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Abstract. Operations rank and select over a sequence of symbols have many applications to the
design of succinct and compressed data structures to manage text collections, structured text, binary
relations, trees, graphs, and so on. We are interested in the case where the collections can be updated
via insertions and deletions of symbols. Two current solutions stand out as the best in the tradeoff of
space versus time (considering all the operations). One by Mäkinen and Navarro achieves compressed
space (i.e., nH0 + o(n log σ) bits) and O(log n log σ) worst-case time for all the operations, where n is
the sequence length, σ is the alphabet size, and H0 is the zero-order entropy of the sequence. The other
solution, by Lee and Park, achieves O(log n(1 + log σ

log log n
)) amortized time and uncompressed space, i.e.

n log σ +O(n)+ o(n log σ) bits. In this paper we show that the best of both worlds can be achieved. We
combine the solutions to obtain nH0 +o(n log σ) bits of space and O(log n(1+ log σ

log log n
)) worst-case time

for all the operations. Apart from the best current solution, we obtain some byproducts that might be
of independent interest.

1 Introduction and Related Work

Compressed data structures aims at representing classical data structures such as sequences, trees,
graphs, etc., in little space while keeping the functionality of the structure. That is, compressed
data structures should operate without the need to decompress them. This is a very active area of
research stimulated by today’s steep memory hierarchies and large available data sizes. See e.g. [16].

One of the most useful structures are the bit vectors with rank and select operations: rank(B, i)
gives the number of 1-bits in B[1, i] and select(B, i) gives the position of the i-th 1 in B. This
generalizes to sequences T [1, n] over an alphabet Σ of size σ, where one aims at a (hopefully
compressed) representation efficiently supporting the following operations:

– access(T, i) returns the symbol T [i].

– rankc(T, i) returns the number of times symbol c appears in the prefix T [1, i].

– selectc(T, i) returns the position of the i-th c in T .

Improvements in rank/select operations on sequences have a great impact on many other
succinct data structures, especially on those aimed at text indexing [6, 3, 11, 16], but also labeled
trees, structured text, binary relations, graphs, and others [1, 2, 8].

The first structure providing support for rank/select on a sequence of symbols was the wavelet

tree [7, 5]. Wavelet trees are perfectly balanced static trees of height log σ (logarithms are in base 2
by default). They answer the three queries in O(log σ) time, by working O(1) per tree level. They
store a bitmap of length n per level, which is preprocessed for constant-time binary rank/select
queries. Their total space requirement is n log σ + o(n log σ), where the extra sublinear term is
the space needed by the binary rank/select structures [15]. By representing those bitmaps in
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compressed form [19] the constant-time rank/select queries are retained and the space becomes
nH0(T )+ o(n log σ), where H0(T ) is the zero-order empirical entropy of T (that is,

∑
c∈Σ

nc

n
log n

nc

,
where c occurs nc times in T ). Since the wavelet tree gives access(T, i) to any symbol T [i], it can
be used to replace T .

A stronger version of wavelet trees are multiary wavelet trees [3], which achieve the same space
but improve the query times to O(1 + log σ

log log n
). The trick is to make the tree m-ary for, say,

m =
√

log n, so that its height is reduced. Now the tree does not store a bitmap per level, but
rather a sequence over an alphabet of size m. They show how to do rank/select on those sequences
in constant time for such a small m.

In [11] they add dynamic capabilities to these sequences, by adding operations

– insertc(T, i) inserts symbol c between T [i] and T [i + 1].
– delete(T, i) deletes T [i] from T .

They represent dynamic bitmaps B using nH0(B)+o(n) bits of space and solve all operations in
O(log n) time. This is done with a binary tree that stores Θ(log2 n) bits at the leaves, and at internal
nodes stores summary rank/select information on the subtrees. For larger alphabets, a wavelet tree
using dynamic bitmaps yields a dynamic sequence representation that takes nH0(T ) + o(n log σ)
bits and solves all the operations in time O(log n log σ).

Very recently, in [10] they manage to improve the time complexities of this solution. They show
that the O(log n) time complexities can be achieved for alphabets of size up to σ = O(log n). They
combine this tool with a multiary wavelet tree to achieve O(log n(1 + log σ

log log n
)) time.

The key to the success of [10] is a clever detachment of two roles of tree leaves that are entangled
in [11]: In the latter, the leaves are the memory allocation unit (that is, whole leaves are allocated or
freed), and also the information summarization unit (that is, the tree maintains information up to
leaf granularity, and the rest has to be collected by sequentially scanning a leaf). In [10] leaves are
not the memory allocation unit, but handle an internal linked list with smaller memory allocation
units. This permits moving symbols to accommodate the space upon insertions/deletions within a
leaf, without having to update summarization information for the data moved. This was the main
bottleneck that prevented the use of larger alphabets in O(log n) time in [11].

However, compared to [11], the work in [10] has several weaknesses: (1) it is not compressed,
but rather takes n log σ + O(n) + o(n log σ) bits of space; (2) in addition to not compressing T , the
extra space includes an O(n) term, as shown; (3) times are amortized, not worst-case.

In this paper we show that it is possible to obtain the best from both worlds. We combine
the works in [11, 10] to obtain a structure that (1) takes nH0(T ) + o(n log σ) bits of space, and
(2) performs all the operations in O(log n(1 + log σ

log log n
)) worst-case time. (This is achieved even

for the case where ⌈log n⌉ changes and so does the length of the structure pointers in order to
maintain the promised space bounds.) The result becomes the most efficient dynamic representation
of sequences, both in time and space, and its benefits have immediate applications to other succinct
data structures such as compressed text indexes, as we show at the end.

This combination is by no means simple. Some parts are easy to merge, such as the role detach-
ment for leaves [10] with the compressed representation of sequences [3] and multi-ary wavelet trees,
plus the memory management techniques to support changes of ⌈log n⌉ within the same worst-case
time bounds and no extra space [11]. However, others require new algorithmic ideas. In [10] they
spend O(n) extra bits in bitmaps that maintain leaf-granularity information on rank/select. We
show that this can be replaced by dynamic partial sums, which use sublinear space. However, we
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need σ partial sums and cannot afford to update them individually upon a leaf insertion/deletion.
Hence we create a new structure where a collection of σ sequences are maintained in synchroniza-
tion, and this can be of independent interest. The second problem was that leaf splitting/merging
in [10] triggered too many updates to summarization data, which could not be handled in O(log n)
worst-case time, only in O(log n) amortized time. To get rid of this problem we redefined the leaf
fill ratio invariants, preferring a weaker condition that still ensures that leaves are sufficiently full
and can be maintained within the O(log n)-worst-case-time bound.

Finally, we remind that there is a static sequence representation [6] that requires n log σ +
n o(log σ) bits and answers the queries in O(log log σ) time. There has been work on dynamizing
this structure [8], so that the query times are O( 1

α
log log n), in exchange for insertion/deletion

times for the form O(nα) for constant 0 < α < 1.
We recall that our results (and all the mentioned ones) assume a RAM model with word size

w = Ω(log n), so that operations on O(log n) contiguous bits can be carried out in constant time.
For the dynamic structures, we always allocate ω(log n)-bit chunks of the same size, which can
be handled in constant time and asymptotically no extra space with simple memory allocation
algorithms.

The paper proceeds as follows. In Section 2 we describe a solution to handle a collection of several
synchronized partial sums. This is used in Section 3 to design a dynamic rank/select solution for
small alphabets (O(log σ)) with no compression. In Section 4 we introduce compression, first for
even smaller alphabets (o(log n/ log log n)), and then generalizing for larger alphabets via multi-ary
wavelet trees. We explore some consequences and future work directions in the Conclusions.

2 Collection of Searchable Partial Sums with Indels

The Searchable Partial Sums with Indels problem [9] consists in maintaining a sequence S of non-
negative integers s1, . . . , sn, each one of k = O(log n) bits, supporting the following queries and
operations:

– sum(S, i) is
∑i

l=1 sl.
– search(S, y) is the smallest i′ such that sum(S, i′) ≥ y.
– update(S, i, x) updates si to si + x (x can be negative as long as the result is not).
– insert(S, i, x) inserts a new integer x between si−1 and si.
– delete(S, i) deletes si from the sequence.

It is possible to handle all these operations using kn + o(kn) bits of space and O(log n) time
for all the operations [11]. We now define an extension of this problem, that we call Collection

of Searchable Partial Sums with Indels. This problem consists in maintaining a collection of σ
sequences C = {S1, . . . , Sσ} of nonnegative integers {sj

i}1≤j≤σ,1≤i≤n, each one of k = O(log n) bits.
We support the following queries and operations:

– sum(C, j, i) is
∑i

l=1 sj
l .

– search(C, j, y) is the smallest i′ such that sum(Sj , i′) ≥ y.
– update(C, j, i, x) updates sj

i to sj
i + x.

– insert(C, i) inserts 0 between sj
i−1 and sj

i for all 1 ≤ j ≤ σ.

– delete(C, i) deletes sj
i from the sequence Sj for all 1 ≤ j ≤ σ. To perform this operation it must

hold sj
i = 0 for all 1 ≤ j ≤ σ.
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Next we show how to carry out all of these queries/operations in O(σ + log n) time, using
O(σkn) bits of space.

Data structure. We construct a red-black tree over C, where the size of each leaf goes from 1
2 log2 n to

2 log2 n bits (they are allocated to hold 2 log2 n bits). The leftmost leaf contains s1
1 · · · s1

b1
s2
1 · · · s2

b1
· · ·

sσ
1 · · · sσ

b1
, the second leftmost leaf contains s1

b1+1 · · · s1
b2

s2
b1+1 · · · s2

b2
· · · sσ

b1+1 · · · sσ
b2

, and so on. The
size of the leftmost leaf is σkb1 bits, the size of the second leftmost leaf is σk(b2−b1) bits, and so on.
The size of the leaves is variable and bounded, so b1, b2, . . . are such that 1

2 log2 n ≤ σkb1, σk(b2 −
b1), . . . ≤ 2 log2 n hold 1. Each internal node v stores counters {rj(v)}1≤j≤σ and p(v), where rj(v)
is the sum of the integers in the left subtree for sequence Sj and p(v) is the number of positions
stored in the left subtree (for any sequence).

Computing sum(C, j, i). We traverse the tree to find the leaf containing the i-th position. We start
with sum ← 0 and v ← root. If p(v) ≥ i we enter the left subtree, otherwise we enter the right
subtree with i← i−p(v) and sum← sum+rj(v). We reach the leaf that contains the i-th position
in O(log n) time. Then we scan the leaf, summing up from where the sequence Sj begins, in chunks
of size 1

2 log n bits using a precomputed table Y , until we reach position i. Table Y receives any

possible sequence of dk bits, for d = ⌊
1
2

log n

k
⌋, and gives the sum of the d k-bit numbers encoded.

The last (at most d − 1) integers must be added individually. (Note that if k > 1
2 log n we can

add just each number individually within the time bounds.) The sum query takes in total O(log n)
time, and table Y adds only O(

√
n polylog(n)) bits of space.

Computing search(C, j, y). We enter the tree to find the smallest i′ such that sum(C, j, i′) ≥ y.
We start with pos ← 0 and v ← root. If rj(v) ≥ y we enter the left subtree, otherwise we enter
the right subtree with y ← y − rj(v) and pos ← pos + p(v). We reach the leaf that contains the
i′-th position in O(log n) time. Then we scan the leaf, summing up from where the sequence Sj

begins, in chunks of size 1
2 log n bits using table Y , until this sum is greater than y after adding

up i′ integers; the answer is then pos + i′. (Once an application of the table exceeds y, we must
reprocess the last chunk integer-wise.) The search query takes in total O(log n) time.

Operation update(C, j, i, x). We proceed similarly to sum, updating rj(v) as we traverse the tree.
That is, we update rj(v) to rj(v) + x each time we go left from v. When we reach the leaf we
directly update sj

i to sj
i + x. The update operation takes in total O(log n) time.

For the next operations, we note that a leaf has at most m = ⌊2 log2 n
σk
⌋ integers from any sequence.

Then a subsequence of a given sequence has at most mk bits. So if we copy a subsequence in chunks
of 1

2 log n bits, the subsequence will be copied in 1 + 2mk
log n

= O(1 + log n
σ

) time in the RAM model
(this requires shifting bits, which in case it is not supported by the model can be handled using
small universal tables of the kind of Y ). As we have σ sequences, we can copy a given subsequence
of them all in O(σ + log n) time. The next operations are solved by a constant number of these
copying operations.

Operation insert(C, i). We traverse the tree similarly to sum, updating p(v) as we traverse the
tree. That is, we increase p(v) by 1 each time we go left from v. Then we copy the leaf arrived at

1 If σk >
1

2
log2

n, we just store σk bits per leaf. All the algorithms in the sequel are simplified and the complexities
are maintained.
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to a new memory area, adding a 0 between sj
i−1 and sj

i for all j. This is done by first copying the

subsequences . . . sj
i−1 for all j, then adding 0 to each sequence, and finally copying the subsequences

sj
i . . . for all j. As we have just explained, this can be done in O(σ + log n) time.

If the new leaf uses more than 2 log2 n bits, the leaf is split in two. An overflowed leaf has
m = ⌊2 log2 n/(σk)⌋ + 1 integers in each sequence. So we store in the left leaf the first ⌊m/2⌋
integers of each sequence and in the right leaf we store the rest. These two copies can be done again
in O(σ + log n) time. These new leaves are made children of a new node µ. We compute each rj(µ)
by scanning and summing on the left leaf. This summing can be done in O(σ + log n) time using
table Y . We also set p(µ) = ⌊m/2⌋. Finally, we check if we need to rebalance the tree. If needed,
the read-black tree is rebalanced with just one rotation and O(log n) red-black tag updates. After a
rotation we need to update rj(· ) and p(· ) only for three nodes, which is easily done in O(σ) time.
The insert operation takes in total O(σ + log n) time.

Operation delete(C, i). We traverse the tree similarly to sum, updating p(v) while we traverse the
tree. That is, we decrease p(v) by 1 each time we go left from v. Then we copy the leaf to a new
memory area, deleting sj

i for all j, similarly to insert, in O(σ + log n) time.

There are three possibilities after this deletion: (i) The new leaf uses more than 1
2 log2 n bits,

in which case we are done. (ii) The new leaf uses less than 1
2 log2 n and its sibling is also a leaf, in

which case we merge it with its sibling, again in O(σ +log n) time. Note that this merging removes
the leaf’s parent but does not require any recomputation of rj(· ) or p(· ). (iii) The new leaf uses
less than 1

2 log2 n and its sibling is an internal node µ, in which case by the red-black tree properties
we have that µ must have two leaf children. In this case we merge our new leaf with the closest
child of µ, updating the counters of µ in O(σ) time, and letting µ replace the parent of our original
leaf.

In cases (ii) and (iii), the merged leaf might use more than 2 log2 n bits. In this case we split it
again into two halves, just as we do in insert (and including the recomputation of rj(· ) and p(· )).
The tree might have to be rebalanced as well. The delete operation takes in total O(σ+log n) time.

The space requirement is at most 4σkn bits for all the leaves. For each internal node we have two
pointers, a p(· ) counter, and σ rj(· ) ≤ 2k ·n counters, totalizing O(log n)+σ(k+log n) = O(σ log n)

bits per node. So, all the internal nodes use O( σkn

log2 n
σ log n) = O(σ2kn

log n
) bits. We have proved our

claim.

Theorem 1. The Collection of Searchable Partial Sums with Indels with σ sequences of n numbers

of k bits can be solved, in a RAM machine of w = Ω(log n) bits, using O(σkn(1 + σ
log n

)) bits of

space, supporting the operations sum, search, update, insert and delete in O(σ +log n) worst-case

time. Note that, if σ = O(log n) the space is O(σkn) and the time is O(log n).

We note that we have actually assumed that w = Θ(log n) in our space computation (as we have
used w-bit system pointers). The general case w = Ω(log n) can be addressed using exactly the same
techniques developed in [11], using a more refined memory management with pointers of (log n)±1
bits, and splitting the sequence into three in a way that retains the worst-case complexities.

We also note that the space can be improved to σkn(1 + O( σ
log n

)) by using a finer memory
allocation policy for the leaves, just as done in the next sections for sequences. The simpler result
suffices for the use we make of Theorem 1 in this paper.
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3 Uncompressed Dynamic Rank-Select Structures for a Small Alphabet

For a small alphabet of size σ = O(log n), we construct a red-black tree over T [1, n] where each
leaf contains a non-empty superblock of size up to 2 log2 n bits. We will introduce invariants that
guarantee that there are at most 2n log σ

log2 n
superblocks. Each internal node v stores counters r(v) and

p(v), where r(v) is the number of superblocks in the left subtree and p(v) is the number of symbols
stored in the left subtree. For each superblock i, we maintain sj

i , the number of occurrences of symbol
j in superblock i. We store all these sequences of numbers using a Collection of Searchable Partial

Sums with Indels, C. The length of each sequence will be at most 2n log σ

log2 n
integers, σ = O(log n)

and k = O(log log n). So the partial sums operate in O(log n) worst-case time.

Each superblock is further divided into blocks of
√

log n log n bits, so each superblock has up to
2
√

log n blocks. We maintain these blocks using a linked list. Only the last block could be not fully
used.

A superblock storing less than log2 n bits will be called sparse. The operations insert and delete
will maintain the invariant that no two consecutive sparse superblocks may exist. This ensures that
every consecutive pair of superblocks holds at least log2 n bits from T , and hence that there are at
most 2n log σ

log2 n
superblocks.

The overall space usage of our structure is n log σ + O( n log σ√
log n

), as σ = O(log n):

– The text itself uses n log σ bits of space.

– The Collection of Searchable Partial Sums with Indels uses O(n log log n log σ
log n

) bits of space.

– Each pointer of the linked list of blocks uses O(log n) bits and we have O( n log σ√
log n log n

) blocks,

totalizing O( n log σ√
log n

) bits.

– The last block in each superblock is not necessarily fully used. We have at most 2n log σ

log2 n
su-

perblocks, each of which can waste a full block of size
√

log n log n bits, totalizing O( n log σ√
log n

)

bits.

– Inside each block, we can lose at most log σ bits due to symbol misalignment, totalizing

O( n log2 σ√
log n log n

) = O(n log log n log σ√
log n log n

) bits.

– The internal tree counters use O(n log σ

log2 n
· log n) = O(n log σ

log n
) bits.

Now we show how to carry out all of the queries/operations in O(log n) time.

First, it is important to notice that each block can be scanned or shifted in
√

log n time,
using tables that process chunks of 1

2 log n bits (again, if σ > 1
2 log n we can process each symbol

individually within the time bounds). Given that there are at most O(
√

log n) blocks in a superblock,
we can scan or shift elements within a block in O(log n) time, even considering block boundaries.

Computing access(T, i). We traverse the tree to find the leaf containing the i-th position. We start
with sb ← 1 and pos ← i. if p(v) ≥ pos we enter the left subtree, otherwise we enter the right
subtree with sb← sb+ r(v) and pos← pos−p(v). We reach the leaf that contains the i-th position
in O(log n) time. Then we directly access the pos-th symbol of sb. Note that, within the same
O(log n) time, we can extract any O(log n)-bit long sequence of symbols from T .
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Computing rankc(T, i). We find the leaf containing the i-th position, just as for access. Then we
scan superblock sb from the first block summing up the occurrences of c up to the position pos,
using a table Z to sum the c’s. We add to this quantity sum(C, c, sb− 1), the number of times that
c appears before superblock sb. The rank query takes in total O(log n) time. Table Z is of the same
spirit of Y and requires O(σ

√
n polylog(n)) = O(

√
n polylog(n)) bits.

Computing selectc(T, i). We calculate j = search(C, c, i); this way we know that the i-th c belongs
to superblock j and it is the i′-th appearance of c within superblock j, for i′ = i− sum(C, c, j − 1).
Then we traverse the tree to find the leaf containing superblock j. We start with sb← j and pos← 0.
if r(v) ≥ sb we enter the left subtree, otherwise we enter the right subtree with sb ← sb − r(v)
and pos ← pos + p(v). We reach the leaf that represents superblock j in O(log n) time. Then we
scan superblock j from the first block, searching for the position of the i′-th appearance of symbol
c within superblock j, using table Z. To this position we add pos to obtain the final result. The
select query takes in total O(log n) time.

Operation insertc(T, i). We obtain sb and pos just like in the access query, except that we start
with pos ← i − 1, so as to insert right after position i − 1. Then, if superblock sb contains room
for one more symbol, we insert c at the pos-th position of sb, by shifting the symbols through the
blocks as explained. We also carry out update(C, c, sb, 1) and retraverse the path from the root to
sb adding 1 to p(v) each time we go left from v.

If this insertion causes an overflow in the last block, we simply add a new block at the end of
the linked list to hold the trailing symbol (which is usually not the same symbol inserted of course).
In this case we finish in O(log n) time.

If, instead, the superblock is full, we cannot carry out the insertion yet. We first try to move
one symbol to the previous superblock (if it exists). We check how many symbols does superblock
sb − 1 have: we traverse the tree searching for it, and deduce its size from the r(v) counters in
the tree. If it can hold one more symbol, we insertd(T, ·) the first symbol d of superblock sb into
superblock sb − 1. This recursive invocation to insert will not overflow superblock sb − 1. Now,
we deleted(T, ·) the symbol d moved from block sb, and this cannot cause an underflow of sb. Now
that we have made room to carry out the original insertion, we rerun insertc(T, i) and it will not
overflow again. This takes O(log n) time.

If superblock sb−1 is also full or does not exist, then we are entitled to create a sparse superblock
between sb − 1 and sb, without breaking the invariant on sparse superblocks. We create such an
empty superblock and insertd(T, ·) symbol d into it. Finally we rerun insertc(T, i) as before.

To create the new superblock, we search for superblock sb, updating r(v) to r(v) + 1 each time
we go left from v. When we arrive at the leaf of sb we create a new node µ with r(µ) = 1 and
p(µ) = 0. Its left child is the new empty superblock and its right child is sb. We also execute
insert(C, sb).

Finally, we check if we need to rebalance the tree. If it is needed, it can be done with one
rotation and O(log n) red-black tag updates, given that we use a red-black tree. After a rotation
we need to update r(· ) and p(· ) only for three nodes. These updates can be done in O(1) time and
the whole insert operation takes O(log n) time.

Operation delete(T, i). We obtain sb and pos just as in the access query, updating p(v) to p(v)− 1
each time we go left from v. Then we delete the pos-th position (let c be the symbol deleted) of the
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sb-th superblock, by shifting the symbols back through the blocks. If this deletion empties the last
block, we free it. In any case we call update(C, c, sb,−1) on the partial sums.

There are three possibilities after this deletion: (i) superblock sb is not sparse after the deletion,
in which case we are done; (ii) sb was already sparse before the deletion, in which case we have
only to check that it has not become empty; (iii) sb turned to sparse due to the deletion, in which
case we have to care about the invariant on sparse superblocks.

If superblock sb becomes empty, we search for it just like in the access query, updating r(v) to
r(v)− 1 each time we go left from v, in O(log n) time. When we arrive at the leaf that represents
superblock sb we delete it. Then we do operation delete(C, sb). Finally, we check if we need to
rebalance the tree. If needed, this can be done with one rotation and O(log n) red-black tag updates,
just as for insertion. After a rotation we also need to update r(· ) and p(· ) only for three nodes.
These updates take constant time.

If, instead, superblock sb turned to sparse, we make sure that neither superblocks sb − 1 or
sb + 1 are also sparse. If they are not, then superblock sb can become sparse and hence we finish
without further intervention.

If superblock sb − 1 is sparse, we delete(T, ·) its last symbol d, and insertd(T, ·) it in the
beginning of superblock sb. This recursive call brings no problems because sb− 1 is already sparse,
and we restore the non-sparse status of sb. The action is symmetric if sb−1 is not sparse but sb+1
is.

The delete operation takes in total O(log n) time.

Theorem 2. Given a text T of length n over a small alphabet of size σ = O(log n), the Dynamic

Sequence with Indels problem under RAM model with word size w = Ω(log n) can be solved using

n log σ + O( n log σ√
log n

) bits of space, supporting the queries access, rank, select, insert and delete in

O(log n) worst-case time.

We note again that we have actually assumed that w = Θ(log n) in our space computation, and
that the general case w = Ω(log n) can be obtained using exactly the same techniques developed
in [11, Sections 4.5, 4.6, and 6.4].

4 Compressed Dynamic Rank-Select Structures

Theorem 2 can be extended to use a compressed sequence representation, by just changing the way
we store/manage the blocks. The key idea is to detach the representational and the actual (i.e.,
compressed) sizes of the storage units at different levels.

We use the same red-black tree over T [1, n], where each leaf contains a non-empty superblock
representing up to 2 log2 n bits of the original text T (they will actually store more or less bits
depending on how compressible is the portion of T they represent). The same superblock split-
ting/merging policy related to sparse superblocks is used. Each internal node has the same counters
and are managed in the same way. So all the queries/operations are exactly the same up to the
superblock level. Compression is encapsulated within superblocks.

In physical terms, a superblock is divided into blocks just as before, and they are still of the
same actual size,

√
log n log n bits. Depending on compressibility, blocks will represent more or less

symbols of the original text, as their actual size is fixed.
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In logical terms, a superblock is be divided into subblocks representing 1
2 log n bits (that is,

1
2 logσ n symbols2) from T . We represent each subblock using the (c, o)-pair encoding of [3]: The
c part is of fixed width and tells how many occurrences of each alphabet symbol are there in the
subblock; whereas the o part is of variable width and gives the identifier of the subblock among
those sharing the same c component. Each c component uses at most σ log log n bits; while the o
components use at most O(log n) bits each, and overall add up to nH0(T ) + O(n log σ/ log n) bits
[3, Section 3.1].

In a block of
√

log n log n bits, we store as many subblocks as they fit, wasting at most σ log log n+
O(log n) unused bits at the end. The universal tables (like T ) used to sequentially process the blocks
in chunks of Θ(log n) bits must now be modified to process the sequence subblock-wise. This is
complex because an insertion in a subblock introduces a displacement that propagates over all the
subblocks of the block, which must be completely recomputed and rewritten (and it can even cause
the actual size of the whole superblock to double!). Fortunately all those tedious details have been
already sorted out in [11, Sections 5.2, 6.1, and 6.2], where their superblocks play the role of our
blocks, and their tree rearrangements are not necessary for us because we are within a leaf now.
Their “partial blocks” mechanism is also not useful for us, because we can tolerate those propaga-
tions to extend over all the blocks of our superblocks. Hence only the last block of our superblocks
is not as full as misalignments permit.

The time achieved in [11] is O(1) per Θ(log n) actual bits. Even in the worst case (where compres-

sion does not work at all in the superblock), the number of actual bits will be 2 log2 n
1
2

log n
(σ log log n +

O(log n)) = O(log2 n + σ log n log log n), and thus the time to solve any query or carry out any
update on a superblock will be O(log n + σ log log n).

Let us now consider the space usage of these new structures, focusing only on the changes from
the uncompressed version:

– The text itself (as a sequence of pairs (c, o)) uses nH0(T ) + O((σn log log n)/ logσ n) bits of
space.

– Inside each block, we can lose at most O(σ log log n+log n) bits due to misalignments, totalizing

O(n log σ(σ log log n+log n)√
log n log n

) bits of space.

– The extra space for the tables to operate the (c, o) encoding is O(
√

n σ polylog(n)) bits.

It can be seen that the time and space complexities depend sharply on σ. Thus the solution is
indeed of interest only for rather small σ = o(log n/ log log n). For such a small alphabet we have
the following theorem.

Theorem 3. Given a text T of length n over a small alphabet of size σ = o(log n/ log log n) and

zero-order entropy H0(T ), the Dynamic Sequence with Indels problem under RAM model with word

size w = Ω(log n) can be solved using nH0(T ) + O( n log σ√
log n

) bits of space, supporting the queries

access, rank, select, insert and delete in O(log n) worst-case time.

Again, all the issues of varying ⌈log n⌉ and the case w = ω(log n) are handled just as in [11,
Sections 4.5, 4.6, and 6.4]

To extend our results for a large alphabet of size σ = Ω(log n/ log log n), we use a generalized
ρ-ary wavelet tree [3] over T , where ρ =

√
log n. This generalized wavelet tree has O(logρ σ) =

2 We have ignored floors and ceilings for simplicity.
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O( log σ
log log n

) levels. We store on each level a sequence over an alphabet of size ρ, which can be
handled using the dynamic solution of Theorem 3, for which ρ is small enough. Hence each query
and operation takes O(log n) time per level, adding up O(log n log σ

log log n
) worst-case time overall.

As shown in [3], the sum of the zero-order-entropy representations of the sequences at each
level adds up to the zero-order entropy of T . In addition, the generalized ρ-ary wavelet tree handles
changes in ⌈log n⌉ automatically, as this handling is encapsulated within each level.

We thus obtain our main theorem, where we have included the case of small σ as well.

Theorem 4. Given a text T of length n over an alphabet of size σ and zero-order entropy H0(T ),
the Dynamic Sequence with Indels problem under RAM model with word size w = Ω(log n) can be

solved using nH0(T ) + O( n log σ√
log n

) bits of space, supporting the queries access, rank, select, insert

and delete in O(log n(1 + log σ
log log n

)) worst-case time.

5 Conclusions

We have shown that two existing solutions to the Dynamic Sequence with Indels problem [11, 10]
can be merged so as to obtain the best from both. This merging is not trivial and involves some
byproducts that can be of independent interest. We show now a couple of immediate consequences
of our improved result.

In [11, 12] it is shown that a wavelet tree built over the Burrows-Wheeler Transform T bwt of a
text T , and compressed using the (c, o) pair technique achieves high-order entropy space, namely
nHh(T ) + o(n log σ) for any h + 1 ≤ α logσ n and constant 0 < α < 1, where Hh(T ) is the h-
th order empirical entropy of T [14]. This is used in [11] to obtain a dynamic text index that
handles a collection C of texts and permits searching for patterns, extracting text snippets, and
inserting/deleting texts in/from the collection. Using the definitions of [11, Section 7] and using
the same sampling step, we can state a stronger version of those theorems:

Theorem 5. The Dynamic Text Collection problem can be solved with a data structure of size

nHh(C)+o(n log σ)+O(σh+1 log n+m log n+w) bits, simultaneously for all h. It supports counting

of the occurrences of a pattern P in O(|P | log n(1 + log σ
log log n

)) time, and inserting and deleting a

text T in O(|T | log n(1 + log σ
log log n

)) time. After counting, any occurrence can be located in time

O(log n + logσ n log log n). Any substring of length ℓ from any T in the collection can be displayed

in time O(log n + logσ n log log n + ℓ(1 + log σ
log log n

)). Here n is the length of the concatenation C =
0 T10 T2 · · · 0 Tm, and we assume σ = o(n). For h ≤ (α logσ n) − 1, for any constant 0 < α < 1,
the space complexity simplifies to nHh(C) + o(n log σ) + O(m log n + w) bits.

When σ = O(polylog(n)) is not too large, the times above become O(|P | log n) for counting,
O(|T | log n) for text insertion/deletion, O(logσ n log log n) for locating, and O(logσ n log log n + ℓ)
for displaying.

Another important application that derives from this one is the compressed construction of
text indexes. For example, a variant of the FM-index [3] requires h-th entropy space once built, but
in order to build it we need O(n log n) bits of space. The previous theorem can be used in order
to build the FM-index of a text by starting with an empty collection and inserting the text T of
interest. Our new results make this process faster.
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Theorem 6. The Alphabet-Friendly FM-index of a text T [1, n] over an alphabet of size σ can be

built using nHh(T ) + o(n log σ) bits, simultaneously for all h ≤ (α logσ n) − 1 and any constant

0 < α < 1, in time O(n log n(1 + log σ
log log n

)).

We note that this is the same space required for the final FM-index [3]. On the other hand, a
suffix array [13] of T is easily derived from our dynamic FM-index. When σ = O(polylog(n)), our
FM-index construction time becomes O(n log n) worst-case time, and the suffix array is obtained
with another O(n log n) time process. This was indeed the best known complexity to build the
suffix array before the linear-time construction algorithms were discovered a few years ago [18].
Yet, all the classical algorithms require O(n log n) bits whereas our result requires n log σ(1 + o(1))
bits even on uncompressible texts.

Existing lower bounds on dynamic partial sums [17] suggest that sub-logarithmic query times
are not possible with O(polylog(n)) update times, and hence O(log n) is the best we can hope
for if we want to minimize the maximum complexity over all the operations (we recall that other
approaches favor faster queries and slower updates [8]). Hence we believe that our time results
cannot be improved in this sense, unless an improvement on the static representation for large
alphabets (currently a multi-ary wavelet tree) is devised.

Alternatively, one would like to improve the space to high-order entropy (not only for the
Dynamic Text Collection problem, but for the Dynamic Sequence with Indels problem). This has
not been achieved even if we disregard operations rank and select and is satisfied only with access,
insert, and delete.

Finally, one could be interested in extending the problem. An intriguingly difficult extension is
that of handling a varying alphabet, so that not only the sequence changes, but also new unexpected
symbols might appear, drawn from a virtual alphabet that is too large to admit a static-shaped
wavelet tree to handle it [4].
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