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Abstract. Compressed text (self-)indexes have matured up to a poietentiney can replace a text by a data
structure that requires less space and, in addition to giaotess to arbitrary text passages, support indexed text
searches. At this point those indexes are competitive wattitional text indexes (which are very large) émunting

the number of occurrences of a pattern in the text. Yet, theystll hundreds to thousands of times slower when
it comes tdocatingthose occurrences in the text. In this paper we introducenvecoenpression scheme for suffix
arrays which permits locating the occurrences extremely fehile still being much smaller than classical indexes.
In addition, our index permits a very efficient secondary ragmmplementation, where compression permits
reducing the amount of I1/0O needed to answer queries.

1 Introduction and Related Work

Compressed text indexing has become a popular alternaticege with the problem of giving indexed
access to large text collections without using up too mu@tspReducing space is important because it
gives one the chance of maintaining the whole collection @amnmemory. The current trend in compressed
indexing isfull-text compressed self-indexgst, 1, 4,15, 13, 2]. Such a self-index (for short) replades t
text by providing fast access to arbitrary text substrirzge in addition gives indexed access to the text by
supporting fast search for the occurrences of arbitrariepa. These indexes take little space, usually from
30% to 150% of the text size (note that this includes the t&tt)s is to be compared with classical indexes
such as suffix trees [16, 6] and suffix arrays [11], which regat the very least 10 and 4 times, respectively,
the space of the text, plus the text itself. In theoreticahte to index atexi” = t; . .. t, over an alphabet of
sizeo, the best self-indexes requindd;, + o(n log o) bits for anyk < alog, n and any constarit < o < 1,
whereH), < log o is thek-th order empirical entropy df [12, 14]L. Just the uncompressed text alone would
needn log o bits, and classical indexes requ®&n log n) bits on top of it.

The search functionality is given via two operations. Thst fis, given a patter® = p; ... p,,, count
the number of timeg occurs inT'. The second is ttbcatethe occurrences, that is, to list their positions in
T. Current self-indexes achieve a counting performanceist@mparable in practice with that of classical
indexes. In theoretical terms, for the best self-indexessttmplexity iSO (m(1 4+ —252-)) and everO(1 +

ﬁ), compared t@(m log o) of suffix trees and (m logn) or O(m + log n) g)fgéougfﬁx arrays. Locating,
on the other hand, is far behind, hundreds to thousands ektstower than their classical counterparts.
While classical indexes pa§(occ) time to locate theoce occurrences, self-indexes p&)occlog® n),
wheree can in theory be any number larger than zero but is in pratdiger than 1. Worse than that, the
memory access patterns of self-indexes are highly nori;labéch makes their potential secondary-memory
versions rather unpromising. Extraction of arbitrary feattions is also quite slow and non-local compared
to having the text directly available as in classical indexXée only implemented self-index which has more

local accesses and achieves faster locate is the LZ-in@xyjét its counting time is not competitive.
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In this paper we propose a suffix array compression techrtigebuilds on well-known regularity
properties that show up in suffix arrays when the text thegxnd compressible [14]. This regularity has
been exploited in several ways in the past [8, 15, 9], but vesgmt a completely novel technique to take
advantage of it. We represent the suffix array using diffimeencoding, which converts the regularities
into true repetitions. Those repetitions are then factorgdising Re-Pair [7], a compression technique that
builds a dictionary of phrases and permits fast local decesgion using only the dictionary (whose size one
can control at will, at the expense of losing some compra¥sitfe then introduce some novel technigues to
further compress the Re-Pair dictionary, which can be dgffreeshdent interest. We also use specific properties
of suffix arrays to obtain a much faster compression losing H¥—14% of compression.

As a result, for several text types, we reduce the suffix aoe30—70% of its original size, depending
on its compressibility. This reduced index can still extraty portion of the suffix array very fast by adding
a small set of sampled absolute values. We prove that th@kthe result iSO (Hj, log(1/Hy)nlogn) bits
for anyk < alog, n and any constartt < o < 1. Note that this reduced suffix array is not yet a self-index
as it cannot reproduce the text.

This structure can be used in two ways. One way is to attachdtdelf-index able of counting, which
in this process identifies as well the segment of the (viytsiatfix array where the occurrences lie. We can
then locate the occurrences by decompressing that segsiegtaur structure. The result is a self-index that
needs 1-3 times the text size (that is, considerably langer current self-indexes but also much smaller than
classical indexes) and whose counting and locating timesa@ampetitive with those of classical indexes,
far better for locating than current self-indexes. In tledioal terms, assuming for example the use of an
alphabet-friendly FM-index [2] for counting, our index mise) (Hj, log(1/Hy)nlogn + n) bits of space,
counts in timeOD(m(1 + lolgoﬁ)gn)) and locates thecc occurrences oP in time O(occ + logn).

A second and simpler way to use the structure is, togethdr tivé plain text, as a replacement of the
classical suffix array. In this case we must not only use itdoating the occurrences but also for binary
searching. The binary search can be done over the samptemnfiréhen decompress the area between two
consecutive samples to finish the search. This yields a vestipal alternative requiring 0.8—-2.4 times the
text size (as opposed to 4) plus the text, and achievingcéttegperformance.

On the ther hand, if the text is very large, even a compressaekimust reside on disk. Performing
well on secondary memory with a compressed index has proxteeneely difficult, because of their non-
local access pattetnThanks to its local decompression properties, our redsaéfik array performs very
well on secondary memory. It needs the optirff | disk accesses for locating thec occurrences, being
B the disk block size measured in integers. On average, if ehgcession ratio (compressed divided by
uncompressed suffix array size)is< ¢ < 1, we perform[<Z<] accesses. That is, our index actually
performs better, not worse (as it seems to be the norm), shiEmkompression. We show how to upgrade
this structure to an efficient secondary-memory self-index

We experimentally explore the compression performance aieee, the time for locating, and the
simplified suffix array implementation, comparing againstvjpus work. Our structure stands out as a
practical and suitable alternative in several cases.

2 Compressing the Suffix Array

Given a textT' = t;...t, over alphabet” of size s, where for technical reasons we assutpe= $ is
smaller than any other characterinand appears nowhere elselinasuffix arrayA|[1, n] is a permutation

2 Another submission to CPMO7 proposes a secondary-memoiind&k. They are difficult to compare because they are totall
different, and while we can only provide bi@-complexities they can only provide empirical numbers.



of [1,n] such thatl'y;) , < Tfi41),, forall 1 <4 < n, being “<” the lexicographical order. BY} , we
denote thesuffixof 1" that starts at positiori. Since all the occurrences of a pattétn= py...p, In T
are prefixes of some suffix, a couple of binary searche$ suffice to identify the segment iA of all the
suffixes that start withP, that is, the segment pointing to all the occurrence#’ofrhus the suffix array
permits counting the occurrences Bfin O(mlogn) time and reporting thecc occurrences irO(occ)
time. With an additional array of integers, the countingedioan be reduced ©(m + logn) [11].

Suffix arrays turn out to be compressible whene¥es. The k-th order empirical entropy df’, Hy,
[12], shows up in4 in the form of large segmentd[i, i + ¢] that appear elsewhere i3, j + ¢] with all the
values shifted by one positionl[j + s] = Afi + s] + 1 for 0 < s < ¢. Actually, one can partitio into
runs of maximal segments that appear repeated (shifted by Wetse, and the number of such runs is at
mostn.Hj, + o for anyk [9, 14].

This property has been used several times in the past to essyr Makinen’s Compact Suffix Array
(CSA) [8] replaces runs with pointers to their definitionesidiere inA4, so that the run can be recovered
by (recursively) expanding the definition and shifting tfeues. Makinen and Navarro [9] use the con-
nection with FM-indexes (runs ir are related to equal-letter runs in the Burrows-Wheelersfam of
T, basic building block of FM-indexes) and run-length conggien. Yet, the most successful technique to
take advantage of those regularities has been the defimtiimction ¥ (i) = A= [A[i] + 1] (or A~ [1] if
Ali] = n). It can be seen thalt (i) = ¥(i — 1) + 1 within runs of A, and therefore a differential encoding
of ¥ is highly compressible [15].

We present a completely different method to comprdssie first representd in differential form:
A'l1] = A[1] andA'[i] = A[i] — A[i — 1] if ¢ > 1. Take now a run ofd of the formA[j + s] = Afi +s] +1
for0 < s < {. Itis easy to see that’[j + s] = A’[i + s] for 1 < s < ¢. We have converted the runs df
into true repetitions iM’.

The next step is to take advantage of those repetitions inyahvea permits fast local decompression of
A’. We resort to Re-Pair [7], a dictionary-based compressiethod based on the following algorithm: (1)
identify the most frequent pait’[i|A'[i + 1] in A, letab be such pair; (2) create a new integer symbal n
larger than all existing symbols id” and add rules — ab to a dictionary; (3) replace every occurrence:bf
in A by s%; (4) iterate until every pair has frequency 1. The resulhefcompression is the table of rules (call
it R) plus the sequence of (original and new) symbols into whithas been compressed (cal(lj. Note
that R can be easily stored as a vector of pairs, so thatsuleab is represented biR[s —n + 1] = a : b.

Any portion of C' can be easily decompressed in optimal time and fast in peacto decompress|i],
we first check ifC[i] < n. Ifitis, then it is an original symbol oft’ and we are done. Otherwise, we obtain
both symbols fromR[C[i] — n + 1], and expand them recursively (they can in turn be originaireated
symbols, and so on). We reproduceells of A’ in O(u) time, and the accesses pattern is locdt i small.

SinceR grows by 2 integeréa, b) for every new pair we create, we can stop creating pairs wiembst
frequent one appears only twick.can be further reduced by making this condition strictarstimcreasing
locality at the expense of a slight reduction in compresstio.

A few more structures are necessary to recover the valugs ¢f) a sampling of absolute values of
A at regular intervals; (2) a bitmapL[1, n] marking the positions where each symbold{which could
represent several symbols 4f) starts inA’; (3) o(n) further bits to answerank queries onl in constant
time [5, 14]: rank(L,%) is the number of 1's inL[1,i]. Thus, to retrieveAli, j| we: (1) see if there is
a multiple of in [z, j], extending: to the left orj to the right to include such a multiple if necessary;
(2) make sure we expand an integral number of symbolS'iextending: to the left and;j to the right

%1f a = b it might be impossible to replace all occurrences, edin aaa, but in such case one can at least replace each other
occurrence in a row.



until L[z] = 1 andL[j + 1] = 1; (3) use the mechanism described above to oh#jn j] by expanding
Clrank(L,1),rank(L, j)]; (4) use any absolute samplesincluded in[:, j] to obtain, using the differences
in A'[4, 7], the valuesA[i, j]; (5) return the values in the original intenal j] requested.

The overall time complexity of this decompression is thepatisize plus what we have expanded the
interval to include a multiple of (i.e., O(7)) and to ensure an integral number of symbol€inThe latter
can be controlled by limiting the length of the uncompressedion of the symbols we create. This might
affect (albeit slightly) the compression, yet in practitis iusually unnecessary.

2.1 Faster Compression

A weak point in our scheme is compression speed. Re-Paireenfemented i©) () time, but the amount
of space this requires is prohibitive [7]. We have used adstenO(n logn) time algorithm that requires
less memory. We omit the details for lack of space.

We note that? (which is easily built inO(n) time from A) can be used to obtain a much faster compres-
sion algorithm, which in practice compresses only sligelys than the original Re-Pair. Recall thiati)
tells where inA is the valueA[i] + 1. The idea is that, ifA[i, i + ¢] is arun such thatl[j + s] = A[i +s] + 1
for0 < s < /¢ (andthusA’[j + s] = A'[i + s]for1 < s < ¢),then¥ (i +s) = j + sfor 0 < s < £. There-
fore, by following permutation? we have a good chance of finding good repeated pairs {although, as
explained, Re-Pair does a slightly better job).

The algorithm is thus as follows. Lét = A~![1]. We start ati = i; and see ifA'[i]A'[i + 1] =
A" (i)|A'[w (i) + 1]. If this does not hold, we move on fo— ¥ (i) and iterate. If the equality holds, we
start a chain of replacements: We add a new g4jij A'[i + 1] to R, make the replacementsiaand ¥ (i)
and move on with «— ¥ (i), replacing until the pair changes. When the pair changasijshl’[i| A'[i + 1] #
AW ()] A’ (i) + 1], we restart the process with— ¥ (i), looking again for a new pair to create. When
we traverse the whold’ without finding any pair to replace, we are done. With some ¢amitted for lack
of space) this algorithm runs if(n) time.

2.2 Analysis

We analyze the compression ratio of our data structure NLbe the number of runs . As shown in [9,
14], N < Hyn+o* for anyk > 0. Except for the first cell of each run, we have tHali] = A’[¥ ()] within
the run. Thus, we cut off the first cell of each run, to obtaint@pN runs now. Every paitd’[i|A'[i + 1]
contained in such runs must be equal{@? (i)] A’'[¥ (i) + 1], thus the only pairs of celld’[i] A'[i + 1] that
are not equal to the “next” pait’[¥ (i)] A'[¥ (i + 1)] are those whereis the last cell of its run. This shows
that there are at moatV different pairs in4’, and thus the most frequent pair appears at lggstimes.
Because of overlaps, it could be that only each other ococerean be replaced, thus the total number of
replacements in the first iteration is at legst, for 3 = ﬁ

After we choose and replace the most frequent pair, we endthpaivmostn — (3n integers inA’. The
number of runs has not varied, because a replacement cagrin@ sun. Thus, the same argument shows
that the second time we remove at ledst — 5n) = n(1 — () cells. The third replacement removes at
least3(n — Bn— Bn(1—B)) = pn(1—3)? cells. Itis easy to see by induction that thth iteration removes
Bn(1 — B)"1 cells.

After M iterations we have removéd | gn(1 — 8)"~' = n —n(1 — )™ cells, and hence the length

Inn+Inln ﬁ71n2

of C'isn(1—B) and the length ofz is 2M. The total size is optimized fav/* = e , where
1-53

... 2(Inn+lnln 25-In2+1) _. o

it is 20" nlzi" 2V sinceln =3 = In vy = g5 (1 + O(x)), the total size iSN In % + O(N)
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integers. Sinc&V < Hyn-+o", if we stick tok < alog, n for any constand < « < 1, it holdso® = O(n®)
and the total space 8(Hj, log Hikn log n) + o(n) bits, as even after th&/* replacements the numbers need
O(logn) bits.

Theorem 1. Our data structure representing’ using R andC' needsO ( Hy, log Hiknlog n)+ o(n) bits, for
anyk < alog, n and any constam < «a < 1.

As a comparison, Makinen’s CSA [8] nee@$H.n log n) bits [14], which is always better as a function
of Hy. Yet, both tend to the same spacefgsgoes to zero. Other self-indexes are usually smaller.

We can also show that the simplified replacement method did®e2.1 reaches the same asymptotic
space complexity. We omit the proof for lack of space.

2.3 Compressing the Dictionary

We now develop some techniques to reduce the dictionaryled Riwithout affectingC'. Those can be of
independent interest to improve Re-Pair in general.

A first observation is that, if we have a rule— ab ands is only mentioned in another ruké — sc,
then we could perfectly remove ruke— ab and rewrites’ — abe. This gives a net gain of one integer,
but now we have rules of varying length. This is easy to manbgewe prefer to go further. We develop
a technique that permits eliminating every rule definitiobattis used within?, once or more, and gain one
integer for each rule eliminated. The key idea is to write dewplicitly the binary tree formed by expanding
the definitions (by doing a preorder traversal and writinglimternal nodes and 0 for leaves), so that not
only the largest symbol (tree root) can be referenced latgralso any subtree.

For example, assume the rulBs= {s — ab, t — sc, u — ts}, andC = tub. We could first represent
the rules by the bitmakz = 100100100 (wheres corresponds to position 1to 4, andu to 7) and the
sequencelRg = ablc4l (we are using letters for the original symbols 4f, and the bitmap positions as
the identifiers of created symbb)sWe express” as47b. To expand, say, 4, we go to position 4 Ry
and computerankq(Rp,4) = 2 (humber of zeros up to position danky(i) = i — rank(i)). Thus the
corresponding symbols iRg start at position 3. We extract one new symbol fr&% for each new zero we
traverse inRp, and stop when the number of zeros traversed exceeds theenwinbnes (this means we
have completed the subtree traversal). This way we obtaidefinition1c for symbol 4.

Let us now reduce the dictionary by expanding the definitibm within ¢ (even whens is used else-
where). The new bitmap Bs = 11000100 (wheret = 1, s = 2, andu = 6), the sequence Bg = abcl2,
andC = 16b. We can now remove the definition oby expanding it within.. This produces the new bitmap
Rp = 1110000 (whereu = 1,t = 2, s = 3), the sequenc&s = abc3 andC = 21b. Further reduction
is not possible becauses definition is only used fron©°. At the cost of storing at mog{ R| bits, we can
reduceR by one integer for each definition that is used at least ont@mwR.

The reduction can be easily implemented in linear time, dingi the successive renamings of the ex-
ample. We first count how many times each rule is used wikhifihen we travers& and only write down
(the bits of R and the sequencRBg for) the entries with zero count. We recursively expand ¢hastries,
appending the resulting tree structureRRg and leaf identifiers tdRg. Whenever we find a created symbol
that does not yet have an identifier, we give it as identifierdinrent position iR g and recursively expand
it. Otherwise the expansion finishes and we write down a a0d( ) in Rp and the identifier ilRg. Then
we rewriteC' using the renamed identifiers.

4 In practice letters are numbers uprte- 1 and the bitmap positions are distinguished by adding theml.
® It is tempting to replace in C, as it appears only once, but our example is artificial: A syitiat is not mentioned i must
appear at least twice ifi.



3 Towards a Text Index

As explained in the Introduction, the reduced suffix arrapas enough by itself as a text index. In this
section we explore different alternatives to upgrade ittbtext index.

3.1 A Main Memory Self-Index

One possible choice is to add one of the many self-indexesaflitounting the occurrences fin little
space [1, 2, 15, 4]. Those indexes actually find out the grgawhere the occurrences éf lie in A. Then
locating the occurrences boils down to decompressifigj] from our structure.

To fix ideas, consider the alphabet-friendly FM-index [2lakesn H}, + o(n log o) bits of space for any
k < alog, n and constand < o < 1, and can count in timé& (m(1 + lolgolgogn)). Our additional structure
dominates the space complexity, requir@gH, log(1/Hy)nlog n)+o(n) bits for the representation of .
To this we must add((n/1) log n) bits for the absolute samples, and the extra cost to limifdhaation
of symbols that represent very long sequences. If we limihdangths td as well, we have an overhead
of O((n/l)logn) bits, as this can be regarded as inserting a spurious symbo} Epositions inA’ to
prevent the formation of longer symbols. By choosing log n we haveO (Hj, log(1/Hy)nlogn + n) bits
of space, and timé(occ + log n) for locating the occurrences. Other tradeoffs are possibteexample
havingn log! ¢ n bits of extra space an@(occ + log® n) time, for any0 < ¢ < 1.

Extracting substrings can be done with the same FM-indebtHautime to display text characters is,
usingn log! ~¢ n additional bits of space)((¢ + log® n)(1 + b‘;%)), By using the structure proposed in
[3] we have othen H}, + o(n log o) bits of space fok = o(log,. n) (this space is asymptotically negligible)
and can extract the characters in optimal tifg + ——).

log, n

Theorem 2. There exists a self-index for téktof lengthn over an alphabet of size and k-th order entropy
H},, which requiresO( Hy, log(1/Hj,)nlog n + nlog' ¢ n) + o(nlog o) bits of space, forang < ¢ < 1.1t
can count the occurrences of a pattern of lengtin time O (m(1+ —2£2_)) and locate ite)cc occurrences

loglogn
intimeO(occ+1log® n). For k = o(log,, n) it can display any text substring of lengtim time O (1 + loge ).
For larger k£ < alog, n, for any constan® < « < 1, this time become®((¢ + log®n)(1 + 1og’ﬁ)§n)).

3.2 A Smaller Classical Index

A simple and practical alternative is to use our reducedsdffiay just like the classical suffix array, that
is, not only for locating but also for searching, keeping tine in uncompressed form as well. This is not
anymore a compressed index, but a practical alternativeclasaical index.

The binary search of the interval that correspond® twill start over the absolute samples of our data
structure. Only when we have identified the interval betweamsecutive samples of where the binary
search must continue, we decompress the whole interval argth fihe binary search. If the two binary
searches finish in different intervals, we will also need @oainpress the intervals in between for locating
all the occurrences. For displaying, the text is at hand.

The cost of this search ©(mlogn) plus the time needed to decompress the portionl dfetween
two absolute samples. We can easily force the compressomlake sure that no symbol i@ spans the
limit between two such intervals, so that the complexityho$ tdecompression can be controlled with the
sampling raté. For example] = O(logn) guarantees a total search time@fm logn + occ), just as the
suffix array version that requires 4 times the text size (Hug.
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Theorem 3. There exists a full-text index for text of lengthn over an alphabet of size and k-th order
entropyHy,, which requiresD(Hy, log(1/Hy)n log n+n) bits of space in addition t@', for anyk < alog, n
and any constand < « < 1. It can count the occurrences of a pattern of lengthin time O(m logn) and
locate itsocc occurrences in timé (occ + log n).

3.3 A Secondary Memory Index

In [10], an index of sizevHy + O(nloglog o) bits is described, which can identify the areado€ontaining
the occurrences of a pattern of length(and thus count its occurrences) using at n2est1 + [logzn])
accesses to disk, whefglog n is the number of bits in a disk block. However, this index is@xely slow
to locate the occurrences: each locate nee@sg® n) random accesses to disk, where in practice 1.
This is achieved by storing the inverse of functizril15].

If, instead, we keep only the data structures for countimgl ase our reduced suffix array, we can
obtain [ %5 | accesses to report tlsec occurrences, which is worst-case optimal. Assume tabie small
enough to fit in main memory (recall we can always force sangpsome compression). Then, we read the
corresponding area a@f from disk, and uncompress each cell in memory without anthéurdisk access
(the area of” to read can be obtained from an in-memory binary search ovarray storing the absolute
position of the firstC' cell of each disk block). On average, if we achieved comprasstioc < 1, we
will need to read: - occ cells fromC, at a cost of “Z<]. Therefore, we achieve for the first time a locating
complexity that isbetterthanks to compression, not worse. Note that Makinen’s C8Aalevnot perform
well at all under this scenario, as the decompression psasdsghly non-local.

Limiting the main memory td// integers permits at modt//2 replacements. According to Section 2.2,

this lets us reduc€ to n(1 — 5)™/? integers. Replacing = ﬁ we get|C| < ne" N ReplacingN <

Hyn + o and assuming < alog, n we get|C| = n(e_% + e 9G)) integers.

To extract text passages of lendgtive could use the normal mechanisms of self-indexes, butrdogyre
¢+0O(log® n) disk accesses. Instead, we use the structure of [3] on diskej¥ace their large Four-Russians
table by a smaller one neediri(c*+! logn) bits for k-th order decompression. If this table fits in main
memory, we can extract usirfgm(fﬁW disk accesses. Again, if the text is compressed, on avelege t
number of blocks to access reduces proportionally. Thedditds structure is: Hy, plus the table.

Let us fixk < alog, n — 1, and requirell = £2(n® loglog n) integers, so thate °G#) = O(n) and
we can also hold the decompression table. Then we obtaimllbe/ing theorem.

Theorem 4. Given a textl’ of lengthn over an alphabet of size and k-th order entropka, there exists

a secondary-memory data structure usiige SHk”nlogn + nloglogo) + Hyn = O(e SHk”nlogn +
nlog o) bits of space, for an} < alog,n — 1 and any constand < o < 1. This assumes we can hold
M = 2(n“loglogn) integers in main memory. The data structure counts the oenaes of a pattern of
lengthm with 2m(1 + [logg n]) disk accesses, where the disk page Bdsg n bits. It locates and extracts
in optimal I/O time,[ %5 | and [Blog —1, respectively. The times can improve on compressible. texts

4 Experimental Results

We present three series of experiments in this section. Téteofie regards compression performance, the
second the use of our technique as a plug-in for boostingottegihg performance of a self-index, and the
third the use of our technique as a classical index usingcestispace. We use text collections obtained from
the PizzaChilisite,ht t p: / / pi zzachi l i . dcc. uchile.cl.



Compression performanceén Section 2.1 we mentioned that compression time of ourrseheould be an
issue and gave an approximate method basedwhich should be faster. Table 1 compares the performance
of the exact Re-Pair compression algorithm (RP) and thahe@#tbased approximation (RP. We take
absolute samples each 32 positions.

Collection, sizd Method|Index Siz¢ Compr.| Re-Pair|Expected Dict. Main | Compr. with
(MB), H3/Hg (MB) | Ratio| Time (s)|decompr.| compr.| memory| 5% in RAM
xml, 100, RP 94.04| 23.51% 25986| 6939.99 57% 49% 34.29%
26.28% RPY 97.49| 24.37% 260| 7570.49 57% 51% 81.85%
dna, 100, RP 333.96 83.55% 11150 5.01| 79% 19% 95.52%
97.02% RPY 334.14 83.55% 546 4.73| 78% 20% 101.4%
english, 100, |RP 221.3] 55.33%4 93421 238.31| 59% 43% 87.98%
53.05% RPY 236.06 59.02% 485| 202.79| 60% 44% 99.33%
pitches, 50, RP 115.54 57.779% 15371] 33.71| 70% 21% 67.54%
61.37% RPY 121.79 60.90% 180 26.78| 67% 25% 85.36%
proteins, 100, | RP 286.66 71.67%4 3143| 58.97| 80% 10% 79.58%
97.21% RPY 289.86 72.47% 641 52.52| 75% 13% 91.83%
sources, 100, | RP 151.81 37.95% 106173 2046.80 58% 48% 64.03%
40.74% RPY 170.84 42.72% 377| 1778.79 58% 50% 95.67%

Table 1.Index size and build time using Re-Pair (RP) andlitbased approximation (RB. Compression ratio compares with the
4n bytes needed by a suffix array.

The approximation runs 5 to 280 times faster and just loses1%% in compression ratio. RP runs
at 3 to 100 sec/MB, whereas RMeeds 0.26 to 0.65 sec/MB. Most of the indexing time is splaist t
compression; the rest adds up around 120 sec overall insdbca

Compression ratio varies widely. On XML data we achieve 28compression (the reduced suffix array
is smaller than the text!), whereas compression is extrgpuwr on DNA. In many text types of interest we
slash the suffix array to around half of its size. Below the aafheach collection we wrote the percentage
Hs/H,, which gives an idea of the compressibility of the collegtindependent of its alphabet size (e.qg. it
is very easy to compress DNA to 25% because there are maiyimdas but one chooses to spend a byte
for each in the uncompressed text, otherwise DNA is almasirirpressible). The measure turns out to be
an excellent predictor of the compression, except for pistehere we are closer 5/ H.

Other statistics are available. In column 6 we measure temge length of a cell af’ if we choose uni-
formly in A (longer cells are in addition more likely to be chosen foratepression). The numbers shown
explain the times obtained for the next series of experimewbte that they are related to compressibility,
but not as much as one could expect. Rather, the numbers olzeynbre detailed structure of the suffix
array: The numbers are higher when the compression obtaimed uniform across the array.

In column 7 we show the compression ratio achieved with tobrtigue of Section 2.3, charging it
the bitmap introduced as well. It can be seen that the teabnisg) rather effective. Column 8 shows the
percentage of the compressed structure that should stalimiR order to be able of accessing onlyin
secondary memory, as advocated in Section 3.3. Note thpetisentage is not negligible when compression
is good. The last column shows how much compression wouldchigee if the structures that must reside
on RAM were limited to 5% of the original suffix array size @lé measured before dictionary compression,
so it would be around 3% after compression). We still obtdiraetive compression performance on texts
like XML, sources and pitches (recall that on secondary nrgrifte compression ratio translates almost
directly to decompression performance). As expected/ RBes a much poorer job here, as it does not
choose the best pairs early.



A plugin for self-indexesSection 3.1 considers using our reduced suffix array as anptagrovide fast
locate on existing self-indexes. In this experiment we mugstructure to to the counting structures of the
alphabet-friendly FM-index (AFI [2]), and compare the ieésgainst the original AFI, the Compressed Suf-
fix Array (CSA [15]) and the Succinct Suffix Array (SSA [2, 98Il from thePizzaChilisite. We increased
the sampling rate of the locating structures of AFIl, CSA aSdSuntil all had the same size of our index
(RPT). For space reasons, we excluded DNA and pitches.

Fig. 1 shows the results. The experiment consists in chgasindom ranges of the suffix array and
obtaining the values. This simulates a locating query wieecan control the amount of occurrences to
locate. Our reduced suffix array has a constant time overgvelaidh is related to column 6 in Table 1 and
the sample rate of absolute values) and from then on the eosefl located is very low. As a consequence,
it crosses sooner or later all the other indexes. For exgnifdecomes the fastest on XML after locating
4,000 occurrences, but it needs just 6 occurrences to bettariastest on proteins.

Extract over xml.100MB Extract over sources.100MB

RPT ——
350 [SSA —*—
AFl ——
300 [CSA —=—

-

time(sec per 10* extractions)
N
o
o

time(sec per 10* extractions)
o

0 1000 2000 3000 4000 5000 0 50 100 150 200 250 300
Extracted Size Extracted Size

Extract over english.100MB Extract over proteins.100MB

RPT ——
06 LSSA ——

AFl ——

|CSA —=—

02}
o A

0 5 10 15 20 25 30 35 40 0 5 10 15 20
Extracted Size Extracted Size

RPT ——
1.4 [SSA —=—
AFI ——
1.2 [CSA ——

time(sec per 10* extractions)
o
o<}

time(sec per 10* extractions)

Fig. 1. Time to locate occurrences, as a function of the number afroences to locate.

A classical reduced indexFinally, we test the usage of our reduced suffix array as aceptent of the
suffix array, that is, adding it the text and using it for binaearching, as explained in Section 3.2. We
compare it against a plain suffix array (SA) and against Mékis CSA (MakCSA [8]), as that one operates
in the same fashion.

Fig. 2 shows the result. The CSA offers space-time tradeoffiereas those of our index (sample rate
for absolute values) did not significantly affect the timaur@tructure stands out as a relevant space/time
tradeoffs, especially when locating many occurrencesdneshort patterns).

5 Conclusions and Future Work

We have presented a suffix array compression method thaigdtest locating of the occurrences of a pat-
tern. This has been used to obtain a self-index with fastéogahere the norm is very slow), a compressed
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26 28 3 32 34 36 38 4 1 15 2 25 3 35 4
IndexSize/TextSize-1 IndexSize/TextSize-1

Fig. 2. Time to binary search and locate the occurrences, simglatiiassical suffix array.

index that is a viable alternative to classical suffix arrayel a secondary-memory version that works op-
timally and improves due to compression (where worseniedithes is the norm). Our experiments show
that the structure is very practical and relevant.

We regard this as a foundational work leaving many futuretigament lines, e.g. (1) improve construc-
tion time without worsening the compression ratios achdey®) improve the performance of the classical
index via algorithm engineering; (3) improve and implemt® secondary memory index, which is right
now a theoretical proposal. In this latter line, we are wiogkon an index that would change the tekpn
to Hn and achiev@m accesses to disk for counting.
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