
Approximate String Matching

with Ziv-Lempel Compressed Indexes

Lúıs M. S. Russo1, Gonzalo Navarro2, and Arlindo L. Oliveira1

1 INESC-ID, R. Alves Redol 9, 1000 LISBOA, PORTUGAL
lsr@algos.inesc-id.pt, aml@inesc-id.pt

2 Dept. of Computer Science, University of Chile.
gnavarro@dcc.uchile.cl

Abstract. A compressed full-text self-index for a text T is a data structure requiring reduced
space and able of searching for patterns P in T . Furthermore, the structure can reproduce any
substring of T , thus it actually replaces T . Despite the explosion of interest on self-indexes in
recent years, there has not been much progress on search functionalities beyond the basic exact
search. In this paper we focus on indexed approximate string matching (ASM), which is of great
interest, say, in computational biology applications. We present an ASM algorithm that works
on top of a Lempel-Ziv self-index. We consider the so-called hybrid indexes, which are the best
in practice for this problem. We show that a Lempel-Ziv index can be seen as an extension
of the classical q-samples index. We give new insights on this type of index, which can be of
independent interest, and then apply them to the Ziv-Lempel index. We show experimentally
that our algorithm has a competitive performance and provides a useful space-time tradeoff
compared to classical indexes.

1 Introduction and Related Work

Approximate string matching (ASM) is an important problem that arises in applications
related to text searching, pattern recognition, signal processing, and computational biology,
to name a few. It consists in locating all the occurrences of a given pattern string P [0,m− 1]
in a larger text string T [0, u−1], letting the occurrences be at distance ed() at most k from P .
In this paper we focus on edit distance, that is, the minimum number of character insertions,
deletions, and substitutions of single characters to convert one string into the other.

The classical sequential search solution runs in O(um) worst-case time (see [1]). An optimal
average-case algorithm requires time O(u(k + logσ m)/m) [2, 3], where σ is the size of the
alphabet Σ. Those good average-case algorithms are called filtration algorithms: they traverse
the text fast while checking for a simple necessary condition, and only when this holds they
verify the text area using a classical ASM algorithm. For long texts, however, sequential
searching might be impractical because it must scan all the text. To avoid this one must use
an auxiliary data structure called an index [4].

There exist indexes specifically devoted to ASM, e.g. [5–8], but these are oriented to worst-
case performance. There seems to exist an unbreakable space-time barrier with indexed ASM:
Either one obtains exponential times (on m or k), or one obtains exponential index space (e.g.
O(u logk u)). Another trend is to reuse an index designed for exact searching, all of which are
linear-space, and try to do ASM over it. Indexes such as suffix trees [9], suffix arrays [10],
or based on so-called q-grams or q-samples, have been used. There exist several algorithms,
based on suffix trees or arrays, which focus on worst-case performance [11–13]. Given the
mentioned time-space barrier, they achieve a search time independent of u but exponential
on m or k. Essentially, they simulate the sequential search over all the possible text suffixes,
taking advantage of the fact that similar substrings are factored out in suffix trees or arrays.



Indexes based on q-grams (indexing all text substrings of length q) or q-samples (indexing
non-overlapping text substrings of length q) are appealing because they require less space
than suffix trees or arrays. The algorithms on those indexes do not offer anymore any relevant
worst-case guarantee, but perform well on average when the error level α = k/m is low
enough, say O(1/ logσ u). Those indexes basically simulate an on-line filtration algorithm,
such that the “necessary condition” checked involves exact matching of pattern substrings,
and as such can be verified with any exact-searching index. Such filtration indexes, e.g. [14,
15], cease to be useful for moderate k values, which are still of interest in many applications.

The most successful approach, in practice, is in between the two techniques described
above, and is called “hybrid” indexing. The index determines the text positions requiring
verification using not an exact, but an approximate-matching condition. Those are checked
with a technique of the first kind (whose time is exponential on the length of the string or the
number of errors). Yet, those searches are done over short strings and allowing few errors, so
that the exponential cost is controlled. Indexes of this kind offer average-case guarantees of
the form O(mnλ) for some 0 < λ < 1, and work well for higher error levels. They have been
implemented over q-gram indexes [16], over suffix arrays [17], and over q-sample indexes [18].

Yet, many of those linear-space indexes are very large anyway. For example, suffix arrays
require 4 times the text size and suffix trees require at the very least 10 times [19]. In re-
cent years a new and extremely successful class of indexes has emerged. Compressed full-text

indexes use data compression techniques to produce less space-demanding data structures
[20–24]. It turns out that data compression algorithms exploit the internal structure of a
string much in the same way indexes do, and therefore it is possible to build a compressed
index that takes space proportional to that of the compressed text, gives indexed searching,
and replaces the text as it can reproduce any text substring (in which case they are called
self-indexes). The size of those indexes are usually measured in terms of the empirical text
entropy, Hk [25], which gives a lower bound to the bits per symbol achievable over that text
by a k-th order compressor. In this work we are particularly interested in indexes based on
Lempel-Ziv compression [21, 22, 26–28].

Despite the great success of self-indexes, they have been mainly used for exact searching.
Only very recently some indexes taking O(u) or O(u

√
log u) bits have appeared [29, 30, 7].

Yet, those are again of the worst-case type, and thus all their times are exponential on k.

In this paper we present a practical algorithm that runs on a compressed self-index and
belongs to the most successful class of hybrid algorithms. More details are given next.

2 Our Contribution in Context

One can easily use any compressed self-index to implement a filtration ASM method that
relies on looking for exact occurrences of pattern substrings, as this is what all self-indexes
provide. Indeed, this has been already attempted [31] using the FM-index [21] and a Lempel-
Ziv index [22]. The Lempel-Ziv index worked better because it is faster to extract the text
to verify (recall that in self-indexes the text is not directly available). The specific structure
of the Lempel-Ziv index used allowed several interesting optimizations (such as factoring out
the work of several text extractions) that we will not discuss further here.

Lempel-Ziv indexes are based on splitting the text into a sequence of so-called phrases

of varying length. They are rather efficient to find the (exact) occurrences that lie within
phrases, but those that span two or more phrases are more costly.
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Our goal in this paper is to have efficient approximate searching over a small and practical
self-index. Based on the described previous experiences, (1) we want an algorithm of the hybrid
type, which implies that the self-index should do approximate search for pattern pieces; (2)
we want a Ziv-Lempel-based index, so that the extraction of text to verify is fast; (3) we wish
to avoid the problems derived from pieces spanning several Ziv-Lempel phrases. We will focus
on an index [28] whose suffix-tree-like structure is useful for this approximate searching.

Mimicking q-sample indexes is particularly useful for our goals. Consider that the text is
partitioned into contiguous q-samples. Any occurrence O of P is of length at least m − k.
Wherever an occurrence lies, it must contain at least j = ⌊(m − k − q + 1)/q⌋ complete q-
samples. The following lemma, simplified from [4], gives the connection to use approximate
searching for pattern substrings with a q-samples index [18].

Lemma 1. Let A and B be strings such that ed(A,B) ≤ k. Let A = A1A2 . . . Aj , for strings

Ai and for any j ≥ 1. Then there is a substring B′ of B and an i such that ed(B′, Ai) ≤ ⌊k/j⌋.

Therefore, if we interpret B = P and A contained in O, we index all the different text
q-samples into, say, a trie data structure. Then the trie is traversed to find q-samples that
match within P with at most ⌊k/j⌋ errors. All the contexts around all occurrences of the
matching q-samples are examined for full occurrences of P . Note in passing that we could
also take A = P and B contained in O, in which case we choose how to partition P but we
must be able to find any text substring with the index (exactly [15] or approximately [16, 17],
depending on j). Thus we must use a suffix tree or array [17], or even a q-gram index if we
never use pieces of P longer than q [16, 15].

A Lempel-Ziv parsing can be regarded as an irregular sampling of the text, and therefore
our goal in principle is to adapt the techniques of [18] to an irregular parsing (thus we must
stick to the interpretation B = P ). As desired, we would not need to consider occurrences
spanning more than one phrase. Moreover, the trie of phrases stored by all Ziv-Lempel self-
indexes is the exact analogous of the trie of q-samples, thus we could search without requiring
further structures in the index.

The irregular parsing poses several challenges, however. There is no way to ensure that
there will be a minimum number j of phrases contained in an occurrence. Occurrences could
even be fully contained in a phrase!

We develop several tools to face those challenges. (1) We give a new variant of Lemma 1
that distributes the errors in a convenient way when the samples are of varying length. (2)
We introduce a new filtration technique where the samples that overlap the occurrence (not
only those contained in the occurrence) can be considered. This is of interest even for classical
q-sample indexes. (3) We search for q-samples within long phrases to detect occurrences even
if they are within a phrase. This technique also includes novel insights.

We implement our scheme and compare it experimentally with the best technique in
practice over classical indexes [17], and with the previous developments over compressed self-
indexes [31]. The experiments show that our technique is practical and provides a relevant
space-time tradeoff for indexed ASM.

3 An Improved q-samples Index

In this section we extend classical q-sample indexes by allowing samples to overlap the pattern
occurrences. This is of interest by itself, and will be used for an irregular sampling index later.
Remind that a q-samples index stores the locations, in T , of all the substrings T [qi..qi+q−1].
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3.1 Varying the Error Distribution

We will need to consider parts of samples in the sequel, as well as samples of different lengths.
Lemma 1 gives the same number of errors to all the samples, which is disadvantageous when
pieces are of different lengths. The next lemma generalizes Lemma 1 to allow different numbers
of errors in each piece (all proofs are in the Appendix for lack of space).

Lemma 2. Let A and B be strings, let A = A1A2 . . . Aj , for strings Ai and some j ≥ 1. Let

ki ∈ R such that
∑j

i=1
ki > ed(A,B). Then there is a substring B′ of B and an i such that

ed(Ai, B
′) < ki.

Lemma 1 is a particular case of Lemma 2: set ki = k/j + ǫ for sufficiently small ǫ > 0.
Our lemma reminds Lemma 2 of [4], and they can be proved to be equivalent. The current
formulation is more advantageous for us because one does not need to know j. It can be used
to adapt the error levels to the length of the pieces. For example, it is appropriate to try to
maintain a constant error level, by taking ki = (1 + ǫ) k · |Ai|/|A| for any ǫ > 0.

3.2 Partial q-sample Matching

Contrary to all previous work, let us assume that A in Lemma 2 is not only that part of an
approximate occurrence O formed by full q-samples, but instead that A = O, so that A1 is
the suffix of a sample and Aj is the prefix of a sample. An advantage of this is that now the
number of involved q-samples is at least j = ⌈(m − k)/q⌉, and therefore we can permit fewer
errors per piece (e.g. ⌊k/j⌋ using Lemma 1). On the other hand, we would like to allow fewer
errors for the pieces A1 and Aj. Yet, notice that any text q-sample can participate as A1, Aj ,
or as a fully contained q-sample in different occurrences at different text positions. Lemma 2
tells us that we could allow ki = (1+ǫ) k · |Ai|/|A| errors for Ai, for any ǫ > 0. Conservatively,
this is ki = (1 + ǫ) k · q/(m − k) for 1 < i < j, and less for the extremes.

In order to adapt the trie searching technique to those partial q-samples, we should not
only search all the text q-samples with (1 + ǫ) k · q/(m − k), but also all their prefixes and
suffixes with fewer errors. This includes, for example, verifying all the q-samples whose first or
last character appears in P (cases |A1| = 1 and |Aj | = 1). This is unaffordable. Our approach
will be to redistribute the errors across A using Lemma 2 in a different way to ensure that
only sufficiently long q-sample prefixes and suffixes are considered.

Let v be a non-negative integer parameter. We associate to every letter of A a weight: the
first and last v letters have weight 0 and the remaining letters have weight (1 + ǫ)/(|A| − 2v).
We define |Ai|v as the sum of the weights of the letters of Ai. For example if Ai is within the
first v letters of A then |Ai|v = 0; if it does not contain any of the first or last v letters then
|Ai|v = (1 + ǫ) |Ai|/(|A| − 2v).

We can now apply Lemma 2 with ki = k · |Ai|v provided that k > 0. Note that
∑j

i=1
ki =

(1 + ǫ) k > k. In this case, if |A1| ≤ v we have that k1 = 0 and therefore A1 can never be
found with strictly less than zero errors. The same holds for Aj . This effectively relieves us
from searching for any q-sample prefix or suffix of length at most v.

Parameter v is thus doing the job of discarding q-samples that have very little overlap
with the occurrence O = A, and maintaining the rest. It balances between two exponential
costs: one due to verifying all the occurrences of too short prefixes/suffixes, and another due
to permitting too many errors when searching for the pieces in the trie. In practice tuning
this parameter will have a very significant impact on performance.
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3.3 A Hybrid q-samples Index

We have explained all the ideas necessary to describe a hybrid q-samples index. The algorithm
works in two steps. First we determine all the q-samples Oi for which ed(Oi, P

′) < k · |Oi|v
for some substring P ′ of P . In this phase we also determine the q-samples that contain a
suffix O1 for which ed(O1, P

′) < k · |O1|v for some prefix P ′ of P (note that we do not need to
consider substrings of P , just prefixes). Likewise we also determine the q-samples that contain
a prefix O′

j for which ed(Oj , P
′) < k · |Oj |v for some suffix P ′ of P (similar observation). The

q-samples that classify are potentially contained inside an approximate occurrence of P , i.e.
Oi may be a substring of a string O such that ed(O,P ) ≤ k. In order to verify whether this is
the case, in the second phase we scan the text context around Oi with a sequential algorithm.

As the reader might have noticed, the problem of verifying conditions such as ed(Oi, P
′) <

k · |Oi|v is that we cannot know a priori which i does a given text q-sample correspond to.
Different occurrences of the q-sample in the text could participate in different positions of an
O, and even a single occurrence in T could appear in several different O’s. We do not know
either the size |O|, as it may range from m − k to m + k.

A simple solution is as follows. Conservatively assume |O| = m − k. Then, search P for
each different text q-sample in three roles: (1) as a q-sample contained in O, so that |Oi| = q,
assuming pessimistically |Oi|v = (1 + ǫ) min(q/(m − k − 2v), 1); (2) as an O1, matching a
prefix of P for each of the q-sample suffixes of lengths v < ℓ < q, assuming |O1| = ℓ − v and
thus |O1|v = (1 + ǫ) min((ℓ − v)/(m − k − 2v), 1); (3) as an Oj , matching a suffix of P for
each of the q-sample prefixes, similarly to case (2) (that is, |Oj |v = |O1|v). We assume that
q < m − k and therefore the case of O contained inside a q-sample does not occur.

In practice, one does not search for each q-sample in isolation, but rather factors out the
work due to common q-gram prefixes by backtracking over the trie and incrementally computes
the dynamic programming matrix between every different q-sample and any substring of P
(see [4]). We note that the trie of q-samples is appropriate for role (3), but not particularly
efficient for roles (1) and (2) (finding q-samples with some specific suffix). In our application
to a Ziv-Lempel index this will not be a problem because we will have also a trie of the
reversed phrases (that will replace the q-grams).

4 Using a Ziv-Lempel Self-Index

We now adapt our technique to the irregular parsing of phrases produced by a Lempel-Ziv-
based index. Among the several alternatives [26, 21, 22, 27, 28], we will focus on the ILZI [28]
to fix ideas, yet the results can be carried over other similar indexes.

The ILZI partitions the text into phrases such that every suffix of a phrase is also a phrase
(similarly to LZ78 compressors [32], where every prefix of a phrase is also a phrase). It uses two
tries, one storing the phrases and another storing the reverse phrases. In addition, it stores a
mapping that permits moving from one trie to the other, and it stores the compressed text as
a sequence of phrase identifiers. This index has been shown to require O(uHk) bits of space,
and to be efficient in practice [28]. We do not need more details for this paper.

4.1 Handling Different Lengths

As explained, the main idea is to use the phrases instead of q-samples. For this sake Lemma 2
solves the problem of distributing the errors homogeneously across phrases. However, other
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problems arise especially for long phrases. For example, an occurrence could be completely
inside a phrase. In general, backtracking over long phrases is too costly.

We resort again to q-samples, this time within phrases. We choose two non-negative integer
parameters q and s < q. We will look for any q-gram of P that appears with less than s errors
within any phrase. All phrases spotted along this process must be verified. Still, some phrases
not containing any pattern q-gram with < s errors can participate in an occurrence of P (e.g.
if ⌊(m − k − q + 1)/q⌋ · s ≤ k or if the phrase is shorter than q). Next we show that those
remaining phrases have certain structure that makes them easy to find.

Lemma 3. Let A and B be strings and q and s be integers such that 0 ≤ s < q ≤ |A| and for

any substrings B′ of B and A′ of A with |A′| = q we have that ed(A′, B′) ≥ s. Then for every

prefix A′ of A there is a substring B′ of B such that ed(A′, B′) ≤ ed(A,B)− s⌊(|A|− |A′|)/q⌋.

The lemma implies that, if a phrase is close to a substring of P , but none of its q-grams are
sufficiently close to any substring of P , then the errors must be distributed uniformly along
the phrase. Therefore we can check the phrase progressively (for increasing prefixes), so that
the number of errors permitted grows slowly. This severely limits the necessary backtracking
to find those phrases that escape from the q-gram-based search.

Parameter s permits us balancing between two search costs. If we set it low, then the
q-gram-based search will be stricter and faster, but the search for the escaping phrases will
be costlier. If we set it high, most of the cost will be absorbed by the q-gram search.

4.2 A Hybrid Lempel-Ziv Index

The following lemma describes the way we combine previous results to search using a Ziv-
Lempel index.

Lemma 4. Let A and B be strings such that 0 < ed(A,B) ≤ k. Let A = A1A2 . . . Aj , for

strings Ai and some j ≥ 1. Let q, s and v be integers such that 0 ≤ s < q ≤ |A| and

0 ≤ v < |A|/2. Then there is a substring B′ of B and an i such that either:

1. there is a substring of A′ of Ai such that |A′| = q and ed(A′, B′) < s, or

2. ed(Ai, B
′) < k · |Ai|v in which case for any prefix A′ of Ai there exists a substring B′′ of

B′ such that ed(A′, B′′) < k · |Ai|v − s⌊(|Ai| − |A′|)/q⌋.

As before the search runs in two phases. In the first phase we find the phrases whose text
context must be verified. In the second phase we verify those text contexts for an approximate
occurrence of P . Lemma 4 gives the key to carry out the first phase. We find the relevant
phrases via two searches:

– We look for any q-gram contained in a phrase which matches within P with less than s
errors. We backtrack in the trie of phrases for every P [y1..], descending in the trie and
advancing y2 in P [y1, y2] while computing the dynamic programming matrix between the
current trie node and P [y1, y2]. We look for all trie nodes at depth q that match some
P [y1, y2] with less than s errors. Since every suffix of a phrase is a phrase in the ILZI,
every q-gram within any phrase can be found starting from the root of the trie of phrases.
All the phrases Z that descend from each q-gram trie node found must be verified (those
are the phrases that start with that q-gram). We must also spot the phrases suffixed by
each such Z. For this sake, we map each phrase Z to the trie of reverse phrases and also
verify all the descent of the reverse trie nodes. This search covers case 1 in Lemma 4.
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Table 1. Memory peaks, in Megabytes, for the different approaches when k = 6.

ILZI BPR Hybrid LZI DLZI FMIndex

English 55 50 257 145 178 131
DNA 45 50 252 125 158 127
Proteins 105 64 366 217 228 165

Fig. 1. Average user time, in seconds, for finding the occurrences of patterns of size 30 with k errors.
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– We look for any phrase Ai matching a portion of P with less than k · |Ai|v errors. This
is done over the trie of phrases. Yet, as we go down in the trie (thus considering longer
phrases), we can enforce that the number of errors found up to depth d must be less
than k · |Ai|v − s⌊(|Ai| − d)/q⌋. This covers case 2 in Lemma 4, where the equations vary
according to the roles described in Section 3.3 (that is, depending on i):

• 1 < i < j, in which case we are considering a phrase contained inside O that is not
a prefix nor a suffix. The k · |Ai|v formula (both for the matching condition and the
backtracking limit) can be bounded by (1 + ǫ) k · min(|Ai|/(m − k − 2v), 1), which
depends on |Ai|. Since Ai may correspond to any trie node that descends from the
current one, we determine a priori which |Ai| ≤ m − k maximizes this expression and
use that limit. We use backtracking for each P [y1..].

• i = j, in which case we are considering a phrase that starts by a suffix of O. Now
k · |Ai|v can be bounded by (1 + ǫ) k · min((d − v)/(m − k − 2v), 1), yet still the limit
depends on |Ai| and must be maximized a priori. This time we are only interested in
suffixes of P , that is, we can perform m searches with y2 = m and different y1. If a
node verifies the condition we must consider also those that descend from it, to get
all the phrases that contain the same suffix of P . The case i = j = 1 is different, as it
includes the case where O is contained inside a phrase. In this case we use the same
formulas but also map to the reverse trie and include its descent, as in case 1.

• i = 1, in which case we are considering a phrase that ends in a prefix of O. This search
is as case i = j, with similar formulas. We are only interested in prefixes of P , that is
y1 = 0. A simple way to compute this is to reverse P and carry out a m searches in
the trie of reverse phrases. In this case, since it is a phrase suffix that is being checked,
we must consider all the descent of the nodes found.

5 Practical Issues and Testing

We implemented a prototype to test our algorithm on the ILZI compressed index [28]. As
a baseline we used efficient sequential bit-parallel algorithms (namely BPR, the NFA of Wu
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Table 2. Tables for m = 24, k = 9, v = 1 and q = d = x2 − x1 = 4. The table on the left refers to blocks
of type O1, i.e. prefixes of O that are suffixes of samples, and the table on the right to blocks of type Oi, i.e.
samples in the middle of O. Note that using the approach of Navarro et al. [18] in this example yielded 3 errors
for sample.

↓ y2 − y1 ⌈k · |O1|v⌉ − 1 ↓ y2 − y1 ⌈k · |Oi|v⌉ − 1

|O1| → 0 1 2 3 4 y1 → 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 -1 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1
3 -1 -1 -1 1 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1
4 -1 -1 -1 1 2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1 -1
5 -1 -1 -1 -1 2 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1 -1 -1
6 -1 -1 -1 -1 2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 -1 -1 -1 -1 -1 -1
7 -1 -1 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

and Manber [33], BPM the dynamic programming matrix of Myers [34] and BPP pattern
partitioning algorithms of Baeza-Yates and Navarro []).

For the real prototype we used a stricter backtracking than as explained in previous
sections. For each pattern substring P [y1, y2] to be matched, we computed the maximum
number of errors that could occur when matching it in the text, also depending on the
position O[x1, x2] where it would be matched, and maximizing over the possible areas of O
where the search would be necessary. For example, the extremes of P can be matched with
fewer errors than the middle. This process involves precomputing tables that depend on m
and k. We omit the details for lack of space, but Table 2 shows an example.

We also included in the comparison an implementation of a filtration index using the
simple approach of Lemma 1 with A = P and B = O, as briefly described in the beginning
of Section 2 [31]. The indexes used in that implementation are the LZ-index [22] (LZI) and
Navarro’s implementation of the FM-index [21]. We also include an improved variant over the
LZ-index (DLZI [31]). Note that the FM-Index does not divide the text into blocks, however
it takes longer to locate occurrences.

The machine was a Pentium 4, 3.2 GHz, 1 MB L2 cache, 1GB RAM, running Fedora Core
3, and compiling with gcc-3.4 -O9. For the texts we used the files in the Pizza&Chili corpus
(http://pizzachili.dcc.uchile.cl), with around 50 MB each. The pattern strings were
sampled randomly from the text and each character was distorted with 10% of probability.
All the patterns had length m = 30. Every configuration was tested during at least 60 seconds
using at least 5 repetitions. Hence the numbers of repetitions varied between 5 and 130000. To
parametrize the hybrid index we tested all the j values from 1 to k + 1 and reported the best
time. To parametrize we choose q = ⌊m/h⌋ and s = ⌊k/h⌋ + 1 for some convenient h, since
we can prove that this is the best approach and it was corroborated by our experiments. To
determine the value of h and v we also tested the viable configurations and reported the best
results. We observed experimentally that most of the time 2v ≤ q. In our examples choosing
v and h such that 2v is slightly smaller than q yielded the best configuration.

The average query time, in seconds, is shown in Fig. 1 and the respective memory heap
peaks are shown in table 1. We do not show the space requirements of BPM and BPP since
they require less that 1Mb because they do not store T in main memory, note that the space
requirements of BPR can be reduce in the same way. The hybrid index provides the fastest
approach to the problem, however it also requires the most space. Aside from the hybrid
index our approach is always either the fastest or within reasonable distance from the fastest
approach. For low error level, k = 1 or k = 2, our approach is significantly faster, up to an
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order of magnitude better. This is very important since the compressed approaches seem to
saturate at a given performance for low error levels: in English k = 1 to 3, in DNA k = 1 to
2, and in proteins k = 1 to 5. This is particularly troublesome since indexed approaches are
the best alternative only for low error levels. In fact the sequential approaches outperform the
compressed indexed approaches for higher error levels. In DNA this occurs at 4 errors (BPM)
and in English at 5 errors (BPP).

Our index performed particularly well on proteins, as did the hybrid index. This could owe
to the fact that proteins behave closer to random text, and this means that the parametriza-
tion of ours and the hybrid index indeed balances between exponential worst cases.

In terms of space the ILZI is also very competitive, as it occupies almost the space as
the sequential search (that is, the plain text size), except for proteins that are not very
compressible. We presented the space that the algorithms need to operate and not just the
index size since the other approaches need intermediate data structures to operate.

6 Conclusions and Future Work

In this paper we presented an adaptation of the hybrid index for Lempel-Ziv compressed
indexes. We started by addressing the problem of approximate matching with q-samples in-
dexes, where we described a new approach to this problem. We then adapted our algorithm
to the irregular parsing produced by Ziv-Lempel indexes. Our approach was flexible enough
to be used as a hybrid index instead of an exact-searching-based filtration index. We imple-
mented our algorithm and compared it with the simple filtration approach built over different
compressed, with sequential algorithms, and over a good uncompressed index.

Our results show that our index provides a good space/time tradeoff, using a small amount
of space (at best 0.9 times the text size, which is 5.6 times less than a classical index) in
exchange for searching from 6.2 to 33 times slower than a classical index, for k = 1 to 3. This
is better than the implemented compressed approaches for low error levels. This is significant
since indexed approaches are most valuable, when compared to sequential approaches, when
the error level is low, therefore our work significantly improves the usability of compressed
indexes for approximate matching.

An interesting idea we presented was associating error weights to the letters of O. This was
done in an uniform fashion, except for the edges. We believe that tuning these weights may
lead to considerable improvements. For example assigning smaller weights to least frequent
letters will force the algorithm to search for less frequent strings and therefore decreasing the
number of positions to verify. This approach however cannot be precomputed and therefore
requires further research.

Also our implementation can be further improved since we do no secondary filtering, i.e.
we do not apply any sequential filter over the text areas to verify before using a bit-parallel
algorithm.
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A Proofs of Lemmas

Lemma 2.

The edit distance between A and B corresponds to the shortest path in the edit graph
of A and B. The partition of A induces a partition in this graph and in particular splits the
shortest path. Let Bi be the substring of B that shares the shortest path with Ai. This means
that

∑j
i=1

ed(Ai, Bi) = ed(A,B).
Suppose by absurd that for every B′ substring of B and every i we have that ed(Ai, B

′) ≥
ki, therefore this is also true for the Bi’s, i.e. ed(Ai, Bi) ≥ ki. This is absurd since that way
ed(A,B) =

∑j
i=1

ed(Ai, Bi) ≥
∑j

i=1
ki > ed(A,B). Therefore there must exist an i such that

ed(Ai, Bi) < ki, note that Bi is a substring B′ we mention in the lemma. �

Lemma 3.

Apply Lemma 2 with A1 = A′, |Aj | < q and the remaining Ai’s of size q, i.e. |Ai| = q.
Consider k1 = ed(A,B) − s⌊(|A| − |A′|)/q⌋ + ǫ with 0 < ǫ < 1, kj = 0, the remaining ki’s are

equal to s. Note that j = ⌊(|A| − |A′|)/q⌋+ 1 and therefore
∑j

i=1
ki = ed(A,B)+ ǫ− s⌊(|A| −

|A′|)/q⌋+s(j−1) = ed(A,B)+ǫ−s⌊(|A|−|A′ |)/q⌋+s⌊(|A|−|A′ |)/q⌋ = ed(A,B)+ǫ > ed(A,B).
Therefore we conclude that there is a substring B′ of B and an i such that ed(Ai, B

′) < ki.
We will prove that it must be i = 1. Suppose that i = j then ed(Aj , B

′) < kj = 0, which
is impossible. Suppose that 1 < i < j, then ed(Ai, B

′) < ki = s with |Ai| = q, which
contradicts the hypotheses of the lemma. Therefore i = 1 and ed(A1, B

′) = ed(A′, B′) < k1 =
ed(A,B) − s⌊(|A| − |A′|)/q⌋ + ǫ, which means that ed(A′, B′) ≤ ed(A,B) − s⌊(|A| − |A′|)/q⌋.
�

Lemma 4.

As we have explained our approach first consists in applying Lemma 2 considering ki =
k · |Ai|v for 0 ≤ i ≤ j. Observe that by the definition of |Ai|v we have that

∑j
i=1

k · |Ai|v =
k(ǫ + (|A| − 2v)/(|A| − 2v)) = k(ǫ + 1) > k. Now we classify the resulting Ai into one the two
classes we defined before. The first class justifies the first condition of this lemma. If the Ai

belongs to the second class we apply Lemma 3 with the resulting ki. �
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