⌊
x
2

⌋
.

In min-order binary heaps, any parent is smaller than or equal to both of its children.
This implies that the smallest element in a min-order binary heap is stored at the root of
the tree, and recursively, the subtree rooted by any node contains values not smaller than
that of the node itself. Figure 2.3 shows an example of a binary heap in min-order.

7

1

2 3

5 6 7

23

8 10

4

9

3

10 12

15 18 25

2730 33

 3 10 12 15 18 25 23 30 27 33

1 9 1082 3 4 5 6

Figure 2.3: Binary heap example.

In the following we explain several min-order binary heap operations; all of them are
depicted in Figure 2.4. To implement a min-order binary heap we need an array A to store
the elements. We also use the auxiliary variable last to indicate at which cell is placed
the last element of the heap (the rightmost of the bottom level). Since we are considering
min-order, we initialize A[0] with a fake element (−∞,null). This is useful to simplify
the following procedures. Note that true elements are stored starting from cell 1. As there
are no elements, last is initialized to 0.

To insert a new element elem we start by incrementing last← last + 1, and placing
elem at cell A[last]. Next we restore the min-order invariant. For this sake, we need an
auxiliary variable aux initialized at last. We compare the element at cell aux with its
parent

⌊
aux
2

⌋
. If the key at the parent is greater than that of A[aux], we swap the cell

contents and repeat the procedure from aux←
⌊

aux
2

⌋
towards the root until we restore the

invariant. The fake value A[0] = (−∞,null) avoids checking border conditions explicitly.

11

2.1 Basic Algorithms Chapter 2 Basic Concepts

As objects within the heap already satisfy the min-order property, obtaining the
minimum of the binary heap (findMin) is as simple as returning A[1].

To extract the minimum of the heap, we store the element in A[1] in an auxiliary
variable, pick the rightmost element of the heap (A[last]), place it in cell A[1], and restore
the min-order invariant by percolating down the element in A[1] until it gets a place in
fulfillment with the min-order invariant. Finally, we return the element stored in the
auxiliary variable. Procedure percolateDown compares the element at position pos with
the smaller of its children (at positions 2 ·pos and 2 ·pos+1). If the smaller child is smaller
than the key at A[pos], the elements are swapped and the procedure continues from the
position of the child, until the min-order property is fulfilled.

In order to heapify a given array L of m elements, we can insert one-by-one its elements
into a binary heap. Thus, for each inserted element, we restore the invariant by moving
it upwards. This is an O(m log m) worst-case alternative to heapify the array. However,
Floyd gives a linear-time algorithm to heapify an array [Flo64]. The idea is to traverse the
array right to left from the position

⌊
aux
2

⌋
(that is, traverse the heap levelwise bottom to

top), and at each position use percolateDown to restitute the invariant downwards the
binary heap (where the min-order property already holds). The sum of all those costs is
just O(m).

2.1.3.2 Related Work on Priority Queues

Wegener [Weg93] proposes a bottom-up deletion algorithm, which addresses operation
extractMin performing only log2 m + O(1) key comparisons per extraction on average,
in heaps of m elements. Wegener’s algorithm saves up to half of the comparisons
used by a straightforward implementation taken from textbooks (see previous section)
[CLRS01, Wei99]. It works as follows. When the minimum is extracted, it lifts up elements
on a min-path from the root to a leaf in the bottom level. Then, it places the rightmost
element (the last of the heap) into the free leaf, and bubbles it up to restore the min-heap
condition.

We have also mentioned P. Sanders’ sequence heaps [San00], a cache-aware priority
queue tuned to efficiently solve operations insert and extractMin. Other well-known
related works on priority queues are binomial queues [Vui78], Fibonacci heaps [FT87],
leftist heaps [Cra72, Knu98], min-max heaps [ASSS86], pairing heaps [FSST86], skew heaps
[ST86], and van Emde Boas queues [vEBKZ77]. They are summarized in Table 2.1.

Finally, a practical, interesting application of priority queues arises when there are
many decreaseKey operations for each extractMin operation. We have this case in
Dijkstra’s Shortest Path algorithm [Dij59] or Prim’s Minimum Spanning Tree algorithm
[Pri57] (we explain these algorithms in detail in the next section). In this application, it
seems that implementations of pairing heaps yield the best performance as suggested in
[MS91, KST03].

12

Chapter 2 Basic Concepts 2.1 Basic Algorithms

BinaryHeap(Integer N)
// constructor of an empty binary heap, elem is of the form (key, item)

1. A← new Array[N + 1], last← 0, A[0]← (−∞,null)

insert(Elem elem)
1. last← last + 1, aux← last, parent←

⌊
aux
2

⌋

2. While elem.key < A[parent].key Do
3. A[aux]← A[parent], aux← parent, parent←

⌊
aux
2

⌋

4. A[aux]← elem

findMin()
1. If last = 0 Then Return null // there are no elements in the binary heap
2. Return A[1]

extractMin()
1. If last = 0 Then Return null // there are no elements in the binary heap
2. elem← A[1], A[1]← A[last], last← last− 1
3. percolateDown(1)
4. Return elem

percolateDown(Position pos)
1. aux← A[pos]
2. While true Do
3. leftChild← 2 · pos, rightChild← 2 · pos + 1
4. If leftChild > last Then Break
5. Else If (leftChild = last) or (A[leftChild].key < A[rightChild].key) Then
6. smaller← leftChild
7. Else smaller← rightChild
8. If A[smaller].key < aux.key Then
9. A[pos]← A[smaller], pos← smaller
10. Else Break
11. A[pos]← aux

heapify(Array L)
1. If |L| = 0 Then Return // there are no elements in the array
2. For i← 0, . . . , |L| − 1 Do A[last + i + 1]← L[i] // copying L into A
3. last← last + |L|
4. For i←

⌊
last
2

⌋
downto 1 Do

5. percolateDown(i)

Figure 2.4: Basic binary heap operations. Note that we heapify array L into a previously
initialized binary heap (which either is empty, last = 0, or has elements, last > 0). We also
need that |L|+ last < N , else the binary heap is overflowed.

13

2.1 Basic Algorithms Chapter 2 Basic Concepts

heap insert findMin extractMin merge decreaseKey increaseKey

binary (∗) O(log m) O(1) O(log m) O(m) O(log m) O(log m)
binomial (◦) O(log m) O(log m) O(log m) O(log m) O(log m) O(log m)
Fibonacci O(1) O(1) O(log m) (⋆) O(1) O(1)

leftist O(log m) O(1) O(log m) O(log m) O(log m) O(log m)
min-max (†) O(log m) O(1) O(log m) O(m) O(log m) O(log m)
pairing (‡) O(1) (⋆) O(1) O(log m) (⋆) O(1) (⋆) O(1) (⋆)

skew O(log m) (⋆) O(1) O(log m) (⋆) O(log m) (⋆) O(log m) (⋆) O(log m) (⋆)
vEB (•) O(log log C) O(log log C) O(log log C) O(log log C) O(log log C)

Table 2.1: Operation costs of some priority queues satisfying the min-order property. We also
mention some other nice features of some priority queues. All the times are worst case unless
we specify otherwise. All the heaps in the table can be created as an empty heap in O(1)
time. (∗) Binary heaps allow heapify in O(m). (◦) Binomial heaps allow insert in O(1)
time on average. (⋆) Amortized time. (†) Min-max heaps also implement findMax in time
O(1), extractMax in time O(log m), and heapify in time O(m). (‡) For pairing heaps,
it is conjectured that operations insert, decreaseKey and merge have O(1) amortized
complexity but this has not yet been proven. (•) The van Emde Boas heaps also support
operations findMax, extractMax, delete, find, predecessor and successor in worst-
case time O(log log C), and are subject to the restriction that the universe of keys is the set
{1, . . . , C}.

2.1.4 External Memory Priority Queues

The priority queues mentioned in Section 2.1.3.2 assume that the whole element set
fits in main memory. Unfortunately, as soon as the size of the element set overreaches
the available main memory, the performance of those internal-memory priority queues
dramatically slows down due to paging in virtual memory. In fact, if the priority queue
does not fit in the internal (or main) memory of the computer, necessarily some portions
of the queue must be maintained in the computer external-memory (for instance, on the
hard disk). Then, if the accesses to elements within the queue are random and do not
exhibit any locality of reference, we will observe a heavy paging activity, which translates
into a sharp decrease in the I/O-performance. In practice, considering the speed ratio
between secondary and main memory, the paging activity can generate a slowdown factor
of around 105 in the performance of the priority queue operations.

Nowadays, there are several ranking applications that must handle huge datasets,
being Web search engines [BYRN99] a well-known example. Hence, the design of external
memory priority queues that achieve efficient I/O-performance —which implies that, even
though the data are retrieved from the hard disk, the overall performance of priority queue
operations remains reasonably good— is an extremely appealing problem.

Many classical data structures have been adapted to work efficiently on secondary
memory [Vit01], and priority queues are not an exception. However, in order to guarantee
good locality of reference, external memory priority queues usually offer just the basic
operations, namely, insert, findMin and extractMin. This is because others, like find
or decreaseKey need at least one random access to the queue.

14

Chapter 2 Basic Concepts 2.1 Basic Algorithms

When working in the secondary memory scenario, we assume that we have M bytes
of fast-access internal memory and an arbitrary large slow-access external memory located
in one or more independent disks. Data between the internal memory and the disks is
transfered in blocks of size B, called disk pages.

In this model, the algorithmic performance is measured by counting the number of
disk access performed, which we call I/Os. Some authors also suggest to measure the
internal CPU time, or account for the number of occupied pages. However, the dominant
term is the number of I/Os performed.

2.1.4.1 Related Work on External Memory Priority Queues

Some examples of external memory priority queues are buffer trees [Arg95, HMSV97],
M/B-ary heaps [KS96, FJKT99], and Array Heaps [BK98], all of which achieve the lower
bound of Θ((1/B) logM/B(m/B)) amortized I/Os per operation [Vit01]. Those structures,
however, are rather complex to implement and heavyweight in practice (in extra space and
time) [BCFM00]. Other techniques are simple but do not perform so well (in theory or in
practice), for example those using B-trees [BM72].

A practical comparison of existing secondary memory priority queues was carried out
by Brengel et al. [BCFM00], where in addition they adapt two-level radix heaps [AMOT90]
to secondary memory (R-Heaps), and also simplify Array-Heaps [BK98]. The latter stays
optimal in the amortized sense and becomes simple to implement. The experiments in
[BCFM00] show that R-Heaps and Array-Heaps are by far the best choices for secondary
memory. In the same issue, Sanders introduced sequence heaps [San00], which can be
seen as a simplification of the improved Array-Heaps of [BCFM00]. Sanders reports that
sequence heaps are faster than the improved Array-Heaps, yet the experiments only consider
caching in main memory.

2.1.5 The Potential Method for Amortized Analysis

In Section 3.4 we use a variation of the potential method ([Tar85] and [CLRS01, Chapter
17]). In this section we describe the standard potential method, which is a technique used
in amortized analysis.

In an amortized analysis, the time required to perform a sequence of operations over
a data structure is shared among all the operations performed. The idea is to show that
the amortized cost of an operation is small if one considers a sequence of operations, even
though a single operation within the sequence might be expensive.

The common techniques for amortized analysis are (i) aggregate analysis, (ii) the
accounting method, and (iii) the potential method. In the first, the idea is to determine
an upper bound T (n) for a sequence of n operations, and then compute the amortized cost

of each operation as T (n)
n . In this case all the operations are assigned the same cost.

15

2.1 Basic Algorithms Chapter 2 Basic Concepts

In the second, the total cost of the process is distributed among operations and data
structure objects. The total cost is obtained by summing up all the distributed costs.

In the potential method, the idea is to determine an amortized cost for each operation
type. The potential method overcharges some operations early in the sequence, storing the
overcharge as “prepaid credit” on the data structure. The sum of all the prepaid credit is
called the potential of the data structure. The potential is used later in the sequence to
pay for operations that are charged less than what they actually cost.

The potential method works as follows. It starts with an initial data structure D0

on which operations are performed. Let ci be the actual cost of the i-th operation and
Di the data structure that results after applying the i-th operation to Di−1. A potential
function Φ maps each data structure Di to a real number Φ(Di), which is the potential
associated with data structure Di. The amortized cost ĉi of the i-th operation with respect
to potential function Φ is defined by

ĉi = ci + Φ(Di)− Φ(Di−1) . (2.1)

Therefore, the amortized cost of the i-th operation is the actual cost plus the potential
variation due to the operation. Thus, the total amortized cost for n operations is

n∑

i=1

ĉi =

n∑

i=1

(ci + Φ(Di)− Φ(Di−1)) =

n∑

i=1

ci + Φ(Dn)− Φ(D0) . (2.2)

If we define a potential function Φ so that Φ(Dn) ≥ Φ(D0), for all n, then the total
amortized cost

∑n
i=1 ĉi is an upper bound on the total actual cost

∑n
i=1 ci.

Intuitively, if the potential difference Φ(Di)−Φ(Di−1) of the i-th operation is positive,
then the amortized cost ĉi represents an overcharge to the i-th operation, and the potential
of the data structure increases. On the other hand, if the potential difference is negative,
then the amortized cost represents an undercharge to the i-th operation, and the actual
cost of the operation is paid by the decrease in the potential.

16

Chapter 2 Basic Concepts 2.2 Graph Tools and Definitions

2.2 Graph Tools and Definitions

I married a widow who had a grown up daughter. My
father visited our house very often, fell in love with my
stepdaughter, and married her. So my father became my
son-in-law and my stepdaughter my mother because she
was my father’s wife. Sometime afterward my wife had a
son; he was my father’s brother-in-law and my uncle, for he
was the brother of my stepmother. My father’s wife —i.e.,
my stepdaughter— had also a son; he was, of course, my
brother, and in the meantime my grandchild, for he was the
son of my daughter. My wife was my grandmother, because
she was my mother’s mother. I was my wife’s husband
and grand child at the same time. And as the husband of
a person’s grandmother is his grandfather, I was my own
grandfather.

– Unknown author

The concept of a graph is present in a vast number of fields in Computer Science. The
algorithms and data structures involved in graph theory are fundamental for this discipline,
and they have been described in general textbooks [CLRS01, HS76, Wei99], and also in
specialized ones, for example [Bol98, Wes01]. Nevertheless, graphs are an extremely active
research field, both on development of theory and on applications in Computer Science
and other branches in Science. In the following sections we give a glance over graph theory.
For further information we encourage the reader to check the references.

2.2.1 Basic Definitions

A graph G consists of a set of vertices V and a set of edges E, and we usually write it as
G(V,E). For simplicity, we use natural numbers (including zero) as vertex identifiers. The
vertices are also called nodes. Each edge is a pair (u, v), where u, v ∈ V . In an undirected
graph the pair of vertices representing any edge is unordered, so (u, v) and (v, u) represent
the same edge. Instead, in a directed graph the pair is ordered, so (u, v) and (v, u) represent
two different edges. In this thesis we do not consider edges of the form (u, u).

The vertex v is adjacent to u, or a neighbor of u, if and only if (u, v) ∈ E. So, in
undirected graphs, given an edge (u, v), v is adjacent to u, and symmetrically u is adjacent
to v. For the same example, in directed graphs, we only have that v is adjacent to u. In
many cases, edges also have a third component, called a weight or cost. In such cases we
speak of weighted graphs. In this thesis we only consider nonnegative costs. For simplicity,
in order to refer the weight of the edge e = (u, v) we write weighte or weightu,v . For
technical reasons, we define the weight weightu,u as zero.

17

2.2 Graph Tools and Definitions Chapter 2 Basic Concepts

A path u1 ; ul in a graph is a vertex sequence u1, u2, . . . , ul such that (ui, ui+1) ∈ E,
for 1 ≤ i < l. In non-weighted graphs, the length of such path is the number of edges
composing it, that is, l − 1. On the other hand, in weighted graphs, the length of a path
is the sum of the costs of the traversed edges, that is,

∑
1≤i<l weightui,ui+1

. We define the
length of a path u ; u as zero.

A cycle is a path with no repeated nodes except the first and last ones, which must
be the same.

In an undirected graph G, two vertices u and v are said to be connected if there is a
path in G from u to v (as G is undirected, there also is a path from v to u). A graph is
called connected if for every pair of vertices u and v there exists a path connecting them.
A graph is full if for all pairs u, v ∈ V there exists edge (u, v) ∈ E.

It is customary to denote by n the size of V , and m the size of E. Note that in this
document we also use n as the size of U, but as we explain in Section 2.4, every node of V
will represent a single object in U, so there is no possible confusion.

The adjacency of a node u ∈ V is the set of its neighbors, formally
adjacency(u) = {v ∈ V, (u, v) ∈ E}. Note that the adjacency of a node u does not contain
the node u itself. Analogously, the adjacency of a node set U ⊆ V , is the set of all the
neighbors of U , formally adjacency(U) = {v ∈ V,∃ u ∈ U, (u, v) ∈ E} − U .

2.2.2 Graph Representations

Let us consider the undirected graph of Figure 2.5, composed by 8 vertices and 13 edges
where nodes are numbered starting from 0.

1

2

3

4

5

7

6

0

Figure 2.5: Undirected weighted graph. The weights are indicated in the adjacency matrix of
Table 2.2 and also in the adjacency list of Figure 2.6.

A simple way to represent a graph is by using a square matrix A, called adjacency
matrix. In non-weighted graphs, for each pair (u, v) we set Au,v = 1 if (u, v) ∈ E, otherwise

18

Chapter 2 Basic Concepts 2.2 Graph Tools and Definitions

we set Au,v = 0. In weighted graphs, for each pair (u, v) we set Au,v = weightu,v if
(u, v) ∈ E, otherwise we set Au,v = ∞. When the graph is undirected, the adjacency
matrix is symmetric, so it is enough to store the upper triangle matrix. This representation
is extremely simple, requires Θ

(
n2
)

space and it is convenient for graphs with more than
n(n−1)

2 edges (or n(n−1)
4 edges in the case of undirected graphs). Table 2.2 shows the

adjacency matrix of the undirected weighted graph of Figure 2.5.

0 1 2 3 4 5 6 7
0 ∞ ∞ 4.7 ∞ ∞ 2.9 ∞
1 7.5 ∞ 6.2 ∞ 4 ∞
2 10 ∞ ∞ 7.5 ∞
3 ∞ ∞ ∞ 4
4 8.5 5.2 8.3
5 ∞ 5.5
6 6
7

Table 2.2: Adjacency matrix of the graph of Figure 2.5.

For sparse graphs
(
with a small set of edges, for instance, when |E| = n1.5

)
, the

matrix representation is inappropriate as it allocates space for all the edges, which is an
excessive memory requirement. For sparse graphs it is recommended to use an adjacency
list, which consists in storing the list adjacency(u), for each vertex u ∈ V . This way, the
space requirement is Θ(n + m). In weighted graphs, for each neighbor we also store the
edge weight. In the case of undirected graphs, as ∀ (u, v) ∈ E ⇒ (v, u) ∈ E, for each
edge we must also store its symmetric version. Figure 2.6 shows the adjacency list of the
undirected weighted graph of Figure 2.5.

0 - (3, 4.7) - (6, 2.9)
1 - (2, 7.5) - (4, 6.2) - (6, 4)
2 - (1, 7.5) - (3, 10) - (6, 7.5)
3 - (0, 4.7) - (2, 10) - (7, 4)
4 - (1, 6.2) - (5, 8.5) - (6, 5.2) - (7, 8.3)
5 - (4, 8.5) - (7, 5.5)
6 - (0, 2.9) - (1, 4) - (2, 7.5) - (4, 5.2) - (7, 6)
7 - (3, 4) - (4, 8.3) - (5, 5.5) - (6, 6)

Figure 2.6: Adjacency list of the graph of Figure 2.5. The notation is (vertex, weigth).

2.2.3 Shortest Paths

Given a nonnegative-weighted graph G(V,E), the shortest path between vertices u, v ∈ V
is the one minimizing the sum of the costs of the traversed edges. Let us call dG(u, v) this
shortest path cost (or minimum sum). The single-source shortest path problem is that

19

2.2 Graph Tools and Definitions Chapter 2 Basic Concepts

of computing the shortest path to all nodes in V starting from a particular node. This
problem can be solved with Dijkstra’s algorithm [Dij59], starting from the desired node.
The all-pairs shortest path problem is that of computing the shortest path among every
pair of vertices. This can be computed using Floyd’s algorithm [Flo62] or by n applications
of Dijkstra’s [Dij59], taking each vertex as the origin node.

2.2.3.1 Dijkstra’s Single-source Shortest Path Algorithm

Given a nonnegative weighted graph G(V,E) and a starting node s ∈ V , we are looking
for shortest paths starting from s to every other node in V . To do so, Dijkstra’s algorithm
uses some auxiliary variables. It maintains a set R of vertices whose final shortest paths
from the source s have already been calculated. It uses an array sp to store the shortest
path distance from s to every node u ∈ V passing exclusively over the nodes in R. Finally,
it uses an array from to represent a path propagation tree whose root is s, so we can
rebuild the shortest path from s to every node u ∈ V by following the edges in from.
This way, when R becomes V we will have all the shortest path distances in sp, and if we
need, we can rebuild each shortest path by following the edges in from. R is initialized
to empty, the shortest path estimations spu are fixed to ∞ for all u ∈ V − {s} and zero
for s, and for every node in V we fill the array from with null.

Next, the algorithm repeatedly selects the vertex u∗ ∈ V − R with the minimum
shortest path estimation, adds u∗ to R, and updates the shortest path estimations for
objects in the adjacency of u∗ that are still out of R, with the minimum value between their
current shortest path estimation (spv) and the shortest path from s to u∗ plus the distance
between u∗ and v (spu∗ +weightu∗,v). For the updated nodes v, it sets fromv ← u∗. Figure
2.7 shows Dijkstra’s algorithm.

Dijkstra (Graph G(V,E), Vertex s)
1. For each u ∈ V Do spu ←∞, fromu ← null

2. sps ← 0, R← ∅
3. While V 6= R Do
4. u∗ ← argminu∈V −R spu

5. R← R ∪ {u∗}
6. For each v ∈ (V −R) ∩ adjacency(u∗) Do
7. If spu∗ + weightu∗ ,v < spv Then
8. spv ← spu∗ + weightu∗,v

9. fromv ← u∗

10. Return (sp, from)

Figure 2.7: Dijkstra’s single-source shortest path algorithm.

Once we have computed the shortest path distances starting from s, we can obtain
the path s ; v, for each v ∈ V , by using the following procedure. We start from the
last node of the path v−1 = v. Following fromv−1

we arrive at node v−2, so we obtain

20

Chapter 2 Basic Concepts 2.2 Graph Tools and Definitions

the edge (v−2, v). Next, following fromv−2
we arrive at node v−3, so we obtain the edge

(v−3, v−2). We repeat the process until we arrive at node v−l = s, where we obtain the
edge (s, v−(l−1)). Finally, the path s ; v is the vertex sequence s, v−(l−1), . . . , v−3, v−2, v.

The correctness of Dijkstra’s algorithm is based on the fact that spu∗ is already the
shortest path cost between s and u∗ at the time when u∗ is added to set R (and obviously,
this property holds from then on). Therefore, when R becomes V , we have the shortest
paths from s to all the nodes of G.

At the beginning, R = ∅, so the invariant is trivially true. Later, in the first execution
of the While loop, spu = ∞ for all the nodes, except for sps which is 0. As the edges
have nonnegative cost, the minimum path cost is 0, thus we add s to R, and the invariant
is still true. Now, we update the adjacency of s.

In the following minimum selections, nodes u∗ ← argminu∈V −R spu are chosen in
non-decreasing order with respect to values of sp. Since when we pick the node u∗ and
update its adjacency in V − R, v ∈ (V − R) ∩ adjacency(u∗), the values spv are greater
than spu∗ (note that, if we also have edges with weight 0, then the updated value could be
equal to spu∗), once we pick the node u∗ its cost spu∗ cannot decrease (as any other path
s ; u∗ will have to get out from R and thus will have a greater or equal cost).

The simplest Dijkstra’s implementation requires O
(
m + n2

)
= O

(
n2
)

CPU time. It
checks every edge once, and it performs a sequential scanning over sp in order to find the
minimum value. A practical, fast alternative implements sp using binary heaps, so it finds
the minimum in time O(log n), and updates each distance in sp also in time O(log n).
Thus, we obtain time O(n log n + m log n) = O(m log n), which is an important CPU time
reduction in the case when m = o

(
n2/ log n

)
. In fact, we use this latter alternative in this

thesis.

2.2.3.2 Floyd’s All-pairs Shortest Path Algorithm

Floyd’s algorithm can manage negative-weight edges, but assumes that there are no
negative-weight cycles. Recall that the vertices of G are V = {0, . . . , n − 1}. Let us
consider a vertex subset {0, . . . , k} for some k. For any pair of vertices i, j ∈ V , consider
all paths from i to j whose intermediate vertices belong to {0, . . . , k}, and let mwpk

i,j be

the minimum weight path under this restriction and mdk
i,j its distance. Floyd’s algorithm

exploits a relation between mwpk
i,j and mwpk−1

i,j . The relation depends on whether k is an

intermediate vertex of path mwpk
i,j:

• If k is not an intermediate vertex of mwpk
i,j , then all intermediate vertices of mwpk

i,j

belong to {0, . . . , k − 1}. So, mwpk
i,j = mwpk−1

i,j , and mdk
i,j = mdk−1

i,j .

• If k is an intermediate vertex of mwpk
i,j, then we split i ; j into i ; k and k ; j,

which are the minimum weight subpaths connecting i with k and k with j using

21

2.2 Graph Tools and Definitions Chapter 2 Basic Concepts

nodes belonging to {0, . . . , k − 1}. That is, the minimum weight subpaths i ; k
and k ; j are precisely mwpk−1

i,k and mwpk−1
k,j , whose minimum costs are mdk−1

i,k and

mdk−1
k,j , respectively. Therefore mwpk

i,j is the concatenation of mwpk−1
i,k and mwpk−1

k,j

and mdk
i,j is the sum of mdk−1

i,k and mdk−1
k,j .

It is easy to see that the shortest path i ; j contains at most once the node k, as
otherwise we should add one or more cycle cost mdk−1

k,k ≥ 0, which cannot reduce the
cost.

To verify whether k is an intermediate vertex of path mwpk
i,j, it is enough to check if

the sum of the distances mdk−1
i,k and mdk−1

k,j is lower than the current distance mdk−1
i,j .

Figure 2.8 shows Floyd’s algorithm, where we neglect the superscript k and instead
overwrite mdi,j and mwpi,j. It requires O

(
n3
)

CPU time, and it is recommended for
graphs where m = Ω

(
n2/ log n

)
. Otherwise, when m = o

(
n2/ log n

)
, it is better to use n

times Dijkstra’s, with a total time of O(nm log n).

Floyd (Graph G(V,E))
1. For i, j ← 0, . . . , n− 1 Do
2. If (i, j) /∈ E Then mdi,j ←∞, mwpi,j ← ∅
3. Else mdi,j ← weighti,j , mwpi,j ← < i, j >
4. For i← 0, . . . , n − 1 Do mdi,i ← 0, mwpi,i ← < i >
5. For k ← 0, . . . , n − 1 Do
6. For i, j ← 0, . . . , n − 1 Do
7. If mdi,k + mdk,j < mdi,j Then
8. mdi,j ← mdi,k + mdk,j

9. mwpi,j ← concatenate(mwpi,k,mwpk,j)
10. Return (md,mwp)

Figure 2.8: Floyd’s all-pairs shortest path algorithm.

2.2.4 Minimum Spanning Trees

Assume that G(V,E) is a connected undirected graph with a nonnegative cost function
weighte assigned to its edges e ∈ E. A minimum spanning tree mst of the graph G(V,E)
is a tree composed of n− 1 edges of E connecting all the vertices of V at the lowest total
cost

∑
e∈mst weighte. Note that, given a graph, its MST is not necessarily unique.

The most popular algorithms to solve the MST problem are Kruskal’s [Kru56] and
Prim’s [Pri57], whose basic versions have complexity O(m log m) and O

(
n2
)
, respectively.

When m = o
(
n2/ log n

)
, it is recommended to use Kruskal’s algorithm, otherwise Prim’s

algorithm is recommended [CLRS01, Wei99]. Alternatively, Prim’s can be implemented
using Fibonacci Heaps [FT87] to obtain O(m + n log n) complexity.

22

Chapter 2 Basic Concepts 2.2 Graph Tools and Definitions

2.2.4.1 Kruskal’s MST Algorithm

Kruskal’s algorithm starts with n single-node components, and merges them until
producing a sole connected component. To do this, Kruskal’s algorithm begins by setting
the mst to (V, ∅), that is, n single-node trees. Later, in each iteration, it adds to the mst
the cheapest edge of E that does not produce a cycle on the mst, that is, it only adds
edges whose vertices belong to different connected components. Once the edge is added,
both components are merged. When the process ends, the mst is a minimum spanning
tree of G(V,E).

To manage the component operations, the Union-Find data structure C with path
compression is used, see [CLRS01, Wei99] for a comprehensive explanation. Given
two vertices u and v, operation find(u) computes which component u belongs to, and
union(u, v) merges the components of u and v. The amortized cost of find(u) is
O(α(m,n)) (α = ω(1) is the very slowly-growing inverse Ackermann’s function) and the
cost of union(u, v) is constant.

Figure 2.9 depicts the basic Kruskal’s MST algorithm. We need O(n) time to initialize
both C and mst, and O(m log m) time to sort the edge set E. Then we make at most
m O(α(m,n))-time iterations of the While loop. Therefore, Kruskal’s complexity is
O(m log m).

Kruskal1 (Graph G(V,E))
1. UnionFind C ← {{v}, v ∈ V } // the set of all connected components
2. mst← ∅ // the growing minimum spanning tree
3. ascendingSort(E), k ← 0
4. While |C| > 1 Do
5. (e = {u, v})← E[k], k ← k + 1 // select an edge in ascending order
6. If C.find(u) 6= C.find(v) Then
7. mst← mst ∪ {e}, C.union(u, v)
8. Return mst

Figure 2.9: The basic version of Kruskal’s MST algorithm (Kruskal1).

Assuming we are using either full or random graphs whose edge costs are assigned
at random independently of the rest (using any continuous distribution), the subgraph
composed by V with the edges reviewed by the algorithm is a random graph [JK LP93].
Therefore, based on [JK LP93, p. 349], we expect to finish the MST construction (that is,
to connect the random subgraph) upon reviewing 1

2n ln n + 1
2γn + 1

4 + O
(

1
n

)
edges, which

can be much smaller than m. Note that it is not necessary to sort the whole set E, but it
is enough to select and extract one by one the minimum-cost edges until we complete the
MST. The common solution of this type consists in min-heapifying the set E, and later
performing as many min-extractions of the lowest cost edge as needed (in [MS91], they do
this in their Kruskal’s demand-sorting version). This is an application of Incremental Sort

23

2.2 Graph Tools and Definitions Chapter 2 Basic Concepts

(Section 2.1.2). For this sake we just modify lines 3 and 5 of Figure 2.9. Figure 2.10 shows
Kruskal’s algorithm with incremental sorting.

Kruskal2 (Graph G(V,E))
1. UnionFind C ← {{v}, v ∈ V } // the set of all connected components
2. mst← ∅ // the growing minimum spanning tree
3. heapify(E)
4. While |C| > 1 Do
5. (e = {u, v})← E.extractMin() // select an edge in ascending order
6. If C.find(u) 6= C.find(v) Then
7. mst← mst ∪ {e}, C.union(u, v)
8. Return mst

Figure 2.10: Kruskal’s algorithm with incremental sorting (Kruskal2). Note the differences
when comparing with basic Kruskal’s in lines 3 and 5.

Kruskal’s algorithm with incremental sorting needs O(n) time to initialize both C
and mst, and O(m) time to heapify E. We expect to review 1

2n ln n + O(n) edges in the
While loop. For each of these edges, we use O(log m) time to select and extract the
minimum element of the heap, and O(α(m,n)) time to perform operations union and
find. Therefore, the average complexity is O(m + n log n log m). As n − 1 ≤ m ≤ n2,
the average complexity of Kruskal with incremental sorting (also known as Kruskal with
demand sorting) can be written as O

(
m + n log2 n

)
.

2.2.4.2 Prim’s MST Algorithm

Prim’s algorithm computes the MST incrementally starting from some arbitrary source
node s. Thus, the algorithm starts with the single node s and no edges, and adds one-by-
one nodes of V to the growing MST, until it connects all the nodes of V at the minimum
cost.

To do so, Prim’s algorithm maintains a set R of vertices already reachable from s,
and two arrays cost and from (note the similarity with Dijkstra’s, Section 2.2.3.1). R can
be seen as a growing MST. costu stores the cost to connect the node u to some node in R,
and fromu stores which node in R u is connected to. R is initialized to empty, and for all
nodes u in V , costu is initialized to ∞ and fromu to null. Finally, costs is initialized to
0.

Next, the algorithm repeatedly selects the vertex u∗ ∈ V − R with the minimum
connecting cost, adds u∗ to R, and updates the connecting cost for objects in the adjacency
of u∗ that are still out of R with the minimum value between the current connecting cost
(costv) and the weight of the edge between u∗ and v (weightu∗ ,v). For the updated nodes
v, it sets fromv ← u∗. Figure 2.11 shows Prim’s algorithm.

24

Chapter 2 Basic Concepts 2.2 Graph Tools and Definitions

Prim1 (Graph G(V,E), Vertex s)
1. For each u ∈ V Do costu ←∞, fromu ← null

2. costs ← 0, R← ∅
3. While V 6= R Do
4. u∗ ← argminu∈V −R costu
5. R← R ∪ {u∗}
6. For each v ∈ (V −R) ∩ adjacency(u∗) Do
7. If weightu∗ ,v < costv Then
8. costv ← weightu∗ ,v

9. fromv ← u∗

10. Return (cost, from)

Figure 2.11: The basic version of Prim’s MST Algorithm (Prim1).

Once we have finished the computation, we can obtain the MST by noting that it is
composed by the edges (u, fromu) for all the nodes u ∈ V − {s} (the cost of these edges
are the ones indicated in cost).

Like Dijkstra’s, the simplest Prim’s implementation requires O
(
m + n2

)
= O

(
n2
)

CPU time. It checks every edge once, and it performs a sequential scanning over cost
in order to find the minimum value. A practical, fast alternative implements cost using
binary heaps, so it finds the minimum in time O(log n), and updates the values in cost
also in time O(log n). Thus, we obtain time O(n log n + m log n) = O(m log n), which is
an important CPU time reduction in the case when m = o

(
n2/ log n

)
.

2.2.4.3 Further Work on the MST Problem

There are several other MST algorithms compiled by Tarjan [Tar83]. Recently, B. Chazelle
[Cha00] gave an O(mα(m,n)) time algorithm. Later, S. Pettie and V. Ramachandran
[PR02] proposed an algorithm that runs in optimal time O(T ∗(m,n)), where T ∗(m,n)
is the minimum number of edge-weight comparisons needed to determine the MST of
any graph G(V,E) with m edges and n vertices. The best known upper bound of this
algorithm is also O(mα(m,n)). These algorithms almost reach the lower bound Ω(m), yet
they are so complicated that their interest is mainly theoretical. Furthermore, there is a
randomized algorithm [KKT95] that finds the MST in O(m) time with high probability
in the restricted RAM model, but it is also considered impractical as it is complicated to
implement and the O(m) complexity hides a large constant factor.

Experimental studies on MST are given in [MS91, KST02, KST03]. In [MS91],
Moret and Shapiro compare several versions of Kruskal’s, Prim’s and Tarjan’s algorithms,
concluding that the best in practice (albeit not in theory) is Prim’s using pairing heaps
[FSST86]. Their experiments show that neither Cheriton and Tarjan’s [CT76] nor Fredman
and Tarjan’s algorithm [FT87] ever approach the speed of Prim’s algorithm using pairing

25

2.2 Graph Tools and Definitions Chapter 2 Basic Concepts

heaps. On the other hand, they show that the basic Kruskal’s algorithm can run very
fast when it uses an array of edges that can be overwritten during sorting, instead of an
adjacency list. Moreover, they show that it is possible to use heaps to improve Kruskal’s
algorithm. The result is a rather efficient MST version with complexity O(m + k log m),
being k ≤ m the number of edges reviewed by Kruskal’s technique. However, they also
show that the worst-case behavior of Kruskal’s algorithm stays poor: If the graph has two
distinct components connected by a single, very costly edge, incremental sorting is forced
to process the whole edge set.

In [KST02, KST03], Katriel et al. present the algorithm iMax, whose expected
complexity is O(m + n log n). It generates a subgraph G′ by selecting

√
mn edges from

E at random. Then, it builds the minimum spanning forest T ′ of G′. Third, it filters
each edge e ∈ E using the cycle property: discard e if it is the heaviest edge on a cycle in
T ′ ∪ {e}. Finally, it builds the MST of the subgraph that contains the edges of T ′ and the
edges that were not filtered out.

2.2.5 k-Nearest Neighbor Graphs

Let us consider a vertex set V and a nonnegative distance function d defined among
the elements of V . Following our metric space query notation, let NNk(u) be the k
elements in V − {u} having the smallest distance to u according to function d. The k-
nearest neighbor graph of V (knng) is a weighted directed graph G(V,E) connecting each
element to its k nearest neighbors, E = {(u, v), v ∈ NNk(u)}, so that weightu,v = d(u, v).
Building the knng is a direct generalization of the well-known all-nearest-neighbor (ann)
problem, which corresponds to the 1nng construction problem. knngs are central
in many applications: cluster and outlier detection [EE94, BCQY96], VLSI design,
spin glass and other physical process simulations [CK95], pattern recognition [DH73],
query or document recommendation systems [BYHM04a, BYHM04b], similarity self joins
[DGSZ03, DGZ03, PR08], and many others.

2.2.5.1 Related Work on knng Construction Algorithms

The naive approach to construct knngs uses n(n−1)
2 = O

(
n2
)

CPU time and O(kn)
memory. For each u ∈ V we compute the distance towards all the other v ∈ V − {u},
and select the k lowest-distance objects. However, there are several alternatives to
speed up the procedure. The proximity properties of the Voronoi diagram [Aur91] or
its dual, the Delaunay triangulation, allow solving the problem more efficiently. The
ann problem can be optimally solved in O(n log n) time in the plane [Ede87] and in
R

D for any fixed D [Cla83, Vai89], but the constant depends exponentially on D. In
R

D, knngs can be built in O(nk log n) time [Vai89] and even in O(kn + n log n) time
[Cal93, CK95, DE96]. Approximation algorithms for the problem have also been proposed
[AMN+94]. Nevertheless, none of these alternatives, except the naive one, is suitable for
general metric spaces, as they use coordinate information that is not necessarily available
in all metric spaces.

26

Chapter 2 Basic Concepts 2.2 Graph Tools and Definitions

2.2.6 t-Spanners

Let G(V,E) be a connected undirected graph with a nonnegative cost function weighte
assigned to its edges e ∈ E. Let us call dG(u, v) the shortest path cost between nodes u and
v. A t-spanner is a subgraph G′(V,E′), with E′ ⊆ E, which permits us to compute path
costs with stretch t, that is, ensuring that for any u, v ∈ V, dG′(u, v) ≤ t · dG(u, v) [PU89,
PS89, Epp99]. We call the latter the t-condition. The t-spanner problem has applications
in distributed systems, communication networks, architecture of parallel machines, motion
planning, robotics, computational geometry, and others.

2.2.6.1 Related Work on t-Spanner Construction Algorithms

It was shown [PS89] that, given a graph G with unitary weight edges and parameters
t and m, the problem of determining whether a t-spanner of at most m edges exists is
NP-complete. Hence, there is no hope for efficient construction of minimal t-spanners.
Furthermore, as far as we know, only in the case t = 2 and graphs with unitary
weight edges there exist polynomial-time algorithms that guarantee an approximation
bound in the number of edges (or in the weight) of the resulting t-spanner [KP94](

the bound is log |E|
|V |

)
.

If we do not force any guarantee on the number of edges of the resulting t-spanner, a
simple O

(
mn2

)
-time greedy algorithms exists [Par02, NP03, NPC07], where n = |V | and

m = |E| refer to the resulting t-spanner. It was shown [ADDJ90, ADD+93] that these

techniques produce t-spanners with n1+O(1

t−1) edges on general graphs of n nodes.

More sophisticated algorithms have been proposed by Cohen in [Coh98],
producing t-spanners with guaranteed O

(
n1+(2+ε)(1+logn m)/t

)
edges in worst case time

O
(
mn(2+ε)(1+logn m)/t

)
, where in this case m refers to the original graph. Other recent

algorithms [TZ01] work only for t = 1, 3, 5, Parallel algorithms have been pursued in
[LB96], but they do not translate into new sequential algorithms.

With regard to Euclidean t-spanners, that is, the subclass of t-spanners where objects
are points in a D-dimensional space with Euclidean distance, much better results exist
[Epp99, ADDJ90, ADD+93, Kei88, GLN02, RS91], showing that one can build t-spanners
with O(n) edges in O

(
n logD−1 n

)
time. These results, unfortunately, make heavy use of

coordinate information and cannot be extended to general metric spaces.

In [Par02, NP03, NPC07] we also propose several algorithms to build t-spanners in the

metric space case with n1+O(1

t−1) edges, using O(nm log n) worst-case CPU time and O
(
n2
)

distance computations. These algorithms consider objects as black boxes, and construct
t-spanners by using the distances among them measured with the metric function d. They
exploit the fact that, in metric spaces, the shortest path cost between two objects u and
v is simply the distance d(u, v). These solutions are also well suited to general graphs, in
which case it is necessary a previous step so as to compute the shortest path distances
among objects.

27

2.3 A Summary of Metric Spaces Chapter 2 Basic Concepts

2.3 A Summary of Metric Spaces

All models are wrong but some are useful.

– George Box

A metric space is a pair (X, d), where X is the universe of objects, and d : X×X −→ R
+∪{0}

is a distance function defined among them. The function d can be seen as a measure of
object dissimilarity. Therefore, the smaller the distance between two objects, the more
“similar” they are. The distance function satisfies the following metric properties:

∀ x, y ∈ X, x 6= y ⇒ d(x, y) > 0 strict positiveness,

∀ x, y ∈ X, d(x, y) = d(y, x) symmetry,

∀ x ∈ X, d(x, x) = 0 reflexivity,

∀ x, y, z ∈ X, d(x, z) ≤ d(x, y) + d(y, z) triangle inequality.

These properties hold for many reasonable similarity functions. The distance is
assumed to be expensive to compute (think, for instance, in comparing two fingerprints).

The metric space model is useful to model several applications. In this work, we focus
on the metric space search problem. So, from now on we consider a finite database U, which
is a subset of the universe X composed by the objects we are interested in searching. For
instance, U can be formed by the collection of fingerprints of people working in some
institution.

2.3.1 Proximity Queries

There are two typical proximity queries:

Range query (q, r): Retrieve all elements which are within distance r to q. That is,
(q, r) = {x ∈ U, d(x, q) ≤ r}. Figure 2.12(a) illustrates a range query in R

2 under
the Euclidean distance. The query outcome is composed by the gray nodes.

k-Nearest neighbor query NNk(q): Retrieve the k elements from U closest to q. That
is, NNk(q) is a set such that ∀ x ∈ NNk(q), y ∈ U − NNk(q), d(q, x) ≤ d(q, y), and
|NNk(q)| = k. Figure 2.12(b) shows a 3-nearest neighbor query also in R

2 under the
Euclidean distance. The query outcome is composed by the nodes {u1, u2, u3}.

The total time to solve an online proximity query can be split as

T = distance evaluations × complexity of d + extra CPU time + I/O time.

28

Chapter 2 Basic Concepts 2.3 A Summary of Metric Spaces

r
q

(a) Range query (q, r)

q
q,3

u1

u2u3

cr

(b) 3-Nearest neighbor query NN3(q)

Figure 2.12: In (a), a range query (q, r). In (b), a 3-nearest neighbor query. The covering
radius of the query NN3(q) is the distance from q to u3, that is, crq,3 = d(q, u3).

Naturally, we would like to minimize T . In many applications the distance function
d is so expensive to compute, that it is customary to define the complexity of the search
as the number of distance evaluations performed, disregarding other components such as
CPU time for side computations, and even I/O time. This is the complexity model used in
this thesis. Nevertheless, we also pay attention to the extra CPU time of side computations
when solving proximity queries.

Given a database of n = |U| objects, proximity queries can be trivially answered
by performing n distance evaluations, which is called a sequential scanning. However, as
computing the distance is costly, the sequential scanning is usually unacceptable. Under
this cost model, the ultimate goal of metric space search techniques is to structure the
database so as to perform the lowest number of distance computations when solving a
similarity query.

Metric space search algorithms preprocess the database U to build an index I. Note
that we can only compare objects by using the distance function of the metric space. Thus,
to build I we select a subset of cells from the full distance matrix U × U and store some
information on them.

Later, given an object from the universe, a query q ∈ X, we solve the proximity query
as follows. First, we use the index I and the triangle inequality in order to discard as
many objects from U as possible, and create a (hopefully small) candidate set C of the
objects that could belong to the query outcome. Second, we traverse C comparing each
object directly with q so as to get the final query outcome.

The range query (Figure 2.12(a)) is the basic type of proximity query. In fact, it
is possible to implement a k-nearest neighbor query as a succession of range queries
of increasing radii until we retrieve an outcome of size k. However, there are specific
algorithms to solve NNk(q) queries more efficiently.

Some observations on k-nearest neighbor queries are in order. In case of ties we choose
any k-element set that satisfies the condition. The covering radius crq,k of a query NNk(q)
is the distance from q towards the farthest neighbor in NNk(q). In Figure 2.12(b), the
covering radius crq,3 is d(q, u3). A NNk(q) algorithm using an index I over U is called

29

2.3 A Summary of Metric Spaces Chapter 2 Basic Concepts

range-optimal if it uses the same number of distance evaluations as the best algorithm
solving the range query (q, crq,k) using index I [HS00]. In Figure 2.12, this corresponds to
implementing the query NN3(q) as a range query (q, crq,3), for crq,3 = d(q, u3). It is worth
to say that there exists range-optimal algorithms for several metric space search indices
[HS00], but not for all of them.

2.3.2 Vector Spaces

A particular case of the metric space search problem arises when the space is R
D. There

are several distance functions to choose from, but the most widely used belong to the
Minkowski distance family Ls, defined as:

Ls ((x1, . . . , xD), (y1, . . . , yD)) =

(
D∑

i=1

|xi − yi|s
)1/s

.

The most common examples of the Minkowski family are L1, L2 and L∞, also known
as the “block” or “Manhattan” distance, Euclidean distance, and maximum distance,
respectively. We obtain L∞ by taking the limit of the formula Ls when s goes to infinity:

L∞ ((x1, . . . , xD), (y1, . . . , yD)) = max
i=1..D

|xi − yi| .

In many applications objects are represented as feature vectors, thus the metric space
is indeed a vector space, and the similarity can be interpreted geometrically. Note that
a vector space grants more freedom than a general metric space when designing search
approaches, since it is possible to directly access geometric and coordinate information
that is unavailable in general metric spaces. In this thesis we solely use information of the
distance among vectors, neglecting any geometric or coordinate information.

In vector spaces there exist optimal algorithms (on the database size) in both the
average and the worst case for 1-nearest neighbor searching [BWY80]. Search indices for
vector spaces are called spatial access methods. Among them we have kd-trees [Ben75,
Ben79], R-trees [Gut84], quad-trees [Sam84] and X-trees [BKK96]. These techniques
intensively exploit the coordinate information to group and classify vectors. For example,
kd-trees divide the space using different coordinates through levels of the tree; and R-trees
group points in hyper-rectangles. Regrettably, the existing solutions are very sensitive to
the vector space dimension, so for high dimensions those structures cease to work well. As
a matter of fact, range and nearest neighbor queries have an exponential dependence on
the dimension of the vector space [Cha94].

Spatial access methods are a research subject by themselves, out of the scope of
this thesis. For further reference on vector spaces techniques see [Sam84, WJ96, GG98,
BBK01, Sam06]. In this thesis we focus in general metric spaces, although these solutions
are also well suited to D-dimensional spaces, especially in medium and high dimensions

30

Chapter 2 Basic Concepts 2.3 A Summary of Metric Spaces

(D ≥ 8), where the spatial access methods diminish their performance. One of the reasons
of their performance reduction in medium and high dimensional spaces comes form the fact
that dimensions are independent each other. So, when we index the space by using one
coordinate, we could miss the indexing performed by the others, forcing the backtracking
throughout all the index.

2.3.3 A Notion of Dimensionality in Metric Spaces

It is interesting to notice that the concept of “dimensionality” can be translated from vector
spaces into metric spaces, where it is called intrinsic dimensionality. Although there is
not an accepted criterion to measure the intrinsic dimensionality of a given metric space,
some empirical approaches based on the histogram of distances among objects have been
proposed. In general terms, it is agreed that a metric space is high-dimensional —that
is, it has high intrinsic dimensionality— when its histogram of distances is concentrated.
As it can empirically be observed that the cost of proximity queries worsens quickly as
the histogram concentrates, it is also accepted that a high intrinsic dimension degrades
the performance of any similarity search algorithm [CNBYM01]. Indeed, this performance
degradation exposes an exponential dependence on the space intrinsic dimensionality. In
fact, an efficient method for proximity searching in low dimensions may become painfully
slow in high dimensions. For large enough dimensions, no proximity search algorithm can
avoid directly comparing the query against all the database. This is called the curse of
dimensionality.

2.3.4 Current Solutions for Metric Space Searching

Nowadays, there exists several methods to preprocess a metric database in order to reduce
the number of distance evaluations at search time. All of them build an index I over the
metric database, so they can discard some elements from consideration by using the triangle
inequality. Most of current solutions are grouped into two algorithm families [CNBYM01].
The first, called pivoting algorithms, is based on reference objects. The second, called
compact partitioning algorithms, is based on splitting the dataset into spatially compact
subsets.

There are a few other metric space search approaches not clearly fitting into these two
main families. In this thesis we are particularly interested in the graph based approach.
In this approach, the database U is indexed by using a graph G(U, E), where E is a
subset of the whole weighted edge set U × U. The main idea is to use jointly the metric
properties and graph features (for instance, upper bounding the distances between two
objects with the length of the shortest path between them). We are aware of three previous
graph-based techniques: Shasha and Wang’s [SW90], this previous work (our MSc thesis)
[Par02, NP03, NPC02, NPC07] and Sebastian and Kimia’s [SK02].

In the following, we give the underlying ideas of the main families. For a

31

2.3 A Summary of Metric Spaces Chapter 2 Basic Concepts

comprehensive description of these algorithms see [CNBYM01, HS03, ZADB06, Sam06].
The graph based approaches are explained in Section 2.4.

2.3.4.1 Pivot-based Algorithms

We will pay special attention to this class of algorithms because we use them as a baseline
to compare the performance of our graph-based approaches.

To build the index, these algorithms select a set P of distinguished elements, the pivots
P = {p1 . . . p|P|} ⊆ U, and store a table of |P|n distances d(u, pi), i ∈ {1 . . . |P|}, u ∈ U.

Later, to solve a range query (q, r), pivot-based algorithms measure d(q, p1) and use
the fact that, by virtue of the triangle inequality, d(q, u) ≥ |d(q, p1) − d(u, p1)| , so they
can discard every u ∈ U such that

|d(q, p1)− d(u, p1)| > r , (2.3)

since this implies d(q, u) > r, without computing explicitly d(q, u).

Once they are done with p1, they try to discard elements from the remaining set
using p2, and so on, until they use all the pivots in P. The elements u that still cannot be
discarded at this point are directly compared against q.

The |P| distance evaluations computed between q and the pivots are known as the
internal complexity of the algorithm. If there is a fixed number of pivots, this complexity
has a fixed value. On the other hand, the distance evaluations used to compare the query
with the objects not discarded by the pivots are known as the external complexity of the
algorithm. Hence, the total complexity of a pivot-based search algorithm is the sum of
both the internal and external complexities.

Since the internal complexity increases and the external complexity decreases with
|P|, there is an optimal size of the pivot set |P|∗ that minimizes the total complexity.
However, in practice |P|∗ is so large that one cannot store all the |P|∗n distances, hence
the index usually uses as many pivots as memory permits.

Several pivot-based algorithms are almost direct implementations of this idea,
and differ essentially in their extra structures used to reduce the CPU time of side
computations, but not in the number of distance evaluations performed.

Other algorithms use tree-like data structures, so they implement this idea indirectly:
they select a pivot as the root of the tree and divide the space according to the distance
to the root. One slice corresponds to each subtree, the number of slices and width of each
slice differs from one technique to another. At each subtree, a new pivot is selected, and so
on. This way we obtain pivots that are local to the subtree, unlike the previous description
where pivots store distances to all the objects in U. These structures differ in the number
of distance computations, and also in their extra CPU time for side computations. Their

32

Chapter 2 Basic Concepts 2.3 A Summary of Metric Spaces

main drawback is that they do not allow the classical trade-off consisting in using more
space for the index in order to compute fewer distances at query time.

Among the pivot-based algorithms we can find structures for discrete or continuous
distance functions. In the discrete case we have:

• Burkhard-Keller Tree (BKT) [BK73],

• Fixed Queries Tree (FQT) [BYCMW94],

• Fixed-Height FQT (FHQT) [BYCMW94, BY97], and

• Fixed Queries Array (FQA) [CMN01].

In the continuous case we have:

• Vantage-Point Tree (VPT) [Yia93, Chi94, Uhl91],

• Multi-Vantage-Point Tree (MVPT) [Bri95, BO97],

• Excluded Middle Vantage Point Forest (VPF) [Yia98],

• Approximating Eliminating Search Algorithm (AESA) [Vid86], and

• Linear AESA (LAESA) [MOV94].

2.3.4.2 Compact-Partition based Algorithms

This idea consists in splitting the space into zones as compact as possible and assigning
the objects to these zones. See [JD88] for further information about clustering algorithms.

For each zone, the compact-partition based index stores (i) the object identifiers,
(ii) a representative point (called the center), and (iii) few extra data allowing to quickly
discard the zone at query time. After we perform a first division into zones, each zone is
recursively subdivided, so that we obtain a hierarchy of zones. There are two basic criteria
to delimit a zone.

The first one is the Voronoi area, where we select a set of centers {c1, . . . , cm} and
place each other point in the zone of its closest center. Thus, the areas are limited by
hyperplanes, analogously to a Voronoi partition in a vector space. At query time, we
evaluate (d(q, c1), . . . , d(q, cm)), choose the closest center c and discard every zone whose
center ci satisfies d(q, ci) > d(q, c) + 2r, as its Voronoi area cannot have intersection with
the query ball.

The second criterion is the covering radius cr(ci), which is the maximum distance
from the center ci towards any element in its zone. At query time, if d(q, ci)− r > cr(ci),
then there is no need to consider the i-th zone.

A compact-partition based index using only hyperplanes is:

33

2.3 A Summary of Metric Spaces Chapter 2 Basic Concepts

• Generalized-Hyperplane Tree (GHT) [Uhl91].

Others use only covering radii:

• Bisector Trees (BST) [KM83],

• Voronoi Tree (VT) [DN87].

• M-tree (MT) [CPZ97], and

• List of Clusters (LC) [CN05].

Finally, some of them use both criteria:

• Geometric Near-neighbor Access Tree (GNAT) [Bri95], and

• Spatial Approximation Tree (SAT) [Nav02].

2.3.5 Approximating Eliminating Search Algorithm (AESA)

By far, the most successful technique for searching metric spaces ever proposed is AESA
[Vid86, CNBYM01]. Its main problem, however, is that it requires precomputing and
storing a matrix of all the n(n − 1)/2 distances among the objects of U. That is, AESA
use the full distance matrix as the search index. This huge space requirement makes it
unsuitable for most applications.

In AESA the idea of pivots is taken to the extreme |P| = n, that is, every element is

a potential pivot and hence we need a matrix with all the n(n−1)
2 precomputed distances.

Since we are free to choose any pivot, the pivot to use next is chosen from the elements not
yet discarded. Additionally, as it is well known that pivots closer to the query are much
more effective, the pivot candidates u are ranked according to the sum of their current
lower-bound distance estimations to q. That is, if we have used pivots {p1 . . . pi}, we choose
the pivot pi+1 as the element u minimizing

SumLB(u) =

i∑

j=1

|d(q, pj)− d(u, pj)| . (2.4)

AESA works as follows. It starts with a set of candidate objects C, which is initially U,
and initializes SumLB(u) = 0 for all u ∈ U. Then, it chooses an object p ∈ C minimizing
SumLB (Eq. (2.4)) and removes it from C. Note that the first object p1 is actually chosen
at random. It measures dqp ← d(q, p) and immediately reports p if dqp ≤ r. By Eq. (2.3),
it removes from C objects u which satisfy d(u, p) 6∈ [dqp − r, dqp + r]. Recall that d(u, p) is
obtained from the precomputed full distance matrix U× U. Otherwise, for non-discarded

34

Chapter 2 Basic Concepts 2.3 A Summary of Metric Spaces

AESA (Query q, R
+radius, matrix I)

// Iu,v = d(u, v), u, v ∈ U

1. C ← U

2. For each p ∈ C Do SumLB(p)← 0
3. While C 6= ∅ Do
4. p← argminc∈CSumLB(c), C ← C − {p}
5. dqp ← d(q, p), If dqp ≤ radius Then Report p
6. For each u ∈ C Do
7. If Iu,p 6∈ [dqp − radius, dqp + radius] Then C ← C − {u}
8. Else SumLB(u)← SumLB(u) + |dqp − Iu,p|

Figure 2.13: Algorithm AESA. I is the full distance matrix U × U, so Iu,p is the distance
between u and p.

objects we update sumLB according to Eq (2.4). We repeat these steps until C = ∅.
Figure 2.13 depicts the algorithm.

AESA has been experimentally shown to have almost constant search cost.
Nevertheless, the constant hides an exponential dependence on the dimensionality of the
metric space, which once again is due to the curse of dimensionality. Nevertheless, AESA’s
main problem is that storing O

(
n2
)

distances is impractical for most applications. A recent
development [FCNP06] shows that it can slightly improve upon AESA by choosing the next
pivot in another way.

2.3.6 Non-exact Algorithms for Proximity Searching

As seen in Section 2.3.3, there are so-called high-dimensional metric spaces where solving
proximity queries requires reviewing almost all the database whatever index we use. In
these cases, one can consider solving the problem approximately.

Note that, when we design a model to represent real-life objects, we usually lose
some information. Think, for instance, in the vector representation of a document. This
representation does not consider either positions of the words composing the document,
the document structure, or the semantics. Given this level of imprecision, an approximate
answer in the modeled space is usually acceptable for the sake of speeding up the query
process.

This gives rise to new approaches to the metric space search problem: probabilistic
and approximate algorithms. In the first we try to find the objects relevant to a given
query with high probability. An intuitive notion of what these algorithms aim to is that
they attempt not to miss many relevant objects at query time. In the second we try to
report (1 + ǫ)-closest objects, which means that, given the query q, they retrieve objects
u ∈ U such that d(q, u) ≤ (1 + ǫ)d(q, uq,k) where uq,k is the k-th closest object to q in

35

2.4 Graphs and Metric Space Searching Chapter 2 Basic Concepts

U. That is, they aim at finding close enough objects, though not necessarily the k closest
ones.

2.4 Graphs and Metric Space Searching

There exists no separation between gods and men; one
blends softly casual into the other.

– Proverbs of Muad’dib, from Dune Messiah,
by Frank Herbert

In this thesis we approach the metric space search problem through graph data structures.
Thus, in this section we start by showing the relation between graphs and the metric space
search problem. Later, we survey the current state of the art in this matter, explaining
how they improve the search process by exploiting the features of the underlying graph
index and the triangle inequality.

2.4.1 Graph-based Metric Space Indices

Given a metric space (X, d) and a database of interest U ⊆ X, if we identify every object in U

with a node, the full distance matrix can be regarded as a complete graph G(V = U, U×U),
where edge weights are distances measured between the edge nodes by using the metric
function d, that is weightu,v = d(u, v). Likewise, if we use a reduced set of edges E ⊆ U×U,
whose weights are also computed by using the distance d of the metric space, we obtain a
graph-based index G(U, E) using less memory than the full distance matrix.

Once we have the graph-based index G(U, E), by virtue of the triangle inequality, for
any u, v ∈ U the shortest path between u and v, dG(u, v), is an upper bound on the real
distance, d(u, v), see Figure 2.14. We can use this property to avoid distance computations
when solving proximity queries. Moreover, we can select an edge set satisfying some further

G(u,v)

vu

d

d(u,v)

Figure 2.14: The distance d(u, v) is upper bounded by the length of the shortest path dG(u, v).

properties that can be exploited to improve the search process.

We have found three previous metric space indices based on graphs: one based on
arbitrary graphs [SW90], one based on t-spanners [Par02, NP03, NPC02, NPC07], and one

36

Chapter 2 Basic Concepts 2.4 Graphs and Metric Space Searching

based on knngs [SK02]. The latter is a non-exact approach, in the sense that it does not
guarantee to find the objects solving the proximity query. The methods are explained in
the following sections.

2.4.2 Shasha and Wang’s Algorithm

Shasha and Wang [SW90] use a graph whose nodes are the objects of the metric space and
whose edges are an arbitrary collection of distances among the objects. They only use the
triangle inequality to estimate other distances. To calculate the distance estimations, they
compute two n× n matrices. In the first, ADM (approximated distance map), they store
a lower bound on the distance between two nodes (obtained using the triangle inequality).
In the second, MIN (minimum path weight), they store an upper bound on the distances
(obtained using the shortest path between the nodes). To avoid confusion with the names,
let us change the notation from ADM and MIN to LB and UB, respectively.

Each cell LBi,j is computed as follows. LBi,j is the maximum, over all possible paths
between nodes i and j, of the difference between the longest edge of the path and the sum
of all the others, that is LBi,j = maxpath i;j{2 max{edges(path)} − length(path)}. They
present an O

(
n3
)

dynamic programing technique to obtain LB. On the other hand, UB is
computed by using Floyd’s all-pair shortest path algorithm (see Section 2.2.3.2, page 21).

Given a range query (q, r), matrix UB can discard objects uj such that
UBi,j < d(ui, q)− r, for some ui. On the other hand, LB can discard objects uj such
that LBi,j > d(ui, q) + r, for some ui.

The greatest deficiencies of [SW90] are (1) they require O
(
n2
)

space which is too
much memory in most real applications; (2) the selected distances are arbitrary and do
not give any guarantee on the quality of their approximation to the real distances. In
fact, the index only performs well when distances follow a uniform distribution, which
does not occur in practice. Even in R, an extremely easy-to-handle metric space, distances
have a triangular distribution, whereas in general metric spaces the distance distribution
is usually more concentrated, far from uniform.

2.4.3 t-Spanners and Metric Spaces

As we have said, although AESA is the most successful metric space search algorithm, its
O
(
n2
)

space requirement makes it unsuitable for most applications. Nevertheless, if we
reduced the memory requirement of AESA, we could use it in many practical scenarios. For
this sake, note that the full AESA distance matrix (see Section 2.3.5) can be regarded as
a complete graph G(U, U × U), where dG(u, v) = d(u, v) is the distance between elements
u and v in the metric space. Thus, in order to save memory we can use a t-spanner
G′(U, E ⊆ U×U) of G, which permits us estimating upper bounds on the distance between
every pair of objects within a factor t, that is dG′(u, v) ≤ t ·d(u, v), without the need to
store O

(
n2
)

distances but only |E| edges. However, in this case we cannot directly apply

37

2.4 Graphs and Metric Space Searching Chapter 2 Basic Concepts

AESA search algorithm over the t-spanner, but we have to take into account the error
introduced by the stretch factor t.

Practical results on metric t-spanner construction are given in [Par02, NP03, NPC07].
There are also some related results referring to probabilistic approximations to construct
t-spanners for metric spaces using tree metrics [Bar98, CCG+98].

2.4.3.1 Simulating AESA Search over a t-Spanner

Given a t-spanner G′ of G(U, U×U), for every u, v ∈ U the following property is guaranteed

d(u, v) ≤ dG′(u, v) ≤ t · d(u, v) . (2.5)

Eq. (2.5) permits us adapting AESA to this distance approximation. According to
the stretch factor t, to simulate AESA over a t-spanner it is enough to “extend” the upper
bound of the AESA exclusion ring with the associated decrease in discrimination power.
More precisely, the condition to be outside the ring, that is, Eq. (2.3), can be rewritten as

d(u, p) < d(q, p)− r or d(u, p) > d(q, p) + r . (2.6)

Since we do not know the real distance d(u, v), but only the approximated distance
over the t-spanner, dG′(p, u), we can use Eqs. (2.5) and (2.6) to obtain the new discarding
conditions, in Eqs. (2.7) and (2.8):

dG′(u, p) < d(q, p)− r , (2.7)

dG′(u, p) > t · (d(q, p) + r) . (2.8)

What we have obtained is a relaxed version of AESA, which requires less memory(
O(|E|) instead of O

(
n2
))

and, in exchange, discards fewer elements per pivot. As t tends
to 1, our approximation becomes better but we need more and more edges. Hence we have
a space-time trade-off where full AESA is just one extreme.

Let us now consider how to choose the next pivot. Since we have only an
approximation to the true distance, we cannot directly use Eq. (2.4). To compensate for

the effect of the precision factor t, after some experimental fine-tuning, we chose αt = 2/t+1
3 ,

so as to rewrite Eq. (2.4) as follows:

sumLB′(u) =
i∑

j=1

∣∣∣d(q, pj)− dG′(u, pj) · αt

∣∣∣ . (2.9)

The resulting search algorithm, t-AESA, is quite similar to AESA. So, in Figure 2.15
we give the algorithm without further explanations (for these, we encourage the reader to
check [NPC07] :-).

38

Chapter 2 Basic Concepts 2.4 Graphs and Metric Space Searching

t-AESA (Query q, R
+radius, t-Spanner G′)

1. C ← U, αt ← 2/t+1
3

2. For each p ∈ C Do SumLB′(p)← 0
3. While C 6= ∅ Do
4. p← argminc∈CSumLB′(c), C ← C − {p}
5. dqp ← d(q, p), If dqp ≤ radius Then Report p
6. dG′ ← Dijkstra(G′, p, t(dqp + radius))
7. For each u ∈ C Do
8. If dG′(u, p) 6∈ [dqp − radius, t(dqp + radius)] Then C ← C − {u}
9. Else SumLB′(u)← SumLB′(u) + |dqp − dG′(u, p) · αt|

Figure 2.15: Algorithm t-AESA. Dijkstra(G′, p, x) computes distances over the t-spanner G′

from p to all nodes up to distance x, and marks the remaining ones as “farther away”.

2.4.4 knng and Metric Spaces

The k-nearest neighbor graph (knng) of the set U is a weighted directed graph G(U, E)
connecting each element u ∈ U to its k nearest neighbors, thus E = {(u, v), v ∈ NNk(u)}.
That is, for each element u we store the result of its k-nearest neighbor query NNk(u).

In this thesis we focus on this kind of graph, and how to use it in the search process.
Indeed, knngs have several other applications, as we have already said in Section 2.2.5,
page 26.

2.4.4.1 Related Work on knng Construction Algorithms for Metric Spaces

As we show in Section 2.2.5.1, there are several algorithms to construct geometric knngs
[AMN+94, Cal93, CK95, Cla83, DE96, Ede87, Vai89]. Unfortunately, all of them assume
that nodes are points in a vector space R

D and that d is the Euclidean or some Minkowski
distance. However, this is not the case in several applications where knngs are required.
For instance, let us consider the collaborative filters for Web search based on query or
document recommendation systems [BYHM04a, BYHM04b]. In these applications, knngs
are used to find clusters of similar queries, to later improve the quality of the results shown
to the final user by exploiting cluster properties.

The naive idea to construct knngs in metric spaces is iterative: for each u ∈ U we
compute the distance towards all the others, and select the k smallest-distance objects.
Using this procedure we make O

(
n2
)

distance computations.

Clarkson states the first generalization of ann to metric spaces [Cla99], where the
problem is solved using randomization in O

(
n log2n log2 Γ(U)

)
expected time. Here, Γ(U)

is the distance ratio between the farthest and closest pairs of points in U. The author
argues that in practice Γ(U) = nO(1), in which case the approach is O

(
n log4 n

)
time.

39

2.4 Graphs and Metric Space Searching Chapter 2 Basic Concepts

However, the analysis needs a sphere packing bound in the metric space. Otherwise the cost
must be multiplied by “sphere volumes”, that are also exponential on the dimensionality.
Moreover, the algorithm needs Ω

(
n2
)

space for high dimensions, which is too much for
practical applications.

Another way to construct knngs in general metric spaces is by indexing the metric
space with any metric index (see Section 2.3.4, page 31), and next solving the k-nearest
neighbor query for each u ∈ U. As a matter of fact, in [Fig00], the author used a pivot-
based index to solve n range queries of decreasing radii. (Decreasing radius range query is
a suboptimal way to solve NNk(q).) In this thesis, we improve this general idea by giving
a methodology that can use any metric space index and exploit both metric and graph
properties in order to build knngs.

Recently, Karger and Ruhl presented the metric skip list [KR02], an index that uses
O(n log n) space and can be constructed with O(n log n) distance computations. The
index answers NN1(q) queries using O(log n) distance evaluations with high probability.
Later, Krauthgamer and Lee introduce navigating nets [KL04], another index that can
be constructed also with O(n log n) distance computations, yet using O(n) space, and
which gives an (1+ ǫ)-approximation algorithm to solve NN1(q) queries in time O(log n)+
(1/ǫ)O(1). Both of them could serve to solve the ann problem with O(n log n) distance
computations but not to build knngs. In addition, the hidden constants are exponential
on the intrinsic dimension, which makes these approaches useful only in low-dimensional
metric spaces.

2.4.4.2 Related Work on Using the knng for Proximity Searching

Sebastian and Kimia [SK02] suggest using the knng as an approximation of the Delaunay
graph, that is, the graph produced by the Delaunay triangulation. In fact, they give an
approach to solve 1-nearest neighbor queries using the knng as a navigational device. The
idea is to traverse the graph starting from a node, which they call the seed node, towards
the query q by jumping from one node to its neighbor if the neighbor is closer to the query
than the node itself.

If the underlying graph were Delaunay’s or a superset of it, this obviously would
work. However, it is proved in [Nav02] that it the only superset of the Delaunay graph
that works for an arbitrary metric space is the complete graph.

Therefore, Sebastian and Kimia’s algorithm is a non-exact approach, in the sense
that, given a query element q ∈ X, it does not guarantee to find the nearest neighbor of
q from the elements in U. Indeed, it fails when (i) the knng is not connected (lack of
connectedness), or (ii) the algorithm arrives at a node which is not the nearest neighbor
(false nearest neighbor). In the following we illustrate with Figure 2.16, where we are
looking for the nearest neighbor w of q over an Euclidean 3nng. In the first case, each
graph component defines a node cluster in the knng. If we do not start inside the cluster
the query belongs, we cannot arrive at the nearest neighbor. In the figure, if we start in

40

Chapter 2 Basic Concepts 2.4 Graphs and Metric Space Searching

node x we arrive at node y. In the second case, we can arrive at a node which is not the
nearest neighbor, yet its neighbors are farther from q than the node itself. In the figure, if
we start in node u we arrive at node v.

x

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

q

w
v

u

y

��
��
��

��
��
��

Figure 2.16: Cases where Sebastian and Kimia’s algorithm does not work over a 3nng. Directed
edges mean that the target node belongs to the source node 3-nearest neighbors. Undirected
edges mean that both vertices are in the 3-nearest neighborhood of each other. We are looking
for the nearest neighbor w of q. Suppose we are traversing an Euclidean 3nng by jumping
from one node to its neighbor if the neighbor is closer to the query than the node itself. Due
to the lack of connectedness of the knng, if we start from node x, which does not belong to
the query’s connected component, we arrive at node y. On the other hand, even if we start in
the component where the query belongs, if we start from node u we arrive at node v which is
a false nearest neighbor.

They also give some heuristic techniques to overcome these failures. Among them,
they propose to (i) use several (far away) seed nodes to start the navigation, (ii) increase
the number of neighbors in the graph, and (iii) start the traversing not only in the seeds,
but also in the seed’s neighborhood. The former technique tries to deal with the lack of
connectedness, the latter with false nearest neighbors, and the second with both failure
cases. However, none of these techniques ensures obtaining the real nearest neighbor.

In his encyclopedic book, H. Samet [Sam06] adds two other alternatives to cope with
the lack of connectedness of the knng. The first is the relative neighborhood graph [Tou80]
and the second is the Gabriel graph [GS69]. He also explains how to construct these graphs
in the metric space context. Note that using these alternatives we avoid to use several
seeds (as the graph becomes connected), but the false nearest neighbor failure still remains,
as both relative neighborhood graph and Gabriel graph are subsets of the Delaunay graph.

41

Chapter 3

Fundamental Algorithms

And Paul thought: That was in no vision of mine. I did a
different thing.

– Dune, by Frank Herbert

During this work, we face several fundamental problems, most of which already have
efficient solutions. Surprisingly, we found that the incremental sorting problem —that
is, obtaining one-by-one the next smallest element of a given unsorted set— still offers
interesting research opportunities. This problem can be seen as the online version of the
partial sorting problem. It has several applications, being priority queues and the MST
construction problem two of the most prominent ones. In Sections 3.1 and 3.2 we present
our incremental sorting algorithm. Then, in Sections 3.3 and 3.4 we apply it to priority
queues in main memory. Next, in Section 3.5 we show how to adapt our priority queue to
work in secondary memory. We go on in Section 3.6 by applying our basic algorithms and
structures to boost the construction of the MST of a given graph. Finally, in Section 3.7
we give some experimental results.

3.1 Optimal Incremental Sorting

If I have seen a little farther than others it is because I have
stood on the shoulders of giants.

– Sir Isaac Newton

Let A be a set of size m. Obtaining the first k ≤ m elements of A in ascending order can
be done in optimal O(m + k log k) time (Section 2.1.2.1). We present Incremental Sort
(IS), an algorithm (online on k) which incrementally gives the next smallest element of

43

3.1 Optimal Incremental Sorting Chapter 3 Fundamental Algorithms

the set, so that the first k elements are obtained in optimal time for any k. As explained
in Section 2.1.2.1, this is not a big achievement because the same can be obtained using
a priority queue. However, we also give a practical version of the algorithm, Incremental
Quicksort (IQS), with the same expected complexity, which performs better in practice
than the best existing online algorithm.

We start by describing algorithm IQS. At the end we show how it can be converted
into its worst-case version IS. Essentially, to output the k smallest elements, IQS calls
Quickselect (Section 2.1.1) to find the smallest element of arrays A[0,m − 1], A[1,m − 1],
. . ., A[k − 1,m− 1]. This naturally leaves the k smallest elements sorted in A[0, k − 1].
IQS avoids the O(km) complexity by reusing the work across calls to Quickselect.

Let us recall how Quickselect works. Given an integer k, Quickselect aims to find
the k-th smallest element from a set A of m numbers. For this sake it chooses an object
p (the pivot), and partitions A so that the elements smaller than p are allocated to the
left-side partition, and the others to the right side. After the partitioning, p is placed in its
correct position ip. So, if ip = k, Quickselect returns p and finishes. Otherwise, if k < ip it
recursively processes the left partition, else the right partition, with a new k ← k− ip− 1.

Note that when we incrementally search for the next minimum element of a given
set, it is possible to reuse the work made by previous calls to Quickselect. When we
call Quickselect on A[1,m − 1], a decreasing sequence of pivots has already been used to
partially sort A in the previous invocation on A[0,m − 1]. IQS manages this sequence
of pivots so as to reuse previous work. Specifically, it uses a stack S of decreasing pivot
positions that are relevant for the next calls to Quickselect.

Figure 3.1 shows how IQS searches for the smallest element (12) of an array by using
a stack initialized with a single value m = 16. To find the next minimum, we first check
whether p, the top value in S, is the index of the element sought, in which case we pop
it and return A[p]. Otherwise, because of previous partitionings, it holds that elements in
A[0, p−1] are smaller than all the rest, so we run Quickselect on that portion of the array,
pushing new pivots into S.

As can be seen in Figure 3.1, the second minimum (18) is the pivot on the top of S,
so we pop it and return A[1]. Figure 3.2 shows how IQS finds the third minimum using
the pivot information stored in S. Notice that IQS just works on the current first chunk
({29, 25}). In this case it adds one pivot position to S and returns the third element (25)
in the next recursive call.

Now, retrieving the fourth and fifth elements is easy since both of them are pivots.
Figure 3.3 shows how IQS finds the sixth minimum. The current first chunk contains
three elements: {41, 49, 37}. So, IQS obtains the next minimum by selecting 41 as pivot,
partitioning its chunk and returning the element 37. The incremental sorting process will
continue as long as needed, and it can be stopped in any time.

The algorithm is given in Figure 3.4. Stack S is initialized to S = {|A|}. IQS

44

Chapter 3 Fundamental Algorithms 3.1 Optimal Incremental Sorting

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15_ _

12 18 29 25 S = {16, 8, 4, 1}

12 S = {16, 8, 4, 1, 0}

51 81 74 12 58 92 86 25 67 33 18 41 49 63 29 37 S = {16}

33 37 29 12 49 41 18 25 51 67 86 92 58 63 74 81 S = {16, 8}

18 25 29 12 33 41 49 37 S = {16, 8, 4}

 18 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {16, 8, 4, 1}

_

_

_0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

0 1 2 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

_

_

Figure 3.1: Example of how IQS finds the first element of an array. Each line corresponds to
a new partition of a sub-array. Note that all the pivot positions are stored in stack S. In the
example we use the first element of the current partition as the pivot, but it could be any other
element. The bottom line shows the array with the three partitions generated by the first call
to IQS, and the pivot positions stored in S.

2 3

 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {16, 8, 4}

 25 29 S = {16, 8, 4, 3}

 29 33 41 49 37 52 67 86 92 58 63 74 81 S = {16, 8, 4, 3}

 25 S = {16, 8, 4, 3, 2}

_ _2 3 4 5 6 7 8 9 10 11 12 13 14 15

_2

_

3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.2: Example of how IQS finds the third element of the array. Since it starts with pivot
information stored in S, it just works on the current first chunk ({29, 25}).

receives the set A, the index idx1 of the element sought (that is, we seek the smallest
element in A[idx,m − 1]), and the current stack S (with former pivot positions). First it
checks whether the top element of S is the desired index idx, in which case it pops idx and
returns A[idx]. Otherwise it chooses a random pivot index pidx from [idx, S.top()−1].
Pivot A[pidx] is used to partition A[idx, S.top()−1]. After the partitioning, the pivot
has reached its final position pidx′, which is pushed in S. Finally, a recursive invocation
continues the work on the left hand of the partition. The algorithm can obviously be used
to find largest elements instead of the smallest.

1Since we start counting array positions from 0, the place of the k-th element is k − 1, so idx = k − 1.

45

3.1 Optimal Incremental Sorting Chapter 3 Fundamental Algorithms

_

 41 49 37 52 67 86 92 58 63 74 81 S = {16, 8}

 41 49 52 67 86 92 58 63 74 81 S = {16, 8, 6}

 37 41 49 S = {16, 8, 6}

5 6 7 8 9 10 11 12 13 14 15

5 6 7

6 7 8 9 10 11 12 13 14 15__

_

Figure 3.3: Example of how IQS finds the sixth element of an array. Since it starts with pivot
information stored in S, it just works on the current first chunk ({41, 49, 37}). We omit the
line where element 37 becomes a pivot and is popped from S.

IQS (Set A, Index idx, Stack S)
// Precondition: idx ≤ S.top()

1. If idx = S.top() Then S.pop(), Return A[idx]
2. pidx← random[idx, S.top()−1]
3. pidx′ ← partition(A, A[pidx], idx, S.top()−1)

// Invariant: A[0] ≤ . . . ≤ A[idx − 1] ≤ A[idx, pidx′ − 1] ≤ A[pidx′]
// ≤ A[pidx′ + 1, S.top()−1] ≤ A[S.top(),m − 1]

4. S.push(pidx′)
5. Return IQS(A, idx, S)

Figure 3.4: Algorithm Incremental Quicksort (IQS). Stack S is initialized to S ← {|A|}. Both
S and A are modified and rearranged during the algorithm. Note that the search range is
limited to the array segment A[idx, S.top()−1]. Procedure partition returns the position of
pivot A[pidx] after the partition completes. Note that the tail recursion can be easily removed.

Recall that partition(A, A[pidx], i, j) rearranges A[i, j] and returns the new position
pidx′ of the original element in A[pidx], so that, in the rearranged array, all the elements
smaller/larger than A[pidx′] appear before/after pidx′. Thus, pivot A[pidx′] is left at the
correct position it would have in the sorted array A[i, j]. The next lemma shows that it is
correct to search for the minimum just within A[i, S.top()−1], from which the correctness
of IQS immediately follows.

Lemma 3.1 (pivot invariant). After i minima have been obtained in A[0, i − 1], (1) the
pivot indices in S are decreasing bottom to top, (2) for each pivot position p 6= m in S,
A[p] is not smaller than any element in A[i, p − 1] and not larger than any element in
A[p + 1,m− 1].

Proof. Initially this holds since i = 0 and S = {m}. Assume this is valid before pushing p,
when p′ was the top of the stack. Since the pivot was chosen from A[i, p′ − 1] and left at
some position i ≤ p ≤ p′−1 after partitioning, property (1) is guaranteed. As for property
(2), after the partitioning it still holds for any pivot other than p, as the partitioning
rearranged elements at the left of all previous pivots. With respect to p, the partitioning

46

Chapter 3 Fundamental Algorithms 3.2 Analysis of IQS

ensures that elements smaller than p are left at A[i, p−1], while larger elements are left at
A[p + 1, p′− 1]. Since A[p] was already not larger than elements in A[p′,m− 1], the lemma
holds. It obviously remains true after removing elements from S.

The worst-case complexity of IQS is O(m2), but it is easy to derive worst-case optimal
IS from it. The only change is in line 2 of Figure 3.4, where the random selection of the next
pivot position must be changed to choosing the median of A[idx, S.top() − 1], using the
linear-time selection algorithm [BFP+73]. The resulting algorithm, Incremental Sorting,
is depicted in Figure 3.5.

IS (Set A, Index idx, Stack S)
// Precondition: idx ≤ S.top()

1. If idx = S.top() Then S.pop(), Return A[idx]
2. pidx← median(A, idx, S.top()−1) // using linear-time section algorithm
3. pidx′ ← partition(A, A[pidx], idx, S.top()−1)

// Invariant: A[0] ≤ . . . ≤ A[idx− 1] ≤ A[idx, pidx′ − 1] ≤ A[pidx′]
// ≤ A[pidx′ + 1, S.top()−1] ≤ A[S.top(),m − 1]

4. S.push(pidx′)
5. Return IS(A, idx, S)

Figure 3.5: Algorithm Incremental Sort (IS). Note the difference with IQS in line 2.

3.2 Analysis of IQS

Truth suffers from too much analysis.

– Ancient Fremen Saying, from Dune Messiah,
by Frank Herbert

In Section 3.2.1 we analyze IS, which is not as efficient in practice as IQS, but has good
worst-case performance. In particular, this analysis serves as a basis for the expected case
analysis of IQS in Section 3.2.2. Both complexities are O(m + k log k).

3.2.1 IS Worst-case Complexity

In IS, the partition perfectly balances the first chunk since each pivot position is chosen
as the median of its array segment.

In this analysis we assume that m is of the form 2j − 1. We recall that array indices
are in the range [0,m − 1]. Figure 3.6 illustrates the incremental sorting process when
k = 5 in a perfect balanced tree of m = 31 elements, j = 5. Black nodes are the elements

47

3.2 Analysis of IQS Chapter 3 Fundamental Algorithms

already reported, grey nodes are the pivots that remain in stack S, and white nodes and
trees are the other elements of A.

h =

h =

h =

h =

1

2

3

4

h = j = 5

Figure 3.6: IS partition tree for incremental sorting when k = 5, m = 31, j = 5.

The pivot at the tree root is the first to be obtained (the median of A), at cost linear
in m (both to obtain the median and to partition the array). The two root children are
the medians of A[0, m−3

2] and A[m+1
2 ,m − 1]. Obtaining those pivots and partitioning

with them will cost time linear in m/2. The left child of the root will actually be the
second pivot to be processed. The right child, on the other hand, will be processed only if
k > m−1

2 , that is, at the moment we ask IS to output the m+1
2 -th minimum. In general,

processing the pivots at level h will cost O(2h), but only some of these will be required for
a given k. The maximum level is j = log2(m + 1).

It is not hard to see that, in order to obtain the k smallest elements of A, we will
require

⌈
k
2h

⌉
pivots of level h. Adding up their processing cost we get Eq. (3.1), where

we split the sum into the cases
⌈

k
2h

⌉
> 1 and

⌈
k
2h

⌉
= 1. Only then, in Eq. (3.3), we use

k + 2h to bound the terms of the first sum, and redistribute terms to obtain that IS is
O(m + k log k) worst-case time. The extra space used by IS is O(log m) pivot positions.

T (m,k) =

log2(m+1)∑

h=1

⌈
k

2h

⌉
2h (3.1)

=

⌊log2 k⌋∑

h=1

⌈
k

2h

⌉
2h +

log2(m+1)∑

h=⌊log2 k⌋+1

2h (3.2)

≤
⌊log2 k⌋∑

h=1

k +

log2(m+1)∑

h=1

2h (3.3)

T (m,k) = k ⌊log2 k⌋+ 2m + 1 (3.4)

What we have done is to prove the following theorem.

Theorem 3.1 (IS’s worst case complexity). Given a set A of m numbers, IS finds the k
smallest elements, for any unknown value k ≤ m, in worst-case time O(m + k log k). �

48

Chapter 3 Fundamental Algorithms 3.2 Analysis of IQS

3.2.2 IQS Expected-case Complexity

In this case the final pivot position p after the partitioning of A[0,m − 1] distributes
uniformly in [0,m−1]. Consider again Figure 3.6, where the root is not anymore the middle
of A but a random position. Let T (m,k) be the expected number of key comparisons
needed to obtain the k smallest elements of A[0,m − 1]. After the m − 1 comparisons
used in the partitioning, there are three cases depending on p: (1) k ≤ p, in which case
the right subtree will never be expanded, and the total extra cost will be T (p, k) to solve
A[0, p − 1]; (2) k = p + 1, in which case the left subtree will be fully expanded to obtain
its p elements at cost T (p, p); and (3) k > p + 1, in which case we pay T (p, p) on the left
subtree, whereas the right subtree, of size m− 1− p, will be expanded so as to obtain the
remaining k − p− 1 elements.

Thus IQS expected cost follows Eq. (3.5), which is rearranged as Eq. (3.6). It is easy
to check that this is exactly the same as Eq. (3.1) in [Mar04], which shows that IQS makes
exactly the same number of comparisons of the offline version, Partial Quicksort (Section
2.1.2.1). This is 2m+2(m+1)Hm−2(m+3−k)Hm+1−k−6k+6. That analysis [Mar04] is
rather sophisticated, resorting to bivariate generating functions. In which follows we give
a simple development arriving at a solution of the form O(m + k log k).

T (m,k) = m− 1 +
1

m




m−1∑

p=k

T (p, k) + T (k − 1, k − 1)

+

k−2∑

p=0

(
T (p, p) + T (m− 1− p, k − p− 1)

)



(3.5)

= m− 1 +
1

m




k−1∑

p=0

T (p, p) +
k−2∑

p=0

T (m− 1− p, k − p− 1) +
m−1∑

p=k

T (p, k)


 (3.6)

Eq. (3.6) simplifies to Eq. (3.7) by noticing that T (p, p) behaves exactly
like Quicksort, 2(p + 1)Hp − 4p [GBY91] (this can also be seen by writing down
T (p) = T (p, p) and noting that the very same Quicksort recurrence is obtained), so that∑k−1

p=0 T (p, p) = k(k + 1)Hk − k
2 (5k − 1). We also write p′ for k − p − 1 and rewrite the

second sum as
∑k−1

p′=1 T (m− k + p′, p′).

T (m,k) = m− 1 +
1

m


k(k + 1)Hk −

k

2
(5k − 1) +

k−1∑

p=1

T (m− k + p, p) +

m−1∑

p=k

T (p, k)




(3.7)

We make some pessimistic simplifications now. The first sum governs the dependence
on k of the recurrence. To avoid such dependence, we bound the second argument to k
and the first to m, as T (m,k) is monotonic on both of its arguments. The new recurrence,

49

3.2 Analysis of IQS Chapter 3 Fundamental Algorithms

Eq. (3.8), depends only on parameter m and treats k as a constant.

T (m) = m− 1 +
1

m


k(k + 1)Hk −

k

2
(5k − 1) + (k − 1)T (m) +

m−1∑

p=k

T (p)


 (3.8)

We subtract m T (m) − (m − 1)T (m − 1) using Eq. (3.8), to obtain Eq. (3.9). Since
T (k) is actually T (k, k), we use again Quicksort formula in Eq. (3.10). We bound the first
part by 2m + 2kHm−k and the second part by 2kHk to obtain Eq. (3.11).

T (m) = 2
m− 1

m− k + 1
+ T (m− 1) = 2

m∑

i=k+1

(
1 +

k − 2

i− k + 1

)
+ T (k) (3.9)

= 2(m− k) + 2(k − 2)(Hm−k+1 − 1) + (2(k + 1)Hk − 4k) (3.10)

< 2(m + kHm−k + kHk) (3.11)

This result establishes that T (m,k) < 2 (m + kHm−k + kHk) for any m,k. However,
it does not yet look good enough. We plug it again into Eq. (3.7), so that we
can bound the sum

∑k−1
p=1 T (m − k + p, p) with

∑k−1
p=1 2 (m− k + p + pHm−k + pHp)

= (k − 1)
(
2m + k

(
Hm−k + Hk − 3

2

))
. Upper bounding again and multiplying by m we

get a new recurrence in Eq. (3.12). Note that this recurrence only depends on m.

m T (m) = m(m− 1) + k(k + 1)Hk −
k

2
(5k − 1)

+ (k − 1)

(
2m + k

(
Hm−k + Hk −

3

2

))
+

m−1∑

p=k

T (p)
(3.12)

Subtracting again m T (m) − (m − 1)T (m − 1) we get Eq. (3.13). Noting that
(k−1)k

(m−k)m = (k − 1)
(

1
m−k − 1

m

)
, we get Eq. (3.14), which is solved in Eq. (3.15).

T (m) = 2
m + k − 2

m
+

(k − 1)k

(m− k)m
+ T (m− 1) (3.13)

<

m∑

i=k+1

(
2 + 2

k − 2

i
+ (k − 1)

(
1

i− k
− 1

i

))
+ T (k) (3.14)

= 2(m− k) + 2(k − 2)(Hm −Hk) + (k − 1)(Hm−k −Hm + Hk)

+ (2(k + 1)Hk − 4k)
(3.15)

Note that Hm−Hk ≤ m−k
k+1 and thus (k− 2)(Hm −Hk) < m− k. Also, Hm−k ≤ Hm,

so collecting terms we obtain Eq. (3.16).

T (m,k) < 4m− 8k + (3k + 1)Hk < 4m + 3kHk (3.16)

Therefore, IQS is also O(m + k log k) in the expected case, which is stated in the
following theorem.

50

Chapter 3 Fundamental Algorithms 3.3 Quickheaps

Theorem 3.2 (IQS’s expected case complexity). Given a set A of m numbers IQS finds
the k smallest elements, for any unknown value k ≤ m, in O(m + k log k) expected time.

�

As a final remark, we give a simple explanation to the fact that Incremental Quicksort
performs fewer comparisons than the classical offline solution of using Quickselect to find
the k-th element and then using Quicksort on the left partition. For shortness we call
the classical Quickselect + Quicksort solution QSS, and the Partial Quicksort algorithm
PQS. Note that when we use QSS a portion of the Quicksort partitioning work repeats
the work made in the previous calls to Quickselect. Figure 3.7 illustrates this, showing
that, upon finding the k-th element, the Quickselect stage has produced partitions A1 and
A2, however the Quicksort that follows processes the left partition as a whole ([A1p1A2]),
ignoring the previous partitioning work done over it. On the other hand, IQS sorts the
left segment by processing each partition independently, because it knows its limits (as
they are stored in the stack S). This also applies to PQS and it explains the finding of
C. Mart́ınez that PQS, and thus IQS, makes 2k − 4Hk + 2 fewer comparisons than QSS
[Mar04].

1

A2

p2

p1

k
QSS Quicksort stage

A1 A2
p1

QSS Quickselect stage

A

Figure 3.7: Partition work performed by QSS. First, QSS uses Quickselect for finding the
k-th element (left). Then it uses Quicksort on the left array segment as a whole ([A1 p1 A2])
neglecting the previous partitioning work (right).

3.3 Quickheaps

On the other hand, we cannot ignore efficiency.

– Jon Bentley

Let us go back to the last line of Figure 3.1, drawn in Figure 3.8, where we add ovals
indicating pivots. For the sake of simplifying the following explanation, we also add a ∞
mark signaling a fictitious pivot in the last place of the array.

51

3.3 Quickheaps Chapter 3 Fundamental Algorithms

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

8 18 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {16, 8, 4, 1}

 _ _ _ __

Figure 3.8: Last line of Figure 3.1.

By virtue of the IQS invariant (see Lemma 3.1), we see the following structure in the
array. If we read the array from right to left, we start with a pivot (the fictitious pivot ∞
at position 16) and at its left side there is a chunk of elements smaller than it. Next, we
have another pivot (pivot 51 at position 8) and another chunk. Then, another pivot and
another chunk and so on, until we reach the last pivot (pivot 18 at position 1) and a last
chunk (in this case, without elements).

This resembles a heap structure, in the sense that objects in the array are semi-
ordered. In the following, we exploit this property to implement a priority queue over an
array processed with algorithm IQS. We call this IQS-based priority queue Quickheap
(QH). From now on we explain how to obtain a min-order quickheap. Naturally, we can
symmetrically obtain a max-order quickheap.

3.3.1 Data Structures for Quickheaps

To implement a quickheap we need the following structures:

1. An array heap, which we use to store the elements. In the example of Figure 3.8,
the array heap is {18, 29, . . . , 81,∞}.

2. A stack S to store the positions of pivots partitioning heap. Recall that the bottom
pivot index indicates the fictitious pivot ∞, and the top one the smallest pivot. In
the example of Figure 3.8, the stack S is {16, 8, 4, 1}.

3. An integer idx to indicate the first cell of the quickheap. In the example of Figure
3.8, idx = 1. Note that it is not necessary to maintain a variable to indicate the
last cell of the quickheap (the position of the fictitious pivot ∞), as we have this
information in S[0].

4. An integer capacity to indicate the size of heap. We can store up to capacity − 1
elements in the quickheap (as we need a cell for the fictitious pivot∞). Note that if we
use heap as a circular array, we can handle arbitrarily long sequences of insertions and
deletions as long as we maintain no more than capacity− 1 elements simultaneously
in the quickheap.

Note that in the case of circular arrays, we must take into account that an object
whose position is pos is actually located in the cell pos mod capacity of the circular array
heap.

Figure 3.9 illustrates the structure. We add elements at the tail of the quickheap (the
cell heap[S[0] mod capacity]), and perform min-extractions from the head of the quickheap

52

Chapter 3 Fundamental Algorithms 3.3 Quickheaps

(the cell heap[idx mod capacity]). So, the quickheap slides from left to right over the
circular array heap as the operation progresses.

so they are also free cells
idx other pivots free cellsS[0]

the heap continues in the first cell

extracted elements,

Figure 3.9: A quickheap example. The quickheap is placed over an array heap of size capacity.
The quickheap starts at cell idx, there are three pivots, and the last cell of the heap is marked
by the fictitious pivot S[0]. There are some cells after S[0], which are free cells to store new
elements. There are also free cells that correspond to extracted elements, that will be used
when the quickheap turns around the circular array.

From now on, we will omit the expression mod capacity in order to simplify the
reading (but keep it in pseudocodes).

3.3.2 Creation of Empty Quickheaps

The creation of an empty quickheap is rather simple. We create the array heap of size
capacity with no elements, and initialize both S = {0} and idx = 0. Figure 3.10 gives
constructor Quickheap. The value of capacity must be sufficient to store simultaneously
all the elements we need in the array. Note that it is not necessary to place the ∞ mark
in heap[S[0]], as we never access the S[0]-th cell.

3.3.3 Quick-heapifying an Array

It is also very simple to create a quickheap from an array A. We copy the array A to heap,
and initialize both S = |A| and idx = 0. Figure 3.10 gives constructor Quickheap over a
given array A. The value of capacity must be at least |A|+ 1.

Note that this operation can be done in time O(1) if we can take array A and use it
as array heap.

3.3.4 Finding the Minimum

We note that idx indicates the first cell used by the quickheap allocated over the array
heap. The pivots stored in S delimit chunks of semi-ordered elements, in the sense that
every object in a chunk is smaller than the pivot at its right, and the pivot is smaller or
equal than every object in the next chunk at the right, an so on until the pivot in S[0].

53

3.3 Quickheaps Chapter 3 Fundamental Algorithms

Thus, to find the minimum of the heap, it is enough to focus on the first chunk, that
is, the chunk delimited by the cells idx and S.top() − 1. For this sake, we use IQS to
find the minimum of the first chunk: we just call IQS(heap, idx, S) and then return the
element heap[idx]. However, in this case IQS does not pop the pivot on top of S. Figure
3.10 gives method findMin.

Remember that an element whose position is pos is located at cell pos mod capacity,
thus we have to slightly change algorithm IQS to manage the positions in the circular
array.

3.3.5 Extracting the Minimum

To extract the minimum, we first make sure that the minimum is located in the cell
heap[idx]. (Once again, in this case IQS does not pop the pivot on top of S.) Next, we
increase idx and pop S. Finally, we return the element heap[idx − 1]. Figure 3.10 gives
method extractMin.

Quickheap(Integer N)
// constructor of an empty quickheap

1. capacity ← N + 1, heap← new Array[capacity], S ← {0}, idx← 0

Quickheap(Array A, Integer N)
// constructor of a quickheap from an array A

1. capacity ← max{N, |A|} + 1, heap← new Array[capacity], S ← {|A|}, idx← 0
2. heap.copy(A)

findMin()
1. IQS(heap, idx, S)
2. Return heap[idx mod capacity]

extractMin()
1. IQS(heap, idx, S)
2. idx← idx + 1, S.pop()
3. Return heap[(idx − 1) mod capacity]

Figure 3.10: Creation of an empty quickheap, creation of a quickheap from an array, finding
the minimum, and extracting the minimum. N is an integer number giving the desired capacity
of the heap. In operations findMin and extractMin we assume IQS is slightly modified in
order to manage circular arrays, and IQS does not pop the pivot on top of S.

54

Chapter 3 Fundamental Algorithms 3.3 Quickheaps

3.3.6 Inserting Elements

To insert a new element x into the quickheap we need to find the chunk where we can
insert x in fulfillment of the pivot invariant (Lemma 3.1). Thus, we need to create an
empty cell within this chunk in the array heap. A naive strategy will move every element
in the array one position to the right, so the naive insertion time would be O(m) worst-case
complexity. Note, however, that it is enough to move some pivots and elements to create
an empty cell in the appropriate chunk.

We first move the fictitious pivot, updating its position in S, without comparing it
with the new element x, so we have a free cell in the last chunk. Next, we compare x with
the pivot at cell S[1]. If the pivot is smaller than or equal to x we place x in the free place
left by pivot S[0]. Otherwise, we move the first element at the right of pivot S[1] to the
free place left by pivot S[0], and move the pivot S[1] one place to the right, updating its
position in S. We repeat the process with the pivot at S[2], and so on until we find the
place where x has to be inserted, or we reach the first chunk. Figure 3.11 illustrates. In the
example, we insert element 35 in the quickheap of Figure 3.8, so we first move the fictitious
pivot by updating its position in S. Next, we compare 35 with the pivot heap[S[1]] = 51.
Since 35 < 51, we move the element 67, which is next to 51, to the end of the chunk, and
the pivot 51 one place to the right, updating its position in S. We continue by comparing
35 with the next pivot, 33. Since 35 > 33, we finish displacing pivots and store 35 at the
free position left by pivot 51.

Figure 3.12 shows method insert. It uses method add, which receives the chunk it
must start from with the pivot displacement process to finally insert the element in the
proper chunk. In the case of insertions, the pivot displacement process starts from the last
chunk, but we will also use method add in other operations.

3.3.7 Deleting Arbitrary Elements

Operation delete works as follows. Given a position pos of some element in the quickheap,
this operation deletes the element at cell pos from the quickheap. When we delete an
element we move some pivots and elements one cell to the left, so this is the dual of
operation insert.

To delete the element, we first need to find its chunk. Note that each chunk has a
pivot at its right, so we reference the chunk by that pivot, pidx. Therefore, we traverse
the stack S to find the smallest pivot that is larger than or equal to pos. We do this in
method findChunk, depicted in Figure 3.13.

Once we have a pivot pidx at a position greater than pos, we repeat the following
process. We place the element previous to the pidx-th pivot in the position pos, that is, we
move the element heap[S[pidx]−1] to position heap[pos], so we have a free cell at position
S[pidx] − 1. Then, we move the pivot heap[S[pidx]] one place to the left, and update its
position in S. Then we update pos to the old pivot position, pos = S[pidx] + 1. Then

55

3.3 Quickheaps Chapter 3 Fundamental Algorithms

35

8 18 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {16, 8, 4, 1}

8 18 29 25 33 41 49 37 35 51 86 92 58 63 74 81 67 S = {17, 9, 4, 1}

8

35

 18 29 25 33 41 49 37 51 86 92 58 63 74 81 67 S = {17, 9, 4, 1}

35

8

35

 18 29 25 33 41 49 37 51 67 86 92 58 63 74 81 S = {17, 8, 4, 1}

Figure 3.11: Inserting a new element into a quickheap. The figure shows the pivots we have
to compare with the new element to insert it into the quickheap, and the elements we have to
move to create the free cell to allocate the new element.

add(Elem x, Index pidx)
1. While true Do // moving pivots, starting from pivot S[pidx]
2. heap[(S[pidx] + 1) mod capacity]← heap[S[pidx] mod capacity]
3. S[pidx]← S[pidx] + 1
4. If (|S| = pidx + 1) or // we are in the first chunk

(heap[S[pidx + 1] mod capacity] ≤ x) Then // we found the chunk
5. heap[(S[pidx] − 1) mod capacity]← x, Return
6. Else
7. heap[(S[pidx] − 1) mod capacity]← heap[(S[pidx + 1] + 1) mod capacity]
8. pidx← pidx + 1 // go to next chunk

insert(Elem x)
1. add(x, 0)

Figure 3.12: Inserting elements to a quickheap.

56

Chapter 3 Fundamental Algorithms 3.3 Quickheaps

we process the next chunk at the right. We continue until we reach the fictitious pivot.
Figure 3.13 shows the methods findChunk and delete.

findChunk(Index pos)
1. pidx← 0 // start in chunk 0
2. While pidx < |S| and S[pidx] ≥ pos Do pidx← pidx + 1
3. Return pidx− 1 // come back to the last reviewed pivot

delete(Index pos)
1. pidx← findChunk(pos) // chunk id
2. If S[pidx] = pos Then
3. S.extractElement(pidx) // we extract the pidx-th pivot from S
4. pidx← pidx− 1 // we go back one pivot, that is, go forward in heap

// moving pivots and elements to the rear of the quickheap,
// starting from pivot S[pidx]

5. For i← pidx downto 0 Do
// moving the last element of the chunk

6. heap[pos mod capacity]← heap[(S[i] − 1) mod capacity]
7. heap[(S[i] − 1) mod capacity]← heap[(S[i]) mod capacity] // pivot movement
8. S[i]← S[i]− 1 // updating pivot position
9. pos← S[i] + 1 // updating position pos

Figure 3.13: Deleting elements from a quickheap.

Note that, if the element at position pos is originally a pivot, we extract it from S
—by moving every pivot in the stack one position towards the bottom starting from the
deleted pivot to the top of the stack— and go back to the previous pivot, so we always
have a pivot at a position greater than pos. Thus, extracting a pivot effectively merges
the two chunks at the left and right of the removed pivot.

Decreasing and increasing a key can be done via a delete plus insert operations.
Nevertheless, in the next two sections we show a more efficient direct implementation.

3.3.8 Decreasing a Key

This operation consists in, given a position pos of some element in the quickheap and a
value δ ≥ 0, changing the value of the element heap[pos] to heap[pos] − δ, and adjusting
its position in the quickheap so as to preserve the pivot invariant (Lemma 3.1). As we
are decreasing the key, the modified element either stays in its current place or it moves
chunk-wise towards position idx. Thus operation decreaseKey is similar to operation
insert, in the sense that both of them use the auxiliary method add.

To decrease a key, we first need to find the chunk pidx of the element to modify. We
use procedure findChunk for this. If the element at position pos is a pivot, we extract it

57

3.3 Quickheaps Chapter 3 Fundamental Algorithms

from S and go back to the previous pivot, so we always have a pivot at a position greater
than pos.

Let newV alue = heap[pos]− δ be the resulting value of the modified element. Once
we have a pivot pidx at a position greater than pos, we do the following. If we are working
in the first chunk, that is |S| = pidx + 1, we update the element heap[pos] to newV alue
and we are done. Otherwise, we check whether newV alue is greater than or equal to the
preceding pivot (heap[S[pidx + 1]]). If so, we update the element heap[pos] to newV alue
and we have finished. Else, we place the element at the right of the next pivot in the
current position of the element. That is, we move the element heap[S[pidx + 1] + 1] to
position heap[pos]. As we have an empty space next to the pivot delimiting the preceding
chunk, we start the pivot movement procedure from that chunk. That is, we call procedure
add(newV alue, pidx + 1). Figure 3.14 gives method decreaseKey.

decreaseKey(Index pos, Decrement δ)
1. pidx← findChunk(pos) // chunk id
2. If S[pidx] = pos Then
3. S.extractElement(pidx) // we extract the pidx-th pivot from S
4. pidx← pidx− 1 // we go one pivot back
5. newV alue← heap[pos mod capacity]− δ // computing the new element
6. If (|S| = pidx + 1) or // we are in the first chunk

(heap[S[pidx + 1] mod capacity] ≤ newV alue) Then // we found the chunk
7. heap[pos mod capacity]← newV alue, Return
8. Else // creating an empty cell next to the preceding pivot
9. heap[pos mod capacity]← heap[(S[pidx + 1] + 1) mod capacity]
10. add(newV alue, pidx + 1)

Figure 3.14: Decreasing a key in a quickheap.

3.3.9 Increasing a Key

Analogously, given a position pos of some element in the quickheap and a value δ ≥ 0,
this operation changes the value of the element heap[pos] to heap[pos] + δ, and adjusts its
position in the quickheap so as to preserve the pivot invariant. As we are increasing the
key, the modified element either stays in its current place or moves chunk-wise towards
position S[0]. Thus, operation increaseKey is similar to operation delete, but without
removing the element.

To increase the key, we first need to find the chunk pidx of the element to modify.
Once again, we use procedure findChunk. If the element at position pos is a pivot, we
remove it from the stack S and go back to the previous pivot, so we have a pivot in a
position greater than pos. The operation is symmetric with decreaseKey. Figure 3.15
shows method increaseKey.

58

Chapter 3 Fundamental Algorithms 3.3 Quickheaps

increaseKey(Index pos, Increment δ)
1. pidx← findChunk(pos) // chunk id
2. If S[pidx] = pos Then
3. S.extractElement(pidx) // we extract the pidx-th pivot from S
4. pidx← pidx− 1 // we go one pivot back
5. newV alue← heap[pos mod capacity] + δ // computing the new element

// moving pivots and elements to the rear of the quickheap,
// starting from pivot S[pidx]

6. While (pidx > 0) and newV alue ≥ heap[S[pidx] mod capacity] Do
// moving the last element of the chunk

7. heap[pos mod capacity]← heap[(S[pidx] − 1) mod capacity]
// moving the pivot

8. heap[(S[pidx] − 1) mod capacity]← heap[(S[pidx]) mod capacity]
9. S[pidx]← S[pidx]− 1 // updating pivot position
10. pos← S[pidx] + 1 // updating the position pos
11. pidx← pidx− 1 // decrementing the chunk id
12. heap[pos mod capacity]← newV alue

Figure 3.15: Increasing a key in a quickheap.

3.3.10 Further Comments on Quickheaps

Throughout this section we have assumed that we know beforehand the value of capacity,
that is, the maximum number of elements we store in the priority queue. However, this is
not always possible, but it is not an issue at all. In fact, in order to implement a quickheap
with variable capacity, it is enough to implement array heap as a Dynamic Table [CLRS01,
Section 17.4], just adding a constant amortized factor to the cost of quickheap operations.

Finally, we note that by using a variant of IQS which performs incremental search
from arbitrary elements (not from the first) we can implement operations successor and
predecessor over the quickheap. However, these operations have the inconvenient that
they can enlarge the stack out of control, so they can increase the cost of other quickheap
operations. In the following we sketch both operations.

Finding the Successor. This operation consists in, given an element x, finding the
smallest element y in heap such that y > x. To do this, given the element x we look for its
chunk (by checking decreasingly the pivots in S), and then use x to partition it. Finally,
we call IQS to get the element immediately larger than x. (If x turns out to be a pivot,
we do not partition but just call IQS in its right chunk.) If x ≥ max(heap), successor
answers null. Note that, by partitioning the chunk of x, we generate a new stack of pivots
S′. We can merge both stacks S and S′ to reuse the work for next calls to successor,
or simply neglect the stack S′ (as we could double the size of S if we added the resulting
pivots when partitioning a large chunk, and this slows down other operations).

59

3.4 Analysis of Quickheaps Chapter 3 Fundamental Algorithms

Finding the Predecessor. This operation consists in, given an element x, finding the
largest element y in heap such that y < x. Analogously to operation succesor, given
the element x we look for its chunk, and then use x to partition it. Let DQS (from
Decremental Quicksort) be the algorithm that mirrors IQS finding largest elements. DQS
can be trivially derived from IQS, considering that the stack stores pivots in increasing
order and the fictitious pivot is placed just before the array starts. Therefore, we call DQS
to get the element immediately smaller than x. (If x turns out to be a pivot, we do not
partition but just call DQS in its left chunk.) If x ≤ min(heap), predecessor answers
null. Once again, this means to partition a chunk and generate a new auxiliary stack S′

(which is in reverse order), which we can merge with S or not.

3.4 Analysis of Quickheaps

Denken ist immer eine schlimme Sache. [Thinking is always
a bad thing.]

– Oskar Panizza

This analysis is based on a key observation: quickheaps follow a self-similar structure,
which means that the distribution of elements within a quickheap seen from the last chunk
towards the first chunk is the same as the distribution within such quickheap seen from
the second last chunk towards the first chunk, and so on. We start by proving that self-
similarity property. Then, we introduce the potential debt method for amortized analysis.
Finally, exploiting the self-similarity property, we analyze quickheaps using the potential
debt method.

3.4.1 The Quickheap’s Self-Similarity Property

In this section we introduce a formal notion of the self-similar structure of quickheaps.
We show that this property is true at the beginning, and that it holds after extractions
of minima, as well as insertions or deletions of elements that fall at independent and
uniformly distributed positions in the heap. It follows that the property holds after
arbitrary sequences of those operations, yet the positions of insertions and deletions cannot
be arbitrary but uniformly distributed.

From now on, we consider that array segments are delimited by idx and the cell
just before each pivot position S[pidx] (heap[idx . . . S[pidx] − 1], thus segments overlap),
and array chunks are composed by the elements between two consecutive pivot positions
(heap[S[pidx] + 1 . . . S[pidx− 1] − 1]) or between idx and the cell preceding the pivot on
top of S (heap[idx . . . S.top()−1]). We call heap[idx . . . S.top()−1] the first chunk, and
heap[S[1] + 1 . . . S[0]− 1] the last chunk. Analogously, we call heap[idx . . . S.top()−1] the
first segment, and heap[idx . . . S[0] − 1] the last segment. The pivot of a segment will be

60

Chapter 3 Fundamental Algorithms 3.4 Analysis of Quickheaps

the rightmost pivot within such segment (this is the one used to split the segment at the
time partition was called on it). Thus, the pivot of the last segment is S[1], whereas the
first segment is the only one not having a pivot. Figure 3.16 illustrates.

[0]

chunk chunk
secondfirst

other chunks last chunk

. . .
. . .

second segment

other segments

last segment . . .

first segment

last segment pivot

second segment pivot

idx []S j S j[−1] S [1] S

Figure 3.16: Segments and chunks of a quickheap.

Using the traditional definition of the median of a n-element set —if n is odd the
median is the n+1

2 -th element, else it is the average of the values at positions n
2 and

n
2 + 1 [Ros04, page 20]—, let us call an element not smaller than the median of the array
segment heap[idx . . . S[pidx]− 1] a large element of such segment. Analogously, let us call
an element smaller than the median a small element.

The self-similarity property is formally defined as follows:

Definition 3.1 (quickheap’s self-similarity property). The probability that the pivot of
each array segment heap[idx . . . S[pidx]−1] is large in its segment is smaller than or equal
to 1

2 . That is, for all the segments P(pivot is large) ≤ 1
2 .

To prove the property we need some notation. Let Pi,j,n, 1 ≤ i ≤ n, j ≥ 0, n > 0, be
the probability that the i-th element of a given segment of size n is the pivot of the segment
after the j-th operation (Pi,j,n = 0 outside bounds). In the following we prove by induction
on j that Pi,j,n ≤ Pi−1,j,n, for all j, n and 2 ≤ i ≤ n, after performing any sequence of
operations insert, delete, findMin and extractMin. That is, the probability of the
element at cell i being the pivot is non-increasing from left to right. Later, we use this to
prove the self-similar property and some consequences of it.

Note that new segments with pivots are created when operations extractMin or
findMin split the first segment. Note also that, just after a partitioned segment is created,
the probabilities are Pi,0,n = 1

n , because the pivot is chosen at random from it, so we have
proved the base case.

Lemma 3.2. For each segment, the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after
inserting a new element x at a position uniformly chosen in [1, n].

61

3.4 Analysis of Quickheaps Chapter 3 Fundamental Algorithms

Proof. We suppose that after the (j − 1)-th operation the segment has n − 1 elements.
As we insert x in the j-th operation, the resulting segment contains n elements. The
probability that after the insertion the pivot p is at cell i depends on whether p was at cell
i − 1 and we have inserted x at any of the first i − 1 positions 1, . . . , i − 1, so the pivot
moved to the right; or the pivot was already at cell i and we have inserted x at any of the
last n− i positions i + 1, . . . , n. So, we have the recurrence of Eq. (3.17).

Pi,j,n = Pi−1,j−1,n−1
i− 1

n
+ Pi,j−1,n−1

n− i

n
(3.17)

From the inductive hypothesis we have that Pi,j−1,n−1 ≤ Pi−1,j−1,n−1. Multiplying
both sides by n−i

n , adding Pi−1,j−1,n−1
i−1
n and rearranging terms we obtain the inequality

of Eq. (3.18), whose left side corresponds to the recurrence of Pi,j,n.

Pi−1,j−1,n−1
i− 1

n
+ Pi,j−1,n−1

n− i

n
≤ Pi−1,j−1,n−1

i− 2

n
+ Pi−1,j−1,n−1

n + 1− i

n
(3.18)

By the inductive hypothesis again, Pi−1,j−1,n−1 ≤ Pi−2,j−1,n−1, for i > 2. So, replacing
on the right side above we obtain the inequality of Eq. (3.19), where, in the right side we
have the recurrence for Pi−1,j,n.

Pi,j,n ≤ Pi−2,j−1,n−1
i− 2

n
+ Pi−1,j−1,n−1

n + 1− i

n
= Pi−1,j,n (3.19)

With respect to i = 2, note that the term i−2
n from Eqs. (3.18) and (3.19) vanishes,

so the replacement made for i > 2 holds anyway. Thus, this equation can be rewritten as
P2,j,n ≤ P1,j−1,n−1

n−1
n . Note that the right side is exactly P1,j,n according to the recurrence

Eq. (3.17) evaluated for i = 1.

Lemma 3.3. For each segment, the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after
deleting an element chosen uniformly from [1, n + 1].

Proof. Suppose that after the (j − 1)-th operation the segment has n + 1 elements. As we
delete an element in the j-th operation, the resulting segment contains n elements.

We start by proving the property when the deleted element is not a pivot. The
probability that after the deletion the pivot p is at cell i depends on whether p was at
cell i + 1 and we delete an element from positions 1, . . . , i, so the pivot moved to the left;
or the pivot was already at cell i, and we have deleted from the last n + 1 − i elements
i + 1, . . . , n + 1. So, we have the recurrence of Eq. (3.20).

Pi,j,n = Pi+1,j−1,n+1
i

n + 1
+ Pi,j−1,n+1

n + 1− i

n + 1
(3.20)

From the inductive hypothesis we have that Pi,j−1,n+1 ≤ Pi−1,j−1,n+1. Multiplying
both sides by n+2−i

n+1 , adding Pi,j−1,n+1
i−1
n+1 and rearranging terms we obtain the inequality

of Eq. (3.21), whose right side corresponds to the recurrence of Pi−1,j,n.

Pi,j−1,n+1
i

n + 1
+ Pi,j−1,n+1

n + 1− i

n + 1
≤ Pi,j−1,n+1

i− 1

n + 1
+ Pi−1,j−1,n+1

n + 2− i

n + 1
(3.21)

62

Chapter 3 Fundamental Algorithms 3.4 Analysis of Quickheaps

By the inductive hypothesis again, Pi+1,j−1,n+1 ≤ Pi,j−1,n+1, so we can replace the
first term above to obtain the inequality of Eq. (3.22), where in the left side we have the
recurrence for Pi,j,n. On the right we have Pi−1,j,n.

Pi+1,j−1,n+1
i

n + 1
+ Pi,j−1,n+1

n + 1− i

n + 1
= Pi,j,n ≤ Pi−1,j,n (3.22)

In the case of deleting a pivot p we have the following. If we delete the pivot on top
of S, then the first and the second chunk get merged and the lemma does not apply to the
(new) first segment because it has no pivot.

Otherwise, we must have (at least) two pivots pl and pr at the left and right of p. Let
posl, pos and posr be the positions of the pivots pl, p, pr before deleting p, respectively.
Figure 3.17 illustrates. Note that pl and p are pivots of segments heap[idx . . . pos− 1] and
heap[idx . . . posr − 1] with n′ and n elements (n′ < n), respectively.

. . .

l posr

pl pr

idx S

. . .

p

pos [0]pos

Figure 3.17: Deleting an inner pivot of a quickheap.

Once we delete pivot p, the segment heap[idx . . . pos − 1] is “extended” to position
posr−2 (as we have one cell less). As the n−n′−1 new elements in the extended segment
were outside of the old segment heap[idx . . . pos − 1], they cannot be the pivot in the
extended segment. On the other hand, the probabilities of the old segment elements holds
in the new extended segment. Therefore, for each idx ≤ i < pos, Pi,j,n = Pi,j−1,n′, and for
each pos ≤ i < posr − 2, Pi,j,n = 0. Thus the invariant is maintained.

In order to analyze whether the property Pi,j,n ≤ Pi−1,j,n is preserved after operations
findMin and extractMin we need consider how IQS operates on the first segment. For
this sake we introduce operation pivoting, which partitions the first segment with a pivot
and pushes it into stack S. We also introduce operation takeMin, which increments idx,
pops stack S and returns element heap[idx − 1].

Using these operations, we rewrite operation extractMin as: execute pivoting as
many times as we need to push idx in stack S and next perform operation takeMin.
Likewise, we rewrite operation findMin as: execute pivoting as many times as we need
to push idx in stack S and next return element heap[idx].

Operation pivoting creates a new segment and converts the previous first segment
(with no pivot) into a segment with a pivot, where all the probabilities are Pi,0,n = 1

n . The
next lemma shows that the property also holds after taking the minimum.

Lemma 3.4. For each segment, the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after
taking the minimum element of the quickheap.

63

3.4 Analysis of Quickheaps Chapter 3 Fundamental Algorithms

Proof. Due to previous calls to operation pivoting, the minimum is the pivot placed in idx.
Once we pick it, the first segment vanishes. After that, the new first segment may be empty,
but all the others have elements. For the empty segment the property is true by vacuity.
Else, within each segment probabilities change as follows: Pi,j,n = Pi+1,j−1,n+1

n+1
n .

Finally, we are ready to prove the quickheap’s self-similarity property.

Theorem 3.3 (quickheap’s self-similarity property). Given a segment
heap[idx . . . S[pidx] − 1], the probability of that its pivot is large is smaller than or
equal to 1

2 , that is, P(pivot is large) ≤ 1
2 .

Proof. When the segment is created, all the probabilities are Pi,j,n = 1
n . Lemmas 3.2

to 3.4 guarantee that the property Pi,j,n ≤ Pi−1,j,n for i ≥ 2 is preserved after inserting
or deleting elements, or taking the minimum. So, the property is preserved after any
sequence of operations insert, delete, findMin and extractMin. Therefore, adding up
the probabilities Pi,j,n for the large elements, that is, for the

(⌈
n
2

⌉
+ 1
)
-th to the n-th

element, we obtain that P(pivot is large) =
∑n

i=⌈n
2 ⌉+1

Pi,j,n ≤ 1
2 .

In the following, we use the self-similarity property to show two additional facts we
use in the analysis of quickheaps. They are (i) the height of stack S is O(log m), and (ii)
the sum of the size of the array segments is Θ(m).

Lemma 3.5. The expected value of the height H of stack S is O(log m).

Proof. Notice that the number H of pivots in the stack is monotonically nondecreasing
with m. Let us make some pessimistic simplifications (that is, leading to larger H). Let us
take the largest value of the probability P(pivot is large), which is 1

2 . Furthermore, let us
assume that if the pivot is taken from the large elements then it is the maximum element.
Likewise, if it is taken from the small elements, then it is the element immediately previous
to the median.

With these simplifications we have the following. When partitioning, we add one
pivot to stack S. Then, with probabilities 1

2 and 1
2 the left partition has m − 1 or

⌊
m
2

⌋

elements. So, we write the following recurrence: H = T (m) = 1 + 1
2T (m− 1) + 1

2T
(⌊

m
2

⌋)
,

T (1) = 1. Once again, using the monotonicity on the number of pivots, the
recurrence is simplified to T (m) ≤ 1 + 1

2T (m) + 1
2T
(

m
2

)
, which can be rewritten as

T (m) ≤ 2 + T
(

m
2

)
≤ . . . ≤ 2j + T

(
m
2j

)
. As T (1) = 1, choosing j = log2(m) we obtain

that H = T (m) ≤ 2 log2 m + 1. Finally, adding the fictitious pivot we have that
H = 2(log2 m + 1) = O(log m).

Lemma 3.6. The expected value of the sum of the sizes of array segments is Θ(m).

Proof. Using the same reasoning of Lemma 3.5, but considering that when
partitioning the largest segment has m elements, we write the following recurrence:

64

Chapter 3 Fundamental Algorithms 3.4 Analysis of Quickheaps

T (m) = m + 1
2T (m− 1) + 1

2T
(⌊

m
2

⌋)
, T (1) = 0. Using the monotonicity of T (m) (which

also holds in this case) the recurrence is simplified to T (m) ≤ m + 1
2T (m) + 1

2T
(

m
2

)
, which

can be rewritten as T (m) ≤ 2m + T
(

m
2

)
≤ . . . ≤ 2m + m + m

2 + m
22 + . . . + m

2j−2 + T
(

m
2j

)
.

As T (1) = 0, choosing j = log2(m) we obtain that T (m) ≤ 3m + m
∑∞

i=1
1
2i ≤ 4m = Θ(m).

Therefore, the expected value of the sum of the array segment sizes is Θ(m).

3.4.2 The Potential Debt Method

To carry out the amortized analysis of quickheaps we use a slight variation of the potential
method ([Tar85] and [CLRS01, Chapter 17]), which we call the potential debt method. In
Section 2.1.5 (page 15) we describe the standard potential method.

In the case of the potential debt method, the potential function represents a total
cost that has not yet been paid. At the end, this total debt must be split among all the
performed operations. The potential debt is associated with the data structure as a whole.

The potential debt method works as follows. It starts with an initial data structure D0

on which operations are performed. Let ci be the actual cost of the i-th operation and Di

the data structure that results from applying the i-th operation to Di−1. A potential debt
function Φ maps each data structure Di to a real number Φ(Di), which is the potential
debt associated with data structure Di up to then. The amortized cost c̃i of the i-th
operation with respect to potential debt function Φ is defined by

c̃i = ci − Φ(Di) + Φ(Di−1) . (3.23)

Therefore, the amortized cost of i-th operation is the actual cost minus the increase
of potential debt due to the operation. Thus, the total amortized cost for N operations is

N∑

i=1

c̃i =

N∑

i=1

(ci −Φ(Di) + Φ(Di−1)) =

N∑

i=1

ci − Φ(DN) + Φ(D0) . (3.24)

If we define a potential function Φ so that Φ(DN) ≥ Φ(D0), then the total amortized
cost

∑N
i=1 c̃i is a lower bound on the total actual cost

∑N
i=1 ci. However, if we sum the

positive cost Φ(DN) − Φ(D0) to the amortized cost
∑N

i=1 c̃i, we compensate for the debt

and obtain an upper bound on the actual cost
∑N

i=1 ci. That is, at the end we share the
debt among the operations. Thus, in Eq. (3.25) we write an amortized cost ĉi considering
the potential debt, by assuming that we perform N operations during the process, and the
potential due to these operations is Φ(DN).

ĉi = c̃i +
Φ(DN)−Φ(D0)

N
= ci − Φ(Di) + Φ(Di−1) +

Φ(DN)− Φ(D0)

N
(3.25)

This way, adding up for all the N operations, we obtain that∑N
i=1 ĉi =

∑N
i=1

(
ci − Φ(Di) + Φ(Di−1) + Φ(DN)−Φ(D0)

N

)
=
∑N

i=1 ci.

65

3.4 Analysis of Quickheaps Chapter 3 Fundamental Algorithms

Intuitively, if the potential debt difference Φ(Di−1) − Φ(Di) of the i-th operation is
positive, then the amortized cost ĉi represents an overcharge to the i-th operation, as it also
pays part of the potential debt of the data structure, so that the potential debt decreases.
On the other hand, if the potential debt difference is negative, then the amortized cost
represents an undercharge to the i-th operation, as the operation increases the potential
debt, which will be paid by future operations.

3.4.3 Expected-case Amortized Analysis of Quickheaps

In this section, we consider that we operate over a quickheap qh with m elements within
heap and a pivot stack S of expected height H = O(log m), see Lemma 3.5.

We define the quickheap potential debt function as the sum of the sizes of the
partitioned segments delimited by idx and pivots in S[0] to S[H − 1] (note that the
smallest segment is not counted). Eq. (3.26) shows the potential function Φ(qh). Figure
3.18 illustrates.

Φ(qh) =

H−1∑

i=0

(S[i]− idx) = Θ(m) expected, by Lemma 3.6 (3.26)

. . . .

idx SSS [0][1][2]

. . . .

Figure 3.18: The quickheap potential debt function is computed as the sum of the lengths
of the partitioned segments (drawn with solid lines) delimited by idx and pivots in S[0] to
S[H− 1]. In the figure, Φ(qh) = S[0] + S[1]− 2idx.

Thus, the potential debt of an empty quickheap Φ(qh0) is zero, and the expected
potential debt of a m-elements quickheap is Θ(m), see Lemma 3.6. Note that if we
start from an empty quickheap qh, for each element within qh we have performed at
least operation insert, so we can assume that there are more operations than elements
within the quickheap. Therefore, in the case of quickheaps, the term Φ(qhN)−Φ(qh0)

N is
O(1) expected. So, we can omit this term, writing the amortized costs directly as
ĉi = ci − Φ(qhi) + Φ(qhi−1).

Operation insert. The amortized cost of operation insert is defined by
ĉi = ci − Φ(qhi) + Φ(qhi−1). The difference of the potential debt Φ(qhi−1)− Φ(qhi)(< 0)
depends on how many segments are extended (by one cell) due to the insertion. This

66

Chapter 3 Fundamental Algorithms 3.4 Analysis of Quickheaps

means an increase in the potential debt (and also an undercharge in the amortized cost
of operation insert). Note that for each segment we extend —which increases by 1 the
potential debt—, we also pay one key comparison, but there is no increase associated to the
last key comparison. Thus, it holds ci − Φ(qhi) + Φ(qhi−1) ≤ 1, which means that almost
all the cost is absorbed by the increase in the potential debt. Then, the amortized cost of
operation insert is O(1).

However, we can prove that this is not only the amortized cost, but also the expected
(individual) cost of operation insert. When inserting an element, we always extend the
last segment. Later, with probability P1 ≥ 1

2 the position of the inserted element is greater
than the position of the pivot S[1] —that is, the element is inserted at the right of the pivot
S[1]— (from Theorem 3.3), in which case we stop. If not, we compare the pivot of the
second last segment, and once again, with probability P2 ≥ 1

2 the element is inserted at the
right of the pivot S[2], in which case we stop. Else, we compare the third pivot, and this
goes on until we stop expanding segments. Thus, the expected number of key comparisons
is 1 + (1− P1)(1 + (1− P2)(1 + (1− P3)(1 + . . .))). This sum is upper bounded, by taking

the lowest value of Pi = 1
2 , to 1 + 1

2

(
1 + 1

2

(
1 + 1

2 (1 + . . .)
))
≤∑∞

i=0

(
1
2

)i
= 2 = O(1).

Operation delete. The decrease of the potential debt Φ(qhi−1)−Φ(qhi)(> 0) depends
on how many segments are contracted (by one cell) due to the deletion. Note that it is
also possible to delete a whole segment if we remove a pivot.

The worst case of operation delete (without considering pivot deletions) arises when
deleting an element in the first chunk. This implies to contract by one cell all the segments,
which is implemented by moving all the pivots —whose expected number is H— one cell
to the left. So, the actual cost of moving pivots and elements is H. On the other hand, the
term Φ(qhi−1)−Φ(qhi), which accounts for the potential decrease due to all the contracted
segments, is also H. Thus, the amortized cost is ĉi = ci − Φ(qhi) + Φ(qhi−1) = 2H. This
is O(log m) expected, see Lemma 3.5.

If, on the other hand, we remove a pivot, we also remove a whole segment, thus
decreasing the potential debt. We can delete each of the pivots with probability 1

m . As the
firstH−1 pivots in stack S delimit segments which account for the potential debt, we obtain
the following sum

∑H−1
i=0

1
m(S[i] − idx) = 1

mΦ(qh). As Φ(qh) = Θ(m), 1
mΦ(qh) = Θ(1)

expected.

Therefore, the potential debt decrease Φ(qhi−1)− Φ(qhi)(> 0) due to segment
contractions and segment deletions is Θ(1). Considering that every time we contract a
segment, we perform O(1) work in pivot and element movements, the expected amortized
cost of operation delete on pivots is ĉi = ci −Φ(qhi) + Φ(qhi−1) ≤ 2H+ Θ(1) = O(log m)
expected.

However, we can prove that the individual cost of operation delete is actually O(1)
expected. We start by analyzing the deletion of non pivot elements with an argument
similar to the one used in operation insert. When deleting an element, we always contract
the last segment. Later, with probability P1 ≥ 1

2 the position of the deleted element is

67

3.4 Analysis of Quickheaps Chapter 3 Fundamental Algorithms

greater than the position of the pivot S[1] (from Theorem 3.3), in which case we stop.
If not, we contract the second last segment, and this goes on until we stop contracting
segments. Thus, the expected decrement of the potential debt due to segment contractions
is 1 + (1− P1)(1 + (1− P2)(1 + (1− P3)(1 + . . .))). This sum is upper bounded, by taking

the lowest value of Pi = 1
2 , to 1 + 1

2

(
1 + 1

2

(
1 + 1

2 (1 + . . .)
))
≤∑∞

i=0

(
1
2

)i
= 2 = O(1).

Creation of a quickheap. The amortized cost of constructing a quickheap from scratch
is O(1). Instead, the amortized cost of constructing a quickheap from an array A of size
m is O(m), as we can see this as a construction from scratch plus a sequence of m element
insertions of O(1) amortized cost. Note that the potential debt of the quickheap is zero,
as there is only one pivot in S.

If, instead, we do not need to copy the array A but can use it as heap, the actual cost
ci is O(1) and the debt is still zero (as there is only one pivot in S). However, this breaks
the assumption of having more operations than elements, so even in this case we consider
that the creation of a quickheap is a sequence of m insertions, thus it has O(m) amortized
cost, yet the potential debt is zero.

Operation extractMin. To analyze this operation, we again use auxiliary operations
pivoting and takeMin (see Section 3.4.1). Thus, we consider that operation extractMin
is a sequence of zero or more calls to pivoting, until pushing idx in stack S, and then a
single call to takeMin.

Each time we call operation pivoting, the actual cost corresponds to the size of the
first segment, which is not yet accounted in the potential debt. On the other hand, once we
push the pivot, the potential debt increases by an amount which is the same of the size of
the partitioned segment. Thus, the amortized cost of operation pivoting is zero, as all the
performed work is absorbed by an increase of the potential debt. With respect to operation
takeMin, its actual cost is O(1), and the potential debt decreases by H − 1, as all the
segments considered in the potential are reduced by one cell after taking the minimum.
As the expected value of H is O(log m) (see Lemma 3.5), the expected amortized cost
of operation takeMin is O(log m). Therefore, adding the amortized cost of pivoting
and takeMin we obtain that the expected amortized cost of operation extractMin is
O(log m).

Note that when we extract the minimum from the quickheap, all the segments are
reduced by 1, so the variation of the potential is negative. However, we cannot reach a
negative potential because we cannot perform many times operation extractMin without
performing operation pivoting, as we need to ensure that the minimum element is in
place idx, and we call operation pivoting for this sake. Note also that operation pivoting
restitutes the potential as it creates segments.

Operation findMin. Using operation pivoting, we rewrite operation findMin as:
execute pivoting as many times as we need to push idx in stack S (with amortized

68

Chapter 3 Fundamental Algorithms 3.5 Quickheaps in External Memory

cost zero) and then return element heap[idx] (with constant cost). Then, the amortized
cost of operation findMin is O(1).

Operation increaseKey. This operation is special in the sense that it only moves
elements to the rear of the quickheap. Fortunately, it preserves Theorem 3.3. In fact,
when we increase the key of some element the involved pivots either stay in their cells or
they move to the left. So the probability of that the pivot is large holds or diminishes. Note
that operation increaseKey can be seen as a sequence of two single calls to operations
delete and insert. However, it is not a sequence of independent operations. In fact, even
though the deletion occurs at random, the following insertion does not.

Fortunately, we can still use the argument that in the worst case we increase the key of
an element in the first chunk; which implies at most H movements of elements and pivots.
So the actual cost of operation increaseKey is O(log m) expected. On the other hand, the
potential variation Φ(qhi−1)−Φ(qhi)(> 0) depends on how many segments are contracted
when moving the modified element, which is also at most H. Thus, the amortized cost is
ĉi = ci −Φ(qhi) + Φ(qhi−1) = 2H. This is O(log m) expected, see Lemma 3.5.

Operation decreaseKey. This is also a special operation. Regrettably, it does not
preserve Theorem 3.3. In fact, each time we decrease some key the involved pivots
either stay in their cells or they move to the right. Thus, when we perform operation
decreaseKey the probability of a pivot being large holds or increases, so it could go
beyond 1

2 . However, in practice, this operation performs reasonably well as is shown in
Sections 3.7.2 and 3.7.4.

To sum up, we have proved the following theorem.

Theorem 3.4 (quickheap’s complexity). The expected amortized cost of any sequence of
m operations insert, delete, findMin, extractMin and increaseKey over an initially
empty quickheap is O(log m) per operation, assuming that insertions and deletions occur
at uniformly random positions. Actually, the individual expected cost of operations insert
and delete is O(1).

3.5 Quickheaps in External Memory

On a clear disk you can seek forever.

– P. Denning

Quickheaps exhibit a local access pattern, which makes them excellent candidates to
reside on secondary memory. Note, however, that our algorithms are unaware of the disk
transfers, so the result of blindly using them on disk is cache-oblivious. Cache obliviousness

69

3.5 Quickheaps in External Memory Chapter 3 Fundamental Algorithms

[FLPR99, BF03] means that the algorithm is designed for the RAM model but analyzed
under the I/O model, assuming an optimal offline page replacement strategy. (This is
not unrealistic because there are well-known 2-competitive page replacement strategies.)
Cache-oblivious algorithms for secondary memory are not only easier to program than
their cache-aware counterparts, but they adapt better to arbitrary memory hierarchies.

The resulting external quickheap allows performing operations insert, findMin and
extractMin in expected amortized I/O cost O((1/B) log(m/M)), where B is the block
size, M is the total available main memory, and m is the maximum heap size along the

process. This result is close to the lower bounds given in [BF03], Θ
(

(1/B) logM/B(m/B)
)

,

for cache-oblivious sorting. Although there exist optimal cache-oblivious priority queues
[Arg95, HMSV97, KS96, FJKT99, BK98, BCFM00] (see Section 2.1.4.1, page 15),
quickheaps are, again, a simple and practical alternative.

3.5.1 Adapting Quickheap Operations to External Memory

When considering the basic priority queue operations —namely, findMin, extractMin
and insert— one can realize that quickheaps exhibit high locality of reference: First, the
stack S is small and accessed sequentially. Second, each pivot in S points to a position
in the array heap. Array heap is only modified at those positions, and the positions
themselves increase at most by one at each insertion. Third, IQS sequentially accesses the
elements of the first chunk. Thus, under the cache-oblivious assumption, we will consider
that our page replacement strategy keeps in main memory (Figure 3.19 illustrates):

(i) the stack S and integers idx and capacity;

(ii) for each pivot in S, the disk block containing its current position in heap; and

(iii) the longest possible prefix of heap[idx,N], containing at least two disk blocks.

longest possible prefix

idx S S[0][1]other pivots

heap

Figure 3.19: External quickheap. The available memory is used both to store the longest
possible prefix of heap and pages for each pivot not in the prefix.

According to Lemma 3.5, all this requires on average to hold M = Ω(B log m) integers
in main memory. Say that we have twice the main memory required for (i) and (ii), so
that we still have Θ(M) cells for (iii).

In order to support operations delete, increaseKey and decreaseKey we need a
dictionary to know the position of the element to modify. Note that in these operations,

70

Chapter 3 Fundamental Algorithms 3.5 Quickheaps in External Memory

due to element movements, pivot positions can increase or decrease after each operation.
To maintain our results on this extended set of operations, it is enough to keep in main
memory two blocks per pivot: (1) the block containing the current position of the pivot
in heap, and (2) the one that previously contained it. This way, even though a pivot
moves forward and backward from one page towards the other (note that both pages are
consecutive), this does not produce an uncontrolled increase of I/Os. This kind of pivot
movement can be produced by, for instance, a sequence of insertions and deletions of a
single key.

3.5.2 Analysis of External Memory Quickheaps

We first show a simple approach just considering that we keep in RAM the first two disk
blocks of the array. Later, we analyze the effect of a larger prefix of disk blocks cached in
internal memory.

3.5.2.1 A Simple Approach

Let us first consider operation insert. Assume that entry heap[i] is stored at disk block
⌈i/B⌉. Note that once a disk page is loaded because a pivot position is incremented from
i = B · j to i + 1 = B · j + 1, we have the disk page j + 1 in main memory. From then, at
least B increments of pivot position i are necessary before loading another disk page due
to that pivot. Therefore, as there are H pivots, the amortized cost of an element insertion
is H/B. According to the results of the previous section, this is O(log(m)/B) expected.

Operations findMin and extractMin essentially translate into a sequence of
pivoting actions. Each such action sequentially traverses heap[idx, S.top() − 1]. Let
ℓ = S.top()− idx be the length of the area to traverse. The traversed area spans 1+⌈ℓ/B⌉
disk blocks. As we have in main memory the first two blocks of heap[idx,N], we have to
load at most 1 + ⌈ℓ/B⌉ − 2 ≤ ℓ/B disk blocks. On the other hand, the CPU cost of such
traversal is Θ(ℓ). Hence, each comparison made has an amortized I/O cost of O(1/B).
According to the previous section, all those traversals cost O(log m) amortized expected
comparisons. Hence, the amortized I/O cost is O(log(m)/B) expected. Maintaining
this prefix of a given size in main memory is easily done in O(1/B) amortized time per
operation, since idx grows by one upon calls to extractMin.

To implement operations delete, increaseKey and decreaseKey, we use an
auxiliary dictionary to obtain the location of the element we modify. (We are not
considering the I/O cost of the dictionary, as it depends on its implementation.) Recall
that, in order to support these operations we must maintain two disk blocks per pivot.

Now, let us analyze operation delete. This analysis is analogous to the one performed
in Section 3.4.3. Assume that we delete the entry x. Using the dictionary we determine
that x is stored at heap[i], and hence at block j′ = ⌈i/B⌉. This x can be a regular element
or a pivot. In the second case we are removing a pivot from S (and deleting a whole

71

3.5 Quickheaps in External Memory Chapter 3 Fundamental Algorithms

segment), which is I/O-free. If the page j′ is not in cache we need an additional I/O when
accessing the element at cell i. Then, we move the element preceding the first pivot at the
right of entry heap[i] to cell i. This is I/O free, as we already have both blocks in cache
(the block just accessed for i and that containing the pivot). Next, the element and pivot
movement process repeats towards the end of the heap, moving at most H pivots one cell
to the left. As for insert, once we load a disk block because a pivot moved, B further pivot
movements are needed to produce a new I/O. Therefore, we conclude that the amortized
I/O cost of operation delete is 1 +H/B, which is 1 + O(log(m)/B)) expected. The “1+”
can be dropped when deleting elements that are in the prefix, for instance delete(idx).

Operation increaseKey can be seen as two single calls to operations delete and
insert. Thus, its expected amortized I/O cost is 1+O(log(m)/B)). Finally, operation
decreaseKey does not preserve the quickheap’s self-similarity property, so we do not
analyze it.

Overall, we achieve O(log m/B) expected amortized I/O cost, plus an extra access
for operation delete and increaseKey. We now get better bounds by considering an
arbitrary size Θ(M) for the heap’s prefix cached in internal memory.

3.5.2.2 Considering the Effect of the Prefix

Let us consider that we have M ′ = Θ(M) cells of main memory to store a prefix of array
heap. Thus, accessing these cells is I/O-free, both when moving pivots or when partitioning
segments.

We start by using the potential debt method to analyze the number of key comparisons
computed for elements outside the prefix for each quickheap operation. Then, we will derive
the I/O cost from those values by reusing the arguments of Section 3.5.2.1.

Let us define the potential function Ψ(qh) as the sum of the sizes of segments minus
M ′ for those longer than M ′, excepting the shortest segment larger than M ′. Figure 3.20
illustrates. This potential function Ψ(qh) represents the number of cells placed in secondary
memory that we have to traverse in future operations.

In this case, the potential debt Ψ(qh) of an empty quickheap Ψ(qh0) is zero, the
potential debt Ψ(qh) of a small heap (that is, where m ≤ M ′) is also zero, and when the
heap is big enough (that is, where m ≫ M ′), the expected potential debt Ψ(qh) of an
m-element quickheap is Θ(m), see Lemma 3.6.

Once again, if we start from an empty quickheap qh, for each element within qh
we have performed at least operation insert, so we can assume that there are more
operations than elements within the quickheap. Following the potential debt method,
we must share the total debt among all of the operations. However, just as in the previous
amortized analysis, the term Ψ(qhN)−Ψ(qh0)

N is O(1). Thus, we can omit this term, writing
the amortized costs directly as ĉi = ci −Ψ(qhi) + Ψ(qhi−1).

72

Chapter 3 Fundamental Algorithms 3.5 Quickheaps in External Memory

heap prefix

S[1] S[0]idx S

. . . .

[3] S[2]

. . . .

m
M

O log

Figure 3.20: The external quickheap I/O potential debt function is computed as the sum of
the lengths of the portions outside the heap prefix of the partitioned segments (drawn with
solid lines). Note that if a segment fits in the prefix it does not contribute to the potential.
The same holds, exceptionally, with the shortest segment exceeding the prefix. In the figure,
Ψ(qh) = S[0] + S[1]− 2(idx + M ′).

Due to the self-similarity property (Theorem 3.3), it is not hard to see that on average
at least the first log2 M ′ = Θ(log M) pivots will be in main memory, and therefore
accessing them will be I/O-free. A direct consequence of this is that there are only
O(log m− log M) = O(log(m/M)) pivots outside the prefix, and only these pivots delimit
segments which account in the potential debt Ψ(qh).

Operation insert. The amortized cost of operation insert is defined by
ĉi = ci −Ψ(qhi) + Ψ(qhi−1). The potential debt variation Ψ(qhi−1)−Ψ(qhi)(< 0) depends
on how many segments larger than M ′ are extended due to the insertion, which is
O(log(m/M)) expected. For each of these segments we extend —increasing by 1 the
potential debt—, we also pay one pivot comparison, plus possibly one final comparison
that does not expand a segment. Thus, it holds ci −Ψ(qhi) + Ψ(qhi−1) ≤ 1, which means
that most of the cost is absorbed by an increase in the potential debt Ψ(qh).

Operation extractMin. Using auxiliary operations pivoting and takeMin (see
Section 3.4.1), we split operation extractMin into a sequence of zero or more calls to
pivoting, and a single call to takeMin. Note that operation pivoting is I/O-free over
the first M ′ elements of heap (as they are cached in main memory).

Each time we call operation pivoting, we only consider the key comparisons
computed outside the prefix. Note that they correspond exactly with the ones performed
on the first segment, which is not included in Ψ(qh), and consequently, those comparisons
are not yet accounted for in the potential debt. On the other hand, once we push the
pivot, the potential debt Ψ(qh) increases by an amount which is the same as the size
of the partitioned segment minus M ′. Thus, the amortized cost of the key comparisons
performed outside the prefix for operation pivoting is zero, as all the performed work is
absorbed by an increase of the potential debt Ψ(qh).

73

3.5 Quickheaps in External Memory Chapter 3 Fundamental Algorithms

With respect to operation takeMin, it takes no comparison outside the cached prefix.
On the other hand, the potential debt Ψ(qh) decreases by O(log(m/M)), as all the segments
considered in the potential are reduced by one cell after taking the minimum. Therefore,
the amortized cost of operation takeMin is O(log(m/M)).

Operation findMin. We consider that operation findMin is a sequence of as many
calls to operation pivoting as we need to push idx in stack S (with amortized cost zero)
and later return element heap[idx] (also with cost zero). Therefore, the amortized cost of
operation findMin is zero.

Creation of a quickheap. The amortized cost of constructing a quickheap on disk from
scratch is O(1). Instead, the amortized cost of constructing a quickheap on disk from an
array A of size m is O(m), as we can see this construction as a construction from scratch
plus a sequence of m O(1) amortized cost element insertions. Note that the potential debt
Ψ(qh) of the quickheap is zero, as there is only one pivot in S.

Operation delete. The variation of the potential debt Ψ(qhi−1)−Ψ(qhi)(> 0) depends
on how many segments outside the cache are contracted due to the deletion, which
is O(log(m/M)) expected. For each of these segments we contract —decreasing by
1 the potential debt—, we also pay one pivot comparison, plus possibly one extra
comparison. Thus the number of key comparisons performed outside the prefix is
ĉi = ci −Ψ(qhi) + Ψ(qhi−1) = O(log(m/M)).

Operation increaseKey. This operation moves elements to the rear of the quickheap
preserving Theorem 3.3. Thus, for the sake of analysis, operation increaseKey can be
seen as a sequence of two single calls to operations delete and insert. Thus, the number
of comparisons computed outside the cached prefix is O(log(m/M)).

Operation decreaseKey. This operation moves elements to the front of the quickheap,
so it does not preserve Theorem 3.3. Thus, we do not analyze it.

Obtaining the I/O costs. Up to this point we have computed the amortized number
of key comparisons performed by the quickheap operations outside the cached prefix.
Thus, to compute the amortized I/O costs of quickheap operations, we have to take into
account how many of those can produce an additional I/O. According to to the analysis
of Section 3.5.2.1, there are three cases:

1. When moving a pivot from a disk page which is already in memory towards another
page which is not, at least B further pivot movements are necessary before loading
another disk page due to that pivot. Note also that the additional movement of the

74

Chapter 3 Fundamental Algorithms 3.6 Boosting the MST Construction

element beside the pivot is I/O-free, as when the element is moved, both source and
target pages reside in main memory.

2. The access to elements inside the segments is sequential. So, the work performed by
both element insertions or deletions and operation partition is amortized among B
consecutive disk accesses. For this to remain true we need, just as in Section 3.5.2.1,
that at least two blocks of the prefix are cached, that is, M ′ ≥ 2B.

3. When deleting or modifying an element, we have to pay an extra I/O to access the
disk page containing it, unless the element is residing inside the cached prefix or any
of the page where pivots are placed, for instance, when calling delete(idx).

Therefore we have proved the following theorem.

Theorem 3.5 (external quickheap’s complexity). If the Quickheap is operated in external
memory using an optimal page replacement strategy and holding M = Ω(B log m) integers
in main memory, where B is the disk block size and m is the maximum heap size along the
process; then the expected amortized I/O cost of any sequence of m operations insert,
findMin, extractMin, delete and increaseKey over an initially empty quickheap
is O((1/B) log(m/M)) per operation, assuming that insertions and deletions occur at
uniformly random positions. However, operations delete and increaseKey need one
extra I/O in order to access the element to delete or modify, when its page is not residing
in main memory. �

3.6 Boosting the MST Construction

In theory, there is no difference between theory and
practice; in practice, there is.

– Chuck Reid

As a direct application of IQS, we use it to implement Kruskal’s MST algorithm. Later,
we use QHs to implement Prim’s MST algorithm. The solutions obtained are competitive
with the best current implementations, as we show in Section 3.7.

3.6.1 IQS-based Implementation of Kruskal’s MST Algorithm

Recall Section 2.2.4.1 where we explain Kruskal’s algorithm. We can use IQS in order
to incrementally sort E. After initializing C and mst, we create the stack S, and push
m into S. Later, inside the While loop, we call IQS in order to obtain the k-th edge of
E incrementally. Figure 3.21 shows our Kruskal’s MST variant. Note that the expected
number of pivots we store in S is O(log m) (Section 3.4).

75

3.6 Boosting the MST Construction Chapter 3 Fundamental Algorithms

Kruskal3 (Graph G(V,E))
1. UnionFind C ← {{v}, v ∈ V } // the set of all connected components
2. mst← ∅ // the growing minimum spanning tree
3. Stack S, S.push(|E|), k ← 0
4. While |C| > 1 Do
5. (e = {u, v})← IQS(E, k, S), k ← k + 1 // select the lowest edge incrementally
6. If C.find(u) 6= C.find(v) Then
7. mst← mst ∪ {e}, C.union(u, v)
8. Return mst

Figure 3.21: Our Kruskal’s MST variant (Kruskal3). Note the changes in lines 3 and 5 with
respect to the basic Kruskal’s MST algorithm (Figure 2.9, page 23).

We need O(n) time to initialize both C and mst, and constant time for S. Considering
that in the general case we review m′ edges, the expected cost of our Kruskal variant is
O(m + m′ log n) (Section 3.2.2).

According to the results of [JK LP93, p. 349], we expect to review m′ = 1
2n ln n + O(n)

edges within the While loop when working on random graphs. Thus we need
O(m + n log2 n) overall expected time for IQS and O(nα(m,n) log n) time for all the
union and find operations. Therefore, the expected complexity of our Kruskal variant on
random graphs is O(m + n log2 n), just as Kruskal’s algorithm with demand sorting.

3.6.2 Quickheap-based Implementation of Prim’s MST Algorithm

Recall Section 2.2.4.2 where we explain Prims’s algorithm. We can use a quickheap qh
in order to find the minimum node u∗ which we add to R and then extract u∗ from qh.
Next, we check whether we update the values of cost for each u∗’s neighbor, and for these
nodes we update their values in qh. For the sake of a fast access to the elements within
the quickheap, we have to augment the quickheap structure with a dictionary managing
the positions of the elements. Figure 3.22 shows our Prim’s MST variant.

We need O(n) time to initialize both cost and from, and constant time to
initialize qh. Each call to insert and extactMin uses O(1) and O(log n) expected
amortized time, respectively. Thus, the n calls to insert and extractMin use O(n) and
O(n log n) expected time, respectively. Finally, we perform at most m calls to operation
decreaseKey. Regrettably, we cannot prove an upper bound for operation decreaseKey.
However, our experimental results suggest that operation decreaseKey behaves roughly
as O(log n), so the whole construction process is of the form form O(m log n).

We have tested Prim3 on graph with random weights, which is a case where we can
improve the obtained bound. Note that we only call operation decreaseKey when the
new cost weightu∗ ,v is smaller than costv. Considering graphs with random weights, for
each node, the probability of a fresh random edge being smaller than the current minimum

76

Chapter 3 Fundamental Algorithms 3.7 Experimental Results

Prim3 (Graph G(V,E), Vertex s)
1. For each u ∈ V Do costu ←∞, fromu ← null

2. costs ← 0, R← ∅
// creating a quickheap qh, elements are of the form (key = cost, item = nodeId),
// qh is ordered by increasing cost

3. Quickheap qh(n), qh.insert(0, s) // n = |V |
4. While V 6= R Do
5. u∗ ← qh.extractMin().nodeId
6. R← R ∪ {u∗}
7. For each v ∈ (V −R) ∩ adjacency(u∗) Do
8. If weightu∗ ,v < costv Then
9. If costv =∞ Then qh.insert(weightu∗ ,v, v)
10. Else qh.decreaseKey(costv − weightu∗,v, v)
11. costv ← weightu∗ ,v

12. fromv ← u∗

13. Return (cost, from)

Figure 3.22: Our Prim’s MST variant (Prim3). With respect to the basic Prim’s MST
algorithm (Figure 2.11, page 25), we have added a quickheap to find the node u∗.

after reviewing k edges incident on it is 1
k . The number of times we find a smaller cost

obeys the recurrence T (1) = 1 (the base case, when we find v in the first time), and
T (k) = T (k − 1) + 1

k = . . . = Hk = O(log k). As each node has m
n neighbors on average

and for the convexity of the logarithm, we expect to find O
(
log m

n

)
minima per node. So,

adding for the n nodes, we expect to call O
(
n log m

n

)
times operation decreaseKey.

Assuming that each call to decreaseKey has cost O(log n), we conjecture that
this accounts for a total O

(
n log n log m

n

)
expected time, adding up a conjectured

O
(
m + n log n log m

n

)
expected amortized time for Prim3 on graphs with random weights.

3.7 Experimental Results

La science ne sert qu’à vérifier les découvertes de l’instinct.
[Science only serves to verify the discoveries of instinct.]

– Jean Cocteau

We ran four experimental series. In the first we compare IQS with other alternatives. In
the second we study the empirical behavior of QHs. In the third we study the behavior
of QHs in secondary memory. Finally, in the fourth we evaluate our MST variants. The
experiments were run on an Intel Pentium 4 of 3 GHz, 4 GB of RAM and local disk,
running Gentoo Linux with kernel version 2.6.13. The algorithms were coded in C++,

77

3.7 Experimental Results Chapter 3 Fundamental Algorithms

and compiled with g++ version 3.3.6 optimized with -O3. For each experimental datum
shown, we averaged over 50 repetitions. The weighted least square fittings were performed
with R [R D04]. In order to illustrate the precision of our fittings, we also show the average

percent error of residuals with respect to real values
(∣∣∣y−ŷ

y

∣∣∣ 100%
)

for fittings belonging

to around 45% of the largest values2.

3.7.1 Evaluating IQS

For shortness we have called the classical Quickselect + Quicksort solution QSS, and the
Partial Quicksort algorithm PQS (both of them explained in Section 2.1.2.1).

We compared IQS with PQS, QSS, and two online approaches: the first based on
classical heaps [Wil64] (called HEx), and the second based on sequence heaps [San00]
(called SH, obtained from www.mpi-inf.mpg.de/~sanders/programs/spq/). The idea
is to verify that IQS is in practice a competitive algorithm for the Partial Sorting
problem of finding the smallest elements in ascending order. For this sake, we use
random permutations of non-repeated numbers uniformly distributed in [0,m − 1], for
m ∈

[
105, 108

]
, and we select the k first elements with k = 2j < m, for j ≥ 10. The

selection is incremental for IQS, HEx and SH, and in one shot for PQS and QSS. We
measure CPU time and the number of key comparisons, except for SH where we only
measure CPU time.

As it turned out to be more efficient, we implement HEx by using the bottom-up
deletion algorithm [Weg93] for extractMin (see Section 2.1.3.2, page 12).

We summarize the experimental results in Figures 3.23, 3.24 and 3.25, and Table 3.1.
As can be seen from the least square fittings of Table 3.1, IQS CPU time performance is
only 2.99% slower than that of its offline version PQS. The number of key comparisons is
exactly the same, as we expected from Section 3.2.2. This is an extremely small price for
permitting incremental sorting without knowing in advance how many elements we wish
to retrieve, and shows that IQS is practical. Moreover, as the pivots in the stack help us
reuse the partitioning work, our online IQS uses only 1.33% more CPU time and 4.20%
fewer key comparisons than the offline QSS. This is illustrated in Figure 3.23(a), where
the plots of PQS, IQS and QSS are superimposed. A detail of the previous is shown
in Figure 3.23(b), where we appreciate that PQS is the fastest algorithm when sorting a
small fraction of the set, but IQS and QSS have rather similar behavior.

On the other hand, Table 3.1 shows large improvements with respect to online
alternatives. According to the insertion and deletion strategy of sequence heaps, we
compute its CPU time least squares fitting by noticing that we can split the experiment into

2Our fittings are too pessimistic for small permutations or edge sets, so we intend to show that they
are asymptotically good. In the first series we compute the percent error for permutations of length
m ∈ [107, 108] for all the k values, which is approximately 45.4% of the measures. In the second series we
compute the percent error for edge densities in [16%, 100%] for all values of |V |, which is approximately
44.4% of the measures.

78

Chapter 3 Fundamental Algorithms 3.7 Experimental Results

CPU time Error Key comparisons Error

PQS 25.79m + 16.87k log2 k 6.77% 2.138m + 1.232k log2 k 5.54%

IQS 25.81m + 17.44k log2 k 6.82% 2.138m + 1.232k log2 k 5.54%

QSS 25.82m + 17.20k log2 k 6.81% 2.140m + 1.292k log2 k 5.53%

HEx 23.85m + 67.89k log2 m 6.11% 1.904m + 0.967k log2 m 1.20%

SH 9.165m log2 m + 66.16k 2.20% — —

Table 3.1: IQS, PQS, QSS, HEx and SH weighted least square fittings. For SH we only
compute the CPU time fitting. CPU time is measured in nanoseconds.

two stages. The first inserts m random elements into the priority queue, and the second
extracts the k smallest elements from it. Then, we obtain a simplified O(m log(m) + k)
complexity model that shows that most of the work performed by SH comes from the
insertion process. This also can be seen in Figure 3.23(a), by noticing that there is little
difference between obtaining the first elements of the set, or the whole set. As a matter
of fact, we note that if we want a small fraction of the sorted sequence, it is preferable to
pay a lower insertion and a higher extraction cost (just like IQS) than to perform most of
the work in the insertions and little in the extractions.

With respect to the online HEx using the bottom-up heuristic, we have the following.
Even when it uses at most 2m key comparisons to heapify the array, and log m + O(1)
key comparisons on average to extract elements, the poor locality of reference generates
numerous cache faults slowing down its performance. In fact, HEx uses 3.88 times more
CPU time, even using 18.76% fewer key comparisons than IQS. This is illustrated in
Figure 3.23(a) where we can see that HEx has the second worst CPU performance for
k ≤ 0.1m and the worst for k ∈ [0.1m,m], despite that it makes fewer key comparisons
than others when extracting objects, see Figure 3.24.

 2

 4

 8

 16

 32

 64

 128

 256

 0.001 0.01 0.1 1 10 100

C
P

U
 ti

m
e

[s
ec

]

number of selected elements k [x 10e6]

IQS, PQS, QSS, HEx and SH CPU time m = 10e8

IQS
PQS
QSS
HEx
SH

(a) CPU time for the five algorithms.

 2.3

 2.35

 2.4

 2.45

 2.5

 2.55

 2.6

 2.65

 2.7

1000000 100000 10000 1000

C
P

U
 ti

m
e

[s
ec

]

number of selected elements k

IQS, PQS and QSS CPU time m = 10e8

IQS
PQS
QSS
HEx

(b) Detail of CPU time for IQS, PQS, QSS and HEx.

Figure 3.23: Performance comparison between IQS, PQS, QSS, HEx and SH as a function
of the amount of searched elements k for set size m = 108. Note the logscales in the plots.

Finally, Figure 3.25 shows that, as k grows, IQS’s behavior changes as follows. When

79

3.7 Experimental Results Chapter 3 Fundamental Algorithms

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0.001 0.01 0.1 1 10 100

ke
y

co
m

pa
ris

on
s

[x
 1

0e
6]

number of selected elements k [x 10e6]

IQS, PQS, QSS and HEx key comparisons m = 10e8

IQS
PQS
QSS
HEx

(a) Key comparisons for the four algorithms.

 150

 200

 250

 300

 350

 400

 450

 500

 0.1 1 10

ke
y

co
m

pa
ris

on
s

[x
 1

0e
6]

number of selected elements k [x 10e6]

IQS, PQS, QSS and HEx key comparisons m = 10e8

IQS
PQS
QSS
HEx

(b) Detail of key comparisons for the four algorithms.

Figure 3.24: Key comparisons for IQS, PQS, QSS and HEx for m = 108 and varying k.
Note the logscales in the plots.

k ≤ 0.01m, there is no difference in the time to obtain either of the first k elements, as the
term m dominates the cost. When 0.01m < k ≤ 0.04m, there is a slight increase of both
CPU time and key comparisons, that is, both terms m and k log k take part in the cost.
Finally, when 0.04m < k ≤ m, term k log k leads the cost.

 0.125

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 64

 0.001 0.01 0.1 1 10 100

C
P

U
 ti

m
e

[s
ec

]

number of selected elements k [x 10e6]

IQS CPU time

IQS, m=100e6
IQS, m= 70e6
IQS, m= 40e6
IQS, m= 10e6

Figure 3.25: IQS CPU time as a function of k and m. Note the logscale in the plot.

3.7.2 Evaluating Quickheaps

We start by studying the empirical performance of each operation in isolation. Next,
we evaluate two sequences of interleaved operations. The first consists in sequences
of insertions and minimum extraction. The second consists in sequences of minimum
extractions and key modifications. Each experimental datum shown is averaged over
20 repetitions. For shortness we call operation insert ins, operation extractMin del,
operation decreaseKey dk and operation increaseKey ik.

In these experiments, inserted elements follow a uniform distribution. On the other

80

Chapter 3 Fundamental Algorithms 3.7 Experimental Results

hand, updated keys are chosen uniformly, and they are updated by increasing or decreasing
their values by 10%.

3.7.2.1 Isolated Quickheap Operations

We compare the empirical performance of quickheaps (or QHs for shortness) with
binary heaps [Wil64] —including the improvement of Wegener for extractMin
[Weg93]— and with paring heaps [FSST86]. We chose binary heaps because they
are the canonical implementation of priority queues, they are efficient and easy to
program. We also chose pairing heaps because they implement efficiently key update
operations. Note that both binary and paring heaps are reported as the most efficient
priority queue implementations in practice [MS91]. We obtain the pairing heap
implementation, which includes operations insert, extractMin and decreaseKey, from
www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz, as it is described in [KST02].

This experiment consists in inserting m elements
(
m ∈

[
217 ≈ 0.13e6, 226 ≈ 67e6

])
,

next performing i times the sequence del-iki or del-dki, for i = 10000, and later extracting
the remaining m−i elements. We measured separately the time for each different operation
in this sequence. Note that we are testing a combined sequence of one minimum extraction
and several element modifications. Recall that both QHs and paring heaps actually
structure the heap upon minima extractions, so the idea of running an additional minimum
extraction is to force both quickheaps and pairing heaps to organize their heap structure.

Figure 3.26 shows the results and Table 3.2 the least-square fittings. It can be seen
that the basic quickheap operations perform better than the corresponding binary heap
ones. On the other hand, pairing heaps perform better than QHs both when inserting
elements and decreasing the key, although pairing heap operation extractMin is several
times costlier than the quickheap one.

Figure 3.26(a) shows that, as expected from our analysis, the cost of quickheap
operation insert is constant, and it is the second best time (approximately twice the
CPU time of pairing heap and half the time of binary heap). Figure 3.26(b) shows that
quickheaps have the best minimum extraction time, approximately two thirds of binary
heaps and 6 times faster than pairing heaps. Finally, Figure 3.26(c) shows that quickheap
update-key operations perform slightly better than the respective ones for binary heaps.
The plot also shows that pairing heap’s decrease key operation performs slightly better
than quickheaps. Note that the model for quickheaps’ decrease key operation was selected
by observing the curve, as we could not analyze it.

3.7.2.2 Sequence of Insertions and Minimum Extractions

In order to show that quickheaps perform well under arbitrarily long sequences of insertions
and minimum extractions we consider the following sequence of operations:

(
ins-(del-

ins)i
)
m
(
del-(ins-del)i

)
m, for i = 0, 1 and 2. Note that for i = 0 we obtain algorithm

heapsort [Wil64].

81

3.7 Experimental Results Chapter 3 Fundamental Algorithms

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 4 8 16 32 64

C
P

U
 ti

m
e

[n
an

os
ec

]

number of elements [x 10e6]

Quickheaps CPU time, inserting elements

QH ins
BH ins
PH ins

(a) Inserting elements.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 1 2 4 8 16 32 64

C
P

U
 ti

m
e

[n
an

os
ec

]

number of elements [x 10e6]

Quickheaps CPU time, deleting minima

QH del
BH del
PH del

(b) Extracting minima.

 300

 350

 400

 450

 500

 550

 600

 1 2 4 8 16 32 64

C
P

U
 ti

m
e

[n
an

os
ec

]

number of elements [x 10e6]

Quickheaps CPU time, increasing or decreasing the key

QH ik
BH ik

QH dk
BH dk
PH dk

(c) Increasing and decreasing the key.

Figure 3.26: Performance of quickheap operations. Note the logscales in the plots.

Quickheaps Binary heaps Pairing heaps

insert 42 99 26

extractMin 35 log2 m 53 log2 m 201 log2 m

increaseKey 18 log2 m 18 log2 m —

decreaseKey 18 log2 m 20 log2 m 16 log2 m

Table 3.2: Least square fittings for Quickheaps operations. CPU time is measured in
nanoseconds.

82

Chapter 3 Fundamental Algorithms 3.7 Experimental Results

In this experiment we compare QHs with binary and pairing heaps as before, but
we also include sequence heaps [San00], which are optimized for this type of sequences.
The code for sequence heaps was obtained from http://www.mpi-sb.mpg.de/~sanders/-

programs/spq/. Sequence heaps were excluded from other experiments because they do
not implement operations increaseKey and decreaseKey.

Figure 3.27 shows the results of this experiment. Figure 3.27(a) shows that binary
heaps have the best performance for small sets, that is, up to 218 ≈ 262e3 elements. This is
expectable for two reasons: the bottom-up algorithm [Weg93] strongly improves the binary
heap performance, and the whole heap fits in cache memory. However, as the number of
elements in the heap increases, numerous cache misses slow down the performance of binary
heaps (these heaps are known to have poor cache locality, since an extraction touches an
arbitrary element at each level of the heap, and the lower levels contain many elements).
Quickheaps, instead, are more cache-friendly as explained in the previous section. This is
confirmed by the fact that quickheaps retain their good performance on large sets, being
the fastest for more than 219 ≈ 524e3 elements. In fact, for m = 226 ≈ 67e6 binary
heaps perform 4.6 times slower than QHs, and sequence heaps perform 1.6 times slower
than QHs. On the other hand, the pairing heap is, by far, the slowest contestant in this
experiment, as its operation extractMin is very costly.

A similar behavior is appreciated for i = 1 (Figure 3.27(b)) and i = 2 (Figure 3.27(c)).
For i = 1 binary heaps perform better for m < 220 ≈ 1e6 elements, then sequence heaps
are the fastest until m < 223 ≈ 8.4e6, and finally quickheaps take over. For i = 2 the best
behaviour is that of sequence heaps, closely followed by quickheaps. Binary heaps perform
up to 2.43 times slower than quickheaps, and sequence heaps perform 8% faster than
quickheaps. This is a modest difference considering that quickheaps are much simpler to
implement than sequence heaps. Once again, operation extractMin leave pairing heaps
out of the competitive alternatives for this experiment.

3.7.2.3 Sequence of Minimum Extractions and Key Modifications

Some of the most important priority queue applications are algorithms that use them to
find the lowest value of a set, and then update several of the remaining values. This is
the case of Dijkstra’s Shortest Path algorithm [Dij59] or Prim’s Minimum Spanning Tree
algorithm [Pri57].

This experiment consists in inserting m elements into a priority queue, and then
executing m times the sequence del-ik10 or del-dk10. Figure 3.28 shows that quickheaps
are consistently faster than binary heaps. It also shows that they are faster than pairing
heaps. This is because the performance difference for operation decreaseKey between
quickheaps and pairing heaps is small, and it is not enough to compensate the costly
pairing heap operation extractMin.

83

3.7 Experimental Results Chapter 3 Fundamental Algorithms

 64

 16

 4

 1

 0.25

2^-4

2^-6

 0.0625 0.25 1 4 16 64

C
P

U
 ti

m
e

[s
ec

]

number of elements [x 10e6]

Quickheaps CPU time, ins^m del^m

QH
BH
SH
PH

(a) insm delm.

 256

 64

 16

 4

 1

 0.25

2^-4

 0.0625 0.25 1 4 16 64

C
P

U
 ti

m
e

[s
ec

]

number of elements [x 10e6]

Quickheaps CPU time, (ins del ins)^m (del ins del)^m

QH
BH
SH
PH

(b) (ins-del-ins)m (del-ins-del)m.

 256

 64

 16

 4

 1

 0.25

2^-4
 0.0625 0.25 1 4 16 64

C
P

U
 ti

m
e

[s
ec

]

number of elements [x 10e6]

Quickheaps CPU time, (ins (del ins)^2)^m (del (ins del)^2)^m

QH
BH
SH
PH

(c)
`

ins-(del-ins)2
´

m
`

del-(ins-del)2)m.

Figure 3.27: Performance of sequences interleaving operations ins and del. Note the logscales
in the plots.

3.7.3 Evaluating External Memory Quickheaps

We carry out a brief experimental validation of quickheaps in external memory. It
consists in measuring their performance when executing the sequence insm delm for
m ∈ [1e6, 200e6], varying the size of main memory M from 1 to 256 megabytes and disk
block size B = 32 kilobytes. The inserted elements follow a uniform distribution. We also
compare external quickheaps with the results presented in [BCFM00], which report the
number of blocks read/written for different sequences of operations on the most promising
secondary memory implementations, namely, two-level radix heaps [AMOT90] (R-Heaps)
and Array-Heaps [BK98]. In [BCFM00], authors consider M = 16 megabytes of main
memory and the same size of disk block as us. Experimental results show that secondary-
memory quickheaps are competitive with the best state-of-the-art implementations of
secondary memory priority queues.

The results are shown in Figure 3.29. As it can be seen, quickheaps achieve
a performance slightly worse than the best alternative structures when using just 4
megabytes of RAM. When using the same 16 megabytes, our structure performs 29%

84

Chapter 3 Fundamental Algorithms 3.7 Experimental Results

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32

C
P

U
 ti

m
e

[s
ec

]

number of elements [x 10e6]

Quickheaps CPU time, minimum extraction and key modifications

QH, del and ik
BH, del and ik

QH, del and dk
BH, del and dk
PH, del and dk

Figure 3.28: Performance of sequences interleaving operations del and ik/dk. Note the logscale
in the plot.

to 167% of the I/O accesses of R-Heaps (that is, up to 3 times less), which only work
if the priorities of the extracted elements form a nondecreasing sequence. If we consider
the best alternative that works with no restriction (Array-Heaps), external Quickheaps
perform 17% (up to 5 times less) to 125% of their I/O accesses. We notice that, as the
ratio m

M grows, the performance of both R-Heaps and Array-Heaps improves upon external
Quickheaps’s. Other tests in [BCFM00] are harder to reproduce 3.

 262144

 65536

 16384

 4096

 1024

 256

 1 2 4 8 16 32 64 128 256

I/O
 c

os
t

m = number of elements [x 10e6]

Quickheap’s number of I/Os varying available RAM, ins^m del^m

QH 4MB RAM
QH 16MB RAM
QH 64MB RAM

QH 256MB RAM
R-Heap 16MB RAM

Array Heap 16MB RAM

Figure 3.29: I/O cost comparison for the sequence insm delm. Note the logscales in the plot.

Naturally, as more RAM is available, the I/O accesses consistently fall down. In fact,
we notice the logarithmic dependence on m and on M (the plots are log-log), as expected
from our analysis.

3For example, they also report real times, but those should be rerun in our machine and we do not have
access to LEDA, which is mandatory to run their code.

85

3.7 Experimental Results Chapter 3 Fundamental Algorithms

3.7.4 Evaluating the MST Construction

MST construction is one of the emblematic applications of partial sorting and priority
queues. We now evaluate both how IQS improves Kruskal’s MST algorithm (Section
2.2.4.1), and the effect of implementing Prim’s MST algorithm (Section 2.2.4.2) using
QHs. Our aim is not to study new MST algorithms but just to demonstrate the practical
impact of our new fundamental contributions to existing classical algorithms.

We compare our improved MST construction algorithms with state-of-the-art
alternatives. We use synthetic graphs with edges chosen at random, and with edge costs
uniformly distributed in [0, 1]. We consider graphs with |V | ∈ [2000, 26000], and graph
edge densities ρ ∈ [0.5%, 100%], where ρ = 2m

n(n−1)100%.

For shortness we have called the basic Kruskal’s MST algorithm Kruskal1, Kruskal’s
with demand sorting Kruskal2, our IQS-based Kruskal’s Kruskal3, the basic Prim’s
MST algorithm Prim14, Prim’s implemented with pairing heaps Prim2 (Section 2.2.4.2),
our Prim’s implementation using QHs Prim3 and the iMax algorithm iMax (Section
2.2.4.3).

According to the experiments of Section 3.7.1, we preferred classical heaps
using the bottom-up heuristic (HEx) over sequence heaps (SH) to implement
Kruskal2 in these experiments (as we expect to extract 1

2n ln n + O(n) ≪ m
edges). We obtained both the iMax and the optimized Prim2 implementations from
www.mpi-sb.mpg.de/~sanders/dfg/iMax.tgz, described in [KST02].

For Kruskal’s versions we measure CPU time, memory requirements and the size of
the edge subset reviewed during the MST construction. Note that those edges are the ones
we incrementally sort. As the three versions run over the same graphs, they review the
same subset of edges and use almost the same memory. For Prim’s versions and iMax we
measure CPU time and memory requirements.

We summarize the experimental results in Figures 3.30, 3.31, 3.32 and 3.33, and Table
3.3. Table 3.3 shows our least squares fittings for the MST experiments. First of all, we
compute the fitting for the number of lowest-cost edges Kruskal’s MST algorithm reviews to
build the tree. We obtain 0.524 |V | ln |V |, which is very close to the theoretically expected
value 1

2 |V | ln |V |. Second, we compute fittings for the CPU cost for all the studied versions
using their theoretical complexity models. Note that, in terms of CPU time, Kruskal1
is 17.26 times, and Kruskal2 is 2.20 times, slower than Kruskal3. Likewise, Prim3 is
just 4.6% slower than Kruskal3. Finally, Kruskal3 is around 33% slower than Prim2
and 2.6 times faster than iMax. Note, however, that we cannot finish the experimental
series with Prim2 and iMax, as they use too much memory (the memory consumption
is shown in Figure 3.31 and discussed soon).

Figure 3.30 compares all the studied versions for n = 20, 000 and graph edge density
ρ ∈ [0.5%, 100%]. As can be seen, Kruskal1 is, by far, the slowest alternative, whereas

4That is, without priority queues. This is the best choice to implement Prim in complete graphs.

86

Chapter 3 Fundamental Algorithms 3.7 Experimental Results

Fitting Error

Edges reviewed in Kruskal’s versions 0.524n ln n 2.97%

Kruskal1cpu 12.87m log2 m 2.31%

Kruskal2cpu 40.38m + 37.47n log2 n log2 m 3.57%

Kruskal3cpu 20.44m + 9.19n log2
2 n 4.67%

Prim1cpu 19.08m + 7.24n2 1.74%

Prim2cpu 9.71m + 141.2n log2 n 8.24%

Prim3cpu 19.81m + 37.56n log2 n log m
n 3.57%

iMaxcpu 30.44m + 655.1n log2 n 25.83%

Table 3.3: Weighted least-square fittings for MST construction algorithms (n = |V |, m = |E|).
CPU time is measured in nanoseconds.

Kruskal3 shows the best or second best performance for all ρ. Prim3 also shows good
performance, being slightly slower than Kruskal3 for low densities (ρ ≤ 8%), and reaching
almost the same time of Kruskal3 for higher densities. When Kruskal3 achieves the
second best performance, the fastest algorithm is Prim2. We also notice that, as ρ
increases, the advantage of our Kruskal’s MST variant is more remarkable against basic
Kruskal’s MST algorithm. We could not complete the series for Prim2 and iMax, as their
structures require too much space. As a matter of fact, for 20,000 vertices and ρ ≥ 32%
these algorithms reach the 3 GB out-of-memory threshold of our machine.

 16

 8

 4

 2

 1

 0.5

 0.25

2^-3

2^-4
 100 64 32 16 8 4 2 1 0.5

C
P

U
 ti

m
e

[s
ec

]

graph edge density [%]

MST CPU time, n = 20,000

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim2
Prim3
iMax

Figure 3.30: MST construction CPU times, for n = 20, 000 depending on ρ. For ρ = 100%
Kruskal1 reaches 70.1 seconds. Note the logscale.

Figure 3.31 shows the memory requirements of Kruskal3, iMax, Prim2 and Prim3,
for n = 20,000. Since our Kruskal’s implementation sorts the list of edges in place, we
require little extra memory to manage the edge incremental sorting. With respect to
Prim3, as the graph is handled as an adjacency list, it uses more space than the list of
edges we use in Kruskal3. Nevertheless, the space usage is still manageable, and the extra
quickheap structures use little memory. On the other hand, the additional structures of
Prim2 and iMax heavily increase the memory consumption of the process. We suspect
that these high memory requirements trigger many cache faults and slow down their CPU

87

3.7 Experimental Results Chapter 3 Fundamental Algorithms

performance. As a result, for large graphs, Prim2 and especially iMax become slower
than Kruskal3, despite their better complexity.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 100 64 32 16 8 4 2 1 0.5

m
em

or
y

re
qu

ire
m

en
ts

 [G
B

]

graph edge density [%]

MST Memory requirements, n = 20,000

Kruskal3
Prim3
Prim2
iMax

Figure 3.31: Memory used by Kruskal3, iMax, Prim2 and Prim3 for |V | = 20, 000 nodes,
depending on ρ. As can be seen, iMax and Prim2 exhaust the memory for ρ > 32% and
ρ > 64%, respectively. Note the logscale.

Figure 3.32 shows the CPU time comparison for four edge densities ρ = 2%, 8%, 32%
and 100%. In the four plots Kruskal3 is always the best Kruskal’s version for all sizes
of set V and all edge densities ρ. Moreover, Figure 3.32(d) shows that Kruskal3 is also
better than Prim1, even in complete graphs. Once again, Prim3 shows a performance
similar to Kruskal3. On the other hand, Kruskal3 and Prim3 are better than iMax
in the four plots, and very competitive against Prim2. In fact Kruskal3 beats Prim2
in some cases (for |V | ≥ 18,000 and 22,000 vertices in ρ = 2% and 8%, respectively). We
suspect that this is due to the high memory usage of Prim2, which affects cache efficiency.
Note that for ρ = 64% and 100% we could not finish the series with Prim2 and iMax
because of their memory requirements.

Finally, Figure 3.33 shows the same comparison of previous figure, now considering a
lollipop graph. Given a random graph G(V,E) we can build a lollipop graph Gl as follows.
First we compute the maximum edge weight weight∗ of G; and second, we pick a node
ul ∈ V at random and increase the weight of its edges by weight∗. Lollipop graphs are a
hard case for Kruskal’s algorithms, as they force them to review almost all the edges in G
before connecting ul to the MST of Gl. The figure shows that the MST CPU time of all
Kruskal’s variant dramatically increases, while Prim3 preserves its performance. We omit
Prim2 and iMax as we do not have the lollipop graph generator for these algorithms.
Note, however, that it is also expectable that both Prim2 and iMax will retain their
performance. That is, Prim2 could be the best or second best algorithm, and iMax
would display the same performance of Figure 3.32, which is not enough to beat Prim3.
Likewise, it is also expectable they exhaust the main memory in the same cases of previous
experiments.

88

Chapter 3 Fundamental Algorithms 3.7 Experimental Results

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 2%

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim2
Prim3
iMax

(a) MST CPU time, depending on n.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10 12 14 16 18 20 22 24 26
C

P
U

 ti
m

e
[s

ec
]

nodes x 1,000

MST CPU time, density = 8%

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim2
Prim3
iMax

(b) MST CPU time, depending on n.

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 32%

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim2
Prim3
iMax

(c) MST CPU time, depending on n.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 100%

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim2
Prim3
iMax

(d) MST CPU time, depending on n.

Figure 3.32: Evaluating MST construction algorithms as a function of n = |V | in (a), (b), (c)
and (d) for ρ = 2%, 8%, 32% and 100%, respectively. For n = 26, 000, in (a) Kruskal1,
Kruskal2 and iMax reach 2.67, 0.76 and 0.62 seconds; in (b) Kruskal1, Kruskal2 and
iMax reach 9.08, 1.56 and 1.53 seconds; in (c) Kruskal1 and Kruskal2 reach 37.02 and
4.82 seconds; in (d) Kruskal1, Kruskal2 and Prim1 reach 121.14, 13.84 and 25.96 seconds,
respectively.

89

3.7 Experimental Results Chapter 3 Fundamental Algorithms

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 2%, Kruskal’s worst case

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim3

(a) MST CPU time, Kruskal’s worst case.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 8%, Kruskal’s worst case

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim3

(b) MST CPU time, Kruskal’s worst case.

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16 18 20 22 24 26

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 32%, Kruskal’s worst case

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim3

(c) MST CPU time, Kruskal’s worst case.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12 14 16 18 20 22

C
P

U
 ti

m
e

[s
ec

]

nodes x 1,000

MST CPU time, density = 100%, Kruskal’s worst case

Kruskal1
Kruskal2
Kruskal3

Prim1
Prim3

(d) MST CPU time, Kruskal’s worst case.

Figure 3.33: Evaluating MST construction algorithms as a function of n = |V | in (a), (b), (c)
and (d) for ρ = 2%, 8%, 32% and 100%, respectively. In these series we use a lollipop graph,
which is a hard case for Kruskal’s algorithm. It can be seen that the MST CPU time of all
Kruskal’s variant dramatically increases, while Prim3 preserves its performance.

90

Chapter 4

k-Nearest Neighbor Graphs

La visión de tu vecino es tan cierta para él como tu propia
visión lo es para ti. [Your neighbor’s view is as true for him
as your own view is true for you.]

– Miguel de Unamuno

Let us consider a metric space (X, d), where X is the universe of objects and d is a distance
function defined among them. Let U be a set of objects in X. The k-nearest neighbor graph
(knng) of the set U is a weighted directed graph G(U, E) connecting each element u ∈ U

to its k nearest neighbors, thus E = {(u, v), v ∈ NNk(u)}. That is, for each element u we
store the result of its k-nearest neighbor query NNk(u). knngs themselves can be used for
many purposes, for instance, cluster and outlier detection [EE94, BCQY96], VLSI design,
spin glass and other physical process simulations [CK95], pattern recognition [DH73],
query or document recommendation systems [BYHM04a, BYHM04b], similarity self joins
[DGSZ03, DGZ03, PR08], and many others. Hence, their construction is interesting per
se. For this sake, in Section 4.1 we introduce a general knng construction methodology
which exploits some metric and graph properties. Next, in Section 4.2 we give two knng

construction algorithms developed on top of our methodology. In this thesis, we are
interested in how to use them to speed up metric queries, which is the main topic of
Section 4.3, where we give some algorithms for searching metric spaces using the knng

as the metric index. Finally, in Section 4.4 we give some experimental results both for
construction and for searching algorithms.

91

4.1 A General knng Construction Methodology Chapter 4 k-Nearest Neighbor Graphs

4.1 A General knng Construction Methodology

There are two ways of constructing a software design: One
way is to make it so simple that there are obviously no
deficiencies, and the other way is to make it so complicated
that there are no obvious deficiencies. The first method is
far more difficult.

– C.A.R. Hoare

We are interested in practical knng construction algorithms for general metric spaces. This
problem is equivalent to solving n NNk(u) queries for all u ∈ U. Thus, a straightforward
solution has two stages: the first is to build some known metric index I (there are many
indices described in [CNBYM01, HS03, ZADB06, Sam06]), and the second is to use I to
solve the n queries. Naturally, we can try to use range-optimal k-nearest neighbor queries
—instead of the classic alternative of performing range queries varying the radius— to
avoid extra work that retrieves more objects than necessary. This basic scheme can be
improved if we take into account some observations:

• We are solving queries for the elements in U, not for general objects in X. Therefore,
the construction of I itself can give us valuable information for the n queries.

• We are solving queries for all the elements in U. If we solve the n queries jointly
we can share costs through the whole process. For instance, we can avoid some
calculations by using the symmetry of d, or some other heuristic improvements.

• We can upper bound some distances by computing shortest paths over the knng

under construction, maybe avoiding their actual computation. So, we can use the
very knng in stepwise refinements to improve the second stage.

Based on these observations, we develop some ingredients to enhance the process of
constructing knngs. In the following we describe them in detail, and finally show how to
use them together in the knng recipe.

Since we want to use the knng to index the metric space, in order to avoid confusions
we call index I the preindex, and the first stage the preindexing stage.

4.1.1 The Main Data Structure

All along the algorithm, we use a so-called Neighbor Heap Array (NHA) to store the knng

under construction. For each object u ∈ U, we store a k-element priority queue NHAu,
and NHA can be regarded as the union of all the NHAu. At any point in the process
NHAu will contain the k elements closest to u known up to then, and their distances to u.

92

Chapter 4 k-Nearest Neighbor Graphs 4.1 A General knng Construction Methodology

Formally, NHAu = {(xi1 , d(u, xi1)) , . . . , (xik , d(u, xik))} sorted by decreasing d
(
u, xij

)
(ij

is the j-th neighbor identifier).

For each u ∈ U, we initialize NHAu = {(null,∞), . . . , (null,∞)}, |NHAu| = k. Let
curCRu = d(u, xi1) be the current covering radius of u, that is, the distance from u towards
its farthest current neighbor candidate in NHAu.

4.1.2 Management of NHA

In the first stage, every distance computed to build the preindex I populates NHA. In the
second, we refine NHA with the additional distance computations.

We must ensure that |NHAu| = k upon successive additions. Hence, if we find some
object v such that d(u, v) < curCRu, before adding (v, d(u, v)) to NHAu we extract the
farthest candidate from NHAu. This progressively reduces curCRu from ∞ to the real
covering radius. At the end, each NHAu stores the k objects satisfying the query NNk(u),
that is, they will become the k closest neighbors of u. Therefore, once the construction
finishes NHA stores the knng of U.

4.1.3 Using NHA as a Graph

Once we calculate duv = d(u, v), if duv ≥ curCRu we discard v as a candidate
for NHAu. Also, due to the triangle inequality we can discard all objects w such
that d(v,w) ≤ duv − curCRu. Unfortunately, we do not necessarily have stored d(v,w).
However, we can upper bound d(v,w) with the sum of edge weights traversed in the
shortest paths over NHA from v to all w ∈ U, dNHA(v,w). So, if duv ≥ curCRu, we also
discard all objects w such that dNHA(v,w) ≤ duv− curCRu. These objects w can be found
using a shortest-path expansion from v over the graph NHA.

4.1.4 d is Symmetric

Every time a distance duv = d(u, v) is computed, we check both duv < curCRu for adding
(v, duv) to NHAu, and duv < curCRv for adding (u, duv) to NHAv. This can also reduce
curCRv and cheapen the future query for v, even when we are solving neighbors for another
object.

4.1.5 U is Fixed

Assume we are solving query NNk(u), we have to check some already solved object v, and
curCRu ≤ curCRv. This means that v already has its definitive k-nearest neighbors and
curCRv achieved its (smallest) final value. Then, if u /∈ NNk(v) ⇒ d(u, v) ≥ curCRv ≥
curCRu, so necessarily v /∈ NNk(u). Otherwise, if u ∈ NNk(v), then we have already
computed d(u, v). Then, in those cases we avoid to compute d(u, v). Figure 4.1 illustrates.

93

4.1 A General knng Construction Methodology Chapter 4 k-Nearest Neighbor Graphs

d(u,v)

u

u

curC
R

u

u

NNk(v)d

cu
rC

Rv

v

NNk(v)d

cu
rC

Rv

v

d(u,v)

curC
R

Figure 4.1: Assume we are solving u, v is already solved, and curCRu ≤ curCRv. On the left,
if u /∈ NNk(v)⇒ d(u, v) ≥ curCRv ≥ curCRu. On the right, if u ∈ NNk(v), we have already
computed d(u, v). Then, in those cases we avoid computing d(u, v).

4.1.6 Check Order Heap (COH)

We create priority queue COH = {(u, curCRu), u ∈ U} to complete NNk(u) queries for all
objects u ∈ U as they are extracted from COH in increasing curCRu order, until COH
gets empty. The goal is to solve the easiest queries first, both to reduce the CPU time
and, by virtue of the symmetry of d, to increase the chance of reducing other curCRv ’s.

Indeed, note that when we are solving the query for an object u, if we have to check an
object v whose query is yet unsolved we compute the distance between them (duv = d(u, v))
and by using curCRu we check whether v gets into the nearest neighbor candidates for
u. Nevertheless, using “d is symmetric”, we can also check whether v’s current covering
radius curCRv improves (that is, diminishes) when considering u within the v neighbor
candidates, in which case we update v in COH with its new curCRv. This way, we cheapen
the future query for v. This is likely to occur because the query we are currently solving
is the one with the smallest candidate radius. Note that a small radius query has better
discriminative power and produces candidates that are closer to the query, which is a
favorable scenario in order to use “d is symmetric”.

4.1.7 The Recipe

We split the process into two stages. The first is to build I to preindex the objects. The
second is to use I and all the ingredients to solve the NNk(u) queries for all u ∈ U. Figure
4.2 depicts the methodology.

For practical reasons, we allow that our algorithms use at most O(n(k+log n)) memory
both to preindex U and to store the knng under construction.

94

Chapter 4 k-Nearest Neighbor Graphs 4.2 knng Construction Algorithms

KNN (Integer k, ObjectSet U)
Stage 1: Initialize NHA and construct the preindex I
1. For each u ∈ U Do NHAu ← {(null,∞), . . . , (null,∞)} // k pairs
2. Create I, all computed distances populate symmetrically NHA

Stage 2: Complete the NNk(u) for all u ∈ U

3. COH ← {(u, curCRu), u ∈ U}
4. For each (u, curCRu) ∈ COH, in increasing curCRu order Do
5. Create the candidate set C according to I // exclude NHAu

6. While C 6= ∅ Do
7. v ← extract a candidate from C
8. If “U is fixed” does not apply for u and v Then
9. duv ← d(u, v), try to insert v into NHAu

10. try to insert u into NHAv, update v in COH (symmetry)
11. use preindex I and NHA as a graph to filter out objects from C
12. Return NHA as a graph

Figure 4.2: Sketch of the methodology.

4.2 knng Construction Algorithms

Why did Nature create man? Was it to show that she is
big enough to make mistakes, or was it pure ignorance?

– Holbrook Jackson

On top of our methodology, we propose two knng construction algorithms based on small
preindices and focused on decreasing the total number of distance computations. These
are:

1. Recursive partition based algorithm: In the first stage, we build a preindex by
performing a recursive partitioning of the space. In the second stage, we complete
the NNk(u) queries using the order induced by the partitioning.

2. Pivot based algorithm: In the preindexing stage, we build the pivot index. Later,
we complete the NNk(u) queries by performing range-optimal queries, which are
additionally improved with metric and graph considerations.

In the next section we show how to use the recipe to implement a basic knng

construction algorithm. Later, we give our two construction algorithms.

95

4.2 knng Construction Algorithms Chapter 4 k-Nearest Neighbor Graphs

4.2.1 Basic knng Construction Algorithm

The intuitive idea to solve knng is iterative: for each u ∈ U we compute the distance
towards all the others, and select the k smallest-distance objects. The basic algorithm we
present in Figure 4.3 already uses some of the ingredients: the second stage, NHA, and
the symmetry of d. At the end, in NHA we have the knng of U.

KNNb (Integer k, ObjectSet U)
1. For each u ∈ U Do NHAu ← {(null,∞), . . . , (null,∞)}, |NHAu| = k
2. For i ∈ [1, |U| − 1], j ∈ [0, i − 1] Do
3. u← Ui, v ← Uj , duv ← d(u, v) // Ui refers to the i-th object of U

4. If duv < curCRu Then NHAu.extractMax(), NHAu.insert(v, duv)
5. If duv < curCRv Then NHAv.extractMax(), NHAv.insert(u, duv)
6. Return NHA

Figure 4.3: Basic knng construction algorithm (KNNb). For each u ∈ U, (i) NHAu is a
priority queue of size k whose elements are of the form (object, value) sorted by decreasing
value, and (ii) curCRu is an alias for NHAu.findMax().value.

The basic knng construction algorithm makes O
(
n2
)

distance evaluations, has
O
(
n2 log k

)
worst case extra CPU cost and O

(
n
(
n + k log k log n

k

))
expected extra CPU

cost, and uses O(kn) memory.

The worst case extra CPU time comes from performing O
(
n2
)

times the pair of
operations extractMax and insert over all the priority queues NHAu. Using any decent
k-element priority queue we need O(log k) time to perform both operations. This accounts
for a total O

(
n2 log k

)
time.

The expected extra CPU time comes from the expected number of comparisons that
occur in NHA. Let us considered the classic binary heap. The base case consists in
initializing the heap with the first k distances using Floyd’s linear time algorithm [Flo64].
Next, during the process, a random distance is greater than the k-th smallest one with
probability n−k

n , and lower with probability k
n (where n is the number of distances seen

up to now). In both cases we pay one comparison against the k-th smallest one, and in
the second, we also pay log2 k + O(1) comparisons in NHAu (using Wegener’s bottom-up
deletion algorithm [Weg93]). Also, the expected number of key comparisons when inserting
independent and identically distributed elements in a binary heap is O(1).

So, the recurrence that counts the expected number of comparisons for
each NHAu is T (n, k) = T (n− 1, k) + 1n−k

n + (1 + log k + O(1)) k
n , T (k, k) = O(k).

Collecting terms and replacing the O(1) term by some constant c we obtain
T (n, k) = T (n− 1, k) + 1 + (c + log k) k

n = T (n− 1, k) + 1 + k(c + log k)(Hn −Hn−1) =
. . . = O(k) + n− k + k(c + log k)(Hn −Hk) = O

(
n + k log k log n

k

)
. As we have n queues,

we obtain O
(
n
(
n + k log k log n

k

))
expected extra CPU time.

96

Chapter 4 k-Nearest Neighbor Graphs 4.2 knng Construction Algorithms

Note that using a similar analysis, we can prove that using our Quickheaps (Section
3.3) we obtain the same O

(
n
(
n + k log k log n

k

))
expected extra CPU time.

4.2.2 Recursive-Partition-Based Algorithm

This algorithm is based on using a preindex similar to the Bisector Tree (BST) [KM83].
We call our modified BST the Division Control Tree (DCT), which is a binary tree
representing the shape of the partitioning. The DCT node structure is {p, l, r, pr}, which
represents the parent, the left and right child, and the partition radius of the node,
respectively. The partition radius is the distance from the node towards the farthest
node of its partition. (With respect to the original BST structure, we have added the
pointer p to easily navigate trough the tree.)

For simplicity we use the same name for the node and for its representative in the
DCT . Then, given a node u ∈ U, up, ul, and ur, refer to nodes that are the parent,
left child, and right child of u in the DCT , respectively, and also to their representative
elements in U. Finally, upr refers to the partition radius of u.

In this algorithm, we use O(kn) space to store the NHA and O(n) to store the DCT .
The remaining memory is used as a cache of computed distances, CD, whose size is limited
to O(n log n). Thus, every time we need to compute a distance, we check if it is already
present in CD, in which case we just return the stored value. Note that the CD ⊂ U

2×R
+

can also be seen as graph of all stored distances. The criterion to insert distances into
CD depends on the stage of the algorithm (see later). Once we complete the NNk(u), we
remove its adjacency list from CD.

4.2.2.1 First Stage: Construction of DCT

We partition the space recursively to construct the DCT , and populate symmetrically
NHA and CD with all the distances computed. Note that during the first stage, CD is an
undirected graph since for each distance we store both directed edges.

The DCT is built as follows. Given the node root and the set S, we choose two far
away objects, the children l and r, from S. To do so, we take a sample of |S|/2 object pairs
from S at random and pick the farthest pair. Then, we generate two subsets: Sl, objects
nearer to l, and Sr, objects nearer to r. Finally, for both children we update their parents
(with root) and compute both partition radii in DCT . The recursion follows with (l, Sl)
and (r, Sr), finishing when |S| < 2. DCT is constructed by procedure division, depicted
in Figure 4.4.

Once we finish the division, leaves in the DCT have partition radii 0. The DCT root
is the only fictitious node without an equivalent in U. Its partition radius is ∞, and its
children are the two nodes of the first division.

97

4.2 knng Construction Algorithms Chapter 4 k-Nearest Neighbor Graphs

division(Object R, ObjectSet S)
1. If |S| = 0 Then Return
2. If |S| = 1 Then Rl ← o, op ← R, Return // let S = {o}
3. (u, v, duv) ← two far away objects, and the distance between them
4. Rl ← u, Rr ← v
5. S ← S − {u, v}
6. (Su,maxdu, Sv,maxdv)← S divided according to distances towards u and v,

and the respective partition radii
7. up ← R,upr ← maxdu, vp ← R, vpr ← maxdv

8. division(u, Su), division(v, Sv)

Figure 4.4: Auxiliary procedure division. All the distances computed in lines 3 and 6 populate
NHA and are stored in CD symmetrically. To improve readability, we use subscripts to reference
the parent, left child, right child and partition radius of node u in the DCT , which is managed
as a global structure. R is the root of the current partitioning of set S, in the first division is
a fictitious node.

It is easy to see that the expected number of distances computed when building the
DCT , and thus stored in CD, in the first stage is O(n log n). Note that the DCT is a
binary tree composed by n + 1 nodes. Let us consider a path starting from any node u
towards the DCT root. In this path, node u has computed the distance towards each
node in the path, and its respective sibling in DCT , except for the fictitious node root.
Therefore, the number of computed distances is twice the sum of internal path lengths
minus 2n (so as to discount all the times we visit node root when adding up the n paths).

Now we have to realize that the expected sum of internal path lengths follows the
same expected analysis of Quicksort. To do so, we notice that taking two nodes l and
r to recursively split the set S according to the distances towards them is equivalent to
recursively producing two array partitions using a random pivot. So, the partition tree
represented by the DCT obeys the same shape of the partition tree produced by the pivots
of Quicksort. Therefore, using the Quicksort formula [GBY91], the expected sum of the
internal path lengths of an (n + 1)-node tree is 2(n + 2)Hn+1 − 4(n + 1).

Putting all together, during the construction of the DCT we compute
4(n + 2)Hn+1 − 8(n + 1)− 2n distances. As we store 2 edges per distance, we expect
to store 8(n + 2)Hn+1 − 20(n + 1) + 4 < 8n ln n, for n > 1. Hence, we fix the space of CD
as 8n ln n = O(n log n).

During the first stage we store all the computed distances, even if they are more than
8n ln n, yet it is very unlikely that the size of CD exceeds the limit in this stage. For the
second stage, our caching policy enforces the limit of storing at most 8n ln n distances.

98

Chapter 4 k-Nearest Neighbor Graphs 4.2 knng Construction Algorithms

4.2.2.2 Second Stage: Computing the knng

We first explain how to solve a single NNk(u) query using only the DCT structure, and next
how to use the ingredients to share costs, and take benefit of the whole knng construction
process.

Solving a Single NNk(u) Query with the DCT . To solve the query we create the
candidate set C according to the DCT . Note that the construction of DCT ensures that
every node has already computed distances to all of its ancestors, its ancestor’s siblings,
and its parent descent. Then, to finish the NNk(u) query, it is enough to check whether
there are relevant objects in all the descendants of u’s ancestors’ siblings; as other nodes
(ancestors, ancestor’s siblings and parent descent) have already been checked. In Figure
4.5(a), we represent the non-checked objects as white nodes and subtrees. So, the candidate
set C should be the set of all the nodes and (the nodes inside the) subtrees we are going
to review.

v

ROOT

u

(a) Induced check sequence.

d(u,v)

pr

v

vr

vl

curC
R

u

u

v

(b) DCT can discard partitions.

Figure 4.5: Using the DCT to solve NNk(q) queries. In (a), u has been compared with
all black nodes and all the descent of its parent. To finish the query, we only process white
nodes and subtrees. In (b), we show how to use DCT to avoid checking some partitions by
only reviewing the ones intersecting with the ball (u, curCRu). We start by checking the v’s
partition, so we recursively descend to v’s children; thus, using the radii vlpr

and vrpr , we check
the partition of vl, and discard the vr’s.

Nevertheless, the DCT allows us to avoid some work. Assume we are checking whether
v is relevant to u. If d(u, v) ≥ curCRu + vpr we can discard v and its whole partition,
because the balls (u, curCRu) and (v, vpr) do not intersect. Otherwise, we recursively check
children vl and vr. Figure 4.5(b) illustrates. Hence, to solve the query for u, it suffices
to initialize the set C with all u’s ancestors’ siblings. Next, we pick a node v from C
and check whether its partition (v, vpr) does not intersect with the ball containing u’s k-
nearest neighbor candidates (u, curCRu), in which case we discard the whole v’s partition.
Otherwise, we add v’s children (nodes vl and vr) to the set C. This way, we only manage
nodes, not trees, in C.

Finally, since it is more likely to discard small partitions, we process C in order of
increasing radius. This agrees with the intuition that the partition radius of u’s parent’s

99

4.2 knng Construction Algorithms Chapter 4 k-Nearest Neighbor Graphs

sibling is likely to be the smallest of C, and that some of u’s parent’s sibling’s descendants
could be relevant to u, since these nodes share most of u’s branch in DCT , and the
partitioning is made according to node closeness. Furthermore, note that finding close
neighbors fast helps reducing curCRu early, which speeds up the process by permitting
more pruning of subtrees.

Solving All the Queries Jointly by Using the Ingredients. As CD can be seen as
a graph, we use NHA∪CD to upper bound distances: when d(u, v) ≥ curCRu, we discard
objects w such that their shortest path dNHA∪CD(v,w) ≤ d(u, v) − curCRu, avoiding the
direct comparison. We do this by adding edges (u,w) to CD marked as EXTRACTED. This
task is performed by extractFrom, which is a variant of Dijkstra’s shortest-path algorithm
with propagation limited to d(u, v) − curCRu. Note that an edge (u,w) could belong to
CD in two cases: (i) w has been marked as EXTRACTED, and (ii) we have the real value of
the distance between u and w. In both cases we stop the propagation (which also ensures
us to avoid exponential complexity due to multiple checking), but in the second case we do
not mark the node w as EXTRACTED, as we can use later this already computed distance.

Note that we can save some CPU time in extractFrom if we use the distance to
the current nearest neighbor of each node w, NNDw, to know whether it is worthless
propagating paths from w because we exceed the discarding limit even with its nearest
neighbor. Figure 4.6 depicts procedure extractFrom.

extractFrom(Object v, Object u, R
+ limit)

1. minHeap.insert(v, 0) // ordered by the second component
2. While |minHeap| > 0 Do
3. (c, dvc)← minHeap.extractMin()
4. For each (w, dcw) ∈ NHAc ∪CDc Do
5. If (u,w) ∈ CD Then continue // with the next element in minHeap
6. If dvc + dcw ≤ limit Then
7. CDu.insert(w, EXTRACTED) // we discard w
8. If dvc + dcw + NNDw ≤ limit Then minHeap.insert(w, dvc + dcw)

Figure 4.6: Auxiliary procedure extractFrom. extractFrom is a shortest-path algorithm
limited to limit = d(u, v) − curCRu. It discards objects w from v by marking them as
EXTRACTED (that is, performing CDu.insert(w, EXTRACTED)) only if we do not have already
stored its value in CD. NNDw is the distance from w towards its current nearest neighbor.
CDc refers to the adjacency list of c in CD.

In this stage, if we have available space in CD —that is, if |CD| < 8n ln n—, we cache
all the computed distances towards unsolved nodes that are small enough to get into their
respective queues in NHA, since these distances can be used in future symmetric queries.
We perform this check in line 13 of algorithm KNNrp, see Figure 4.7. If the space checking
permits, we instruct auxiliary method finishkNNQ to cache all the computed distances

100

Chapter 4 k-Nearest Neighbor Graphs 4.2 knng Construction Algorithms

for unsolved nodes. Otherwise, unfortunately we have to drop all of them when we finish
to solve the query.

Note that adding distances to CD without considering the space limitation could
increase its size beyond control, as it is shown by the expected case analysis given in the
next paragraph. Then, the limit |CD| = O(n log n) becomes relevant at this stage. In order
to have space to store new computed distances, as soon as we finish the query for some
node, we delete its adjacency list from CD. Therefore, in the second stage CD becomes a
directed graph.

The expected case analysis for the size of CD follows. With probability n−k
n —where

n is the number of distances seen up to now—, a random distance is greater than the k-th
smallest one (thus, not stored), and with probability k

n it is lower, thus it is stored in CD
using one cell. The base case uses k cells for the first k distances. Then, the recurrence
for the expected case of edge insertions for each NHAu is: T (n, k) = T (n − 1, k) + k

n ,
T (k, k) = k. We obtain T (n, k) = k(Hn − Hk + 1) = O

(
k log n

k

)
. As we have n priority

queues, if we do not consider the limitation, we could use O
(
nk log n

k

)
memory cells, which

can be an impractical memory requirement.

We combine all of these ideas to complete the NNk(u) queries for all nodes in U. To
do so, we begin by creating the priority queue COH where we store all the nodes u ∈ U

and their current covering radii curCRu. Then, for each node u picked from COH in
increasing curCRu order, we do the following. We add the edges of NHAu to CDu, where
CDu refers to the adjacency list of u in CD. (Due to the size limitation it is likely that
some of the u’s current neighbors do not belong to CDu.) Then, we compute shortest
paths from all u’s ancestors to discard objects. We do this by calling extractFrom for
all u’s ancestors, marking as EXTRACTED as many objects as we can (this way we reuse
these already computed distances in order to discard other objects). Then, we finish the
query by using the procedure finishkNNQ. Finally, we delete CDu. Figure 4.7 shows the
recursive-partition-based algorithm (KNNrp).

Procedure finishkNNQ (see Figure 4.8) receives the node u to be processed. First,
it adds all u’s ancestor siblings to C, and it manages C as a priority queue. Later, it takes
objects w from C in increasing wpr order, and processes w according to the following rules:

1. If w was already marked as EXTRACTED, we add its children {wl, wr} to C;

2. If “U is fixed” applies for w and u, and d(u,w) /∈ CD, we add {wl, wr} to C; or

3. If we have d(u,w) stored in CD, we retrieve it, else we compute it and use “d is
symmetric”. Then, if d(u,w) < curCRu + wpr, we have region intersection between
(u, curCRu) and (w,wpr), thus we add {wl, wr} to C. Next, if d(u,w) > curCRu +
NNDw, we use extractFrom considering NHA ∪ CD as a graph for computing
shortest paths from w limited to d(u,w)− curCRu, so as to discard as many objects
as we can by marking them as EXTRACTED. Note that we call extractFrom for all
u’s ancestors’ siblings.

101

4.2 knng Construction Algorithms Chapter 4 k-Nearest Neighbor Graphs

KNNrp (Integer k, ObjectSet U)
1. For each u ∈ U Do // initializations of
2. NHAu ← {(null,∞), . . . , (null,∞)} // k pairs
3. (up, ul, ur, upr)← (null,null,null, 0) // the tree DCT
4. CDu ← ∅ // the cache of distances
5. (ROOTp, ROOTl, ROOTr, ROOTpr)← (null,null,null,∞) // the fictitious node
6. division(ROOT, U) // populates CD and NHA, see Figure 4.4
7. For each u ∈ U Do COH.insert(u, curCRu)
8. While |COH| > 0 Do
9. (u, curCRu)← COH.extractMin()
10. CDu ← CDu ∪NHAu

11. For each a ∈ ancestors(u) Do
12. If CDua > curCRu + NNDa Then extractFrom(a, u, CDua − curCRu)
13. finishkNNQ(u, U, |CD| < 8n ln n)
14. CDu ← ∅ // we free the adjacency list of u in CD
15. Return NHA

Figure 4.7: Recursive-partition-based algorithm (KNNrp). ancestors(u) refers to the DCT
tree. n = |U|. DCT is managed as a global structure. For each u ∈ U, (i) NHAu is a priority
queue of size k whose elements are of the form (object, value) sorted by decreasing value,
(ii) curCRu is an alias for NHAu.findMax().value, and (iii) NNDu is the distance from u
towards its current nearest neighbor. COH = {(u, curCRu), u ∈ U} is a priority queue sorted
by ascending values of curCRu. CD ⊂ U

2 × R
+ is the cache of computed distances.

4.2.3 Pivot-based Algorithm

Pivot-based algorithms have good performance in low-dimensional spaces, but worsen
quickly as the dimension grows. However, our methodology compensates this failure in
medium and high dimensions. In this algorithm we use O(kn) space in NHA and O(n log n)
space to store the pivot index.

4.2.3.1 First Stage: Construction of the Pivot Index

We select at random a set of pivots P =
{
p1, . . . , p|P|

}
⊆ U, and store a table of |P|n

distances d(pj , u), j ∈ {1, . . . , |P|}, u ∈ U. We give the same space in bytes to the table
as that of the cache of distances plus the division control tree of the recursive-partition-
based algorithm, so |P|n = |CD| + |DCT |. For example, in a medium-sized database(
n < 216

)
using single-precision floating point numbers to store the distances in CD, we

need 6 bytes (2 for the node id plus 4 for the distance), so for each distance we store 1.5
cells in the table. Each node in DCT uses 10 bytes (6 for the three node ids plus 4 for the
partition radius), so for each node we store 2.5 cells in the table. Then, in bytes, we have
4|P|n = 6 · 8n ln n + 10n, that is, |P| = 12 ln n + 2.5 = O(log n).

102

Chapter 4 k-Nearest Neighbor Graphs 4.2 knng Construction Algorithms

finishkNNQ(Object u, ObjectSet U, Boolean addCD)
1. C ← {(c, cpr), c ∈ sibling(ancestors(u))}
2. While |C| > 0 Do
3. (w,wpr) ← C.extractMin()
4. l← wl, r ← wr // children of w
5. If CDuw = EXTRACTED Then C ← C ∪ {(l, lpr), (r, rpr)}
6. Else If w /∈ COH and curCRu ≤ curCRw and (u,w) /∈ CD Then
7. CD.insert(u, w, EXTRACTED), C ← C ∪ {(l, lpr), (r, rpr)} // U is fixed
8. Else
9. duw ← computeDistance(u, w, addCD)
10. If duw < curCRu + wpr Then C ← C ∪ {(l, lpr), (r, rpr)}
11. If duw > curCRu + NNDw Then extractFrom(w, u, duw − curCRu)

computeDistance(Object u, Object w, Boolean addCD)
1. If (u,w) ∈ CD Then Return CDuw

2. Else duw ← d(u,w), CD.insert(u,w, duw)
3. NNDu ← min(NNDu, duw), NNDw ← min(NNDw, duw)
4. If duw < curCRu Then NHAu.extractMax(), NHAu.insert(w, duw)
5. If duw < curCRw Then
6. oldCR← curCRw

7. NHAw.extractMax(), NHAw.insert(u, duw)
8. COH.decreaseKey(w, oldCR − curCRw)
9. If addCD Then
10. CD.insert(w, u, dwu) // we store the symmetric distance if we can
11. Return CDuw

Figure 4.8: Procedures finishkNNQ and computeDistance. ancestors(u) and
sibling(a) refer to the DCT tree, which is managed as a global structure. CDuw refers
to the cached distance between u and w. curCRu is an alias for NHAu.findMax().value.
NNDu is the distance from u towards its current nearest neighbor.

Note that, since pivots p ∈ P compute distances towards all the other objects in
U, once we compute the pivot table they have already solved their respective k-nearest
neighbors. Likewise, using the symmetry of d, all the non-pivot objects (in U − P) have
pivots in their respective queues in NHA.

4.2.3.2 Second Stage: Computing the knng

We start by explaining how to solve a single NNk(u) query by using the pivot table in a
range-optimal fashion. Next we show how to use the ingredients to share costs, and take
benefit of the whole knng construction process.

103

4.2 knng Construction Algorithms Chapter 4 k-Nearest Neighbor Graphs

Solving a Single NNk(u) Query with the Pivot Table. Because of the
triangle inequality, for each v ∈ U and p ∈ P, |d(v, p) − d(u, p)| is a lower
bound on the distance d(u, v). Then, we use the candidate set C to store the
maximum lower bound of d(u, v) for each element v using all the pivots, that is
Cv = maxp∈P{|d(v, p) − d(u, p)|}. Therefore, we can discard non-relevant objects v
such that Cv ≥ curCRu. Figure 4.9 shows the concept graphically. In this
case Cv = max{|d(v, p1)− d(u, p1)|, |d(v, p2)− d(u, p2)|} = |d(v, p2)− d(u, p2)| ≥ curCRu,
thus v is discarded by p2. Thus, we store the Cv values in a priority queue

1

r = curCRu

d(
p 2

,u
)

p2

d(p
2 ,u) + r

d(p
2 ,u) − r

u
r v

p

Figure 4.9: Solving queries with pivot-based indices. Despite pivot p1 cannot discard object v,
p2 can because v is outside its ring.

SortedC = {(v, Cv), v ∈ U− (P ∪NHAu ∪ {u})} sorted by increasing Cv order, and review
SortedC until we reach an object v such that Cv ≥ curCRu.

Solving all the Queries Jointly by Using the Ingredients. As pivots have already
solved their k-nearest neighbors, we only have to complete n − |P| queries for objects
u ∈ U−P. These objects already have candidates in their respective queues in NHA, the
k-nearest pivots. (And these candidates are refined as long as the process progresses.) Note
that, if we solve the NNk(u) query for an object u whose curCRu is small, we have higher
chance both of performing a moderate work with the current query and also of improving
future queries, as small curCRu queries has more selective power and they should compute
distances towards close objects (since far away objects should be easily discarded). So,
after computing the table, we sort objects u ∈ U−P in COH by increasing curCRu order.

Even though each NNk(u) query is solved in a range-optimal fashion, the ingredients
allow us to avoid some distance computations. In fact, each time we compute the distance
from the current node u towards an object v we use all the ingredients both to discard
objects during the computation of the current k-nearest neighbor query for u, and to verify
whether the symmetric query for v can be improved (and then reducing curCRv).

Note that, for each NNk(u) query for objects u ∈ U−P, the distance calculations we
can avoid are the ones computed when we review SortedC until we get an object v such

104

Chapter 4 k-Nearest Neighbor Graphs 4.2 knng Construction Algorithms

that Cv > curCRu or SortedC gets empty. So, when we pick an object v from SortedC in
ascending Cv order, we start by checking if “U is fixed” applies for u and v. In such case,
we avoid the distance computation and process the next node.

Otherwise, we compute the distance duv = d(u, v), and if duv < curCRu we add v
to NHAu (this could reduce curCRu). Also, using “d is symmetric”, if duv < curCRv we
refine NHAv. The latter means that we insert u into v’s k-nearest neighbor candidate set,
curCRv can reduce, and consequently we reposition v in COH if necessary. Naturally,
this may change the order in which queries are solved. Note that, if we only were solving
range-optimal NNk(q) queries, the order in which nodes in COH are processed would not
necessary reduce the final number of distance computations (but it can reduce the CPU
time). However, this is not the case when considering the effect of the ingredients. For
instance, they allow us to avoid some symmetric distance computations in future queries,
and also avoid distance computations in the current query using the graph distance.

Finally, we use NHA as a graph to delete from SortedC all the objects w such
that dNHA(v,w) ≤ d(u, v) − curCRu avoiding the direct comparison. We perform this
in procedure extractFrom, depicted in Figure 4.10, which is a shortest-path algorithm
with propagation limited to d(u, v) − curCRu. To avoid exponential complexity due to
multiple checking, we only propagate distances through objects in SortedC.

extractFrom(Object v, Object u, R
+ limit, PriorityQueue SortedC)

1. minHeap.insert(v, 0) // ordered by the second component
2. While |minHeap| > 0 Do
3. (c, dvc) ← minHeap.extractMin()
4. For each (w, dcw) ∈ NHAc Do
5. If w ∈ SortedC and dvc + dcw ≤ limit Then
6. SortedC.delete(w)
7. If dvc + dcw + NNDw ≤ limit Then minHeap.insert(w, dvc + dcw)

Figure 4.10: Auxiliary procedure extractFrom. extractFrom is a shortest-path algorithm
limited to limit = d(u, v) − curCRu. It discards objects w from v by deleting them from
SortedC. NNDw is the distance from w towards its current nearest neighbor.

We can reduce the CPU time if we take into account three facts. First, it is not
always necessary to calculate the maximum difference Cv for each node v. In practice, to
discard v it is enough to find some lower bound greater than curCRu, not the maximum.
Thus we can learn that Cv ≥ curCRu without fully computing the maximum of Cv formula.
Second, it is not necessary to add all objects in U− (P ∪NHAu ∪{u}) to SortedC: if Cv is
already greater or equal to curCRu then v will not be reviewed. Third, when we compute
shortest paths from v, we can save some CPU time if we use the distance of the current
v’s nearest neighbor, NNDv, to know whether it is worthless propagating paths from it.
Figure 4.11 depicts the pivot-based algorithm (KNNpiv) and its auxiliary functions.

105

4.2 knng Construction Algorithms Chapter 4 k-Nearest Neighbor Graphs

KNNpiv (Integer k, ObjectSet U)
1. For each u ∈ U Do NHAu ← {(null,∞), . . . , (null,∞)} // k pairs
2. For each u ∈ U Do NNDu ←∞
3. For each u ∈ U− P Do COH.insert(u,∞)
4. For each p ∈ P, u ∈ U Do T [p][u]← d(p, u), useDistance(p, u, T [p][u])
5. While |COH| > 0 Do
6. (u, curCRu)← COH.extractMin()
7. SortedC ← heapify(calcC(u, U, P, T , curCRu))
8. While |SortedC| > 0 Do
9. (v, Cv)← SortedC.extractMin()
10. If Cv ≥ curCRu Then Break // we have finished the current query
11. If v ∈ COH or curCRu > curCRv Then

// as “U is fixed” did not apply, we compute the distance
12. duv ← d(u, v), useDistance(u, v, duv), limit← duv − curCRu

13. If limit ≥ NNDv Then extractFrom(v, u, limit, SortedC)
14. Return NHA

useDistance(Object u, Object v, R
+duv)

1. NNDu ← min(NNDu, duv), NNDv ← min(NNDv, duv)
2. If duv < curCRu Then NHAu.extractMax(), NHAu.insert(v, duv)
3. If duv < curCRv Then
4. oldCR← curCRw, NHAv.extractMax()
5. NHAv.insert(u, duv), COH.decreaseKey(v, oldCR − curCRv)

calcC(Object u, ObjectSet U, ObjectSet P, Table T , R
+ curCRu)

1. For each v ∈ U− P Do
2. Cv ← 0
3. For each p ∈ P Do
4. If |T [v][p]− T [u][p]| > Cv Then
5. Cv ← |T [v][p]− T [u][p]|
6. If Cv ≥ curCRu Then Break

// marking the node u and its current neighbor candidates with ∞
7. Cu ←∞, For each v ∈ NHAu Do Cv ←∞
8. Return {(v, Cv), Cv < curCRu} // returning objects v with small enough Cv

Figure 4.11: Pivot-based algorithm (KNNpiv) and its auxiliary procedures. For each u ∈ U,
(i) NHAu is a priority queue of size k whose elements are of the form (id, value) sorted by
decreasing value, (ii) curCRu is an alias for NHAu.findMax().value, and (iii) NNDu is the
distance from u towards its current nearest neighbor. COH = {(u, curCRu), u ∈ U} is a
priority queue sorted by ascending values of curCRu. T is the pivot table, P ⊂ U, n = |U|,
|P| = 12 ln n + 2.5. useDistance exploits the symmetry of d. CD ⊂ U

2 × R
+ is the cache

of computed distances.

106

Chapter 4 k-Nearest Neighbor Graphs 4.3 Using the knng for Proximity Searching

4.3 Using the knng for Proximity Searching

In search of my mother’s garden I found my own.

– Alice Walker

As we said in Section 2.2.5, page 26, knngs can be used for many purposes. From now
on, we show how to use the knng to speed up metric queries. That is, we propose a new
class of proximity searching algorithms using the knng as the data structure for searching
U. To the best of our knowledge, this is the first approach using the knng for proximity
searching purposes1.

The core idea is to use the knng to estimate both an upper and a lower bound of
distances from the metric database elements towards the query. Once we compute d(q, u)
for some u we can upper bound the distance from q to all database objects (in its connected
component). We can also lower bound the distance from the query to the neighbors of u
(using it as a pivot). The upper bound allows the elimination of elements far from the
query, whilst the lower bound can be used to test if an element is in the query outcome.

As we explain later (Sections 4.3.1 and 4.3.2), this family of algorithms has a large
number of design parameters affecting its efficiency (not its correctness). We tried to
explore all the parameters experimentally in Section 4.4.

The guidelines for this new class of algorithms are the following:

• Use the knng as a navigational device.

• Try different criteria to select the next object to review.

• Use the graph to estimate distances.

• Avoid to concentrate efforts in the same graph zone.

We choose two sets of heuristics giving rise to two range query algorithms, which
differ in the criterion to select objects to review. The first aims to select objects with the
most non-discarded neighbors. The second aims to select far apart objects. Based on each
technique we propose two algorithms for solving k-nearest neighbor queries.

4.3.1 knng-based Range Query Algorithms

Assume that we are solving the range query (q, r). Our underlying index is a graph G,
whose edge weights correspond to true distances between object pairs. Thus, just as in

1Sebastian and Kimia [SK02] give a metric searching algorithm based on knngs, however their approach
is just a heuristic, since it does not guarantee to find the correct answers. See Section 2.4.4.2 for further
details.

107

4.3 Using the knng for Proximity Searching Chapter 4 k-Nearest Neighbor Graphs

knng construction algorithms, we use the sum of edge weights of the shortest path between
two objects u and v, dG(u, v), as an upper bound of the true distance between them, d(u, v).
Figure 4.12(a) illustrates.

G(u,v)

vu

d

d(u,v)

(a) We upper bound the distance d(u, v) with
the length of the shortest path dG(u, v).

dpq

pq−r
d

r

qp

(b) Propagating shortest path computations
over the graph.

Figure 4.12: Approximating the distances in an arbitrary graph. In (a), using the knng to
upper bound the distances. In (b), discarding gray objects which have a distance upper bound
lower than dpq − r.

A generic graph-based approach for solving range queries consists in starting with a
set of candidate nodes C of the smallest set provably containing (q, r). A fair choice for
an initial C is the whole database U. Later, we iteratively extract an object p from C and
if d(p, q) ≤ r we report p as part of the query outcome. Otherwise, we delete all objects
v such that dG(p, v) < d(p, q) − r. Figure 4.12(b) illustrates this: we discard all the gray
nodes because their distance estimations are small enough. We repeat the above procedure
as long as C has candidate objects. In the following, we improve this generic approach by
using the knng properties.

4.3.1.1 Using Covering Radii

Each node p in the knng has a covering radius crp (which is the distance towards its k-th
neighbor). Let (p, crp) be the ball centered at p with radius crp. If the query ball (q, r) is
contained in (p, crp) we can make C ← C ∩ (p, crp), drastically reducing the candidate set.
We call this object a container. Figure 4.13(a) illustrates.

Actually, we can keep track of the best fitted container, considering both its distance
to the query and its covering radius using the value crp − d(p, q). The best fitted object
will be the one having the largest difference, as this maximizes the chance of containing
the query ball. On the other hand, this may favor objects u ∈ U with larger balls (u, cru),
which might seem disadvantageous. However, all these balls have k + 1 objects inside, and
hence are equally good in this sense.

For this sake, we define the container (cid, cvalue), which is initialized to (null,−∞),
and every time we find an object u such that cru−d(u, q) is greater than the current cvalue,

108

Chapter 4 k-Nearest Neighbor Graphs 4.3 Using the knng for Proximity Searching

pq

cr
p

r

d
p

q

(a) If the ball (p, crp) covers (q, r), we
make C ← C ∩ (p, crp).

p

q

(b) If we find an object p ∈ (q, r),
we check its neighborhood.

Figure 4.13: Using the knng features. In (a), using the container. In (b), checking the
neighborhood.

we update the container to (u, cru − d(u, q)). So, if the container covers the whole query
ball, that is r < cvalue, we make C ← C∩ (u, cru) as stated above. We do this in procedures
useContainerRQ for range queries (see Figure 4.14) and useContainerNNQ for k-
nearest neighbor queries (see Figure 4.20). The difference between them comes from the
fact that in range queries we must report all the objects inside the query ball, thus we test
with the strict inequality; whilst in k-nearest neighbor queries we need any set satisfying
the query, thus we test whether the current query radius is lower than or equal to cvalue.

The probability of hitting a case to apply this property is low; but it is simple to check
and the low success rate is compensated with the dramatic shrink of C when applied. Note
that the container is useful not only in k-nearest neighbor queries, where the query covering
radius reduces as long as the query progresses; but also in range queries, since the container
value cvalue increases while the query is being solved, improving the chances of covering
the query ball.

useContainerRQ (Object p, R+dpq, R
+radius)

// knng G, MinHeap C and Container (cid, cvalue) are global variables
1. If cvalue < crp − dpq Then (cid, cvalue)← (p, crp − dpq)
2. If radius < cvalue Then
3. For each u ∈ C −NNk(p) Do extractNode(u) // C ← C ∩ (p, crp)

Figure 4.14: Auxiliary procedure useContainerRQ. NNk(u) returns the adjacency list (the
k nearest neighbors) of u in the format (v, duv), where v is the node and duv is the distance
between them.

4.3.1.2 Propagating in the Neighborhood of the Nodes

Since we are working over a graph built by an object closeness criterion, if an object p is in
(q, r), it is likely that some of its neighbors are also in (q, r). Moreover, since the out-degree

109

4.3 Using the knng for Proximity Searching Chapter 4 k-Nearest Neighbor Graphs

of a knng is a small constant, spending some extra distance evaluations on neighbors of
processed nodes does not add a large overhead to the whole process. So, when we find an
object belonging to (q, r), it is worth to examine its neighbors. Figure 4.13(b) illustrates.
Yet, we must take care not to repeat distance calculations.

For this sake, we define a priority queue l to manage the objects. Suppose we start
from node p, as shown in the figure. We begin by storing (p, d(p, q)) in l, and repeat the
following until l gets empty: We extract the minimum element (u, duq) from l. If duq < r
we report u. Then, we update the container with (u, duq) by calling useContainerRQ.
Next, we use u as a pivot to discard some of its neighbors avoiding the direct comparison.
With respect to the non-discarded ones, we compute the distance from them to the query,
and store the pairs (object, distance) in l. To avoid cycles we only propagate over nodes in
C, and each time we compute a distance we discard the node from C. Note that every time
we hit an answer we recursively check all of its neighbors (so, we stop the propagation for
nodes out of the query outcome).

We implement this in procedure checkNeighborhood, depicted in Figure 4.15. Both
of our range query algorithms use this idea, yet the first one introduce a small variation
we describe soon.

checkNeighborhood (Object p, R+dpq)
// knng G, R

+radius, MinHeap C and Container (cid, cvalue) are global variables
1. l← ∅, l.insert(p, dpq) // sorted by increasing distance
2. While |l| > 0 Do
3. (u, duq)← l.extractMin()
4. If duq ≤ radius Then Report u
5. useContainerRQ(u, duq, radius)
6. For each (v, duv) ∈ NNk(u) ∩ C Do // we check non discarded neighbors
7. If duv /∈ [duq − radius, duq + radius] Then
8. extractNode(v) // using u as a pivot
9. Else If duq ≤ radius Then l.insert(v, d(v, q)), extractNode(v)

Figure 4.15: Auxiliary procedure checkNeighborhood. NNk(u) returns the adjacency list
(the k nearest neighbors) of u in the format (v, duv), where v is the node and duv is the
distance between them.

4.3.1.3 Working Evenly in All Graph Regions

Since we use path expansions from some nodes it is important to choose them scattered
in the graph to avoid concentrating all the efforts in few graph regions. A good idea is
to select elements far apart from q and from the previous selected nodes, because these
elements would have more potential for discarding non-relevant objects. Unfortunately,
the selection of distant objects cannot be done by directly computing the distance to q.

110

Chapter 4 k-Nearest Neighbor Graphs 4.3 Using the knng for Proximity Searching

Instead, we can estimate how much visited is some region. In fact, our two range query
algorithms differ essentially in the way we select the next node to review.

4.3.1.4 First Heuristic for Range Queries (knngRQ1)

In this heuristic we prefer to start shortest path computations from nodes with few
discarded neighbors. We also consider two tie-breaking criteria. The first is to prefer
nodes with smaller covering radius. The second is to prefer the least visited nodes. More
precisely, to select a node, we consider the following:

1. The number of discarded neighbors. Nodes with few discarded neighbors have
larger discarding potential, so they can effectively reduce the number of distance
computations performed to solve the query.

2. The size of the covering radius. Objects having small covering radius, that is, very
close neighbors, have high chances of discarding them (note that if cru < d(u, q)− r,
all the neighbors are discarded). It is also likely that distance estimations computed
from these objects would have tighter upper bounds.

3. The number of times the node was traversed in a path expansion when computing
shortest paths. Note that once we compute shortest paths from node u, we discard
all the nodes whose upper bound of real distances are lower than duq − r. But nodes
whose shortest path distances are in the range [duq − r, duq) are not so far from u.
Thus, starting a new shortest path expansion from them would have lower chance of
discarding objects that survived the previous expansion. Therefore, we prefer a node
that has been checked few times to scatter the search effort on the whole graph.

The above measures are combined in Eq. (4.1):

p = argminu∈C{|U| · (dnu + f(u)) + #visits}, (4.1)

with f(u) = cru−crmin

crmax−crmin
∈ [0, 1] (crmin = minu∈U{cru} and crmax = maxu∈U{cru}), and

dnu represents the number of discarded neighbors of u. Note that Eq. (4.1) mainly selects
nodes with few discarded neighbors and uses both the covering radius and the number of
visits as tie-breaking rules.

The equation is computed iteratively for every node in the knng. The candidates are
stored in a priority queue C in the form (object,value), sorted by increasing value, where
value is computed using Eq. (4.1). We initialize C as

{(
u, |U|f(u)

)
, u ∈ U

}
. Then, when

solving the query, each time we discard an object v, we call procedure extractNode,
which does the following: (1) it deletes v from C by calling procedure delete, and (2) for
non-discarded v’s neighbors, it increases their values by |U|. Finally, we slightly modify
procedure checkNeighborhood to take into account the number of visits for each non-
discarded node outside of the query outcome, by increasing its value in 1. The modified

111

4.3 Using the knng for Proximity Searching Chapter 4 k-Nearest Neighbor Graphs

procedure checkNeighberhoodRQ1 is depicted in Figure 4.16, where we add a 10-th
line with the following pseudocode: Else C.increaseKey(v, 1).

Therefore, to obtain the next node to be reviewed we call procedure nextToReview,
which computes C.findMin(). Figure 4.16 depicts procedures extractNode and
nextToReview.

checkNeighborhoodRQ1 (Object p, R+dpq)
// knng G, R

+radius, MinHeap C and Container (cid, cvalue) are global variables
1. l← ∅, l.insert(p, dpq) // sorted by increasing distance
2. While |l| > 0 Do
3. (u, duq)← l.extractMin()
4. If duq ≤ radius Then Report u
5. useContainerRQ(u, duq, radius)
6. For each (v, duv) ∈ NNk(u) ∩ C Do // we check non discarded neighbors
7. If duv /∈ [duq − radius, duq + radius] Then
8. extractNode(v) // using u as a pivot
9. Else If duq ≤ radius Then l.insert(v, d(v, q)), extractNode(v)
10. Else C.increaseKey(v, 1)

nextToReview ()
1. Return C.findMin() // MinHeap C is a global variable

extractNode (Object v)
// knng G, MinHeap C and ObjectSet U are global variables
1. C.delete(v)
2. For each w ∈ NNk(v) Do C.increaseKey(w, |U|)

Figure 4.16: knngRQ1’s auxiliary procedures checkNeighborhoodRQ1, nextToReview
and extractNode. NNk(u) returns the adjacency list (the k nearest neighbors) of u in the
format (v, duv), where v is the node and duv is the distance between them.

As usual, to compute the graph distance we use Dijkstra’s all-shortest-path algorithm
with limited propagation. This time, the threshold is slightly larger that d(u, q), since
spending time computing distance estimations beyond that bound cannot be used to
discard nodes, but just to account for node visits.

Now we describe algorithm knngRQ1. It begins by initializing the container as
(null,−∞). Then, it finds the maximum and minimum covering radius crmax and crmin,
and uses them to initialize C as {(u, |U|f(u)), u ∈ U}.

After initializations, knngRQ1 calls nextToReview to get the next node p
to review, computes the distance dpq ← d(p, q), and extracts p from C with
extractNode. If dpq ≤ r it starts to navigate finding other objects relevant to q by
calling checkNeighborhoodRQ1 from p. Then, it calls procedure useContainerRQ.
Finally, if there is no intersection between the ball (p, crp) and the query ball, it uses

112

Chapter 4 k-Nearest Neighbor Graphs 4.3 Using the knng for Proximity Searching

Dijkstra’s shortest-path algorithm to compute distance estimations from p towards all the
other objects in U, dG = {dG(p, v), v ∈ V }, limiting the expansion just to past dpq. So it
uses extractNode to discard objects v such that dG[v] < dpq − r and increases value
in C by 1 for the objects w such that dpq − r ≤ dG[w] < dpq. Figure 4.17(a) illustrates.
Otherwise, there is intersection, thus it uses p as a pivot to discard neighbors v ∈ NNk(p)
such that d(p, v) /∈ [dpq − r, dpq + r] (by calling extractNode), and increases value in C
by 1 for the other neighbors. Figure 4.17(b) illustrates, and Figure 4.18 depicts the whole
algorithm.

dpq

pq−r
d

r

qp

(a) The balls do not intersect each other.

pqd

d
pq−r

dpq+r

q
p

rpcr

(b) The balls intersect each other.

Figure 4.17: Implementing heuristics for knngRQ1. In (a), we extract gray objects which
have a distance estimation lower that dpq − r and count visits for the white ones, which have
estimations lower than dpq. In (b), we use p as a pivot discarding its gray neighbors when the
distance from p towards them is not in [dpq − r, dpq + r], else, we count the visit for the white
nodes.

4.3.1.5 Second Heuristic for Range Queries (knngRQ2)

A different way to select a scattered element set is by using the distance estimations due
to shortest path computations. More precisely, we assume that if two nodes are far apart
according to the distance estimation measured over the graph, then they are also far apart
using the original metric space distance. Therefore, the idea is to select the object with the
largest sum of distance estimations to all the previously selected objects. Thus, knngRQ2
can be seen as a heuristic trying to select outliers for starting shortest path computations.

To do this, we modify procedure nextToReview so that it considers the sum of
the shortest paths towards previous selected nodes (as we do not have the whole U × U

distance matrix). Thus the candidate set C is now a max-heap whose elements are of the
form (object, value), sorted by decreasing value. Note that it is possible that the knng

has several connected components. Then, at the beginning we start by picking objects
in every component (in fact, for each component, we pick the object having the smallest
covering radius).

Upon some preliminary experiments we verified that the order in which elements are
selected when calling procedure nextToReview is mainly determined by the first shortest
path computations. As a matter of fact, after computing approximately 100 times the
shortest paths, the order in which nodes are extracted from C remains almost changeless.

113

4.3 Using the knng for Proximity Searching Chapter 4 k-Nearest Neighbor Graphs

knngRQ1 (Object q, R
+radius, knng G, ObjectSet U)

1. Container (cid, cvalue)← (null,−∞), MinHeap C ← ∅
// elements of C are of the form (object, value), sorted by increasing value

2. crmax ← maxu∈U{cru}, crmin ← minu∈U{cru}, crdiff ← crmax − crmin

3. For each u ∈ U Do C.insert(u, |U| (cru − crmin)/crdiff)
4. While |C| > 0 Do
5. (p, value)← nextToReview()
6. dpq ← d(p, q), extractNode(p)
7. If dpq ≤ radius Then checkNeighborhoodRQ1(p, dpq)
8. useContainerRQ(p, dpq, radius)
9. If crp < dpq − radius Then // propagating distances through the knng

10. dG ← Dijkstra(G, p, (1 + ǫ)dpq)) // |dG| = |U|
11. For each u ∈ C Do
12. If dG[u] < dpq − radius Then extractNode(u)
13. Else If dG[u] < dpq Then C.increaseKey(u, 1)
14. Else
15. For each (u, dpu) ∈ NNk(p) ∩ C Do // using p as a pivot
16. If dpu /∈ [dpq − radius, dpq + radius] Then extractNode(u)
17. Else C.increaseKey(u,1)

Figure 4.18: Our first range query algorithm (knngRQ1). Dijkstra(G, p, x) computes
distances over the knng G from p to all nodes up to distance x. NNk(p) returns the knng

adjacency list of p (its k-nearest neighbors) in the format (u, dpu) where u is the neighbor, and
dpu is the distance between them.

Therefore, for the sake of CPU time, in early iterations of the algorithm we compute full
shortest-paths, but after it∗ iterations (in our experiment we found that it is enough with
it∗ = 100 iterations) we come back to the limited propagation Dijkstra’s version, where,
this time, the propagation threshold is slightly larger than d(u, q) − r.

In knngRQ2, procedure extractNode simply extracts the node from C. On the
other hand, procedure nextToReview begins by choosing one non-discarded object from
each component, and later it continues by selecting the element from C maximizing the
sum of shortest path distances. The body of knngRQ2 is almost the same of the previous
algorithm. Indeed, the major differences come from implementing the mechanism to select
the next node to review. Figure 4.19 depicts this algorithm.

4.3.2 knng-based Query Algorithms for Nearest Neighbors

Range query algorithms naturally induce nearest neighbor searching algorithms. (Since
the size of the query outcome can be specified as an argument, in this section we omit
the k from the k-nearest neighbor queries to avoid confusions.) For this sake, we use the
following ideas:

114

Chapter 4 k-Nearest Neighbor Graphs 4.3 Using the knng for Proximity Searching

knngRQ2 (Query q, R
+radius, knng G, ObjectSet U)

1. Container (cid, cvalue)← (null,−∞), Integer it← 0
2. MaxHeap C ← ∅, MinHeap radii← ∅ // elements of C and radii are of the form

// (object, value), sorted by decreasing/increasing value, respectively
3. For each u ∈ U Do C.insert(u, 0), radii.insert(u, cru)
4. While |C| > 0 Do
5. (p, value)← nextToReview()
6. dpq ← d(p, q), extractNode(p), it← it + 1
7. If dpq ≤ radius Then checkNeighborhood(p, dpq)
8. useContainerRQ(p, dpq, radius)
9. If crp < dpq − radius Then // propagating distances through the knng

10. If (|radii| = 0) and (it > it∗) Then rexp ← (1 + ǫ)(dpq − radius)
11. Else rexp ←∞
12. dG ← Dijkstra(G, p, rexp) // |dG| = |U|
13. For each u ∈ C Do
14. If dG[u] < dpq − radius Then extractNode(u)
15. Else If (rexp =∞) and (dG[u] <∞) Then
16. C.increaseKey(u, dG[u])
17. Else
18. For each (u, dpu) ∈ NNk(p) ∩ C Do // using p as a pivot
19. If dpu /∈ [dpq − radius, dpq + radius] Then extractNode(u)
20. Else C.increaseKey(u, dpu)

nextToReview ()
// MaxHeap C and MinHeap radii are global variables

1. While |radii| > 0 Do // first, we obtain pivots from different graph components
2. cand← radii.extractMin()
3. If C.find(cand).value = 0 Then Return cand
4. Return C.extractMax() // later, we return the current farthest object

extractNode (Object v)
1. C.delete(v) // MaxHeap C is a global variable

Figure 4.19: Our second range query algorithm (knngRQ2) and auxiliary procedures
extractNode and nextToReview. it is an auxiliary variable we use to account the
iterations. Dijkstra(G, p, x) computes distances over the knng G from p to all nodes up
to distance x. Since the knng can have more than one connected component, we start by
selecting one node from each component. Also, as we explain in the Section 4.3.1.4, it is
better to use small covering radius nodes. Thus, we define heap radii to order nodes by its
covering radius, so that in nextToReview we start by choosing the node with the smallest
covering radius form each component. Then, we pick the node with the largest sum of distance
estimations.

115

4.3 Using the knng for Proximity Searching Chapter 4 k-Nearest Neighbor Graphs

• We manage an auxiliary priority queue nnc of nearest neighbor candidates of q known
up to now. So, the radius crq is the distance from q to the farthest object in nnc.

• We simulate the nearest neighbor query NN(q) using a range query (q, crq) of
decreasing radius, whose initial radius crq is ∞. Note that, each time we find an
object u such that duq = d(u, q) < crq, we extract from nnc its farthest object, and
then add (u, duq) to the set nnc. This can reduce crq.

• Each non-discarded object u remembers its own lower bound LB[u] of the distance
from itself to the query. For each node its initial lower bound is 0.

According to the definition of nearest neighbor queries, in case of ties we can select
any element set satisfying the query. So, in order to verify that the container covers the
query, instead of using the strict inequality, in method useContainerNNQ we relax the
condition to radius ≤ cvalue (see Figure 4.20). This can be especially useful with discrete
distance functions.

useContainerNNQ (Object p, R+dpq, R
+radius)

// knng G, MinHeap C and Container (cid, cvalue) are global variables
1. If cvalue < crp − dpq Then (cid, cvalue)← (p, crp − dpq)
2. If radius ≤ cvalue Then
3. For each u ∈ C −NNk(p) Do extractNode(u) // C ← C ∩ (p, crp)

traverse (Object p, R+dpq)
// knng G, MaxHeap nnc, MinHeap C and Container (cid, cvalue) are global variables
1. (u, nearestid, farthestid)← (null, p, p)
2. (nearestdist, farthestdist)← (dpq, dpq)
3. nnc.extractMax(), nnc.insert(p, dpq)
4. While nearestid 6= null Do
5. u← nearestid, nearestid ← null

6. For each v ∈ NNk(u)d ∩ C Do // we check non discarded neighbors
7. dvq ← d(v, q), extractNode(v)
8. If dvq ≤ crq Then nnc.extractMax(), nnc.insert(v, dvq)
9. If dvq ≤ nearestdist Then (nearestid, nearestdist)← (v, dvq)
10. If dvq ≥ farthestdist Then (farthestid, farthestdist)← (v, dvq)
11. If cvalue ≤ crv − dvq Then (cid, cvalue)← (v, crv − dvq)
12. Return (farthestid, farthestdist)

Figure 4.20: Auxiliary procedures useContainerNNQ and traverse. crq refers to the
current query covering radius, that is, it is an alias for nnc.findMax().value. crv refers to
the covering radius of the k-nearest neighbors of v in knng.

Note also that, if d(u, q) < crq, it is likely that some of the u’s neighbors can also
be relevant to the query, so we check all of them. However, since the initial radius is ∞
we change a bit the navigational scheme. In this case, instead of propagating through the

116

Chapter 4 k-Nearest Neighbor Graphs 4.3 Using the knng for Proximity Searching

neighborhood, we start the navigation from the node to the query by jumping from one
node to its neighbor only when the neighbor is closer to the query than the node itself.
The underlying idea is to get close to the query as soon as possible. At the same time, we
also remember the farthest object we check during the graph traversal. This way, we can
use the farthest one to discard objects by computing shortest paths over the knng. Figure
4.21 illustrates. In the figure, we start at node p, and navigate towards q until we reach
pc. The node pf was marked as the farthest object of this traversal. This is implemented
in method traverse (see Figure 4.20), which returns pf and the distance from pf to q.

pf

pc

cr q1

p
qu

cr

LB[u]

q2

Figure 4.21: If we find an object p ∈ NN(q) we traverse the graph towards q. Later, as crq

decreases, it is possible to discard the node u when LB[u] ≥ crq.

To solve the query, we split the discarding process into two stages. In the
first, we compute the distance lower bounds for all the non-discarded nodes, by
using the following formula. For each non-discarded node u, LB[u] is computed as
maxp{dpu − d(p, q), d(p, q) − dG(p, u)}, where p is any of the previously selected nodes, dpu

is the distance between p and u stored in knng, and dG(p, u) is the distance estimation
computed over the knng. In the formula, the term d(p, q) − dG(p, u) considers using the
graph distance to upper bound the real distance between p an u, thus lower bounding the
distance between q and u. On the other hand, using the real distances between neighbors
stored in knng, we can also lower bound the distance between q and u by using the term
dpu − d(p, q).

In the second stage, we extract objects whose distance lower bounds are large enough,
that is, if LB[u] > crq we discard u. Note that, in the beginning, it is possible that the
distance lower bound is not large enough to discard the node (as the initial query covering
radius is ∞). However, we reduce the query covering radius as the process goes on. So,
LB[u] allows us to delay the discarding of node u until crq is small enough, even if we
only update LB[u] once. This is also illustrated in Figure 4.21. Note that when we start
in p the covering radius is crq1. However, once we reach pc the covering radius has been
reduced to crq2 < LB[u], and we can then discard u.

With these considerations we design two nearest neighbor algorithms. The first is
based on algorithm knngRQ1, and we call it knngNNQ1. It selects the next node to
review according to Eq. (4.1). To update the value of Eq. (4.1), in procedure extractNode
we increase by U the values for non-discarded neighbors of extracted nodes, and in line
16 we account for the number of times we visit a node. Figure 4.22 depicts algorithm
knngNNQ1. The second, depicted in Figure 4.23, is based on algorithm knngRQ2, and

117

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

we call it knngNNQ2. It selects nodes far apart from each other. To do so, in line 17
we add the graph distance computed in the current iteration. Once again, for the sake of
CPU time, we update the selection criterion until we reach the it∗-th iteration.

knngNNQ1 (Query q, Integer querySize, knng G, ObjectSet U)
1. MaxHeap nnc← {(null,∞), . . . , (null,∞)}, |nnc| = querySize

// elements of nnc are of the form (object, distance), sorted by decreasing distance
2. Container (cid, cvalue)← (null,−∞) , MinHeap C ← ∅

// elements of C are of the form (object, value), sorted by increasing value
3. crmax ← maxu∈U{cru}, crmin ← minu∈U{cru}, crdiff ← crmax − crmin

4. For each u ∈ U Do LB[u]← 0, C.insert(u, |U|(cru − crmin)/crdiff)
5. While |C| > 0 Do
6. (p, value)← nextToReview()
7. dpq ← d(p, q), extractNode(p)
8. If dpq < crq Then (p, dpq) ← traverse(p, dpq)
9. useContainerNNQ(p, dpq, crq)
10. For each (u, dpu) ∈ NNk(p) ∩ C Do
11. If dpu − dpq > LB[u] Then LB[u]← dpu − dpq

12. dG ← Dijkstra(G, p, (1 + ǫ)dpq) // |dG| = |U|
13. For each u ∈ C Do
14. If dpq − dG[u] > LB[u] Then LB[u]← dpq − dG[u]
15. If LB[u] ≥ crq Then extractNode(u)
16. Else If dG[u] < dpq Then C.increaseKey(u, 1)

Figure 4.22: Our first nearest neighbor query algorithm (knngNNQ1). We reuse auxiliary
procedures nextToReview and extractNode from knngRQ1. crq refers to the current
query covering radius, that is, is an alias for nnc.findMax().value. NNk(p) returns the knng

adjacency list of p (its k-nearest neighbors) in the format (u, dpu), where u is the neighbor
and dpu is the distance between them. Dijkstra(G, p, x) computes distances over the knng

G from p to all nodes up to distance x.

4.4 Experimental Results

The only statistics you can trust are those you falsified
yourself.

– Winston Churchill

We have tested our construction and search algorithms on spaces of vectors, strings and
documents (these last two are of interest to Information Retrieval applications [BYRN99]).
The idea is to measure the behavior of our technique considering several metric spaces of
different searching complexity, that is, different intrinsic dimensionality; different sizes

118

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

knngNNQ2 (Query q, Integer querySize, knng G, ObjectSet U)
1. MaxHeap nnc← {(null,∞), . . . , (null,∞)}, |nnc| = querySize

// elements of nnc are of the form (object, distance), sorted by decreasing distance
2. Container (cid, cvalue)← (null,−∞), Integer it← 0
3. MaxHeap C ← ∅, MinHeap radii← ∅ // elements of C and radii are of the form

// (object, value), sorted by decreasing/increasing value, respectively
4. For each u ∈ U Do LB[u]← 0, C.insert(u, 0), radii.insert(u, cru)
5. While |C| > 0 Do
6. (p, value)← nextToReview()
7. dpq ← d(p, q), extractNode(p), it← it + 1
8. If dpq < crq Then (p, dpq) ← traverse(p, dpq)
9. useContainerNNQ(p, dpq, crq)
10. For each (u, dpu) ∈ NNk(p) ∩ C Do
11. If dpu − dpq > LB[u] Then LB[u]← dpu − dpq

12. If (|radii| = 0) and (it > it∗) Then rexp ← (1 + ǫ)dpq Else rexp ←∞
13. dG ← Dijkstra(G, p, rexp) // |dG| = |U|
14. For each u ∈ C Do
15. If dpq − dG[u] > LB[u] Then LB[u]← dpq − dG[u]
16. If LB[u] ≥ crq Then extractNode(u)
17. Else If (rexp =∞) and (dG[u] <∞) Then C.increaseKey(u, dG[u])

Figure 4.23: Our second nearest neighbor query algorithm (knngNNQ2). it is an auxiliary
variable we use to account the iterations. Since the knng can have more than one connected
component, we start by selecting one node from each component. As in knngNNQ2, we
define heap radii to order nodes by their covering radii, so that in nextToReview we start
by choosing the node with the smallest covering radius form each component. Then, we
pick the node with the largest sum of distance estimations. We reuse the auxiliary procedures
extractNode and nextToReview from knngRQ2. crq refers to the current query covering
radius, that is, it is an alias for nnc.findMax().value. NNk(p) returns the knng adjacency
list of p (its k nearest neighbors) in the format (u, dpu), where u is the neighbor and dpu is
the distance between them. Dijkstra(G, p, x) computes distances over the knng G from p
to all nodes up to distance x.

of the query outcome, that is, range query radii to recover 1 or 10 objects or nearest
neighbor queries to recover from 1 to 16 neighbors; and the size of the knng indexing the
space considering values of k from 2 to 64 neighbors per object. We are not aware of any
published knng practical implementation for general metric spaces.

In construction algorithms, we measure both the number of distance computations
and the CPU time needed by each construction algorithm and the basic one. For shortness
we have called the basic knng construction algorithm KNNb, the recursive partition based
algorithm KNNrp, and the pivot based algorithm KNNpiv.

For the search algorithms, we are interested in measuring the number of distance

119

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

evaluations performed for retrieval. Each point in the search plots represents the average
of 50 queries for objects randomly chosen from the metric database not included in the
index. For shortness they are called the same way as in the previous section, namely,
we have called the range query algorithm of Section 4.3.1.4 knngRQ1 and the one of
Section 4.3.1.5 knngRQ2. Likewise, their respective nearest neighbor algorithms are
called knngNNQ1 and knngNNQ2.

We have compared our search algorithms with AESA and a pivot-based algorithm
where pivots are chosen at random. As we cannot always manage the AESA’s full distance
matrix index in main memory, we actually simulate AESA algorithm by computing each
matrix cell on the fly when we need it. Of course, we do not count these evaluations when
solving the similarity query. Since the matrix is symmetric, in the experiments we will give
the size of the upper triangle distance matrix. In the case of nearest neighbor queries we
use a range-optimal pivot-based algorithm. For a fair comparison, we provided the same
amount of memory for the pivot index and for our knng index (that is, we compare a
knng index against a 1.5k pivot set size).

The experiments were run on an Intel Pentium IV of 2 GHz, with 2.0 GB of RAM,
with local disk, under SuSE Linux 7.3 operating system, with kernel 2.4.10-4GB i686,
using g++ compiler version 2.95.3 with optimization option -O9, and the processing time
measured user time.

4.4.1 Uniformly distributed Vectors under Euclidean Distance

We start our experimental study with the space of vectors uniformly distributed in the
unitary real D-dimensional cube under the Euclidean distance, that is,

(
[0, 1]D , L2

)
, for

D ∈ [4, 24]. This metric space allows us to measure the effect of the space dimension
D on our algorithms. We have not explored larger D values because D = 24 is already
too high-dimensional for any known (exact) indexing algorithm. High dimensional metric
spaces are best suited for non-exact approaches.

Note that we have not used the fact that this space has coordinates, but have rather
treated points as abstract objects in an unknown metric space. Computing a single distance
takes from 0.893 microseconds in the 4-dimensional space, to 1.479 microseconds in the
24-dimensional space.

In the construction experiments, we use uniform datasets of varying size n ∈
[2,048; 65,536]. We first compare the construction algorithms, in order to evaluate the
behaviour of our heuristics. Later, search experiments are carried out over knngs indexing
the dataset of 65,536 objects, where we select 50 random queries not included in the index.
We measure range queries using search radii retrieving 1 and 10 objects on average, and
also performing nearest neighbor queries retrieving from 1 to 16 relevant objects. The
radii used in range queries to retrieve 1 and 10 objects are r = 0.047 and 0.077 for D = 4,
r = 0.221 and 0.303 for D = 8, r = 0.420 and 0.525 for D = 12, r = 0.630 and 0.738 for
D = 16, r = 0.806 and 0.924 for D = 20, and r = 0.966 and 1.095 for D = 24, respectively.

120

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

4.4.1.1 Construction

We summarize our experimental results in Figure 4.24, where we show distance
computations per element and CPU time for the whole construction process, and Table 4.1
for the least square fittings computed with R [R D04]. As the dependence on k turns out
to be too mild, we neglect k in the fittings, thus costs have the form cnα. Even though in
Table 4.1 we make the constant c explicit, from now on we will only refer to the exponent
α. We will write O(nα) as an abuse of notation, to disregard the constant c.

Space KNNrp KNNpiv
Dist. evals CPU time Dist. evals CPU time

[0, 1]4 10.0n1.32 0.311n2.24 56.1n1.09 0.787n2.01

[0, 1]8 32.8n1.38 0.642n2.11 168n1.06 15.5n1.69

[0, 1]12 15.1n1.59 1.71n2.03 116n1.27 20.1n1.79

[0, 1]16 5.06n1.77 0.732n2.14 12.1n1.64 6.87n1.97

[0, 1]20 2.32n1.88 0.546n2.18 2.48n1.87 2.77n2.10

[0, 1]24 1.34n1.96 0.656n2.16 1.23n1.96 1.29n2.16

[0, 1]D 0.455e0.19Dn1.65 0.571e0.01Dn2.14 0.685e0.24Dn1.48 0.858e0.11Dn1.95

Table 4.1: KNNrp and KNNpiv least square fittings for distance evaluations and CPU
time for vector metric spaces. ex refers to the exponential function. CPU time measured in
microseconds.

Table 4.1 shows that both of our construction algorithms are subquadratic in distance
computations, and slightly superquadratic in CPU time, when considering each dimension
independently. It also shows that the best of our construction algorithms is KNNpiv, yet
it is also more sensitive to the space dimension. The rows for dimensions D ≤ 12, show that
KNNpiv is slightly superlinear in distance evaluations, and later it becomes subquadratic.
An interesting fact is that for medium dimensions (that is, D in [8,16]) KNNpiv is also
subquadratic in CPU time. To understand this, we have to take into account that the
distance distribution concentrates as the dimension increases [CNBYM01]. The direct
consequence is that the difference between the minimum and maximum distances decreases
as the dimension grows. Likewise, this also implies that the shortest path propagations
stop earlier and earlier as the dimension grows, as it is required to add fewer edge weights
in the path so as to reach the propagation limit. This translates into the fact that
method extractFrom performs less work as the dimension grows. If we consider both
the superlinear number of distance computations and the reduced work performed by
method extractFrom for values of D in [8,16] we obtain that the CPU time turns out to
be subquadratic.

The last line of Table 4.1 shows the usual exponential dependence on the space
dimension for both of our construction algorithms, a phenomenon known as the curse
of dimensionality, see Section 2.3.3 in page 31. Note also that this line clearly reveals the
subquadratic performance on distance evaluations for both of our construction algorithms
when considering the exponential dependence on D. We remark that, in the metric

121

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

space context, superquadratic CPU time in side computations is not as important as a
subquadratic number of computed distances. This can be appreciated in the experimental
results on the document space, shown in Section 4.4.4.

Figures 4.24(a) and (b) are in strong agreement with the last line of Table 4.1. In
fact, Figure 4.24(a) shows that, as D grows, the distance evaluation performance of our
algorithms degrade. For instance, for D = 4, KNNpiv uses O

(
n1.10

)
distance evaluations,

but for D = 24, it is O
(
n1.96

)
distance evaluations. Notice that a metric space with

dimensionality D > 20 is considered as intractable [CNBYM01]. On the other hand,
Figure 4.24(b) shows that KNNrp is less sensitive to the dimension than KNNpiv.
Finally, both figures confirm that the latter has better performance for small values of k.

With respect to CPU time, KNNb is usually faster than our algorithms, yet Figure
4.24(b) shows that KNNpiv beats KNNb for values of D ≤ 8. This is remarkable in this
vector space as the Euclidean distance is very cheap to compute, thus a significant fraction
of the CPU time comes from shortest path computations. Note that KNNb’s CPU time
increases with D, but the increase is very mild. On the other hand, the plot also shows
that KNNpr is more resistant to the curse of dimensionality than KNNpiv. Finally, for
n = 65,536, the plot shows that the construction time is better for D = 8 than for D = 4.
This is because as the dimension grows shortest path computations perform less work.

Figure 4.24(c) shows that our algorithms are subquadratic in distance evaluations,
instead of KNNb that it is always O

(
n2
)

whichever the dimension is. The plot shows
results for D ≤ 16. Subquadraticity can also be verified for higher dimensions, however it
is not so visually evident from the plots. For values of D ≤ 16, our construction algorithms
have better performance in distance computations than KNNb, being KNNpiv the best,
which confirms the results obtained from Table 4.1. Moreover, for lower dimensions (D ≤
8) ours are only slightly superlinear.

Figure 4.24(d) is in strong agreement with results in plot (b). For instance, it shows
that KNNrp is more resistant to the dimensionality effect than KNNpiv, as the four
KNNrp curves are closer than the respective ones for KNNpiv. The plot also shows
that the best CPU time is obtained for D = 8.

Figures 4.24(e) and (f) show a sublinear dependence on k for all dimensions both
in distance computations and CPU time, however, KNNpiv is more sensitive to k than
KNNrp. Also, the dependence on k diminishes as D grows, although it always increases
monotonically on k. In terms of distance computations, Figure 4.24(e) shows that our
algorithms behave better than KNNb for D ≤ 16. This is also verified in higher
dimensional spaces (KNNpiv in D = 20) for values of k ≤ 8, but we omit this curve
in the plots to improve their readability. Finally, in terms of CPU time, Figure 4.24(f)
shows that KNNpiv is faster than KNNb for D ≤ 8 and small values of k.

122

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 24 20 16 12 8 4

di
st

an
ce

 e
va

lu
at

io
ns

 p
er

 v
ec

to
r

dimension D

Vector space: Distance evaluations per vector vs D, n = 65,536

KNNb
KNNrp, k = 2
KNNrp, k = 8
KNNrp, k = 32
KNNpiv, k = 2
KNNpiv, k = 8
KNNpiv, k = 32

(a) Dist. evals. per vector, dependence on D.

 1024

 2048

 4096

 8192

 16384

 32768

 24 20 16 12 8 4

tim
e

[s
ec

]

dimension D

Vector space: CPU time vs D, n = 65,536

(b) CPU time, dependence on D.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2048 4096 8192 16384 32768 65536

di
st

an
ce

 e
va

lu
at

io
ns

 p
er

 v
ec

to
r

database size n

Vector space: Distance evaluations per vector vs n, k = 8

KNNb
KNNrp, D = 4
KNNrp, D = 8
KNNrp, D = 12
KNNrp, D = 16
KNNpiv, D = 4
KNNpiv, D = 8
KNNpiv, D = 12
KNNpiv, D = 16

(c) Dist. evals. per vector, dependence on n.

 4

 16

 64

 256

 1024

 4096

 16384

 2048 4096 8192 16384 32768 65536

tim
e

[s
ec

]

database size n

Vector space: CPU time vs n, k = 8

(d) CPU time, dependence on n.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 2 4 8 16 32 64

di
st

an
ce

 e
va

lu
at

io
ns

 p
er

 v
ec

to
r

neighbors per vector in the graph k

Vector space: Distance evaluations per vector vs k, n = 65,536

(e) Dist. evals. per vector, dependence on k.

 1024

 2048

 4096

 8192

 16384

 32768

 2 4 8 16 32 64

tim
e

[s
ec

]

neighbors per vector in the graph k

Vector space: CPU time vs k, n = 65,536

(f) CPU time, dependence on k.

Figure 4.24: Evaluating knng construction algorithms in vector spaces. On the left, distance
evaluations per element during knng construction. On the right, CPU time for the whole
process. Note the logscale. Figure (b) follows the legend of Figure (a). Figures (d), (e) and
(f) follow the legend of Figure (c). In Figure (a), KNNrp and KNNpiv (both for k = 32)
reach 54,569 and 55,292 distance evaluations per node, respectively. In Figure (c), KNNb and
KNNrp (for D = 16) reach 32,768 and 22,071 distance evaluations per node, respectively.

123

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

4.4.1.2 Searching

Figures 4.25 and 4.26 show results in the vector space. We explore several parameters
such as: different values of D, different size of the query outcome (by using two radii or
varying the number of closest objects to recover), and different index size (that is, varying
the number of neighbor per object in the knng).

100%

80%

60%

40%

20%

0%
 24 20 16 12 8 4

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

dimension D

Vector space: Range Queries retrieving 1 vector, n = 65,536

8nngRQ1
8nngRQ2

12-Pivot
32nngRQ1
32nngRQ2

48-Pivot
AESA

(a) Range queries retrieving 1 object on average.

100%

80%

60%

40%

20%

0%
 24 20 16 12 8 4

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

dimension D

Vector space: 1-Nearest Neighbor Queries, n = 65,536

8nng1NNQ1
8nng1NNQ2

12-Pivot
32nng1NNQ1
32nng1NNQ2

48-Pivot
AESA

(b) 1-Nearest neighbor queries.

100%

80%

60%

40%

20%

0%
 24 20 16 12 8 4

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

dimension D

Vector space: Range Queries retrieving 10 vectors, n = 65,536

8nngRQ1
8nngRQ2

12-Pivot
32nngRQ1
32nngRQ2

48-Pivot
AESA

(c) Range queries retrieving 10 objects on average.

100%

80%

60%

40%

20%

0%
 24 20 16 12 8 4

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

dimension D

Vector space: 10-Nearest Neighbor Queries, n = 65,536

8nng10NNQ1
8nng10NNQ2

12-Pivot
32nng10NNQ1
32nng10NNQ2

48-Pivot
AESA

(d) 10-Nearest neighbor queries.

Figure 4.25: Evaluating percentage of database compared by our knng based search algorithms
in vector spaces, dependence on dimension D. On the left, range queries. On the right, nearest
neighbor queries. We compare the search performance of our algorithms with a pivoting
algorithm using 1.5k pivots.

Figure 4.25(a) shows range queries using radii that retrieve 1 object per query on
average, indexing the space with 8nng and 32nng graphs, for varying dimension. On the
other hand, Figure 4.25(b) shows the equivalent experiment for nearest neighbor queries
retrieving the closest neighbor. As can be seen from these plots, even though our nearest
neighbor query algorithms are not range-optimal per se, they behave as if they were. Also,
both plots show that the classic pivot algorithm has better performance for dimension
D ≤ 12, but later its performance degrades painfully. On the other hand, our knng based
approach also degrades with the dimension, as expected, but the degradation is smoother,

124

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

being ours a competitive alternative for D > 12. Finally, the performance of AESA is
unbeatable —in fact, for D = 16, 20 and 24 AESA is 15, 6.5 and 3 times faster that
ours—, however, it needs 8 GB of main memory for the O

(
n2
)

index (the upper triangle
distance matrix), whilst the 32nng only uses 12 MB of main memory, scarcely 0.146% of
the AESA space requirement.

Figures 4.25(c) and (d) show the same experiments as above for less discriminative
queries, that is, range queries using radii that retrieve 10 objects per query on average
and 10-nearest neighbor queries. Again, the behavior of our NNk(q) algorithms looks like
range-optimal, and the classic pivot algorithm has better performance for low dimensions.
However, this time our algorithms become competitive with the pivoting algorithm earlier
with respect to the dimension. This is because the performance degradation of the pivot
alternative is even sharper when we consider queries retrieving more elements, whilst the
degradation of our algorithms is smoother, even smoother than the degradation of AESA.

Figures 4.26(a) and (b) show range queries retrieving respectively 1 and 10 vectors on
average per query versus the index size (that is, the number of neighbors k per vector in
the knng index), for dimension D = 16. As it is expected, the bigger the size of the knng

index, the better the searching performance of our technique. The same behavior can be
observed for the pivot technique, however its performance is worse (that is, it computes
more distances) than ours for the range of values of k under consideration. As we work
with small values of k, this can be interpreted as that our technique behaves better than
pivots in low-memory scenarios. Again, AESA performance is better by far than ours,
however our technique only uses from 0.009% (for a 2nng) to 0.293% (for a 64nng) of
AESA’s space requirement.

Figures 4.26(c) and (d) show nearest neighbor queries over a 32nng in dimension
D = 16 and 24 respectively, varying the size of the query outcome. In accordance to the
previous plots, these show that, as the query outcome size grows, it is more difficult to
solve the proximity query, but the performance degradation of our technique is reasonably
mild.

From this experimental series we remark that knng based algorithms are more
resistant to both the dimension effect (Figure 4.25) and the query outcome size (Figure
4.26) than the classic pivot alternative. Furthermore, all the plots in Figures 4.25 and
4.26 show that our search algorithms have better performance than the classic pivot
based approach for dimension D > 12. Finally, we verify that both of our knng based
approaches perform rather similarly, being knngRQ2, and its induced nearest neighbor
query algorithm, slightly better than knngRQ1.

4.4.2 Gaussian-distributed Vectors under Euclidean Distance

Real-life metric spaces have regions called clusters, that is, compact zones of the space
where similar objects accumulate. With the Gaussian vector space we attempt to simulate
a real-world space. The dataset is formed by points in a 20-dimensional space under the

125

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

100%

64%

32%

16%

8%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per vector in the graph k

Vector space: Range Queries retrieving 1 vector, n = 65,536, D = 16

knngRQ1
knngRQ2

Pivot

(a) Range queries retrieving 1 object on average,
varying index size.

100%

64%

32%

16%

8%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per vector in the graph k

Vector space: Range Queries retrieving 10 vectors, n = 65,536, D = 16

knngRQ1
knngRQ2

Pivot

(b) Range queries retrieving 10 objects on average,
varying index size.

64%

32%

16%

8%

4%

2%

1%
 1 2 4 8 16

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

number of nearest vectors retrieved

Vector space: Neighbor Queries of increasing size, n = 65,536, D = 16

32nngKNNQ1
32nngKNNQ2

48-Pivot
AESA

(c) NNk(q) in dim 16, varying the query size outcome.

100%

64%

32%

16%
 1 2 4 8 16

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

number of nearest vectors retrieved

Vector space: Neighbor Queries of increasing size, n = 65,536, D = 24

32nngKNNQ1
32nngKNNQ2

48-Pivot
AESA

(d) NNk(q) in dim 24, varying the query size outcome.

Figure 4.26: Evaluating percentage of database compared by our knng based search algorithms
in vector spaces. On the first row, range queries varying the index size. On the second row,
nearest neighbor queries varying the query outcome size. Note the logscale. We compare
the search performance of our algorithms with a pivoting algorithm using 1.5k pivots. In (a)
and (b), AESA performs 487 and 1,590 distance comparisons on average, that is, it compares
around 0.74% and 2.42% of the database, respectively.

Euclidean distance with Gaussian distribution forming 256 clusters randomly centered in
[0, 1]20. The generator of Gaussian vectors was obtained from [GBC+99]. We consider
three different standard deviations to make more crisp or more fuzzy clusters (σ = 0.1, 0.2
and 0.3). Of course, we have not used the fact that the space has coordinates, rather we
have treated the points as abstract objects in an unknown metric space.

Computing a single distance takes 1.281 microseconds in our machine. Note that
a 20-dimensional space already has a high representational dimensionality. However, as
long as the standard deviation decreases, the intrinsic dimensionality of the space also
diminishes.

In the construction experiments, we use Gaussian datasets of varying size n ∈

126

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

[2,048; 65,536]. Later, search experiments are carried out over knngs indexing Gaussian
datasets formed by 65,536 objects. We select 50 random queries not included in the index,
using search radii that on average retrieve 1 and 10 objects (r = 0.385 and 0.458 for σ = 0.1,
r = 0.770 and 0.914 for σ = 0.2 and r = 1.0865 and 1.256 for σ = 0.3, respectively), and
also performing nearest neighbor queries retrieving from 1 to 16 relevant objects.

4.4.2.1 Construction

We summarize our experimental results in Figure 4.27, where we show distance
computations per element and CPU time for the whole construction process, and in
Table 4.2 for the least square fittings computed with R [R D04]. Once again, we neglect
k from the fittings, as its influence turns out to be very mild.

Space KNNrp KNNpiv
Dist. evals CPU time Dist. evals CPU time

Gaussian σ = 0.1 74.7n1.33 1.13n2.07 1260n0.91 63.5n1.63

Gaussian σ = 0.2 7.82n1.71 1.13n2.09 16.3n1.60 8.70n1.94

Gaussian σ = 0.3 2.97n1.85 0.620n2.17 3.86n1.81 3.78n2.06

Table 4.2: KNNrp and KNNpiv least square fittings for distance evaluations and CPU time
for 20-dimensional Gaussian metric spaces. CPU time measured in microseconds.

Table 4.2 shows that both of our construction algorithms are subquadratic in distance
computations, and slightly superquadratic in CPU time, when considering each standard
deviation σ separately. It also shows that as σ increases, the exponents grow. This is
expected since the larger the deviation, the more overlapped the clusters. Indeed, the
rows for σ = 0.1, 0.2 and 0.3 exhibit exponent values similar to the ones for 8, 16 and 20
dimensions in the uniformly distributed vector space in Table 4.1, respectively. Thus, the
intrinsic dimensionality increases with σ, as the space becomes more uniform.

Once again, the table shows that the best of our construction algorithms is KNNpiv,
yet it is also more sensitive to the intrinsic dimension of the space. KNNrp is subquadratic
in distance evaluations and slightly superquadratic in CPU time for the three deviations.
KNNpiv is sublinear for σ = 0.1 and subquadratic for σ = 0.2 and 0.3 with respect
to distance computations. This particular behavior is explained because for σ = 0.1 the
clusters are so crisp (that is, they have small radius when compared with the average
distance between any two objects in the space) that the pivoting preindex detects the
appropriate cluster and filters out most of the objects when computing the nearest
neighbors for each object in the knng. However, as the deviation enlarges the clusters
overlap more and more each other, reducing the filtering power of the pivoting preindex.
A similar effect can be seen from the KNNpiv CPU fittings, where we verify that it is
subquadratic for σ = 0.1 and 0.2, and slightly superquadratic for σ = 0.3. This comes
both from the cluster crispness and from the fact that, since the dimensionality is high,
the shortest path computations performed by extractFrom stop after few propagations.

127

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 2048 4096 8192 16384 32768 65536

di
st

an
ce

 e
va

lu
at

io
ns

 p
er

 v
ec

to
r

database size n

Gauss space: Distance evaluations per vector vs n, k = 8

KNNb
KNNrp, std = 0.1
KNNrp, std = 0.2
KNNrp, std = 0.3
KNNrp, uniform
KNNpiv, std = 0.1
KNNpiv, std = 0.2
KNNpiv, std = 0.3
KNNpiv, uniform

(a) Dist. evals. per vector, dependence on n.

 4

 16

 64

 256

 1024

 4096

 16384

 2048 4096 8192 16384 32768 65536

tim
e

[s
ec

]

database size n

Gauss space: CPU time vs n, k = 8

(b) CPU time, dependence on n.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2 4 8 16 32 64

di
st

an
ce

 e
va

lu
at

io
ns

 p
er

 v
ec

to
r

neighbors per vector in the graph k

Gauss space: Distance evaluations per vector vs k, n = 65,536

(c) Dist. evals. per vector, dependence on k.

 2048

 4096

 8192

 16384

 32768

 65536

 2 4 8 16 32 64

tim
e

[s
ec

]

neighbors per vector in the graph k

Gauss space: CPU time vs k, n = 65,536

(d) Dist. evals. per vector, dependence on k.

Figure 4.27: Evaluating knng construction algorithms in 20-dimensional Gaussian spaces. On
the left, distance evaluations per element during knng construction. On the right, CPU time
for the whole process. Note the logscale. Figures (b), (c) and (d) follow the legend of Figure
(a). In Figure (c) KNNrp and KNNpiv reach 45,210 and 45,749 distance evaluations per
element where vectors are uniformly distributed, respectively.

Figure 4.27(a) shows the subquadratic performance in distance evaluations of our
approach, and Figure (b) the superquadratic CPU time. Figures 4.27(c) and (d) show
that the dependence on k is mild. It is interesting that for crisp clusters (σ = 0.1) the
distance computation performance of our algorithms improves significantly, even for high
values of k. Also, in crisp clusters, KNNpiv is faster in CPU time than KNNb for
k < 16. We also verify improvements in distance computations for σ = 0.2. For σ = 0.3
our construction algorithms behave better that KNNb for small values of k. Note that
for k ≤ 8 our algorithms are more efficient in distance computations than KNNb for the
three variances. Again, KNNpiv has the best performance.

Finally, in the plots of Figure 4.27, we also draw the construction results for the 20-
dimensional uniformly distributed vector space. As can be seen, there is a performance
improvement even with fuzzy clusters. Once again, we insist that in the metric space
context, superquadratic CPU time in side computations is tolerable when this allows

128

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

reducing the number of distance computations.

4.4.2.2 Searching

Figures 4.28 and 4.29 show searching results in the 20-dimensional Gaussian space, where
we explore the effect of the cluster sizes, the query outcome size and the index size.

100%

80%

60%

40%

20%

0%
 0.3 0.2 0.1

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

standard deviation

20-dim Gaussian space: Range Queries retr. 1 vector, n = 65,536

8nngRQ1
8nngRQ2

12-Pivot
32nngRQ1
32nngRQ2

48-Pivot
AESA

(a) Range queries retrieving 1 object on average.

100%

80%

60%

40%

20%

0%
 0.3 0.2 0.1

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

standard deviation

20-dim Gaussian space: 1-Nearest Neighbor Queries, n = 65,536

8nng1NNQ1
8nng1NNQ2

12-Pivot
32nng1NNQ1
32nng1NNQ2

48-Pivot
AESA

(b) 1-Nearest neighbor queries.

100%

80%

60%

40%

20%

0%
 0.3 0.2 0.1

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

standard deviation

20-dim Gaussian space: Range Queries retr. 10 vectors, n = 65,536

8nngRQ1
8nngRQ2

12-Pivot
32nngRQ1
32nngRQ2

48-Pivot
AESA

(c) Range queries retrieving 10 objects on average.

100%

80%

60%

40%

20%

0%
 0.3 0.2 0.1

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

standard deviation

20-dim Gaussian space: 10-Nearest Neighbor Queries, n = 65,536

8nng10NNQ1
8nng10NNQ2

12-Pivot
32nng10NNQ1
32nng10NNQ2

48-Pivot
AESA

(d) 10-Nearest neighbor queries.

Figure 4.28: Evaluating percentage of database compared by our knng based search algorithms
in 20-dimensional Gaussian spaces, dependence on the standard deviation. On the left, range
queries. On the right, nearest neighbor queries. We compare the search performance of our
algorithms with a pivoting algorithm using 1.5k pivots.

In Figure 4.28 we perform range queries recovering 1 and 10 elements, and compare
these results with the ones obtained when performing the equivalent query for nearest
neighbors. This figure also confirms that the knng based searching algorithms perform in
a range-optimal fashion. Furthermore, the plots show that the pivot algorithm behaves
better when the Gaussian space is composed by crisp clusters, but as the clusters get fuzzier
our techniques behave better in relative terms, as their degradation is smoother than in
the case of the pivoting algorithm. Note that this agrees with the previous section, where

129

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

we suggest that a 20-dimensional Gaussian space with crisp clusters (σ = 0.1) looks like a
8-dimensional uniformly distributed space. We also observe that the performance is better
when using the 32nng graph as the metric index instead of using a 8nng, as expected.
Finally, the figure shows that, unlike the pivoting algorithms, ours degrade gradually as
the query loses discrimination power.

100%

64%

32%

16%

8%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per vector in the graph k

20-dim Gaussian space: Range Q. retr. 1 vector, n = 65,536, std = 0.2

knngRQ1
knngRQ2

Pivot

(a) Range queries retrieving 1 object on average,
varying index size.

100%

64%

32%

16%

8%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per vector in the graph k

20-dim Gaussian space: Range Queries retr. 10 vectors, n = 65,536, std = 0.2

knngRQ1
knngRQ2

Pivot

(b) Range queries retrieving 10 objects on average,
varying index size.

64%

32%

16%

8%

4%

2%

1%
 1 2 4 8 16

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

number of nearest vectors retrieved

20-dim Gaussian space: Neighbor Q. of incr. size, n = 65,536, std = 0.2

32nngKNNQ1
32nngKNNQ2

48-Pivot
AESA

(c) NNk(q) in σ = 0.2, varying the query size outcome.

100%

64%

32%

16%

8%

4%
 1 2 4 8 16

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

number of nearest vectors retrieved

20-dim Gaussian space: Neighbor Q. of incr. size, n = 65,536, std = 0.3

32nngKNNQ1
32nngKNNQ2

48-Pivot
AESA

(d) NNk(q) in σ = 0.2, varying the query size outcome.

Figure 4.29: Evaluating percentage of database compared by our knng based search algorithms
in Gaussian spaces. On the first row, range queries varying the index size. On the second row,
nearest neighbor queries varying the query outcome size. Note the logscale. We compare the
search performance of our algorithms with a pivoting algorithm using 1.5k pivots. In (a) and
(b), AESA performs 359 and 903 distance comparisons on average, that is, it compares around
0.55% and 1.38% of the database, respectively. In (a), for 96 pivots (equivalent to a 64nng),
the pivoting algorithm requires 4247 distance comparisons, around 6.48%.

Figures 4.29(a) and (b) show range queries retrieving respectively 1 and 10 vectors
on average per query versus the index size, for σ = 0.2. As expected, the larger the knng

index size, the better the searching performance of our technique. The same behavior
can be observed for the pivot technique, yet its performance is worse than ours for all the
range of k values, with two exceptions in range queries retrieving 1 object and no exceptions
when retrieving 10 objects. In fact, over a 32nng our algorithms behave rather similarly

130

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

to the equivalent 48-pivot index, and the 96-pivot index behaves better that ours over the
equivalent 64nng index. Once again, this can be interpreted as that our technique behaves
better than pivots in low-memory scenarios. On the other hand, AESA performance is
better by far than ours yet it uses O

(
n2
)

space for the index (in these experiments, AESA
requires 8 GB of main memory).

Figures 4.29(c) and (d) show nearest neighbor queries over a 32nng for σ = 0.2 and
0.3 respectively, versus the size of the query outcome. In accordance to the previous plots,
these show that as the query outcome size grows, it becomes more difficult to solve the
proximity query, but the performance degradation of our technique is reasonably mild.

As can be seen, the conclusions of this experimental series are similar to that obtained
in Section 4.4.1.2, that is, knng based algorithms are resistant to both the intrinsic
dimensionality effect (Figure 4.28) and the query outcome size (Figures 4.29); and both
of our knng based approach perform rather similarly, being knngRQ2 and knngNNQ2
slightly better than knngRQ1 and knngNNQ1.

4.4.3 Strings under Edit Distance

The string metric space under the edit distance has no coordinates. The edit distance is
a discrete function that, given two strings, measures the minimum number of character
insertions, deletions and substitutions needed to transform one string to the other [NR02].
Our database is an English dictionary, where we index a subset of n = 65,536 randomly
chosen words. On average, a distance computation takes 1.632 microseconds.

In the search experiments, we select 50 queries at random from dictionary words not
included in the index. We search with radii r = 1, 2 and 3, which return on average
0.003%, 0.044% and 0.373% of the database, that is, approximately 2, 29 and 244 words
of the English dictionary, respectively.

4.4.3.1 Construction

Figure 4.30 shows results for strings. As can be seen, both KNNrp and KNNpiv require
a subquadratic amount of distance computations for all k ∈ [2, 64]. This is also verified
when checking the least square fitting for distance evaluations, as they are 21.4n1.54 and
99.9n1.26 for KNNrp and KNNpiv, respectively. Note that these exponents are similar
to the ones for 12 dimensions in the uniformly distributed vector space in Table 4.1. In
order to illustrate the improvements in distance computations of our algorithms, we can
show that for n = 65, 536, KNNrp costs 28%, and KNNpiv just 8%, of KNNb to build
the 32nng.

With respect to CPU time, the recursive algorithm is slightly superquadratic
(1.09n2.09 microseconds) and the pivoting one is slightly subquadratic (10.8n1.85

131

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 2048 4096 8192 16384 32768 65536

di
st

an
ce

 e
va

lu
at

io
ns

 p
er

 s
tr

in
g

database size n

String space: Distance evaluations per string vs n

KNNb
KNNrp, k = 2
KNNrp, k = 8
KNNrp, k = 32
KNNpiv, k = 2
KNNpiv, k = 8
KNNpiv, k = 32

(a) Dist. evals. per string, dependence on n.

 4

 16

 64

 256

 1024

 4096

 16384

 2048 4096 8192 16384 32768 65536

tim
e

[s
ec

]

database size n

String space: CPU time vs n

KNNb
KNNrp, k = 2
KNNrp, k = 8
KNNrp, k = 32
KNNpiv, k = 2
KNNpiv, k = 8
KNNpiv, k = 32

(b) CPU time, dependence on n.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 8 16 32 64

di
st

an
ce

 e
va

lu
at

io
ns

 p
er

 s
tr

in
g

neighbors per string in the graph k

String space: Distance evaluations per string vs k, n = 65,536

KNNrp
KNNpiv

(c) Dist. evals. per string, dependence on k.

 4096

 8192

 16384

 2 4 8 16 32 64

tim
e

[s
ec

]

neighbors per string in the graph k

String space: CPU time vs k, n = 65,536

KNNb
KNNrp
KNNpiv

(d) CPU time, dependence on k.

Figure 4.30: Evaluating knng construction algorithms in the string space. On the left, distance
evaluations per element during knng construction. On the right, CPU time for the whole
process. Note the logscale. In Figure (a), and (c), KNNb reaches 32,768 distance evaluations
per node. In Figure (b), KNNb reaches 3.5 seconds for n = 2,048.

microseconds). This also can be seen from Figure 4.30(b), as the slope is flatter than
the slope of KNNb.

Once again, Figures 4.30(c) and (d) show that the dependence on k is mild for both
of our algorithms.

4.4.3.2 Searching

Figure 4.31 shows searching results in the string space. Figure 4.31(a) shows range queries
using radius r = 1, which retrieve approximately 2 objects per query on average, and
Figure (b) shows the equivalent 2-nearest neighbor query experiment. These plots also
show that our approach behaves in a range-optimal fashion, which is in agreement with
the results shown in synthetic vector spaces.

132

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

100%

64%

32%

16%

8%

4%

2%

1%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per string in the graph k

String space: Range Queries r = 1, n = 65,536

knngRQ1
knngRQ2

Pivot

(a) Range queries, radius r = 1, varying index size.

100%

64%

32%

16%

8%

4%

2%

1%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per string in the graph k

String space: 2-Nearest Neighbor Queries, n = 65,536

knng2NNQ1
knng2NNQ2

Pivot

(b) 2-Nearest neighbor queries, varying index size.

100%

64%

32%

16%

8%

4%

2%

1%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per string in the graph k

String space: Range Queries r = 2, n = 65,536

knngRQ1
knngRQ2

Pivot

(c) Range queries, radius r = 2, varying index size.

100%

64%

32%

16%

8%

4%

2%

1%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per string in the graph k

String space: 16-Nearest Neighbor Queries, k = 16, n = 65,536

knng16NNQ1
knng16NNQ2

Pivot

(d) 16-Nearest neighbor queries, varying index size.

100%

64%

32%

16%

8%

4%

2%

1%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per string in the graph k

String space: Range Queries r = 3, n = 65,536

knngRQ1
knngRQ2

Pivot
AESA

(e) Range queries, radius r = 3, varying index size.

32%

16%

8%

4%

2%

1%
 1 2 4 8 16

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

number of nearest strings retrieved

String space: Neighbor Queries of increasing size, n = 65,536

 8nngKNNQ1
 8nngKNNQ2

12-Pivot
32nngKNNQ1
32nngKNNQ2

48-Pivot

(f) NNk(q) varying the query size outcome.

Figure 4.31: Evaluating percentage of database compared by our knng based search algorithms
in the string space. On the left, range queries. On the right, nearest neighbor queries. We
compare the search performance of our algorithms with a pivoting algorithm using 1.5k pivots.
In (a), (b), (c) and (d), AESA performs 25, 106, 42 and 147 distance comparisons on average,
that is, it compares around 0.04%, 0.16%, 0.06% and 0.22% of the database, respectively. In
(f), AESA perform from 32, 41, 79, 100 and 146 distance evaluations, that is, 0.05%, 0.06%,
0.12%, 0.15% and 0.22% to retrieve 1, 2, 4, 8 and 16 relevant objects, respectively. In (a) and
(f), for 96 pivots (equivalent to a 64nng), the pivoting algorithm requires 74 and 334 distance
comparisons, around 0.11% and 0.51% of the metric database, respectively.

133

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

On the other hand, all the plots in Figure 4.31 confirm that the knng based
search algorithms are resistant to the query outcome size, as expected from the previous
searching experiments in synthetic spaces. Indeed, with radii r = 1, 2 and 3, we retrieve
approximately 2, 29 and 244 strings per query on average, yet the performance of our
algorithms does not degrade as sharply as the pivot-based one. With radius 1 the pivot
based technique has better performance than our algorithms. However, with radius r = 2
and 3 our algorithms outperform the pivot-based algorithm, which increases the number of
distance computations fast as the search radius grows. The same behavior can be observed
for nearest neighbor queries; our algorithms beat the pivot-based one when retrieving 4 or
more nearest neighbors. AESA uses very few distances evaluations, however its index uses
O(n2) memory, which is impractical in most of the scenarios (in fact, in this one AESA
uses 8 GB of space).

Note that the difference between pivot range queries of radius 1 and the 2-nearest
neighbor queries arises because there are strings that have much more than 2 neighbors
at distance 1, for example the query word “cams” retrieves “jams”, “crams”, “cam” and
seventeen others, so these words distort the average for radius 1. We also verify that, the
bigger the index size, the better the performance.

Once again, our knng based approach perform rather similarly, and knngRQ2 is
better than knngRQ1. However, this time knngNNQ1 turns out to be better than
knngRQ2 when the knng uses more memory.

4.4.4 Documents under Cosine Distance

In Information Retrieval, documents are usually represented as unitary vectors of high
dimensionality [BYRN99]. The idea consists in mapping the document to a vector of real
values, so that each dimension is a vocabulary word and the relevance of the word to the
document (computed using some formula) is the coordinate of the document along that
dimension.

With this model, document similarity is assessed through the inner product between
the vectors. Note that the inner product between two exactly equal documents is one,
since both documents are represented by the same unitary vector. As the documents are
more different, the inner product between the vectors representing them goes to zero. As
we are looking for a distance, we consider the angle between these vectors. This way, the
cosine distance is simply the arc cosine of the inner product between the vectors [BYRN99],
and this satisfies the triangle inequality. Similarity under this model is very expensive to
calculate.

We use a dataset composed by 20,913 medium size documents, each of them of 200 KB
approximately, obtained by splitting documents from the whole TREC-3 collection [Har95].
Given the documents, we synthesize the vectors representing them by using the program
machinery provided in the Metric Spaces Library (http://sisap.org/?f=library)
[FNC07]. The resulting medium size document space has high intrinsic dimensionality.

134

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

In this dataset we verify a good performance of both knng construction and knng-
based searching algorithms. We have left this dataset available in the Library
(http://www.sisap.org/library/dbs/documents/).

In the construction experiments, we use document datasets of varying size n ∈
[2,000; 20,000]. Later, search experiments are carried out over knngs indexing a dataset
formed by 20,000 documents. We select 50 random queries not included in the index,
using search radii that on average retrieve 1 and 10 documents (r = 0.2842 and 0.3319,
respectively), and also performing nearest neighbor queries retrieving from 1 to 16 relevant
documents.

In the construction experiments, we maintain the whole document set in main memory
in order to avoid the disk time. In this scenario, a distance computation takes 182
microseconds on average. In real applications, however, this may be unfeasible, since
the dataset can be arbitrarily large. So, in search experiments we manage the documents
on disk to demonstrate the effect of such an expensive distance function. That is, we show
a case where the distance is expensive enough to absorb the extra CPU time we incur with
the graph traversals.

4.4.4.1 Construction

Figure 4.32 shows that our methodology requires a subquadratic amount of distance
computations for small values of k (≤ 8). We compute the least square fittings for
distance evaluations obtaining 3.47n1.81 evaluations for KNNrp and 2.02n1.85 evaluations
for KNNpiv. Note that this values are similar to the ones for 20 dimensions in the
uniformly distributed vector spaces in Table 4.1. As can be seen, for n = 20,000 documents,
KNNrp costs 64% and KNNpiv costs 49% of KNNb to build the 2nng.

With respect to CPU time the least square fittings are 572n1.83 microseconds for
KNNrp and 334n1.87 microseconds for KNNpiv. The exponents of these fittings differ
marginally from the ones for distance evaluations. This shows that in practice the leading
complexity (computing distances) is several orders of magnitude larger than other side
computations such as traversing pointers, scanning the pivot table or computing distance
through the graph.

Finally, Figures 4.32(c) and (d) confirm that the dependence on k is mild for both of
our algorithms.

4.4.4.2 Searching

Figures 4.33 and 4.34 show searching results in the space of documents for distance
evaluations and elapsed time, respectively. Figures 4.33(a) and (b) show the performance of
range queries retrieving 1 and 10 documents varying the index size. Note that knngRQ2
requires approximately a 29% of the distance evaluations of the equivalent pivot based

135

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 4 6 8 10 12 14 16 18 20

di
st

an
ce

 e
va

lu
at

io
ns

 p
er

 d
oc

um
en

t

database size n [x 1,000]

Document space: Distance evaluations per document vs n

KNNb
KNNrp, k = 2
KNNrp, k = 8
KNNrp, k = 32
KNNpiv, k = 2
KNNpiv, k = 8
KNNpiv, k = 32

(a) Dist. evals. per document, dependence on n.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 2 4 6 8 10 12 14 16 18 20

to
ta

l t
im

e
[s

ec
]

database size n [x 1,000]

Document space: CPU time vs n

KNNb
KNNrp, k = 2
KNNrp, k = 8
KNNrp, k = 32
KNNpiv, k = 2
KNNpiv, k = 8
KNNpiv, k = 32

(b) CPU time, dependence on n.

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 2 4 8 16 32 64

di
st

an
ce

 e
va

lu
at

io
ns

 p
er

 d
oc

um
en

t

neighbors per document in the graph k

Document space: Distance evaluations per document vs k, n = 20,000

KNNb
KNNrp
KNNpiv

(c) Dist. evals. per document, dependence on k.

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 2 4 8 16 32 64

to
ta

l t
im

e
[s

ec
]

neighbors per document in the graph k

Document space: CPU time vs k, n = 20,000

KNNb
KNNrp
KNNpiv

(d) CPU time, dependence on k.

Figure 4.32: Evaluating knng construction algorithms in the space of documents. On the left,
distance evaluations per element during knng construction. On the right, CPU time for the
whole process. Note the logscale. In Figure (b), KNNrp reaches 53,000 seconds.

algorithm. These experiments also confirm that the greater the knng index size, the
better the behavior of our search algorithms, especially when we add more space to knng

graphs with few neighbors per node. With respect to AESA, in a range query to recover 1
document on average over a 64nng index, knngRQ2 requires 6.7 times the AESA distance
computations, yet using only 0.48% of its space (for this space the full distance matrix
requires 763 MB of main memory).

Figures 4.33(c) and (d) show nearest neighbor queries of increasing query outcome size
over an 8nng and a 32nng. With respect to AESA, using a 32nng index, knngNNQ1
uses 14.7 times the AESA distance computations to find the closest document (yet using
only 0.24% of its space). If we want to retrieve the two closest documents, this ratio reduces
to 6.9 times AESA. Note that as the query size outcome increases, the performance ratio
between our searching algorithms and AESA decreases.

Finally, the elapsed times of Figure 4.34 show similar results with respect to Figure
4.33. This is because the cosine distance is so expensive to compute that it absorbs other

136

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

60%

50%

40%

30%

20%

10%

0%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per document in the graph k

Document space: Range Query retr. 1 doc, dist. comp., n = 20,000

knngRQ1
knngRQ2

Pivot
AESA

(a) Range queries retrieving 1 object on average, varying
index size.

70%

60%

50%

40%

30%

20%

10%

0%
 2 4 8 16 32 64

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

neighbors per document in the graph k

Document space: Range Query retr. 10 docs, dist. comp., n = 20,000

knngRQ1
knngRQ2

Pivot
AESA

(b) Range queries retrieving 10 objects on average,
varying index size.

64%

32%

16%

8%

4%

2%

1%
 1 2 4 8 16

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

number of nearest documents retrieved

Document space: NNQ of increasing size, dist. comp., n = 20,000

 8nngKNNQ1
 8nngKNNQ2

12-Pivot
AESA

(c) NNk(q) varing the query outcome size over an 8nng.

64%

32%

16%

8%

4%

2%

1%
 1 2 4 8 16

pe
rc

en
ta

ge
 o

f t
he

 d
at

ab
as

e
co

m
pa

re
d

number of nearest documents retrieved

Document space: NNQ of increasing size, dist. comp., n = 20,000

32nngKNNQ1
32nngKNNQ2

48-Pivot
AESA

(d) NNk(q) varing the query outcome size over a
32nng.

Figure 4.33: Evaluating percentage of database compared by our knng based search algorithms
in the space of documents. On the first row, range queries varying the index size. On the
second row, nearest neighbor queries varying the query outcome size. Note the logscale. We
compare the search performance of our algorithms with a pivoting algorithm using 1.5k pivots.

components in the total CPU time in the search process, such as traversing the graph or
scanning the pivot table. The elapsed time values of AESA do not consider the distance
computations performed to simulate the full distance matrix.

4.4.5 Discussion of the Experimental Results

We have carried out several experiments using both synthetic and real-world data, and
several testing scenarios in order to understand with reasonable deepness the performance
of our proposals. In the following we summarize the experimental results.

With respect to the construction of knngs, we have obtained the following
experimental results in the high-dimensional metric space of documents. KNNpiv
requires 2.02n1.85 distance computations and 334n1.87 microseconds, which is clearly

137

4.4 Experimental Results Chapter 4 k-Nearest Neighbor Graphs

 0

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 8 16 32 64

se
ar

ch
 ti

m
e

[s
ec

]

neighbors per document in the graph k

Document space: Range Query retr. 1 doc, search time, n = 20,000

knngRQ1
knngRQ2

Pivot
AESA

(a) Range queries retrieving 1 object on average, varying
index size.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 2 4 8 16 32 64

se
ar

ch
 ti

m
e

[s
ec

]

neighbors per document in the graph k

Document space: Range Query retr. 10 docs, search time, n = 20,000

knngRQ1
knngRQ2

Pivot
AESA

(b) Range queries retrieving 10 objects on average,
varying index size.

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16

se
ar

ch
 ti

m
e

[s
ec

]

number of nearest documents retrieved

Document space: NNQ of increasing size, search time, n = 20,000

 8nngKNNQ1
 8nngKNNQ2

12-Pivot
AESA

(c) NNk(q) varing the query outcome size over an 8nng.

 4

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16

se
ar

ch
 ti

m
e

[s
ec

]

number of nearest documents retrieved

Document space: NNQ of increasing size, search time, n = 65,536

32nngKNNQ1
32nngKNNQ2

48-Pivot
AESA

(d) NNk(q) varing the query outcome size over a
32nng.

Figure 4.34: Evaluating elapsed time required by our knng based search algorithms in the
space of documents. On the first row, range queries varying the index size. On the second
row, nearest neighbor queries varying the query outcome size. Note the logscale. We compare
the search performance of our algorithms with a pivoting algorithm using 1.5k pivots.

subquadratic. Note that the exponent values shows that most of the time required in the
construction comes from computing the cosine distance. In low-dimensional metric spaces,
our algorithms behave even better. For instance, in the string space, KNNpiv achieves
an empirical CPU time 10.8n1.85 microseconds, and 99.9n1.26 distance computations.

The experimental results on vectors with uniform distribution show the usual
exponential dependence on the dimensionality of the space. In fact, KNNrp requires
0.455e0.19Dn1.65 distance evaluations and 0.571e0.01Dn2.14 microseconds of CPU time.
On the other hand, KNNpiv requires 0.685e0.24Dn1.48 distance computations and
0.858e0.11Dn1.95 microseconds of CPU time. Note that Euclidean distance is very cheap
to compute, thus, CPU times are governed by the time needed to compute shortest
paths through the graph. We remark that, in many metric space applications with costly
distance functions, superquadratic CPU time in side computations is not as important as

138

Chapter 4 k-Nearest Neighbor Graphs 4.4 Experimental Results

a subquadratic number of computed distances, as can be appreciated in the experimental
results on the document space. Finally, the construction experiments on Gaussian dataset
has shown that our methodology profits from the clusters usually present in metric spaces.

With respect to our knng based search algorithms, we have shown that they have
practical applicability in low-memory scenarios —that is, with small values of k— for
metric spaces of medium or high dimensionality. This can be appreciated throughout all
the search experiments performed for knngs, yet it is especially noticeable in the space of
uniformly distributed vectors, where we can see that for D ≥ 12 our search performance
is better than the classic pivot based alternative.

Note that our knng based approach is less sensitive both to the dimensionality of the
space and to the selectivity of the query. This is shown by the fact that when we tested
with vector spaces with larger dimensionality, or when we increased the query radius, the
performance degradation of our algorithms was smother than that of the classical pivot
approach using the same memory for the index, and for AESA[Vid86] (the best algorithm
for metric space searching).

These search results were verified in the other metric spaces. We want to remark the
experimental results in the space of documents: our search algorithms retrieve objects using
approximately 29% of the distance evaluations (and also elapsed time) of the equivalent
pivot based algorithm for a range of values of k ∈ [2, 64]. Moreover, our nearest neighbor
algorithm uses just 30% more distance computations than AESA only using 0.25% of its
space requirement.

139

Chapter 5

Conclusions

– Piled Higher & Deeper, #188, by Jorge Cham

Given a metric space (X, d) and a dataset U ⊂ X, we can solve similarity queries over the
set U using the following procedure. We start by building offline an index I for the dataset
U using any of the current metric space indices [CNBYM01, HS03, ZADB06, Sam06] and
later compute online queries with the search algorithms appropriated for I.

The state of the art of the metric indices can be divided into two main families
[CNBYM01]: pivot based and compact-partition based. As we can only compare objects
by computing the distance between them, the index can be seen, in abstract terms, as
a subset of cells from the full distance matrix U × U, or, more generally, as somehow
summarizing the distance information of cells from U× U.

In this thesis we have approached the metric space search problem from a different
perspective, which consists in using graphs G(V,E) to represent the metric database U. In

141

5.1 Contributions of this Thesis Chapter 5 Conclusions

this new model, each vertex of V represents an object of U, and the edge set E corresponds
to a small subset of weighted edges from the full set V × V ; or equivalently, E is a
subset from U×U, where the edge weights are the distances between the connected nodes
according to the distance function d.

In the following we summarize the main contributions of this thesis. Finally, we give
some directions for further work.

5.1 Contributions of this Thesis

Many have marked the speed with which Muad’Dib learned
the necessities of Arrakis. The Bene Gesserit, of course,
know the basis of this speed. For the others, we can say
that Muad’Dib learned rapidly because his first training
was in how to learn. And the first lesson of all was the
basic trust that he could learn. It’s shocking to find how
many people do not believe they can learn, and how many
more believe learning to be difficult. Muad’Dib knew that
every experience carries its lesson.

– from The Humanity of Muad’Dib by the Princess Irulan,
taken from Dune, by Frank Herbert

We have exhaustively explored the k-nearest neighbor graph (knng), which is a directed
weighted graph connecting each element to its k nearest neighbors. For this sake, we have
proposed algorithms both to construct knngs in general metric spaces and to use them to
solve proximity queries. We are not aware of any other previous practical result published
on the topic.

Motivated by the fact that graph algorithms make heavy use of fundamental
algorithms and data structures, we have also explored some basic algorithmic problems
throughout this work, such as incremental sorting and priority queues.

5.1.1 Fundamental Algorithms

We have presented Incremental Quicksort (IQS), an algorithm to incrementally retrieve
the next smallest element from a set. IQS has the same expected complexity of existing
solutions, but it is considerably faster in practice. It is nearly as fast as the best algorithm
that knows beforehand the number of elements to retrieve. As a matter of fact, IQS is just
3% slower than Partial Quicksort [Mar04], the best offline alternative, yet IQS requires
only 26% of the CPU time of the classical online alternative, consisting in heapifying the
set and then performing k minimum extractions.

142

Chapter 5 Conclusions 5.1 Contributions of this Thesis

Based on the Incremental Quicksort algorithm, we have introduced Quickheaps, a
simple and efficient data structure which implements priority queues. Quickheaps enable
efficient element insertion, minimum finding, minimum extraction, deletion of arbitrary
elements and modification of the priority of elements within the heap. We proved that
the expected amortized cost per operation is O(log m), for a quickheap containing m
elements. Quickheaps are as simple to implement as classical binary heaps, need almost
no extra space, are efficient in practice, and exhibit high locality of reference. In fact,
our experimental results show that in some scenarios quickheaps perform up to four times
faster than binary heaps. They also show that quickheaps can outperform more complex
implementations such as sequence heaps [San00], even in the scenarios where sequence
heaps were designed for.

Exploiting the high locality of reference of Quickheaps, we have designed a cache-
oblivious version, External Quickheap, that performs nearly optimally on secondary
memory. The external quickheap implements efficient element insertion, minimum finding
and minimum extraction. We proved that the amortized cost per operation in secondary
memory is O((1/B) log(m/M)) on disk, where m is the maximum heap size achieved, B
the block size, and M the main memory size. For other operations like element deletion
or modification of the priority, we need an extra dictionary to manage element positions
and one extra random access to secondary memory. Our experimental results show that
Quickheaps are extremely competitive in practice: using the same amount of memory,
they perform up to 3 times fewer I/O accesses than R-Heaps [AMOT90] and up to 5 times
fewer than Array-Heaps [BK98], which are the best alternatives tested in the survey by
Brengel et al. [BCFM00]. In [OS02], authors show that despite in theory cache-oblivious
priority queues have a good performance, in practice they have not. Nevertheless, our
cache-oblivious External Quickheap is competitive with (and sometimes, more efficient
than) the state of the art.

In order to analyze quickheaps we introduce a slight variation of the potential method
[Tar85] (and [CLRS01, Chapter 17]) which we call the potential debt method. In this case,
the potential debt (which is associated with the data structure as a whole) represents a
cost that has not yet been paid. Thus, at the end, this total debt must be split among all
the operations performed.

Both the algorithm IQS and the quickheap improve upon the current state of the art
on many algorithmic scenarios. For instance, we plug our basic algorithms into classical
Minimum Spanning Tree (MST) techniques [Wei99, CLRS01], obtaining two solutions that
are competitive with the best (and much more sophisticated) current implementations: We
use the incremental sorting technique to boost Kruskal’s MST algorithm [Kru56], and the
priority queue to boost Prim’s MST algorithm [Pri57]. In the case of random graphs the
expected complexities of the resulting MST versions are O

(
m + n log2 n

)
, where n is the

number of nodes and m the number of edges.

143

5.1 Contributions of this Thesis Chapter 5 Conclusions

5.1.2 k-Nearest Neighbor Graphs

We have presented a general methodology to construct k-nearest neighbor graphs in general
metric spaces. On top of our methodology we give two construction algorithms. The
first is based on a recursive partitioning of the space (KNNrp), and the second on the
classical pivot technique (KNNpiv), using range-optimal queries when solving nearest
neighbor queries. As usual in the metric space context, our methodology considers two
stages: the first preindexes the space and the second completes the knng by performing
several similarity queries. Note that in the second stage we not only use the preindex
and metric properties to discard objects, but also several graph optimizations. To the
best of our knowledge, there is no other practical algorithm to construct knngs in general
metric spaces. So we compare our results with the basic construction algorithm requiring
a quadratic number of distance computations.

knngs themselves can be used for many purposes, for instance, cluster and
outlier detection [EE94, BCQY96], VLSI design, spin glass and other physical process
simulations [CK95], pattern recognition [DH73], query or document recommendation
systems [BYHM04a, BYHM04b], similarity self joins [DGSZ03, DGZ03, PR08], and many
others. Hence, their construction is interesting per se.

In this thesis, we are in particular interested in how to use them to speed up metric
queries. Thus, we have presented two metric space search algorithms that use the k-
nearest neighbor graph as a metric index in order to solve range queries. Next, we obtain
two nearest neighbor search algorithms induced by either of the range query ones. To do
so, we manage the nearest neighbor query as a range query of decreasing radius.

We have carried out several experiments using both synthetic and real-world data, and
several testing scenarios in order to understand with reasonable deepness the performance
of our proposals. The synthetic spaces correspond to vectors with uniform and Gaussian
distribution under Euclidean distance. With respect to real-world data, we have tested
with the space of strings under the edit distance, and the space of documents under the
cosine distance. Both real-world spaces are of interest to Information Retrieval [BYRN99].
We remark that the cosine distance is known for its high computation cost.

In all the spaces tested, we verify that our construction algorithms are subquadratic
in distance evaluations. For instance, in the high-dimensional document space, KNNpiv
requires 2.02n1.85 distance computations and 334n1.87 microseconds. Note that the
exponent values shows that most of the time required in the construction comes from
computing the cosine distance. In terms of percentage, KNNpiv requires 50% of the
distance computations and 60% of the CPU time of the basic construction alternative in
order to construct the 2nng graph. Our construction algorithms behave even better in
low- and medium-dimensional metric spaces. For instance, in the space of strings KNNrp
requires 14% and KNNpiv only 1.1% of the distance evaluations of the basic algorithm
to build the 64nng.

From the experiments we conclude that KNNpiv is in general better than KNNrp

144

Chapter 5 Conclusions 5.2 Further Work

for small and moderate k values, yet KNNrp is less sensitive to larger k values or higher
dimensional spaces.

With respect to our knng based search algorithms, we have shown that they have
practical applicability in low-memory scenarios —that is, with small values of k— for
metric spaces of medium or high dimensionality. Note that our knng based approach is
less sensitive both to the dimensionality of the space and to the selectivity of the query. We
want to remark the experimental results in the space of documents: our search algorithms
retrieve objects using approximately 29% of the distance evaluations (and also elapsed
time) of the equivalent pivot based algorithm for a range of values of k ∈ [2, 64]. Moreover,
our nearest neighbor algorithm uses just 30% more distance computations than AESA
only using 0.25% of its space requirement. We have experimentally shown that knngs
offer an indexing alternative which requires a moderate amount of memory (O(kn) space)
obtaining reasonably good performance in the search process.

5.2 Further Work

– Piled Higher & Deeper, #844, by Jorge Cham

This research opens several research directions both in fundamental algorithms and
on k-nearest neighbor graphs.

5.2.1 Fundamental Algorithms

IQS can be used for other more specialized purposes. For example, we can use the IQS
stack-of-pivots underlying idea to partially sort in increasing/decreasing order starting
from any place of the array. For instance, if we want to perform an incremental sorting in

145

5.2 Further Work Chapter 5 Conclusions

increasing order (with a stack which previously stores the set size), we first use Quickselect
to find the first element we want, storing in the stack all the pivots larger than the first
element. Later we use IQS with that stack to search for the next elements (the other
pivots, instead, would be useful to sort in decreasing order, by initializing the stack with
−1). Moreover, with two stacks we can make centered searching, namely, finding the k-th
element, the (k + 1)-th and (k − 1)-th, the (k + 2)-th and (k − 2)-th, and so on.

Similarly, research on extensions to quickheaps is interesting, such as implementing
a kind of min-max-heap [ASSS86] by joining two quickheaps back-to-back, or quickheap
variants, such as a non-sliding quickheap. We can also consider whether our quickheaps
can improve the performance of other algorithms using priority queues.

There are also many research possibilities with external quickheaps. For instance,
we can experiment with other sequences of accesses to the elements, and also with real
CPU and I/O times. On the theoretical side, we also plan to achieve amortized worst-case
guarantees for the data structure, for example by replacing the randomized pivoting by an
order statistic on the first chunk.

Furthermore, we can consider studying the behaviour of our IQS-based Kruskal on
different graph classes, and also research in variants tuned for secondary memory. This
includes the study of variants of our approach focused not only on random graphs, but
also on efficiently computing the MST of an arbitrary graph [KST03]. As such, Kruskal is
very sensitive to the shape of graph it runs on.

Our research has demonstrated that, even in foundational and well-known problems,
which are completely solved in the theoretical sense, algorithm engineering still has a lot
to offer to improve the practical performance of algorithms and data structures. This is
still more striking in the case of cache oblivious algorithms, which is a relatively recent
trend mostly in a theoretical stage. Despite some practical studies showing that in some
cases cache-oblivious algorithms are significantly inferior to their cache-aware counterparts
[OS02], external quickheaps witness that in other cases cache-oblivious data structures can
be extremely competitive. Again, there is much research ahead in algorithm engineering.

5.2.2 k-Nearest Neighbor Graphs

Future work involves developing another knng construction algorithm based on the list of
clusters [CN05] as the preindex, so that we can also obtain good construction performance
in higher dimensional metric spaces.

Our nearest neighbor search algorithms behave close to range-optimally. However,
we can also consider the development of truly range-optimal nearest neighbor queries.

We also can research on knng optimizations tuned for our metric applications. For
instance, we want to explore other local graphs, like the all range-r graph, where we assign
to each node all the nodes within distance r. This way also allow us to control the size of
the neighbor ball. Moreover, we can mix the knng with the all range-r graph in a graph

146

Chapter 5 Conclusions 5.2 Further Work

where each node is connected to its k-closest neighbors only if the distance between the
node and the neighbor is smaller than r.

We are also researching on how to enhance the data structure to allow dynamic
insertions/deletions in reasonable time, so as to maintain an up-to-date set of k-nearest
neighbors for each element in the database. This problem is particularly appealing,
especially when we face practical real-world problems where objects are not known from
the beginning, but they arrive at any time.

Note that, for insertions, using the nearest neighbor search algorithms we can find
the current k-nearest neighbor of a new object. The real problem is to efficiently solve
the reverse nearest neighbor query; that is, to determine which objects in the graph have
the new object inside its k-nearest neighbors. Computing reverse neighbors is still open,
yet a simple approach is to solve a range query (x, maxu∈knng{cr(u)}). That is, a range
query using the maximum covering radius of any object within the graph. How to delete
an object from the knng is completely open. The trivial solution is to use lazy deletion or
to remove the victim object and leave its neighbors with one object less in their respective
adjacency lists. However, we can also try to maintain an up-to-date knng by completing
the neighbors using nearest neighbor queries, yet this could imply heavy deletion costs.

Another appealing question is how to manage the graph in secondary memory. In
general, managing graphs in secondary memory is a subject of current active research
[Vit01, ABT04]. In knngs, we suspect that we can exploit the fact that adjacency lists have
limited size. We also notice that the on-disk graph representation has to be appropriate
to compute shortest paths without performing many I/Os.

Another extremely relevant problem is that of computing the similarity join between
two metric datasets A and B, A ⊲⊳r B. That is, given both datasets and a threshold r
computing all the object pairs (one from either set) at a distance at most r [DGSZ03,
DGZ03, PR08]. The simplest solution translates the similarity join into indexing one of
the sets (for instance, indexing dataset A) and later computing one range query per object
from the other dataset (B in the example) in order to retrieve relevant objects from the
indexed dataset (A in the example). However, we can also try with variants of the knng

which index both sets jointly, as we have already done in [PR08] with the list of twin
clusters (a metric index based on Chávez and Navarro list of cluster [CN05] specially
focused on the similarity join primitive). Furthermore, we can research on how to solve
other similarity join variants, for instance, finding the k-closest pairs of objects from the
datasets A and B (one for each set), A ⊲⊳k B; or similarity self joins, that is, when both
datasets coincide, A ⊲⊳r A.

Our research on knngs for metric spaces is a step towards implementing fully
functional metric databases, that is, adding metric objects to the relational model
[Cod70, GMUW02]. This translates into allowing the database manager system to natively
support metric objects, which involves many appealing challenges. The first problem is
to allow efficient database updating, which translates into efficient object insertion and
deletion. The second problem is how to manage the metric index in secondary memory.
The third is to solving joins among metric datasets. Fortunately, the query language would

147

5.2 Further Work Chapter 5 Conclusions

have minor modifications, as we should only add primitives to handle the new metric data
type. We also have to take into account transactions and concurrency, so that it can
be possible to perform simultaneous insertion, deletion and search operations by several
users without jeopardizing the database integrity. This implies to guarantee the atomicity,
consistency, isolation and durability of transactions. The basic approach is to lock the
whole index when performing operations, however this could be too restrictive in real
work environments. Much better would be to design index access and locking methods
that permit simultaneous operations over the index. This is a extremely relevant and
challenging problem for future work.

Un poème n’est jamais terminé, il est seulement abandonné.
[A poem is never finished, only abandoned.]

– Paul Valéry

148

Bibliography

We do not write because we want to; we write because we
have to.

– William Somerset Maugham

[ABT04] L. Arge, G. Brodal, and L. Toma. On external-memory MST, SSSP and
multi-way planar graph separation. Journal of Algorithms, 53(2):186–206,
2004.

[ADD+93] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners
of weighted graphs. Discrete Computational Geometry, 9:81–100, 1993.

[ADDJ90] I. Althöfer, G. Das, D. Dobkin, and D. Joseph. Generating sparse spanners
for weighted graphs. In Proc. 2nd Scandinavian Workshop on Algorithm
Theory (SWAT’90), LNCS 447, pages 26–37, 1990.

[AMN+94] S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching in fixed dimension.
In Proc. 5th ACM-SIAM Symp. on Discrete Algorithms (SODA’94), pages
573–583, 1994.

[AMOT90] R. Ahuja, K. Mehlhorn, J. Orlin, and R. Tarjan. Faster algorithms for the
shortest path problem. Journal of the ACM, 37(2):213–223, 1990.

[Arg95] L. Arge. The buffer tree: A new technique for optimal I/O-algorithms
(extended abstract). In Proc. 4th Intl. Workshop on Algorithms and Data
Structures (WADS’95), LNCS 995, pages 334–345, 1995.

[ASSS86] M. D. Atkinson, J.-R. Sack, N. Santoro, and T. Strothotte. Min-max heaps
and generalized priority queues. Comm. of the ACM, 29(10):996–1000, 1986.

[Aur91] F. Aurenhammer. Voronoi diagrams – a survey of a fundamental geometric
data structure. ACM Computing Surveys, 23(3):345–405, 1991.

[Bar98] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proc. 30th
ACM Symp. on the Theory of Computing (STOC’98), pages 161–168, 1998.

149

Bibliography

[BBK01] C. Böhm, S. Berchtold, and D. A. Keim. Searching in high-dimensional
spaces: Index structures for improving the performance of multimedia
databases. ACM Computing Surveys, 33(3):322–373, 2001.

[BCFM00] K. Brengel, A. Crauser, P. Ferragina, and U. Meyer. An experimental
study of priority queues in external memory. ACM Journal of Experimental
Algorithmics, 5(17), 2000.

[BCQY96] M. Brito, E. Chávez, A. Quiroz, and J. Yukich. Connectivity of the mutual
k-nearest neighbor graph in clustering and outlier detection. Statistics &
Probability Letters, 35:33–42, 1996.

[Ben75] J. Bentley. Multidimensional binary search trees used for associative
searching. Comm. of the ACM, 18(9):509–517, 1975.

[Ben79] J. Bentley. Multidimensional binary search trees in database applications.
IEEE Trans. on Software Engineering, 5(4):333–340, 1979.

[BF03] G. Brodal and R. Fagerberg. On the limits of cache-obliviousness. In
Proc. 35th ACM Symp. on Theory of Computing (STOC’03), pages 307–
315, 2003.

[BFP+73] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan. Time
bounds for selection. Journal of Computer and System Sciences, 7(4):448–
461, 1973.

[BK73] W. Burkhard and R. Keller. Some approaches to best-match file searching.
Comm. of the ACM, 16(4):230–236, 1973.

[BK98] G. Brodal and J. Katajainen. Worst-case external-memory priority queues.
In Proc. 6th Scandinavian Workshop on Algorithm Theory (SWAT’98),
LNCS 1432, pages 107–118, 1998.

[BKK96] S. Berchtold, D. Keim, and H. Kriegel. The X-tree: an index structure
for high-dimensional data. In Proc. 22nd Conf. on Very Large Databases
(VLDB’96), pages 28–39, 1996.

[BM72] R. Bayer and E. McCreight. Organization and maintenance of large ordered
indices. Acta Informatica, 1:173–189, 1972.

[BO97] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional
metric spaces. In ACM SIGMOD Intl. Conf. on Management of Data, pages
357–368, 1997.

[Bol98] B. Bollobás. Modern Graph Theory. Springer, 1998.

[Bri95] S. Brin. Near neighbor search in large metric spaces. In Proc. 21st Conf. on
Very Large Databases (VLDB’95), pages 574–584. Morgan Kaufmann, 1995.

150

Bibliography

[BWY80] J. Bentley, B. Weide, and A. Yao. Optimal expected-time algotithms for
closest point problems. ACM Trans. on Mathematical Software, 6(4):563–
580, 1980.

[BY97] R. Baeza-Yates. Searching: An algorithmic tour. In A. Kent and J. Williams,
editors, Encyclopedia of Computer Science and Technology, volume 37, pages
331–359. Marcel Dekker, New York, 1997.

[BYCMW94] R. Baeza-Yates, W. Cunto, U. Manber, and S. Wu. Proximity matching
using fixed-queries trees. In Proc. 5th Combinatorial Pattern Matching
(CPM’94), LNCS 807, pages 198–212, 1994.

[BYHM04a] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query clustering for boosting
Web page ranking. In Proc. 2nd Atlantic Web Intelligence Conference
(AWIC’04), LNCS 3034, pages 164–175, 2004.

[BYHM04b] R. Baeza-Yates, C. Hurtado, and M. Mendoza. Query recommendation
using query logs in search engines. In Proc. Current Trends in Database
Technology (EDBT Workshops’04), LNCS 3268, pages 588–596, 2004.

[BYRN99] R. A. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley, 1999.

[Cal93] P. Callahan. Optimal parallel all-nearest-neighbors using the well-separated
pair decomposition. In Proc. 34th IEEE Symp. on Foundations of Computer
Science (FOCS’93), pages 332–340, 1993.

[CCG+98] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin. Approximating a
finite metric by a small number of tree metrics. In Proc. 39th IEEE Symp. on
Foundations of Computer Science (FOCS’98), pages 379–388, 1998.

[Cha71] J. M. Chambers. Algorithm 410 (partial sorting). Comm. of the ACM,
14(5):357–358, 1971.

[Cha94] B. Chazelle. Computational geometry: a retrospective. In Proc. 26th ACM
Symp. on the Theory of Computing (STOC’94), pages 75–94, 1994.

[Cha00] B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann
type complexity. Journal of the ACM, 47(6):1028–1047, 2000.

[Chi94] T. Chiueh. Content-based image indexing. In Proc. 20th Conf. on Very
Large Databases (VLDB’94), pages 582–593, 1994.

[CK95] P. Callahan and R. Kosaraju. A decomposition of multidimensional point
sets with applications to k nearest neighbors and n body potential fields.
Journal of the ACM, 42(1):67–90, 1995.

[Cla83] K. Clarkson. Fast algorithms for the all-nearest-neighbors problem. In
Proc. 24th IEEE Symp. on Foundations of Computer Science (FOCS’83),
pages 226–232, 1983.

151

Bibliography

[Cla99] K. Clarkson. Nearest neighbor queries in metric spaces. Discrete
Computational Geometry, 22(1):63–93, 1999.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press, 2nd edition, 2001.

[CMN01] E. Chávez, J. L. Marroqúın, and G. Navarro. Fixed queries array: A fast
and economical data structure for proximity searching. Multimedia Tools
and Applications, 14(2):113–135, 2001.

[CN05] E. Chávez and G. Navarro. A compact space decomposition for effective
metric indexing. Pattern Recognition Letters, 26(9):1363–1376, 2005.

[CNBYM01] E. Chávez, G. Navarro, R. Baeza-Yates, and J. L. Marroqúın. Proximity
searching in metric spaces. ACM Computing Surveys, 33(3):273–321, 2001.

[Cod70] E. F. Codd. A relational model of data for large shared data banks. Comm. of
the ACM, 13(6):377–387, 1970.

[Coh98] E. Cohen. Fast algorithms for constructing t-spanners and paths with stretch
t. SIAM Journal on Computing, 28:210–236, 1998.

[CPZ97] P. Ciaccia, M. Patella, and P. Zezula. M-tree: an efficient access method
for similarity search in metric spaces. In Proc. 23rd Conf. on Very Large
Databases (VLDB’97), pages 426–435, 1997.

[Cra72] C. A. Crane. Linear lists and priority queues as balanced binary tree.
Technical Report STAN-CS-72259, Stanford University, 1972.

[CT76] D. Cheriton and R. E. Tarjan. Finding minimum spanning trees. SIAM
Journal on Computing, 5:724–742, 1976.

[DE96] M. Dickerson and D. Eppstein. Algorithms for proximity problems in higher
dimensions. Computational Geometry Theory and Applications, 5:277–291,
1996.

[DGSZ03] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula. Similarity join in metric
spaces. In Proc. 25th European Conf. on IR Research (ECIR’03), LNCS
2633, pages 452–467, 2003.

[DGZ03] V. Dohnal, C. Gennaro, and P. Zezula. Similarity join in metric spaces
using eD-index. In Proc. 14th Intl. Conf. on Database and Expert Systems
Applications (DEXA’03), LNCS 2736, pages 484–493, 2003.

[DH73] R. Duda and P. Hart. Pattern Classification and Scene Analysis. Wiley,
1973.

[Dij59] E. W. Dijkstra. A note on two problems in connection with graphs. In
Numerische Mathematik, volume 1, pages 269–271. Mathematisch Centrum,
Amsterdam, The Netherlands, 1959.

152

Bibliography

[DN87] F. Dehne and H. Noltemeier. Voronoi trees and clustering problems.
Information Systems, 12(2):171–175, 1987.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag,
1987.

[EE94] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal
polytopes. Discrete & Computational Geometry, 11:321–350, 1994.

[Epp99] D. Eppstein. Spanning trees and spanners. In Handbook of Computational
Geometry, pages 425–461. Elsevier, 1999.

[FCNP06] K. Figueroa, E. Chávez, G. Navarro, and R. Paredes. On the least cost
for proximity searching in metric spaces. In Proc. 5th Intl. Workshop on
Experimental Algorithms (WEA’06), LNCS 4007, pages 279–290, 2006.

[Fig00] K. Figueroa. Un algoritmo eficiente para el problema de todos los k
vecinos más cercanos en espacios métricos (An efficient algorithm for all
k nearest neighbor problem in metric spaces). Master’s thesis, Universidad
Michoacana, Mexico, 2000. In Spanish.

[FJKT99] R. Fadel, K. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort
on secondary storage. Theoretical Computer Science, 220(2):345–362, 1999.

[Flo62] R. W. Floyd. Algorithm 97: Shortest path. Comm. of the ACM, 5(6):345,
1962.

[Flo64] R. W. Floyd. Algorithm 245 (treesort). Comm. of the ACM, 7:701, 1964.

[FLPR99] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In Proc. 40th Symp. on Foundations on Computer Science
(FOCS’99), pages 285–297, 1999.

[FNC07] K. Figueroa, G. Navarro, and E. Chávez. Metric spaces library, 2007.
Available at http://sisap.org/?f=library.

[FSST86] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan. The pairing
heap: a new form of self-adjusting heap. Algorithmica, 1(1):111–129, 1986.

[FT87] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. Journal of the ACM, 34(3):596–615, 1987.

[GBC+99] M. Goldwasser, J. Bentley, K. Clarkson, D. S. Johnson, C. C.
McGeoch, and R. Sedgewick. The sixth dimacs implementation
challenge: Near neighbor searches, January 1999. Available at
http://dimacs.rutgers.edu/Challenges/Sixth/.

[GBY91] G. Gonnet and R. Baeza-Yates. Handbook of Algorithms and Data
Structures. Addison-Wesley, 2nd edition, 1991.

153

Bibliography

[GG98] V. Gaede and O. Günther. Multidimensional access methods. ACM
Computing Surveys, 30(2):170–231, 1998.

[GLN02] J. Gudmundsson, C. Levcopoulos, and G. Narasimhan. Fast greedy
algorithms for constructing sparse geometric spanners. SIAM Journal on
Computing, 31(5):1479–1500, 2002.

[GMUW02] H. Garcia-Molina, J. D. Ullman, and J. D. Widom. Database Systems: The
Complete Book. Prentice-Hall, 2002.

[GS69] K. R. Gabriel and R. R. Sokal. A new statistical approach to geographic
variation. Systematic Zoology, 18:259–278, 1969.

[Gut84] A. Guttman. R-trees: a dynamic index structure for spatial searching. In
ACM SIGMOD Intl. Conf. on Management of Data, pages 47–57, 1984.

[Har95] D. Harman. Overview of the Third Text REtrieval Conference. In
Proc. Third Text REtrieval Conf. (TREC-3), pages 1–19, 1995. NIST Special
Publication 500-207.

[HMSV97] D. Hutchinson, A. Maheshwari, J. Sack, and R. Velicescu. Early experiences
in implementing buffer trees. In Proc. 2nd Intl. Workshop on Algorithmic
Engineering (WAE’97), pages 92–103, 1997.

[Hoa61] C. A. R. Hoare. Algorithm 65 (find). Comm. of the ACM, 4(7):321–322,
1961.

[Hoa62] C. A. R. Hoare. Quicksort. Computer Journal, 5(1):10–15, 1962.

[HS76] E. Horowitz and S. Sahni. Fundamentals of Data Structures. Computer
Science Press, 1976.

[HS00] G. Hjaltason and H. Samet. Incremental similarity search in multimedia
databases. Technical Report TR 4199, Dept. of Comp. Sci. Univ. of
Maryland, Nov 2000.

[HS03] G. Hjaltason and H. Samet. Index-driven similarity search in metric spaces.
ACM Trans. on Database Systems, 28(4):517–580, 2003.

[JD88] A.K. Jain and R.C. Dubes. Algorithms For Clustering Data. Prentice-Hall,
Englewood Cliffs, 1988.

[JK LP93] S. Janson, D. Knuth, T. Luczak, and B. Pittel. The birth of the giant
component. Random Structures & Algorithms, 4(3):233–358, 1993.

[Kei88] J. M. Keil. Approximating the complete Euclidean graph. In Proc. 1st
Scandinavian Workshop in Algorithm Theory (SWAT’88), LNCS 318, pages
208–213, 1988.

154

Bibliography

[KKT95] D. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time
algorithm to find minimum spanning trees. Journal of the ACM, 42(2):321–
328, 1995.

[KL04] R. Krauthgamer and J. Lee. Navigating nets: simple algorithms for
proximity search. In Proc. 15th ACM-SIAM Symp. on Discrete Algorithms
(SODA’04), pages 798–807, 2004.

[KM83] I. Kalantari and G. McDonald. A data structure and an algorithm for the
nearest point problem. IEEE Trans. on Software Engineering, 9(5), 1983.

[Knu98] D. E. Knuth. The Art of Computer Programming, Volume III: Sorting and
Searching. Addison-Wesley, 2nd edition, 1998.

[KP94] G. Kortsarz and D. Peleg. Generating sparse 2-spanners. Journal of
Algorithms, 17(2):222–236, 1994.

[KR02] D. R. Karger and M. Ruhl. Finding nearest neighbors in growth-restricted
metrics. In Proc. 34th ACM Symp. on the Theory of Computing (STOC’02),
pages 741–750, 2002.

[Kru56] J. B. Kruskal. On the shortest spanning subtree of a graph and the traveling
salesman problem. Proceedings of the American Mathematical Society, 7:48–
50, 1956.

[KS96] V. Kumar and E. Schwabe. Improved algorithms and data structures for
solving graph problems in external memory. In Proc. 8th IEEE Symp. on
Parallel and Distributed Processing (SPDP’96), page 169, 1996.

[KST02] I. Katriel, P. Sanders, and J. Träff. A practical minimum spanning tree
algorithm using the cycle property. Research Report MPI-I-2002-1-003,
Max-Planck-Institut für Informatik, October 2002.

[KST03] I. Katriel, P. Sanders, and J. Träff. A practical minimum spanning tree
algorithm using the cycle property. In Proc. 11th European Symp. on
Algorithms (ESA’03), LNCS 2832, pages 679–690, 2003.

[LB96] W. Liang and R. Brent. Constructing the spanners of graphs in parallel.
Technical Report TR-CS-96-01, Dept. of CS and CS Lab, The Australian
National University, January 1996.

[Mar04] C. Mart́ınez. Partial quicksort. In Proc. 6th ACM-SIAM Workshop on
Algorithm Engineering and Experiments and 1st ACM-SIAM Workshop on
Analytic Algorithmics and Combinatorics (ALENEX-ANALCO’04), pages
224–228, 2004.

[MOV94] L. Micó, J. Oncina, and E. Vidal. A new version of the nearest-neighbor
approximating and eliminating search (AESA) with linear preprocessing-
time and memory requirements. Pattern Recognition Letters, 15:9–17, 1994.

155

Bibliography

[MS91] B. Moret and H. Shapiro. An empirical analysis of algorithms for
constructing a minimum spanning tree. In Proc. 2nd Workshop Algorithms
and Data Structures (WADS’91), LNCS 519, pages 400–411, 1991.

[Nav02] G. Navarro. Searching in metric spaces by spatial approximation. The Very
Large Databases Journal (VLDBJ), 11(1):28–46, 2002.

[NP03] G. Navarro and R. Paredes. Practical construction of metric t-spanners.
In Proc. 5th Workshop on Algorithm Engineering and Experiments
(ALENEX’03), pages 69–81, 2003.

[NPC02] G. Navarro, R. Paredes, and E. Chávez. t-Spanners as a data structure for
metric space searching. In Proc. 9th Intl. Symp. on String Processing and
Information Retrieval (SPIRE’02), LNCS 2476, pages 298–309, 2002.

[NPC07] G. Navarro, R. Paredes, and E. Chávez. t-spanners for metric space
searching. Data & Knowledge Engineering, 63(3):818–852, 2007.

[NR02] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings – Practical
on-line search algorithms for texts and biological sequences. Cambridge
University Press, 2002.

[OS02] J. Olsen and S. Skov. Cache-oblivious algorithms in practice. Master’s thesis,
University of Copenhagen, 2002.

[Par02] R. Paredes. Uso de t-spanners para búsqueda en espacios métricos (Using t-
spanners for metric space searching). Master’s thesis, Universidad de Chile,
2002. In Spanish.

[PC05] R. Paredes and E. Chávez. Using the k-nearest neighbor graph for
proximity searching in metric spaces. In Proc. 12th Intl. Symp. on String
Processing and Information Retrieval (SPIRE’05), LNCS 3772, pages 127–
138. Springer, 2005.

[PCFN06] R. Paredes, E. Chávez, K. Figueroa, and G. Navarro. Practical construction
of k-nearest neighbor graphs in metric spaces. In Proc. 5th Intl. Workshop
on Experimental Algorithms (WEA’06), LNCS 4007, pages 85–97, 2006.

[PN06] R. Paredes and G. Navarro. Optimal incremental sorting. In Proc. 8th
Workshop on Algorithm Engineering and Experiments and 3rd Workshop on
Analytic Algorithmics and Combinatorics (ALENEX-ANALCO’06), pages
171–182. SIAM Press, 2006.

[PR02] S. Pettie and V. Ramachandran. An optimal minimum spanning tree
algorithm. Journal of the ACM, 49(1):16–34, 2002.

[PR08] R. Paredes and N. Reyes. List of twin clusters: a data structure for similarity
joins in metric spaces. In Proc. 1st Intl. Workshop on Similarity Search and
Applications (SISAP’08), page to appear, 2008.

156

Bibliography

[Pri57] R. C. Prim. Shortest connection networks and some generalizations. Bell
System Technical Journal, 36:1389–1401, 1957.

[PS89] D. Peleg and A. Schaffer. Graph spanners. Journal of Graph Theory,
13(1):99–116, 1989.

[PU89] D. Peleg and J. Ullman. An optimal synchronizer for the hypercube. SIAM
Journal on Computing, 18:740–747, 1989.

[R D04] R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria, 2004.

[Ros04] Sheldon M. Ross. Introduction to Probability and Statistics for Engineers
and Scientists. Academic Press - Elsevier, 3rd edition, 2004. Indian reprint,
2005.

[RS91] J. Ruppert and R. Seidel. Approximating the d-dimensional complete
Euclidean graph. In Proc. 3rd Canadian Conf. on Computational Geometry,
pages 207–210, 1991.

[Sam84] H. Samet. The quadtree and related hierarchical data structures. ACM
Computing Surveys, 16(2):187–260, 1984.

[Sam06] H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, New York, 2006.

[San00] P. Sanders. Fast priority queues for cached memory. Journal of Experimental
Algorithmics, 5:7, 2000.

[SK02] T. B. Sebastian and B. B. Kimia. Metric-based shape retrieval in large
databases. In Proc. 16th Intl. Conf. on Patter Recognition, volume 3, pages
291–296, 2002.

[ST86] D. D. Sleator and R. E. Tarjan. Self adjusting heaps. SIAM Journal on
Computing, 15(1):52–69, 1986.

[SW90] D. Shasha and T. Wang. New techniques for best-match retrieval. ACM
Trans. on Information Systems, 8(2):140–158, 1990.

[Tar83] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial
and Applied Mathematics, 1983.

[Tar85] R. E. Tarjan. Amortized computational complexity. SIAM Journal on
Algebraic and Discrete Methods, 6(2):306–318, 1985.

[Tou80] G. T. Toussaint. The relative neighborhood graph of a finite planar set.
Pattern Recognition, 12(4):261–268, 1980.

[TZ01] M. Thorup and U. Zwick. Approximate distance oracles. In Proc. 33rd ACM
Symp. on Theory of Computing (STOC’01), pages 183–192, 2001.

157

Bibliography

[Uhl91] J. Uhlmann. Satisfying general proximity/similarity queries with metric
trees. Information Processing Letters, 40(4):175–179, 1991.

[Vai89] P. Vaidya. An O(n log n) algorithm for the all-nearest-neighbor problem.
Discrete & Computational Geometry, 4:101–115, 1989.

[vEBKZ77] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of
an efficient priority queue. Mathematical Systems Theory, 10:99–127, 1977.

[Vid86] E. Vidal. An algorithm for finding nearest neighbors in (approximately)
constant average time. Pattern Recognition Letters, 4:145–157, 1986.

[Vit01] J. Vitter. External memory algorithms and data structures:
dealing with massive data. ACM Computing Surveys,
33(2):209–271, 2001. Version revised at 2007 from
http://www.cs.duke.edu/∼jsv/Papers/Vit.IO survey.pdf.

[Vui78] J. Vuillemin. A data structure for manipulating priority queues. Comm. of
the ACM, 21(4):309–315, 1978.

[Weg93] I. Wegener. bottom-up-heapsort, a new variant of heapsort beating,
on an average, quicksort (if n is not very small). Theoretical Computer
Science, 118(1):81–98, 1993.

[Wei99] M. A. Weiss. Data Structures & Algorithm Analysis in C++. Addison-
Wesley, 2nd edition, 1999.

[Wes01] D. B. West. Introduction to Graph Theory. Prentice-Hall, 2nd edition, 2001.

[Wil64] J. Williams. Algorithm 232 (heapsort). Comm. of the ACM, 7(6):347–348,
1964.

[WJ96] D. White and R. Jain. Algorithms and strategies for similarity retrieval.
Technical Report VCL-96-101, Visual Computing Laboratory, University of
California, La Jolla, California, July 1996.

[Yia93] P. Yianilos. Data structures and algorithms for nearest neighbor search
in general metric spaces. In Proc. 4th ACM-SIAM Symp. on Discrete
Algorithms (SODA’93), pages 311–321. SIAM Press, 1993.

[Yia98] P. Yianilos. Excluded middle vantage point forests for nearest neighbor
search. Technical report, NEC Research Institute, 1998. In 6th
DIMACS Implementation Challenge: Near Neighbor Searches Workshop,
ALENEX’99.

[ZADB06] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search -
The Metric Space Approach, volume 32 of Advances in Database Systems.
Springer, 2006.

158

