
Fast inverse for big numbers: Picarte’s iteration

Claudio Gutierrez and Mauricio Monsalve

Computer Science Department, Universidad de Chile
cgutierr,mnmonsal@dcc.uchile.cl

Abstract. This paper presents an algorithm to compute the inverse of
an n-bit integer with k ≥ n bits of precision running in time O(M(k, n)),
where M(k, n) is the time needed to multiply two numbers of k and
n bits. This bound improves asymptotically Newton’s iteration in this
range which gives O(M(k, k)), and hence improves asymptotically the
best known upper bound for computing the inverse with high precision.
Additionally we show that a simple implementation of the algorithm
behaves very well in practice for precision k >> n, improving largely
Newton’s iteration and also outperforming the standard multiple preci-
sion arithmetic library package GMP for big n.

Introduction

It is well known that the representation of the inverse of an integer consists
of a fixed part plus a period, whose lengths depend on the representation
base. For example, for decimal representation, given an integer b odd and
not divisible by 5, 1/b is pure recurring and the length of the period is the
order of 10 modulo b [3]. This means that the period could be exponen-
tially long in the length of the decimal representation. For example 23 is
represented by 2 decimal digits, while 1/23 = 0.0434782608695652173913
has a period of 22 decimals. Similar analysis holds for any base, in par-
ticular for binary representation (cf. Thm. 136, [3]). Thus, for an integer
of n digits, computing its inverse with k digits of precision for k in the
range n ≤ k ≤ 2n is relevant and not trivial.

Given an integer b (assume its binary representation has n bits), the
standard routine to compute efficiently its inverse 1/b is Newton’s itera-
tion, which gives n significative bits of the inverse of b in time O(M(n, n)),
where M(x, y) is the time taken to multiply an x-bit number by an y-bit
number. In fact, O(M(n, n)) is currently the best theoretical asymptot-
ical bound for computing the inverse of an n-bit number [4, 1], and also
is the method suggested to be used in practice for large numbers ([4],
4.3.3, Division). Specialized packages for multiprecision arithmetic also
consider it (e.g. GMP1 [8]). Note that this bound depends on the multi-
1 GNU Multiple Precision Arithmetic Library, “the fastest bignum library on the

planet!”

plication procedure used. The current best theoretical bound for multipli-
cation M(n, n), which uses Schönhage and Strassen procedure [6], gives
O(n lg n lg lg n).

When more bits of precision for 1/b are needed, say k > n, there
seems to be no way to avoid the O(M(k, k)) time bound obtained by
running Newton’s iteration. This bound is got essentially by the cost of
the squaring in Newton’s iteration formula xi+1 = 2xi − bx2

i .
In this paper we present an algorithm to compute the inverse 1/b of

an n-bit integer b with k ≥ n bits of approximation in time O(M(k, n)).
Hence, using the current best asymptotical bounds for multiplication plus
Shönhage’s observation ([4], 4.3.3, Ex. 13) on computing k times n for
k > n, it gives O(k lg n lg lg n) time, which improves asymptotically the
current best bound O(k lg k lg lg k) (which uses Newton’s iteration). This
is particularly useful in the case we discussed before when k is of the order
2n.

Additionally, we show experimentally that this algorithm behaves very
well in practice for k >> n. In fact, with a naive implementation we are
able to: 1) illustrate that the behaviour of Picarte’s iteration linear time-
complexity with parameter k when the size b is fixed; 2) show that in
practice Picarte’s iteration is much faster than Newton’s iteration than
what appears in the asymptotical bound difference; and 3) show that
Picarte’s iteration is faster than current best widely used implementation
GMP for big n and large k.

1 Picarte’s iteration

In 1861 Ramón Picarte published a table of inverses [5] with remarkable
precision for the time. In order to calculate his table of inverses, Picarte
starts from the following identity:

a2

b
= (2a− b) +

(a− b)2

b
.

The key observation he made is that the integer part of a2

b is 2a− b plus

the integer part of (a−b)2

b , thus:

ba
2

b
c = (2a− b) + b(a− b)2

b
c.

We can now use the same formula for b (a−b)2

b c. Iterating this process q
times, where q is such that a = bq + r, 0 ≤ r < b, we obtain:

ba
2

b
c = 2aq − bq2 + br

2

b
c. (1)

Note that we got a discrete version of Newton’s iteration. In fact, if we
consider binary representation, and put a = 2i, then xi = b2i

b c is the
binary representation of 1/b with i bits of precision. Also, if 2i = bq + r,
0 ≤ r < b is the Euclidean decomposition, we get from (1) the identity

x2i = 2i+1xi − bx2
i + br

2

b
c, (2)

which is essentially a discrete version of the iteration recommended by
Knuth for implementing Newton’s iteration for high-precision reciprocal
(Algorithm R, [4], 4.3.3).

Improved version based on Picarte. The advantage of Picarte’s formula
(1) for inverse over the classical Newton’s one x2i = 2xi − bx2

i , is not
only that Picarte’s is discrete and exact, but that it allows to improve
the efficiency of the evaluation of it by replacing the expression 2qa− bq2

for the equivalent, but simpler to evaluate expression qa + rq (recall that
a = bq + r, hence qa = bq2 + rq), getting:

ba
2

b
c = qa + rq + br

2

b
c. (3)

Now, using the same arguments for getting a binary representation used
in the derivation of (2), we obtain the following formula, which we will
call Picarte’s iteration:

x2i = 2ixi + rixi + br
2
i

b
c. (4)

Note that compared to Newton’s iteration (formula (2) above), the
evaluation of this expression requires only multiplication of xi by a bounded
number (ri < b) plus a bounded division and a shift. From this iteration
formula we obtain:

Theorem 1. For a n-bit number b, the time complexity of computing 1/b
with k ≥ n binary digits of precision is O(M(k, n)), where M(k, n) is the
time complexity of multiplying a k-bit number by an n-bit number.

Proof. The deduction above proves that the iteration (4) computes what
is claimed. To calculate the time complexity T (x) of computing x2i, ob-
serve that on the right hand side of (4) we have a shifting by i, a multi-
plication of an i-bit number by an n-bit number M(i, n), a squaring of an
n-bit number M(n, n), a division of a 2n-bit number by an n-bit number
D(2n), plus two sums of at most 2i-bit numbers S(2i). That is:

T (2i) = T (i) + M(i, n) + 2S(2i) + M(n, n) + D(2n) + c(shift, i). (5)

By standard techniques (cf. Theorem 4.1 [2]), and the fact that for
i ≥ n, M(i, n) asymptotically dominates over the terms on its right, it
follows that for k ≥ n, T (k) = O(M(k, n)).

It is interesting to note that using the above method to compute 1/b
with k ≥ n bits of precision and Schönhage’s observation on how to
multiply an n-bit number by a k-bit number for k > n ([4], 4.3.3, Ex. 13),
we get the following result:

Corollary 1. For n-bit integers a, b, the time complexity of computing
a/b with k > n binary digits of precision is O(M(k, n)).

2 Illustrations of theoretical results and comparison with
practical implementations

The aim of the experiments shown in this section is three-fold:

1. To illustrate the behaviour of Picarte’s iteration linear time-complexity
(of parameter k) when the size b is fixed.

2. To show that in practice Picarte’s iteration is much faster than New-
ton’s iteration. We already know from theory that Picarte’s is asymp-
totically faster than Newton’s. But the role of constants is hidden in
the asymptotic comparison. In fact, the experiments show this differ-
ence.

3. To show that Picarte’s iteration is faster than current best widely used
implementations. As point of illustration, we chose the GMP package,
and compared our (naive) implementation of Picarte’s iteration with
the GMP’s division algorithm for precision k. The results show that
Picarte’s iteration is more efficient for large k.

Picarte’s iteration was implemented in C language using the GMP li-
brary for big numbers. We also implemented Newton’s iteration in a simi-
lar way (it differs from Picarte’s essentially in two lines). See Algorithms 1
and 2 (code available at http://www.dcc.uchile.cl/~mnmonsal/picarte).

All tests were performed on a processor Intel Core 2 Duo with 2 Ghz
and 1 Gb RAM running the Fedora Core 6 linux distribution.

Algorithm 1 Picarte’s iteration
Input j the number of iterations,

b the number to invert
Output x the inverse,

k the precision reached
procedure Picarte(j, b)

r ← 2, x← 0, k ← 1
while j > 0

y1 ← x << k
y2 ← r × x
x← y1 + y2

rr ← r × r
// Division with remainder
y1, r ← b rr

b c, rest(
rr
b)

y2 ← x + y1

x← y2

k ← k + k
j ← j − 1

end while
return x, k

Algorithm 2 Newton’s iteration
Input j the number of iterations,

b the number to invert
Output x the inverse,

k the precision reached
procedure Newton(j, b)

r ← 2, x← 0, k ← 1
while j > 0

y1 ← x << k
xx← x× x
y2 ← b× xx
x← y1 − y2

rr ← r × r
y1, r ← b rr

b c, rest(
rr
b)

y2 ← x + y1

x← y2

k ← k + k
j ← j − 1

end while
return x, k

2.1 Picarte’s iteration asymptotic behaviour

GMP uses the current faster multiplication algorithms, so Picarte’s asymp-
totic bound should be linear in k and logarithmic in n. The experiments
do not deviate from this prediction. Fig. 1 shows Picarte’s iteration when
n = 25, n = 210 and n = 215, where n is the size of the binary represen-
tation of b.

2.2 Picarte’s iteration versus Newton’s iteration

Picarte’s iteration improves the performance of Newton’s iteration by
essentially replacing −bx2

i for rixi (recall equations (2) and (4)). Hence
the cost of each iteration in Picarte’s algorithm is one multiplication by a
bounded number M(i, n) as compared to two multiplications M(2i, n) +
M(i, i) (one unbounded) in Newton’s. Also note that ri < b for all i.
Thus, in practice, Picarte’s iteration greatly improves the performance of
Newton’s as Figure 2 shows.

Figure 2 shows Picarte’s iteration versus Newton’s iteration. Clearly,
Picarte’s iteration outperforms Newton’s iteration. When k is big, greater

Fig. 1. Picarte’s iteration. Graphs on the left-hand side, (a), (c) and (e), show the time
used by Picarte’s iteration to compute 1/b as the precision k increases, for, respectively,
n = 25, n = 210 and n = 215 respectively, where n is the size of the binary representation
of b. In each graph, the X-axis shows the precision k, and the Y-axis shows the time
used to compute 1/b with k bits of precision in microseconds. Graphs on the right-hand
side, (b), (d) and (f), show the same data as (a), (c) and (e), but in log/log scale.

than 220(≈ 106), the difference in time becomes of the order of millisec-
onds for Picarte’s versus seconds and even minutes for Newton’s. Also,
Picarte’s iteration uses less memory, so it can compute the inverse for
greater numbers and precisions than Newton’s iteration (up to k = 229

using GMP, unlike Newton).

Fig. 2. Picarte versus Newton. Graphs show the performance of both algorithms for
different sizes of b, ranging from n = 210 (graph (a)) to 216 (graph (f)). Each graph
depicts the time in microseconds of computing 1/b for different precisions k. All graphs
are in log/log scale.

Note that Picarte’s iteration and Newton’s iteration perform very sim-
ilarly when the precision required is no more than the size of the binary
representation n of b (see Figure 2, graphs (c), (d), (e) and (f)). Picarte’s
starts working much better than Newton’s after that level of precision,
that is, when k ≥ n.

Fig. 3. Picarte versus GMP. Graphs show the performance of Picarte versus GMP
inverse for different sizes of b, ranging from n = 25 (graph (a)) to 216 (graph (f)). Each
graph depicts the time in microseconds of computing 1/b for different precisions k. All
graphs are in log/log scale.

2.3 Picarte’s iteration and GMP division

GMP current implementation uses base-case division or divide and con-
quer division when the divisor is big enough. Newton’s iteration is not
implemented because it seems to surpass divide and conquer division only
for very large numbers.2 As we saw, Picarte’s iteration greatly improves
2 GMP’s documentation says: “Newton’s method used for division is asymptotically

O(M(N)) and should therefore be superior to divide and conquer, but it’s believed
this would only be for large to very large N.”

Newton’s iteration. In our experiments, Picarte’s iteration also surpasses
GMP’s division when the precision k needed is big enough (Fig. 3). Note
that our implementation is not optimized in any way, it is just the theo-
retical formula of Picarte’s iteration naively implemented.

Figure 3 shows Picarte’s iteration versus GMP division. We tested
two different divisions for GMP: the integer division 2k

b and the floating
point division 1

b with k bits of precision, both yielding similar results. The
graphs show the integer division.

Figure 3-(a) shows that GMP’s division performs better than Picarte’s
iteration for small b. This is due to the fact that GMP uses a different
division algorithm in this range (the ’single limb’ division) which takes
advantage directly from the arithmetic provided by the hardware. But for
large b, Picarte’s iteration behaves better than GMP’s division for big k.
See Fig. 4 for a threshold of the compromise between n and k.

Fig. 4. Threshold when Picarte surpasses GMP. Picarte’s iteration is faster than GMP’s
division for each pair (n, k) above the threshold line. If the pair (n, k) is below the line,
GMP’s division is faster. Built for n ∈ {64, 96, 128, ..., 1572864}.

3 Conclusions

We presented an algorithm to find the inverse of an n-bit integer with k
bits of precision for k ≥ n. Our algorithm improves the asymptotical time
bound in this range of all previously known algorithms for computing the
inverse of integers. In fact the closest one is Algorithm R in [4] as discussed
in the introduction. From here it also follows an algorithm for dividing

two n-bit integers with k ≥ n bits of precision whose running time is
O(M(k, n)).

We illustrated these theoretical results with a simple implementa-
tion that outperforms current best implemented algorithms for inverse
for large n and k.

References

1. C. Burnikel, J. Ziegler. Fast Recursive Division, Max-Planck-Institut für Informatik
Research Report MPI-I-98-1-022,
http://www.mpi-sb.mpg.de/~ziegler/TechRep.ps.gz

2. T. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms, The MIT Press and McGraw-Hill, second edition, 2001.

3. G.H. Hardy, E.M Wright. An Introduction to the Theory of Numbers, Third Ed.,
Oxford, 1953.

4. D. Knuth. The Art of Computer Programming, Vol. 2, Seminumerical Algorithms,
Third Ed., Addison-Wesley, 1999.

5. R. Picarte. La division reduite a une addition, Mallet-Bachelier, Paris, 1861.
6. A. Schonhage, V. Strassen. Schnelle Multiplication grosser Zalen, Computing

7,1971, 281-292.
7. J. Von Zum Gathen. Computer Algebra, Cambridge Univ. Press, 1999.
8. GMP, www.gmplib.org

