
Dynamic Dictionaries

in Constant Worst-Case Time

Gonzalo Navarro

Dept. of Computer Science, Universidad de Chile, Chile.
gnavarro@dcc.uchile.cl

Abstract

We introduce a technique to maintain a set of n elements from a universe of size u

with membership and indel operations, so that elements are associated r-bit satellite
data. We achieve constant worst-case time for all the operations, at the price of
spending u + o(u) + O(nr + n log log log u) bits of space. Only the variant where
the space is of the form O(nr + n log u) was exhaustively explored before, yet in
that case existing lower bounds prevent achieving constant worst-case times. As
a byproduct, we improve a folklore data structure for initializing an array of n

elements in constant time, by reducing its space requirement from 2n log n to n+o(n)
bits.

Key words: Algorithms and data structures, succinct data structures, dynamic
perfect hashing, dynamic dictionaries with satellite information.

1 Introduction and Related Work

One of the most basic algorithmic problems is that of maintaining a set of
(key, value) pairs, so as to retrieve the value associated to a key (or determine
that the key is not present in the set), and be able of inserting and delet-
ing pairs in/from the set (those two operations are collectively called indels
or updates). In the literature this problem receives different names, such as
dynamic perfect hashing, dynamic dictionary with satellite information, and
dynamic dictionary with retrieval. In the absence of a consistent notation, in
this paper we called this the dynamic dictionary problem, and distinguish it
from the dynamic membership problem where only keys are stored. There is

⋆ Supported by a grant from Yahoo! Research Latin America

Preprint submitted to Elsevier Preprint 30 November 2006

a huge literature on the subject, so here we only discuss the most recent and
closest results.

To describe the state of the art, let us introduce some notation. We assume
that the universe of key values is [u] = {1, 2, . . . , u}, that the keys are unique,
that the values require r = O(log u) bits to be represented 1 , and that there are
(currently) n elements in the set. We work on a RAM machine with word size
w = Ω(log u), measure the space in bits, and write log for log2. The operations
permitted are called retrieve(key) (which retrieves the associated value or ⊥
if the key is not in the set), insert(key, value), and delete(key). The dynamic
membership problem considers query member(key) instead of retrieve, which
returns a boolean value telling whether or not the key is present in the set.

Most of the research on the problem has focused on using space of the form
O(n log u + nr) bits. Indeed, a good part of the research focuses on member-
ship rather than retrieval queries. Existing lower bounds [3] establish that it is
impossible to achieve constant worst-case time for membership and indels si-
multaneously using O(n logu) bits of space. Thus, the research has focused on
randomized algorithms. The best results up to date, for the retrieval problem,
are as follows. In [9], they use (n log u

n
+ nr)(1 + o(1)) bits of space, which is

within lower-order terms from the information-theoretic lower bound, answer
queries in constant worst-case time and indels in constant expected amortized
time. In [2] they use O(n log u

n
+ nr) bits of space, answer queries in constant

time, and perform indels in constant time with high probability. In both cases
r is arbitrary but the “constant time” ignores the O(r/w) time needed to
read/write the r data bits. Older references can be found within [9,2].

The variant of the problem where we are willing to spend u bits of extra
space has received less attention, possibly because the membership plus indels
problem becomes trivial in this case. However, if we wish to maintain satellite
information as well, it is not immediate that retrieval and updates can be done
in constant worst-case time. Only if we spend u(r + 1) bits is the problem
trivial.

In this paper, we explore what can be achieved in the worst case if we are al-
lowed to spend u bits of space. We show that, by spending O(n(r+log log log u))
+u + o(u) bits, we can carry out the three operations in worst-case constant
time (see the exact details in Theorem 4). The update times become amortized
if the space is reduced to nr + u + o(u) + O(n log log log u) bits. This result
contributes to understand the space/time tradeoff for dynamic dictionaries,
showing that worst-case constant time is possible for this price.

As a byproduct, we obtain a succinct version of a folklore technique to initialize

1 Our results apply to larger r values but the formulas are messier. We will anyway
mention the more general results when appropriate, without giving all the details.

2

an array in constant time. Explicitly initializing a huge array might not pay
off if we are not going to carry out many operations on it. This situation
arises, for example, when using a (classical) hashing scheme and one has not
sufficient knowledge of the amount of insertions that will occur. The folklore
solution has the severe drawback of requiring Θ(n log n) bits of extra space,
on top of the array of n elements to initialize. We show that this space can
be reduced to n + o(n) bits, while retaining the same time complexities. This
is necessary to obtain our main results in the paper, so we start with it and
then move on to dynamic dictionaries.

2 Constant-Time Array Initialization in Little Space

A folklore solution, well-known at least since the seventies, permits initializing
an array A[1, n] in constant time (see [1, Ex. 2.12, page 71], or a complete
description in [6, Section III.8.1]).

Definition 1 An initializable array is a data structure A[1, n] that supports
the operations init(A, n, v), read(A, i) and write(A, i, v). The first operation
initializes A[i] ← v for 1 ≤ i ≤ n; the second obtains A[i] and the third sets
A[i]← v. The size n is fixed at initialization time.

Theorem 1 (folklore). An array A[1, n] can be enhanced with structures using
2n⌈log n⌉ additional bits of space, so that all its operations take constant time.

This solution has the serious drawback of requiring too much extra space. For
example, the space is tripled if A stores indexes in [n].

In this section we largely reduce the extra memory required to initialize A in
constant time. More precisely, we obtain the following result.

Theorem 2 On a RAM machine with word size w = Ω(log n), an array
A[1, n] can be enhanced with structures using O(n) bits of extra space, so that
all its operations init, read and write, take constant time. The O(n) factor

can be made
(

∑

0≤d<h n/ logd n
)

+ 3n/ logh n for any constant h ≥ 0. This is

n + o(n) already for h = 1.

This result is interesting both from theoretical and practical standpoints, and
can make the solution much more appealing in practical scenarios, especially
if we consider that this problem arises when we do not want to afford the cost
of initializing a large array. The extra space may make the difference between
having the array in main memory or on disk, for example.

3

2.1 The Original Technique

The original folklore technique is as follows. Let A[1, n] be the array we wish
to initialize in constant time. We use a second array B[1, n] and a stack S[1, n],
both storing indices in [n]. An additional variable 0 ≤ t ≤ n tells the current
size of S, and variable V stores the initialization value.

Initialization of the whole structure, init(A, n, v), consists of setting t ← 0
and V ← v. The invariant maintained by the structures is as follows:

A[i] is initialized ⇐⇒ (1 ≤ B[i] ≤ t ∧ S[B[i]] = i) ,

which is immediately correct once we set t = 0. The idea is to distinguish
initialized entries A[i] because B[i] = j and there is a back pointer S[j] = i.
Let us take an uninitialized entry A[i]. Value B[i] is not initialized either.
If B[i] < 1 or B[i] > t, we know for sure that A[i] is not initialized. Yet
it could be that 1 ≤ B[i] ≤ t. But then it is not possible that S[B[i]] = i
because entry B[i] in S has been used to initialize another entry A[i′] and
then S[B[i]] = i′ 6= i.

Operation read(A, i) is as follows. If A[i] is initialized, then it returns A[i],
otherwise it returns V . Operation write(A, i, v) is as follows. If A[i] is not
initialized, it first sets t ← t + 1, B[i] ← t, and S[t] ← i. After the possible
initialization, it sets A[i] ← v. It is interesting that one can even uninitialize
A[i], by setting S[B[i]]← S[t], B[S[t]]← B[i], t← t− 1.

2.2 Reducing Space

We use, instead of array B and stack S, a bit vector C[1, n] so that C[i] = 1
iff A[i] has been initialized. This way we require only n bits in addition to A.
Of course the problem translates into initializing C[i] ← 0 for all i. We now
take advantage of the unit-cost RAM model of computation, where w ≥ log n
must hold because we store numbers up to n in computer words.

As C is stored as a contiguous sequence of bits, let us interpret this sequence
as an array C ′[1, n′] of n′ = ⌈n/w⌉ entries, each entry holding a computer
word of w bits of C. We can apply now the original solution of Section 2.1
to C ′, so that C ′ can be initialized in constant time (at value C ′[i] = 0). The
extra space on top of C ′ is 2n′ log n′ ≤ 2n bits. Together with C ′, the space
overhead of the solution is 3n bits. Now, in order to determine whether A[i]
is initialized, we just check C[i]: We compute q = i div w and r = i mod w
and check the bit number r + 1 of C ′[q + 1]. If C ′[q + 1] is not yet initialized,
we know C[i] = 0 and thus A[i] is not yet initialized. To initialize A[i] we set

4

the (r + 1)-th bit of C ′[q + 1], previously initializing C ′[q + 1]← 0 if needed.

This can be carried further. Instead of directly applying the solution of Sec-
tion 2.1 to C ′, we could recursively use a bitmap of n′ bits telling which
entries of C ′ are initialized, compact them into a second array C ′′[1, n′′], n′′ =
⌈n′/w⌉ ≈ n/w2, and then apply the solution of Section 2.1 to C ′′. This time the
space overhead is n+3n/ logn bits. This can be repeated a constant number of

times, to achieve any extra space of the form
(

∑

0≤d<h n/ logd n
)

+ 3n/ logh n.
The price in practice is that the time to access A grows linearly with h.

3 Extendible Arrays and Memory Allocation Model

A critical issue in dynamic data structures, which is often disregarded, is the
memory allocation model. On a static data structure one may assume that all
the data is conveniently packed in a memory area, but dynamic data structures
that allocate and free chunks of memory may suffer from fragmentation, which
has to be accounted for. Moreover, relying on system memory allocation may
hide non-constant-time algorithms for allocation or freeing of memory chunks.

In [9], they consider two memory models called MA and MB. In this paper
we stick toMB because it is the standard on the RAM model and it assumes
the least from the system. InMB there are no system calls for allocation and
deallocation of memory, but the program must handle memory by itself. The
memory is seen as an array of words of w bits, numbered 0 to 2w − 1. The
amount of memory used by a program at a given moment is the length of
the shortest prefix of the memory array that contains all the data currently
allocated by the program.

A problem that is surprisingly difficult when one considers the details of mem-
ory allocation is the so-called extendible array (EA) problem, where we main-
tain an array of fixed-width cells and want to access it at random positions,
as well as inserting and deleting cells at the end of the array. Maintaining a
single EA is trivial even under model MB, but maintaining a collection of
such arrays is not trivial anymore. More precisely, this problem is defined as
follows.

Definition 2 The EA collection problem is to maintain a collection of EAs,
each of which can be created empty at some moment, destroyed, inspected at
an arbitrary position, be grown by one position at the end, and shrink by one
position at the end. Each EA maintains cells of fixed width ri bits, possibly
different from that of other EAs in the collection. If ni is the current number of
elements of each such EA, then the nominal size of the collection is s =

∑

niri.

5

A key result for EAs is as follows:

Theorem 3 (simplified from Lemma 1 in [9]). A collection of a EAs of nom-
inal size s bits can be represented using s+O(aw+

√
saw) bits of space, so that

the operations of creation of an empty EA and access take constant worst-case
time, whereas grow/shrink take constant amortized time. An EA of s′ nominal
bits can be destroyed in time O(s′/w).

In this paper the number of EAs a never decreases (we may delete an EA but
immediately replace it). Thus, the current number of EAs a is also the largest
number of EAs that ever existed in the collection.

The idea of the proof is to split the data of each EA (ignoring cell boundaries)

into records of fixed size Θ(
√

(s/a)w) bits (the records are resized when s or

a double or halve). The records are stored contiguously, yet those of a single
EA do not need to be contiguous nor ordered in the sequence. Since almost
one such record can be wasted per EA, we waste O(

√
saw) bits overall. The

records are managed in a directory spending one pointer (w bits) per record.

As there are at most s√
(s/a)w

+ a =
√

sa/w + a records, spending one pointer

for each gives a directory size of O(
√

saw) bits. Additional O(aw) bits are
spent in mapping EA names to internal addresses within the directory. Those
are also spent if the record sizes are smaller than w, in which case we have to
make them of w bits to ensure that the ri bits of a cell can be read/written in
O(ri/w) time on the RAM machine 2 . In this case the space wasted in empty
records also amounts to O(aw). Indeed, any O(w)-bit sequence from the array
can be read/written in constant time.

Note that it would be possible to simulate a different w when implementing an
EA. If a∗ and s∗ are upper bounds to, respectively, the total number EAs and
total number of bits we will ever have in the collection, we could use pointers
of w′ = Θ(log(s∗a∗)) bits within the collection, as they suffice to address the

(at most)
√

s∗a∗/w + a∗ different records. Reducing w to w′ makes the record

size Θ(
√

(s/a)w′) bits, and the wasted space across all the records O(
√

saw′)
bits. The pointers in the directory are also of w′ bits, so the directory needs
O(
√

saw′) bits as well. The only detail is that now the time to read/write r
bits of data is O(r/w′). If we wish to maintain this as O(r/w), we must ensure
that records are at least w bits long, which costs O(aw) extra bits of wasted
space within records.

Finally, we note that, under memory model MB, the space reported by the
EA collection refers to the rightmost position of an active record. Moreover,
the only memory management the EA collection needs are access, grow to

2 This time is not accounted for in the complexities of the theorem.

6

the right, and shrink from the right. The directory is placed first and then
a variable number of records are laid in compact form. This means that we
could allocate an EA collection within a larger EA (this is indeed implied in
Proposition 1 of [9]). The elements of the larger EA correspond to the records

used to implement the EA collection (Θ(
√

(s/a)w′) bits), and the directory
is artificially split into records of the same size too. When the directory size
changes the larger EA must be totally rewritten. This can be done in time
proportional to the collection size by copying the larger EA onto a newly
created one and deleting the old large EA.

Finally, the amortized time can be converted into worst case if one spends
O(s) extra space. The result of [9] builds over a technique given in [5], which
maintains a collection of EAs with w-bit records in worst-case constant time
per operation. Its limitations are that the address of the EAs may change
upon operations, and that they need O(nw) bits where n is an a-priori upper
bound on the total number of elements in the collection. In [9], the technique is
used to manage the dictionary of the collection, which must be rebuilt when
s or a double or halve. At this point the entire collection can be rewritten
to maintain the record size Θ(

√
saw). As the only reason for the costs to

be amortized instead of worst-case is the need to rewrite everything at those
points, one can easily deamortize by usual means, that is, maintaining copies
of the data structure corresponding to the next and previous value of ⌈log s⌉
or ⌈log a⌉ [8].

Corollary 1 A collection of a (maximum a∗) EAs of nominal size s (maxi-
mum s∗) bits can be represented within a larger EA using s + O(a log(s∗a∗) +
√

sa log(s∗a∗)) bits of space, so that the operations of creation of an empty EA

in the collection and accessing any O(log(s∗a∗)) contiguous bits of an EA take
constant worst-case time, whereas growing and shrinking an EA take constant
amortized time. The amortized times can become fully worst-case by spending

O(s + a log(s∗a∗) +
√

sa log(s∗a∗)) = O(s + a log(s∗a∗)) bits of space.

4 Dynamic Dictionaries: A First Approach

We extend the constant-time array initialization technique to achieve a dy-
namic dictionary implementation that requires O(nr+u log log u) bits of space
and constant worst-case time for all operations. Alternatively, we achieve
O(nr + u + n log log u) bits of space and O(log log u) time for the operations.
This is still not fully satisfactory, but forms the basis of our definitive solution
depicted in the next section.

Definition 3 Let S ⊆ [u] be a set of |S| = n elements, to which we associate

7

r bits of satellite data. The dynamic dictionary problem is to create S = ∅ and
then maintain S upon retrieval queries (which return the r bits associated to
given index in [u] if it is in S, or ⊥ otherwise), and insertions and deletions
in S. The size of the machine word is w = Ω(log u). It is also usually assumed
that r = O(log u), although we consider up to to the much more liberal r =
O(poly(u)).

A trivial implementation supporting retrieval and indels in S would be an
array A[1, u], so that A[i] contained the r bits associated to the i-th element
of the universe, plus a bit array U [1, u] so that U [i] tells whether i ∈ S. This
permits easily carrying out all the operations in constant time, but it takes
u(r + 1) bits of space, which might be too much. Actually, if one stores only
keys, this reduces to the trivial solution to the dynamic membership problem
using u bits of space.

In a first approach, one could store the data in a compacted array A′[1, n],
so that the data associated to U [i] = 1 is stored in A′[rank(U, 1, i)], being
rank(U, x, y) the number of 1’s in U [x, y]. This, however, would require solving
the so-called dynamic array problem (insert, delete, and access cells anywhere
in A′), which cannot be achieved in constant time [4], as well as solving the
dynamic rank problem, which is also impossible in constant time [7].

A solution inspired in Section 2.2 is to store the nonempty values of A in
extendible arrays (EAs, Section 3) associated to the stack cells of Section 2.2
(thus we will be able to create the set in constant time, even if our data
structures require at least u bits). Array A will be divided into chunks of c
entries, and for the nonempty chunks we will store the entries in compact form.
In order to manipulate them in constant time, we will store the compacted
cells in any order, so a permutation will be used to handle the ordering. More
precisely, our data structures are as follows.

(1) We store the bit array U [1, u] so that U [i] = 1 iff i ∈ S.
(2) We logically divide A and U into chunks of c entries.
(3) We store arrays S[1, ⌈u/c⌉] and S ′[1, ⌈u/c⌉]. S uses all its entries, so

that S[i] corresponds to the entries [(i − 1)c + 1, ic] of A and U . If all
those entries are zero in U , then S[i] is undefined, else S[i] = j points
to S ′[j] = i. Therefore S ′ plays the role of the stack and S plays the
role of the auxiliary array of Section 2.2. U does not need initialization
to zero because we can know where it is uninitialized by using S and
S ′. To simplify matters we reserve the maximum possible space for S ′,
although we could do better (yet not asymptotically). We nevertheless
need to maintain the real size of S ′ in a variable nS ′.

(4) We store, aligned to the array cells S ′[j], 1 ≤ j ≤ nS ′, EAs Pj and Aj .
All those EAs are stored as a single collection of EAs.
(a) Pj[1, k] will be a permutation of [k], where 0 ≤ k ≤ c is the number

8

of nonempty cells in the corresponding chunk of A.
(b) Aj[1, k] will be an array of r-bit registers whose correspondence with

the associated chunk in A will be given by Pj .
(5) We also store numbers nEj to record the length of extendible arrays Pj

and Aj (that is, the numbers k above).

We now describe the operations over this data structure. In the description,
we use the following subroutines.

• U [key] is initialized, or S[i] is initialized, where i = ⌈key/c⌉, means that
1 ≤ S[i] ≤ nS ′ and S ′[S[i]] = i.
• Initializing S[i] means incrementing nS ′ ← nS ′ + 1, creating a new cell in

S ′[nS ′]← i and S[i]← nS ′, creating new empty EAs PnS′ and AnS′, setting
nEnS′ ← 0, and finally setting U [(i− 1)c + 1, ic]← 0. This last assignment
can be done in time O(c/w) on the RAM model.
• rank(U, x, y) is computed in time O(c

log u
) via Four-Russians techniques:

Use a universal table of
√

u entries telling the number of bits set for every
possible sequence of 1

2
log u bits. Such a table requires O(

√
u log u) bits of

space. If |y − x + 1| is not a multiple of 1
2
log u, we compute the rank of

the remainder bits by isolating them from the sequence and padding with
zeros. This can be done in constant time if the RAM model allows shifting
or multiplication/division, otherwise another Four Russians table would be
needed to set to zero any prefix/suffix of a sequence of 1

2
log u bits. This

second table would require O(
√

u log2 u) bits of space.
• Shifting cells in Pj can be done in time O(c log c

w
) if the RAM model allows

shifting or multiplication/division, otherwise a simple Four-Russians scheme
achieves time O(c log c

log u
).

• Searching for a cell value p in Pj, for a given p, can also be done in time
O(c log c

log u
). A Four-Russians table indexed by (i) a bit sequence of the max-

imum length 3 k log c ≤ 1
2
log u and (ii) the value p, stores the position of

value p within the sequence, or zero if p is not within that sequence. This
table requires O(

√
u log u log log u) bits.

The operations over this data structure are carried out as follows.

Create: Set nS ′ ← 0.
Retrieve(key): Let i← ⌈key/c⌉. If U [key] = 0 or U [key] is not initialized, re-

turn ⊥. Otherwise, let j ← S[i] and return Aj[Pj [rank(U, (i−1)c+1, key)]].
The time is O(c

log u
) plus that to read the r bits of data.

Insert(key, value): Let i ← ⌈key/c⌉. If U [key] is initialized and U [key] = 1
then find the old value as above and replace the r bits with value. Otherwise,
we have to insert a new cell of A. If S[i] is not initialized, then initialize it,
so that S[i] = j has a value. Now set U [key]← 1, increase nEj ← nEj + 1,

3 If k = 0 then we can just scan the permutation values one by one.

9

and add value at the end of EA Aj (making it grow first). Now, update the
permutation: Let p← rank(U, (i−1)c+1, key) be the relative position of the
cell to insert within the nonempty cells of the chunk. Shift the values from p
to the end of Pj one position to the right to make room for Pj [p]← nEj (this
implies making the EA grow by one position). This operation takes constant
amortized time for the EAs, plus O(c

log u
) for rank and chunk initialization,

O(c log c
log u

) to shift the values of permutation Pj , and the time to write r bits.

Delete(key): If U [key] is not initialized or U [key] = 0 then report an error
or do nothing (key is not present in S). Otherwise obtain the j associated
to key as for retrieval. Let p← rank(U, (i− 1)c + 1, key), so the data is at
Aj[Pj [p]]. Copy Aj [Pj[p]]← Aj [nEj] and make Aj shrink. Find the position
p′ of nEj in Pj , and set Pj [p

′]]← Pj[p]. Move the cells from p+1 to the end
of Pj one position to the left and make Pj shrink. Finally set nEj ← nEj−1
and U [key]← 0. For simplicity, empty EAs are not destroyed, but just kept
with size zero. The cost of this operation is similar to that of insertion.

4.1 Analysis

In the following we omit the ceilings that should surround all the non-integer
values, as this does not affect the result. The space is u bits for U , at most
2u

c
log u

c
bits for S and S ′, and log u

c
for nS ′. The space of the collection of

EAs follows Theorem 3: the nominal size is n log c + nr (for all the Pj and
Aj , as they have one cell per element in S), and there are at most a = 2u/c
EAs, therefore the total space for the EAs, including the nominal size, is nr +

O(n log c+ u
c
w+

√

n(r + log c)u
c
w) = nr+O(n log c+ u

c
w+

√

nr u
c
w) bits. Other

O(u
c
w) bits are spent in the pointers Pj and Aj. The nEj counters require

u
c
log c bits and the Four-Russians tables require O(

√
u log2 u) bits. Overall,

the space complexity is nr + O(u
c
log u + n log c + u

c
w +

√

nr u
c
w). Considering

Corollary 1, we can replace w by log((2u/c)(u log c+ur)) = Θ(log u), to obtain

nr + O(u
c
log u + n log c +

√

nr u
c
log u) bits of space.

If r = O(log u), the time complexity for the operations is O(1+ c log c
log u

) amortized

time. To achieve constant time we need c = O(log u
log log u

). Using this maximum

value the space complexity becomes nr + O(u log log u +
√

nur log log u). To
convert the amortized into true worst-case time, the extra space is O(nr),
adding up to O(nr + u log log u) bits overall.

If, alternatively, we wish to have extra space overhead linear in u, we need
to set c = Θ(log u), obtaining nr + O(u + n log log u +

√
nur) bits. The time

complexity, however, raises to O(log log u). To make this time worst-case, the
overall space is O(nr + u + n log log u) bits.

10

If r = ω(log u) (but still O(poly(u))), then we must add O(r
log u

) to the time

complexities. This can be improved to the optimal O(r/w), as long as we add
O(aw) = O(u

c
w) bits to the space complexity. Then the choices for c made

above must change accordingly.

5 Dynamic Dictionaries: The Definitive Solution

The problem in the first approach is that we need c to be small enough to
manipulate permutations of [c] in constant time, and large enough to make
the overhead associated to chunks small enough. In this section we show that
a two-level scheme achieves both goals simultaneously.

(1) Exactly as in Section 4, we store U , divide it into chunks of c entries, and
store arrays S, S ′, and the counter nS ′.

(2) Aligned to the entries S ′[j], we store EAs Ej . Those are “large” EAs that
will contain EA collections inside. In turn, all those EAs Ej are stored as
a single collection of EAs.

(3) We divide the chunks into blocks of length b, so that b divides c.
(4) Aligned to the cells S ′[j], we store arrays Bj [1, c/b], B′

j[1, c/b], Pj [1, c/b],
and Aj[1, c/b]. (All those arrays are of fixed size and thus can be concate-
nated into single arrays B, B′, etc.). Bj and B′

j play the role of S and S ′

at the block level, and local to chunk S ′[j]. The other arrays have their
cells aligned to those of B′

j . Pj will store block-level permutations and Aj

will store the block data in compact form. Each value of arrays Pj and
Aj will be an EA identifier. The collection of all such EAs (up to 2c/b)
will be stored within the large EA Ej .

(5) The actual sizes nB′
j of the arrays B′

j are stored in array nB′, and the
actual sizes nEj [j

′] of arrays Pj[j
′] and Aj [j

′] are stored in arrays nEj

(which, again, can be concatenated into a single array nE).

The scheme is illustrated in Fig. 1. Before explaining the operations, we rede-
fine some terms related to initialization of U .

• S[i] is initialized means the same as in Section 4.
• Bj[i

′] is initialized, where S[i] = j is initialized and i′ = ⌈(key−(i−1)c)/b⌉,
means 1 ≤ Bj[i

′] ≤ nB′
j and B′

j [Bj[i
′]] = i′.

• U [key] is initialized means that S[i] is initialized (where i = ⌈key/c⌉) and
that Bj [i

′] is initialized (see previous item). That is, both the chunk and
the block containing key are initialized.
• rank(U, x, y) and the other Four-Russians subroutines are as before but now

will take time O(b
log u

) or O(b log b
log u

) as they work on blocks, not chunks.

• Initializing S[i] means incrementing nS ′ ← nS ′ + 1, creating a new cell in
S ′[nS ′] ← i and S[i] ← nS ′, creating a new empty EA EnS′, and setting

11

nB′
nS′ ← 0.

• Initializing Bj [i
′] means incrementing nB′

j ← nB′
j +1, setting B′

j [nB′
j]← i′,

and Bj [i
′] ← nB′

j , allocating empty EAs Pj[nB′
j] and Aj[nB′

j] within large
EA Ej , setting nEj [nB′

j] ← 0, and finally setting U [(i − 1)c + (i′ − 1)b +
1, (i− 1)c + i′b] ← 0. This last assignment can be done in time O(b/w) on
the RAM model.

Let us now explain how we carry out the operations over this data structure.
We note that now we must use initializable arrays in the second-level structure
as well, in order to achieve constant time.

Create: Set nS ′ ← 0.
Retrieve(key): Let i← ⌈key/c⌉ and i′ ← ⌈(key− (i− 1)c)/b⌉. If U [key] = 0

or U [key] is not initialized, then return ⊥. Otherwise, let j ← S[i] and
j′ ← Bj[i

′]. Let D be the permutation (EA) at address Pj[j
′] within EA Ej ,

and A be the EA at position Aj [j
′] within EA Ej. Now, return the r bits of

A[D[rank(U, (i−1)c+(i′−1)b+1, key)]]. All this takes constant worst-case
time, plus O(b

log u
) worst-case time to solve rank.

Insert(key, value): Let i← ⌈key/c⌉ and i′ ← ⌈(key − (i− 1)c)/b⌉. If U [key]
is initialized and U [key] = 1 then find the old value as above and replace
the r bits with value. Otherwise, we have to insert a new cell. If S[i] is
not initialized, then initialize it, so that S[i] = j has a value. If Bj [i

′] is
not initialized, then initialize it, so that Bj[i

′] = j′ has a value. Now, set
U [key] ← 1 and update the permutation and data exactly as in Section 4
with Pj [j

′], Aj [j
′], and Ej[j

′] instead of Pj , Aj, and Ej. This operation takes
constant amortized time plus O(b log b

log u
) time to manage the permutations.

Delete(key): If U [key] is not initialized or U [key] = 0 then report an error
or do nothing (key is not present in S). Otherwise locate the key as for
retrieval. Let p ← rank(U, (i − 1)c + (i′ − 1)b + 1, key). Then do exactly
as in Section 4 with Pj[j

′], Aj [j
′], and Ej[j

′]. The cost of this operation is
similar to the case of insertion.

5.1 Analysis

The space is u bits for U , at most 2u
c
log u

c
bits for S and S ′, and log u

c
for nS ′,

just as in Section 4, from where we also borrow the small O(
√

u log2 u) space re-
quired for the Four-Russians tables. Now, for a given j, we have the arrays and
counters Bj , B′

j , nB′
j , and nEj , which require at most 2 c

b
log c

b
+log c

b
+ c

b
log b =

O(c
b
log c) bits each. Added over the u/c values j, these totalize O(u

b
log c) bits.

Also, we have all the u/b arrays Pj[j
′] and Aj [j

′], whose contents add up to
n log b+nr nominal bits overall. These are spread across at most u/c EAs Ej ,
each of which stores at most a∗ = 2c/b entries (Pj[j

′] and Aj[j
′] for 1 ≤ j′ ≤

c/b) and handles at most s∗ = c log b + cr bits. Therefore the pointers within

12

1

1nB’ 2nB’ 3nB’

1 2 3A A A
A

37 18 69

98 22 35

1 23

nE [1]2

17 25 41

nE nE [1] [2]3 3

1 21

371822983525 4117

1 0 0 0 1 1 1 1 1 01 1U

69

1 00

nS’

P P P

nE [2]

21 3

[1]nE 1 1

P

1 2 3B’ B’ B’
B’

B B B1 2 3

B

S’

S

E
12

F
ig.

1.
T

h
e

d
efi

n
itive

sch
em

e
illu

strated
for

u
=

24,
c

=
6,

b
=

3,
n

=
9,

an
d

th
e

d
ata

corresp
on

d
in

g
to

th
e

array
on

top
(w

h
ich

is
n
ot

stored
).

13

the EAs Ej require log(s∗a∗) = Θ(log(cr)) bits. On one hand, the 2u/b array
identifiers require O(u

b
log(cr)) bits. As for their contents, since the extra space

of storing an EA collection is convex, the worst case arises when each Ej han-
dles n

u/c
entries (thus s = n

u/c
(log b+r) for each Ej). In this worst situation, the

total extra space of each Ej is O(c
b
log(cr) +

√

n
u/c

(log b + r) c
b
log(cr)). Added

over all the u/c Ej ’s, this gives a nominal size (now including the true data

and the EA overheads) of n(log b + r) + O(u
b
log(cr) +

√

nu
b

(log b + r) log(cr)).
In turn, all the Ej ’s are maintained within a large EA collection where a =
a∗ = u/c and s = O(n(log b + r) + u

b
log(cr)) is precisely the nominal size for

all Ej ’s just given. Thus log(a∗s∗) = Θ(log(ur)) = Θ(log u), so the iden-
tifiers Ej add up to O(u

c
log u) bits and the extra space to store this EA

collection is O(u
c
log u +

√

(n(log b + r) + u
b
log(cr))u

c
log u). Adding up the

n(log b+r) = nr+O(n log b) nominal bits, the total space of the EA collection

is nr +O(u
c
log u+n log b+

√

(nr + u
b
log(cr))u

c
log u). Adding up all the space

requirements, we achieve nr+u+O(u
c
log u+ u

b
log(cr)+n log b+

√

nr u
c
log u).

The time complexity is at most O(1+ b log b
log u

). To achieve constant time we need

b = O(log u
log log u

), while we are free to choose c. For example, if r = O(log u),

we can choose c = Θ(log3 u) so that the space becomes nr + u + O(u
log2 u

+
u
b
log log u + n log b +

√

nu
log u

) = nr + u + o(u) + O(u
b
log log u + n log b). Now

we can use b to achieve different tradeoffs depending on n. For example, if we
wish to minimize the dependence on n we can choose b = Θ((log log u)k) (for
any k > 1) so that the space is nr + u + o(u) + O(n log log log u). If we want
a smaller o(u) term, say at most O(u log log u

log u
), we can choose b = Θ(log u

log log u
) to

achieve space nr + u + o(u) + O(n log log u).

Theorem 4 The dynamic dictionary problem, with universe size u and cur-
rent set size n, each element storing r = O(log u) bits of data, can be solved on
the RAM model with word size Ω(log u) using nr+u+o(u)+O(n log log log u)
bits of space so that creation and querying can be done in worst-case constant
time, and insertions and deletions in constant amortized time. Those can be-
come constant worst-case time by spending O(nr) additional bits of space.

We can handle larger r = O(polylog(u)) values, spending O(r/ logu) extra
time per operation. In this case we have to choose c = Θ(r log2 u) to achieve
the same result as above. It is possible to handle slightly larger r values,
but still u

b
log(cr) must be o(u). For example, we can still obtain the same

result if log r = O(poly(log log u)), or O(n log log u) extra bits of space if
log r = O(log u

log log u
).

If we wish to achieve optimal O(r/w) time to access the r bits, then we must
ensure records of size Θ(w) within all the EAs, which introduces some extra
terms in the space complexity. Those vanish only if w = Θ(log u).

14

6 Concluding Remarks

This paper contributes to the understanding of the space/time tradeoffs for
one of the most basic data structures: a dictionary where one can insert, delete,
and search for elements with r-bit associated satellite data. While most of the
research has focused on using space linear on the set size, where lower bounds
show that worst-case constant time cannot be achieved, we have shown that
this complexity is indeed possible if a number of bits linear in the universe
size are stored. It is not clear whether our scheme is optimal, as we are not
aware of any lower bound that applies to this case. Such a lower bound would
further contribute to our understanding of dynamic dictionaries. With regard
to practicality, our structure is not complicated to implement (especially if
one can resort to system-provided allocation instead of EAs), and can be
interesting in practice for not very sparse sets (say, n = Ω(u/ log u)), or when
guaranteeing constant time is a must.

As a byproduct, we obtained a succinct version of a folklore technique to ini-
tialize an array in constant time, by reducing the extra space per data element
from 2 log n to 1 + o(1) bits. Not only this result was necessary to obtain our
main contribution, but it is also of independent theoretical and practical in-
terest. We ran some experiments to illustrate its practicality. Empirical tests
run on an Intel machine using an array of integers show that the folklore solu-
tion is faster than explicitly running the initialization as long as the number
of operations done over the array does not exceed 8% of its size. Our 3n-bit
solution is faster only up to 2.5% due to the increased complexity. Yet, the
folklore solution crashes when the array is so large that the extra structures
(200% extra space) require swapping, whereas the extra space of our solution
(less than 10%) goes unnoticed.

Acknowledgments

We thank Rajeev Raman for useful comments and for sharing a draft of the
journal version of [9]. We also thank Alberto Apostolico for pointing us the ear-
lier reference [1] for the folklore technique of constant-time array initialization.
Last but not least, we thank our student Diego Arroyuelo for proofreading and
debugging the paper.

15

References

[1] A. Aho, J. Hopcroft, and J. Ullman. The design and analysis of computer
algorithms. Addison-Wesley, 1974.

[2] E. Demaine, F. Meter auf der Heide, R. Pagh, and M. Patrascu. De dictionariis
dynamicis pauco spatio utentibus (lat. on dynamic dictionaries using little space).
In Proc. 7th Latin American Symposium on Theoretical Informatics (LATIN),
LNCS 3887, pages 349–361, 2006.

[3] M. Dietzfelbinger, A. Karlin, K. Mehlhorn, and F. Meter auf der Heide. Dynamic
perfect hashing: Upper and lower bounds. SIAM Journal on Computing,
23(4):738–761, 1994. Earlier version in Proc. ACM FOCS 1988.

[4] M. Fredman and M. Saks. The cell probe complexity of dynamic data structures.
In Proc. 21st ACM Symposium on Theory of Computing (STOC), pages 345–354,
1989.

[5] T. Hagerup, K. Mehlhorn, and I. Munro. Maintaining discrete probability
distributions optimally. In Proc. 20th International Colloquium on Automata,
Languages and Computation (ICALP), LNCS 700, pages 253–264, 1993.

[6] K. Mehlhorn. Data Structures and Algorithms 1: Sorting and Searching. EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, 1984.

[7] P. Miltersen. Cell probe complexity — a survey. In Pre-Conference Workshop on
Advances in Data Structures at the 19th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), 1999.

[8] M. Overmars. The design of dynamic data structures. LNCS 156. Springer-
Verlag, 2nd edition, 1987.

[9] R. Raman and S. Srinivasa Rao. Succinct dynamic dictionaries and trees. In
Proc. 30th International Colloquium on Automata, Languages and Computation
(ICALP), LNCS 2719, pages 357–368, 2003.

16

