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Abstract. Compressed text (self-)indexes have matured up to a point where they can replace a text by a data
structure that requires less space and, in addition to giving access to arbitrary text passages, support indexed text
searches. At this point those indexes are competitive with traditional text indexes (which are very large) forcounting
the number of occurrences of a pattern in the text. Yet, they are still hundreds to thousands of times slower when
it comes tolocating those occurrences in the text. In this paper we introduce a new compression scheme for suffix
arrays which permits locating the occurrences extremely fast, while still being much smaller than classical indexes.
In addition, our index permits a very efficient secondary memory implementation, where compression permits
reducing the amount of I/O needed to answer queries.

1 Introduction and Related Work

Compressed text indexing has become a popular alternative to cope with the problem of giving indexed
access to large text collections without using up too much space. Reducing space is important because it
gives one the chance of maintaining the whole collection in main memory. The current trend in compressed
indexing isfull-text compressed self-indexes[14, 1, 4, 15, 13, 2]. Such a self-index (for short) replaces the
text by providing fast access to arbitrary text substrings,and in addition gives indexed access to the text by
supporting fast search for the occurrences of arbitrary patterns. These indexes take little space, usually from
30% to 150% of the text size (note that this includes the text). This is to be compared with classical indexes
such as suffix trees [16, 6] and suffix arrays [11], which require at the very least 10 and 4 times, respectively,
the space of the text, plus the text itself. In theoretical terms, to index a textT = t1 . . . tn over an alphabet of
sizeσ, the best self-indexes requirenHk+o(n log σ) bits for anyk ≤ α logσ n and any constant0 < α < 1,
whereHk ≤ log σ is thek-th order empirical entropy ofT [12, 14]1. Just the uncompressed text alone would
needn log σ bits, and classical indexes requireO(n log n) bits on top of it.

The search functionality is given via two operations. The first is, given a patternP = p1 . . . pm, count
the number of timesP occurs inT . The second is tolocatethe occurrences, that is, to list their positions in
T . Current self-indexes achieve a counting performance thatis comparable in practice with that of classical
indexes. In theoretical terms, for the best self-indexes the complexity isO(m(1+ log σ

log log n)) and evenO(1+
m

logσ n), compared toO(m log σ) of suffix trees andO(m log n) or O(m + log n) of suffix arrays. Locating,
on the other hand, is far behind, hundreds to thousands of times slower than their classical counterparts.
While classical indexes payO(occ) time to locate theocc occurrences, self-indexes payO(occ logε n),
whereε can in theory be any number larger than zero but is in practicelarger than 1. Worse than that, the
memory access patterns of self-indexes are highly non-local, which makes their potential secondary-memory
versions rather unpromising. Extraction of arbitrary textportions is also quite slow and non-local compared
to having the text directly available as in classical indexes. The only implemented self-index which has more
local accesses and achieves faster locate is the LZ-index [13], yet its counting time is not competitive.
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In this paper we propose a suffix array compression techniquethat builds on well-known regularity
properties that show up in suffix arrays when the text they index is compressible [14]. This regularity has
been exploited in several ways in the past [8, 15, 9], but we present a completely novel technique to take
advantage of it. We represent the suffix array using differential encoding, which converts the regularities
into true repetitions. Those repetitions are then factoredout using Re-Pair [7], a compression technique that
builds a dictionary of phrases and permits fast local decompression using only the dictionary (whose size one
can control at will, at the expense of losing some compression). We then introduce some novel techniques to
further compress the Re-Pair dictionary, which can be of independent interest. We also use specific properties
of suffix arrays to obtain a much faster compression losing only 1%–14% of compression.

As a result, for several text types, we reduce the suffix arrayto 20–70% of its original size, depending
on its compressibility. This reduced index can still extract any portion of the suffix array very fast by adding
a small set of sampled absolute values. We prove that the sizeof the result isO(Hk log(1/Hk)n log n) bits
for anyk ≤ α logσ n and any constant0 < α < 1. Note that this reduced suffix array is not yet a self-index
as it cannot reproduce the text.

This structure can be used in two ways. One way is to attach it to a self-index able of counting, which
in this process identifies as well the segment of the (virtual) suffix array where the occurrences lie. We can
then locate the occurrences by decompressing that segment using our structure. The result is a self-index that
needs 1–3 times the text size (that is, considerably larger than current self-indexes but also much smaller than
classical indexes) and whose counting and locating times are competitive with those of classical indexes,
far better for locating than current self-indexes. In theoretical terms, assuming for example the use of an
alphabet-friendly FM-index [2] for counting, our index needsO(Hk log(1/Hk)n log n + n) bits of space,
counts in timeO(m(1 + log σ

log log n)) and locates theocc occurrences ofP in timeO(occ + log n).
A second and simpler way to use the structure is, together with the plain text, as a replacement of the

classical suffix array. In this case we must not only use it forlocating the occurrences but also for binary
searching. The binary search can be done over the samples first and then decompress the area between two
consecutive samples to finish the search. This yields a very practical alternative requiring 0.8–2.4 times the
text size (as opposed to 4) plus the text, and achieving attractive performance.

On the ther hand, if the text is very large, even a compressed index must reside on disk. Performing
well on secondary memory with a compressed index has proved extremely difficult, because of their non-
local access pattern2. Thanks to its local decompression properties, our reducedsuffix array performs very
well on secondary memory. It needs the optimal⌈occ

B ⌉ disk accesses for locating theocc occurrences, being
B the disk block size measured in integers. On average, if the compression ratio (compressed divided by
uncompressed suffix array size) is0 ≤ c ≤ 1, we perform⌈ c·occ

B ⌉ accesses. That is, our index actually
performs better, not worse (as it seems to be the norm), thanks to compression. We show how to upgrade
this structure to an efficient secondary-memory self-index.

We experimentally explore the compression performance we achieve, the time for locating, and the
simplified suffix array implementation, comparing against previous work. Our structure stands out as a
practical and suitable alternative in several cases.

2 Compressing the Suffix Array

Given a textT = t1 . . . tn over alphabetΣ of sizeσ, where for technical reasons we assumetn = $ is
smaller than any other character inΣ and appears nowhere else inT , asuffix arrayA[1, n] is a permutation

2 Another submission to CPM07 proposes a secondary-memory LZ-index. They are difficult to compare because they are totally
different, and while we can only provide big-O complexities they can only provide empirical numbers.
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of [1, n] such thatTA[i],n ≺ TA[i+1],n for all 1 ≤ i < n, being “≺” the lexicographical order. ByTj,n we
denote thesuffixof T that starts at positionj. Since all the occurrences of a patternP = p1 . . . pm in T
are prefixes of some suffix, a couple of binary searches inA suffice to identify the segment inA of all the
suffixes that start withP , that is, the segment pointing to all the occurrences ofP . Thus the suffix array
permits counting the occurrences ofP in O(m log n) time and reporting theocc occurrences inO(occ)
time. With an additional array of integers, the counting time can be reduced toO(m + log n) [11].

Suffix arrays turn out to be compressible wheneverT is. Thek-th order empirical entropy ofT , Hk

[12], shows up inA in the form of large segmentsA[i, i + ℓ] that appear elsewhere inA[j, j + ℓ] with all the
values shifted by one position,A[j + s] = A[i + s] + 1 for 0 ≤ s ≤ ℓ. Actually, one can partitionA into
runsof maximal segments that appear repeated (shifted by 1) elsewhere, and the number of such runs is at
mostnHk + σk for anyk [9, 14].

This property has been used several times in the past to compressA. Mäkinen’s Compact Suffix Array
(CSA) [8] replaces runs with pointers to their definition elsewhere inA, so that the run can be recovered
by (recursively) expanding the definition and shifting the values. Mäkinen and Navarro [9] use the con-
nection with FM-indexes (runs inA are related to equal-letter runs in the Burrows-Wheeler transform of
T , basic building block of FM-indexes) and run-length compression. Yet, the most successful technique to
take advantage of those regularities has been the definitionof functionΨ(i) = A−1[A[i] + 1] (or A−1[1] if
A[i] = n). It can be seen thatΨ(i) = Ψ(i − 1) + 1 within runs ofA, and therefore a differential encoding
of Ψ is highly compressible [15].

We present a completely different method to compressA. We first representA in differential form:
A′[1] = A[1] andA′[i] = A[i]−A[i− 1] if i > 1. Take now a run ofA of the formA[j + s] = A[i + s] + 1
for 0 ≤ s ≤ ℓ. It is easy to see thatA′[j + s] = A′[i + s] for 1 ≤ s ≤ ℓ. We have converted the runs ofA
into true repetitions inA′.

The next step is to take advantage of those repetitions in a way that permits fast local decompression of
A′. We resort to Re-Pair [7], a dictionary-based compression method based on the following algorithm: (1)
identify the most frequent pairA′[i]A′[i+1] in A′, letab be such pair; (2) create a new integer symbols ≥ n
larger than all existing symbols inA′ and add rules→ ab to a dictionary; (3) replace every occurrence ofab
in A by s3; (4) iterate until every pair has frequency 1. The result of the compression is the table of rules (call
it R) plus the sequence of (original and new) symbols into whichA′ has been compressed (call itC). Note
thatR can be easily stored as a vector of pairs, so that rules→ ab is represented byR[s− n + 1] = a : b.

Any portion ofC can be easily decompressed in optimal time and fast in practice. To decompressC[i],
we first check ifC[i] < n. If it is, then it is an original symbol ofA′ and we are done. Otherwise, we obtain
both symbols fromR[C[i] − n + 1], and expand them recursively (they can in turn be original orcreated
symbols, and so on). We reproduceu cells ofA′ in O(u) time, and the accesses pattern is local ifR is small.

SinceR grows by 2 integers(a, b) for every new pair we create, we can stop creating pairs when the most
frequent one appears only twice.R can be further reduced by making this condition stricter, thus increasing
locality at the expense of a slight reduction in compressionratio.

A few more structures are necessary to recover the values ofA: (1) a sampling of absolute values of
A at regular intervalsl; (2) a bitmapL[1, n] marking the positions where each symbol ofC (which could
represent several symbols ofA′) starts inA′; (3) o(n) further bits to answerrank queries onL in constant
time [5, 14]: rank(L, i) is the number of 1’s inL[1, i]. Thus, to retrieveA[i, j] we: (1) see if there is
a multiple of l in [i, j], extendingi to the left orj to the right to include such a multiple if necessary;
(2) make sure we expand an integral number of symbols inC, extendingi to the left andj to the right

3 If a = b it might be impossible to replace all occurrences, e.g.aa in aaa, but in such case one can at least replace each other
occurrence in a row.
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until L[i] = 1 andL[j + 1] = 1; (3) use the mechanism described above to obtainA′[i, j] by expanding
C[rank(L, i), rank(L, j)]; (4) use any absolute sample ofA included in[i, j] to obtain, using the differences
in A′[i, j], the valuesA[i, j]; (5) return the values in the original interval[i, j] requested.

The overall time complexity of this decompression is the output size plus what we have expanded the
interval to include a multiple ofl (i.e.,O(l)) and to ensure an integral number of symbols inC. The latter
can be controlled by limiting the length of the uncompressedversion of the symbols we create. This might
affect (albeit slightly) the compression, yet in practice it is usually unnecessary.

2.1 Faster Compression

A weak point in our scheme is compression speed. Re-Pair can be implemented inO(n) time, but the amount
of space this requires is prohibitive [7]. We have used instead anO(n log n) time algorithm that requires
less memory. We omit the details for lack of space.

We note thatΨ (which is easily built inO(n) time fromA) can be used to obtain a much faster compres-
sion algorithm, which in practice compresses only slightlyless than the original Re-Pair. Recall thatΨ(i)
tells where inA is the valueA[i]+ 1. The idea is that, ifA[i, i+ ℓ] is a run such thatA[j + s] = A[i+ s]+ 1
for 0 ≤ s ≤ ℓ (and thusA′[j + s] = A′[i + s] for 1 ≤ s ≤ ℓ), thenΨ(i + s) = j + s for 0 ≤ s ≤ ℓ. There-
fore, by following permutationΨ we have a good chance of finding good repeated pairs inA′ (although, as
explained, Re-Pair does a slightly better job).

The algorithm is thus as follows. Leti1 = A−1[1]. We start ati = i1 and see ifA′[i]A′[i + 1] =
A′[Ψ(i)]A′[Ψ(i) + 1]. If this does not hold, we move on toi ← Ψ(i) and iterate. If the equality holds, we
start a chain of replacements: We add a new pairA′[i]A′[i + 1] to R, make the replacements ati andΨ(i)
and move on withi← Ψ(i), replacing until the pair changes. When the pair changes, that isA′[i]A′[i+1] 6=
A′[Ψ(i)]A′[Ψ(i) + 1], we restart the process withi ← Ψ(i), looking again for a new pair to create. When
we traverse the wholeA′ without finding any pair to replace, we are done. With some care (omitted for lack
of space) this algorithm runs inO(n) time.

2.2 Analysis

We analyze the compression ratio of our data structure. LetN be the number of runs inΨ . As shown in [9,
14],N ≤ Hkn+σk for anyk ≥ 0. Except for the first cell of each run, we have thatA′[i] = A′[Ψ(i)] within
the run. Thus, we cut off the first cell of each run, to obtain upto 2N runs now. Every pairA′[i]A′[i + 1]
contained in such runs must be equal toA′[Ψ(i)]A′[Ψ(i) + 1], thus the only pairs of cellsA′[i]A′[i + 1] that
are not equal to the “next” pairA′[Ψ(i)]A′[Ψ(i + 1)] are those wherei is the last cell of its run. This shows
that there are at most2N different pairs inA′, and thus the most frequent pair appears at leastn

2N times.
Because of overlaps, it could be that only each other occurrence can be replaced, thus the total number of
replacements in the first iteration is at leastβn, for β = 1

4N .
After we choose and replace the most frequent pair, we end up with at mostn− βn integers inA′. The

number of runs has not varied, because a replacement cannot split a run. Thus, the same argument shows
that the second time we remove at leastβ(n − βn) = βn(1 − β) cells. The third replacement removes at
leastβ(n−βn−βn(1−β)) = βn(1−β)2 cells. It is easy to see by induction that thei-th iteration removes
βn(1− β)i−1 cells.

After M iterations we have removed
∑M

i=1 βn(1− β)i−1 = n− n(1− β)M cells, and hence the length

of C is n(1−β)M and the length ofR is 2M . The total size is optimized forM∗ =
lnn+ln ln 1

1−β
−ln 2

ln 1

1−β

, where

it is
2(ln n+ln ln 1

1−β
−ln 2+1)

ln 1

1−β

. Sinceln 1
1−β = ln 4N

4N−1 = 1
4N (1 + O( 1

N )), the total size is8N ln n
4N + O(N)
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integers. SinceN ≤ Hkn+σk, if we stick tok ≤ α logσ n for any constant0 < α < 1, it holdsσk = O(nα)
and the total space isO(Hk log 1

Hk
n log n)+o(n) bits, as even after theM∗ replacements the numbers need

O(log n) bits.

Theorem 1. Our data structure representingA′ usingR andC needsO(Hk log 1
Hk

n log n)+o(n) bits, for
anyk ≤ α logσ n and any constant0 < α < 1.

As a comparison, Mäkinen’s CSA [8] needsO(Hkn log n) bits [14], which is always better as a function
of Hk. Yet, both tend to the same space asHk goes to zero. Other self-indexes are usually smaller.

We can also show that the simplified replacement method of Section 2.1 reaches the same asymptotic
space complexity. We omit the proof for lack of space.

2.3 Compressing the Dictionary

We now develop some techniques to reduce the dictionary of rulesR without affectingC. Those can be of
independent interest to improve Re-Pair in general.

A first observation is that, if we have a rules → ab ands is only mentioned in another rules′ → sc,
then we could perfectly remove rules → ab and rewrites′ → abc. This gives a net gain of one integer,
but now we have rules of varying length. This is easy to manage, but we prefer to go further. We develop
a technique that permits eliminating every rule definition that is used withinR, once or more, and gain one
integer for each rule eliminated. The key idea is to write down explicitly the binary tree formed by expanding
the definitions (by doing a preorder traversal and writing 1 for internal nodes and 0 for leaves), so that not
only the largest symbol (tree root) can be referenced later,but also any subtree.

For example, assume the rulesR = {s → ab, t → sc, u → ts}, andC = tub. We could first represent
the rules by the bitmapRB = 100100100 (wheres corresponds to position 1,t to 4, andu to 7) and the
sequenceRS = ab1c41 (we are using letters for the original symbols ofA′, and the bitmap positions as
the identifiers of created symbols4). We expressC as47b. To expand, say, 4, we go to position 4 inRB

and computerank0(RB , 4) = 2 (number of zeros up to position 4,rank0(i) = i − rank(i)). Thus the
corresponding symbols inRS start at position 3. We extract one new symbol fromRS for each new zero we
traverse inRB, and stop when the number of zeros traversed exceeds the number of ones (this means we
have completed the subtree traversal). This way we obtain the definition1c for symbol 4.

Let us now reduce the dictionary by expanding the definition of s within t (even whens is used else-
where). The new bitmap isRB = 11000100 (wheret = 1, s = 2, andu = 6), the sequence isRS = abc12,
andC = 16b. We can now remove the definition oft by expanding it withinu. This produces the new bitmap
RB = 1110000 (whereu = 1, t = 2, s = 3), the sequenceRS = abc3 andC = 21b. Further reduction
is not possible becauseu’s definition is only used fromC5. At the cost of storing at most2|R| bits, we can
reduceR by one integer for each definition that is used at least once within R.

The reduction can be easily implemented in linear time, avoiding the successive renamings of the ex-
ample. We first count how many times each rule is used withinR. Then we traverseR and only write down
(the bits ofRB and the sequenceRS for) the entries with zero count. We recursively expand those entries,
appending the resulting tree structure toRB and leaf identifiers toRS. Whenever we find a created symbol
that does not yet have an identifier, we give it as identifier the current position inRB and recursively expand
it. Otherwise the expansion finishes and we write down a leaf (a"0") in RB and the identifier inRS. Then
we rewriteC using the renamed identifiers.

4 In practice letters are numbers up ton − 1 and the bitmap positions are distinguished by adding themn − 1.
5 It is tempting to replaceu in C, as it appears only once, but our example is artificial: A symbol that is not mentioned inR must

appear at least twice inC.
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3 Towards a Text Index

As explained in the Introduction, the reduced suffix array isnot enough by itself as a text index. In this
section we explore different alternatives to upgrade it to full-text index.

3.1 A Main Memory Self-Index

One possible choice is to add one of the many self-indexes able of counting the occurrences ofP in little
space [1, 2, 15, 4]. Those indexes actually find out the area[i, j] where the occurrences ofP lie in A. Then
locating the occurrences boils down to decompressingA[i, j] from our structure.

To fix ideas, consider the alphabet-friendly FM-index [2]. It takesnHk +o(n log σ) bits of space for any
k ≤ α logσ n and constant0 < α < 1, and can count in timeO(m(1 + log σ

log log n)). Our additional structure
dominates the space complexity, requiringO(Hk log(1/Hk)n log n)+o(n) bits for the representation ofA′.
To this we must addO((n/l) log n) bits for the absolute samples, and the extra cost to limit theformation
of symbols that represent very long sequences. If we limit such lengths tol as well, we have an overhead
of O((n/l) log n) bits, as this can be regarded as inserting a spurious symbol every l positions inA′ to
prevent the formation of longer symbols. By choosingl = log n we haveO(Hk log(1/Hk)n log n + n) bits
of space, and timeO(occ + log n) for locating the occurrences. Other tradeoffs are possible, for example
havingn log1−ε n bits of extra space andO(occ + logε n) time, for any0 < ε < 1.

Extracting substrings can be done with the same FM-index, but the time to displayℓ text characters is,
usingn log1−ε n additional bits of space,O((ℓ + logε n)(1 + log σ

log log n)). By using the structure proposed in
[3] we have othernHk + o(n log σ) bits of space fork = o(logσ n) (this space is asymptotically negligible)
and can extract the characters in optimal timeO(1 + ℓ

logσ n).

Theorem 2. There exists a self-index for textT of lengthn over an alphabet of sizeσ andk-th order entropy
Hk, which requiresO(Hk log(1/Hk)n log n + n log1−ε n) + o(n log σ) bits of space, for any0 ≤ ε ≤ 1. It
can count the occurrences of a pattern of lengthm in timeO(m(1+ log σ

log log n)) and locate itsocc occurrences

in timeO(occ+logε n). For k = o(logσ n) it can display any text substring of lengthℓ in timeO(1+ ℓ
logσ n).

For larger k ≤ α logσ n, for any constant0 < α < 1, this time becomesO((ℓ + logε n)(1 + log σ
log log n)).

3.2 A Smaller Classical Index

A simple and practical alternative is to use our reduced suffix array just like the classical suffix array, that
is, not only for locating but also for searching, keeping thetext in uncompressed form as well. This is not
anymore a compressed index, but a practical alternative to aclassical index.

The binary search of the interval that corresponds toP will start over the absolute samples of our data
structure. Only when we have identified the interval betweenconsecutive samples ofA where the binary
search must continue, we decompress the whole interval and finish the binary search. If the two binary
searches finish in different intervals, we will also need to decompress the intervals in between for locating
all the occurrences. For displaying, the text is at hand.

The cost of this search isO(m log n) plus the time needed to decompress the portion ofA between
two absolute samples. We can easily force the compressor to make sure that no symbol inC spans the
limit between two such intervals, so that the complexity of this decompression can be controlled with the
sampling ratel. For example,l = O(log n) guarantees a total search time ofO(m log n + occ), just as the
suffix array version that requires 4 times the text size (plustext).
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Theorem 3. There exists a full-text index for textT of lengthn over an alphabet of sizeσ andk-th order
entropyHk, which requiresO(Hk log(1/Hk)n log n+n) bits of space in addition toT , for anyk ≤ α logσ n
and any constant0 < α < 1. It can count the occurrences of a pattern of lengthm in timeO(m log n) and
locate itsocc occurrences in timeO(occ + log n).

3.3 A Secondary Memory Index

In [10], an index of sizenH0 + O(n log log σ) bits is described, which can identify the area ofA containing
the occurrences of a pattern of lengthm (and thus count its occurrences) using at most2m(1 + ⌈logB n⌉)
accesses to disk, whereB log n is the number of bits in a disk block. However, this index is extremely slow
to locate the occurrences: each locate needsO(logε n) random accesses to disk, where in practiceε = 1.
This is achieved by storing the inverse of functionΨ [15].

If, instead, we keep only the data structures for counting, and use our reduced suffix array, we can
obtain⌈occ

B ⌉ accesses to report theocc occurrences, which is worst-case optimal. Assume tableR is small
enough to fit in main memory (recall we can always force so, losing some compression). Then, we read the
corresponding area ofC from disk, and uncompress each cell in memory without any further disk access
(the area ofC to read can be obtained from an in-memory binary search over an array storing the absolute
position of the firstC cell of each disk block). On average, if we achieved compression ratio c ≤ 1, we
will need to readc · occ cells fromC, at a cost of⌈ c·occ

B ⌉. Therefore, we achieve for the first time a locating
complexity that isbetter thanks to compression, not worse. Note that Mäkinen’s CSA would not perform
well at all under this scenario, as the decompression process is highly non-local.

Limiting the main memory toM integers permits at mostM/2 replacements. According to Section 2.2,

this lets us reduceC to n(1 − β)M/2 integers. Replacingβ = 1
4N we get|C| ≤ ne−

M
8N . ReplacingN ≤

Hkn + σk and assumingk ≤ α logσ n we get|C| = n(e
−

M
8Hkn + e−O( M

nα )) integers.
To extract text passages of lengthℓ we could use the normal mechanisms of self-indexes, but theyrequire

ℓ+O(logε n) disk accesses. Instead, we use the structure of [3] on disk. We replace their large Four-Russians
table by a smaller one needingO(σk+1 log n) bits for k-th order decompression. If this table fits in main
memory, we can extract using⌈ ℓ

B logσ n⌉ disk accesses. Again, if the text is compressed, on average the
number of blocks to access reduces proportionally. The sizeof this structure isnHk plus the table.

Let us fixk ≤ α logσ n− 1, and requireM = Ω(nα log log n) integers, so thatne−O( M
nα ) = O(n) and

we can also hold the decompression table. Then we obtain the following theorem.

Theorem 4. Given a textT of lengthn over an alphabet of sizeσ andk-th order entropyHk, there exists

a secondary-memory data structure usingO(e
−

M
8Hkn n log n + n log log σ) + H0n = O(e

−
M

8Hkn n log n +
n log σ) bits of space, for anyk ≤ α logσ n − 1 and any constant0 < α < 1. This assumes we can hold
M = Ω(nα log log n) integers in main memory. The data structure counts the occurrences of a pattern of
lengthm with 2m(1+ ⌈logB n⌉) disk accesses, where the disk page hasB log n bits. It locates and extracts
in optimal I/O time,⌈occ

B ⌉ and⌈ ℓ
B logσ n⌉, respectively. The times can improve on compressible texts.

4 Experimental Results

We present three series of experiments in this section. The first one regards compression performance, the
second the use of our technique as a plug-in for boosting the locating performance of a self-index, and the
third the use of our technique as a classical index using reduced space. We use text collections obtained from
thePizzaChilisite,http://pizzachili.dcc.uchile.cl.
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Compression performance.In Section 2.1 we mentioned that compression time of our scheme would be an
issue and gave an approximate method based onΨ which should be faster. Table 1 compares the performance
of the exact Re-Pair compression algorithm (RP) and that of the Ψ -based approximation (RPΨ ). We take
absolute samples each 32 positions.

Collection, size Method Index Size Compr. Re-Pair Expected Dict. Main Compr. with
(MB), H3/H0 (MB) Ratio Time (s) decompr. compr. memory 5% in RAM
xml, 100, RP 94.04 23.51% 25986 6939.99 57% 49% 34.29%
26.28% RPΨ 97.49 24.37% 260 7570.49 57% 51% 81.85%
dna, 100, RP 333.96 83.55% 11150 5.01 79% 19% 95.52%
97.02% RPΨ 334.18 83.55% 546 4.73 78% 20% 101.4%
english, 100, RP 221.31 55.33% 93421 238.31 59% 43% 87.98%
53.05% RPΨ 236.06 59.02% 485 202.79 60% 44% 99.33%
pitches, 50, RP 115.54 57.77% 15371 33.71 70% 21% 67.54%
61.37% RPΨ 121.79 60.90% 180 26.78 67% 25% 85.36%
proteins, 100, RP 286.66 71.67% 3143 58.97 80% 10% 79.58%
97.21% RPΨ 289.86 72.47% 641 52.52 75% 13% 91.83%
sources, 100, RP 151.81 37.95% 106173 2046.80 58% 48% 64.03%
40.74% RPΨ 170.88 42.72% 377 1778.79 58% 50% 95.67%

Table 1. Index size and build time using Re-Pair (RP) and itsΨ -based approximation (RPΨ ). Compression ratio compares with the
4n bytes needed by a suffix array.

The approximation runs 5 to 280 times faster and just loses 1%–14% in compression ratio. RP runs
at 3 to 100 sec/MB, whereas RPΨ needs 0.26 to 0.65 sec/MB. Most of the indexing time is spent this
compression; the rest adds up around 120 sec overall in all cases.

Compression ratio varies widely. On XML data we achieve 23.5% compression (the reduced suffix array
is smaller than the text!), whereas compression is extremely poor on DNA. In many text types of interest we
slash the suffix array to around half of its size. Below the name of each collection we wrote the percentage
H3/H0, which gives an idea of the compressibility of the collection independent of its alphabet size (e.g. it
is very easy to compress DNA to 25% because there are mainly 4 symbols but one chooses to spend a byte
for each in the uncompressed text, otherwise DNA is almost incompressible). The measure turns out to be
an excellent predictor of the compression, except for proteins where we are closer toH5/H0.

Other statistics are available. In column 6 we measure the average length of a cell ofC if we choose uni-
formly in A (longer cells are in addition more likely to be chosen for decompression). The numbers shown
explain the times obtained for the next series of experiments. Note that they are related to compressibility,
but not as much as one could expect. Rather, the numbers obey to a more detailed structure of the suffix
array: The numbers are higher when the compression obtainedis not uniform across the array.

In column 7 we show the compression ratio achieved with the technique of Section 2.3, charging it
the bitmap introduced as well. It can be seen that the technique is rather effective. Column 8 shows the
percentage of the compressed structure that should stay in RAM in order to be able of accessing onlyC in
secondary memory, as advocated in Section 3.3. Note that thepercentage is not negligible when compression
is good. The last column shows how much compression would we achieve if the structures that must reside
on RAM were limited to 5% of the original suffix array size (this is measured before dictionary compression,
so it would be around 3% after compression). We still obtain attractive compression performance on texts
like XML, sources and pitches (recall that on secondary memory the compression ratio translates almost
directly to decompression performance). As expected, RPΨ does a much poorer job here, as it does not
choose the best pairs early.
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A plugin for self-indexes.Section 3.1 considers using our reduced suffix array as a plugin to provide fast
locate on existing self-indexes. In this experiment we plugour structure to to the counting structures of the
alphabet-friendly FM-index (AFI [2]), and compare the result against the original AFI, the Compressed Suf-
fix Array (CSA [15]) and the Succinct Suffix Array (SSA [2, 9]),all from thePizzaChilisite. We increased
the sampling rate of the locating structures of AFI, CSA and SSA, until all had the same size of our index
(RPT). For space reasons, we excluded DNA and pitches.

Fig. 1 shows the results. The experiment consists in choosing random ranges of the suffix array and
obtaining the values. This simulates a locating query wherewe can control the amount of occurrences to
locate. Our reduced suffix array has a constant time overhead(which is related to column 6 in Table 1 and
the sample rate of absolute values) and from then on the cost per cell located is very low. As a consequence,
it crosses sooner or later all the other indexes. For example, it becomes the fastest on XML after locating
4,000 occurrences, but it needs just 6 occurrences to becomethe fastest on proteins.
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Fig. 1. Time to locate occurrences, as a function of the number of occurrences to locate.

A classical reduced index.Finally, we test the usage of our reduced suffix array as a replacement of the
suffix array, that is, adding it the text and using it for binary searching, as explained in Section 3.2. We
compare it against a plain suffix array (SA) and against Mäkinen’s CSA (MakCSA [8]), as that one operates
in the same fashion.

Fig. 2 shows the result. The CSA offers space-time tradeoffs, whereas those of our index (sample rate
for absolute values) did not significantly affect the time. Our structure stands out as a relevant space/time
tradeoffs, especially when locating many occurrences (i.e. on short patterns).

5 Conclusions and Future Work

We have presented a suffix array compression method that retains fast locating of the occurrences of a pat-
tern. This has been used to obtain a self-index with fast locate (where the norm is very slow), a compressed
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Fig. 2.Time to binary search and locate the occurrences, simulating a classical suffix array.

index that is a viable alternative to classical suffix arrays, and a secondary-memory version that works op-
timally and improves due to compression (where worsening the times is the norm). Our experiments show
that the structure is very practical and relevant.

We regard this as a foundational work leaving many future development lines, e.g. (1) improve construc-
tion time without worsening the compression ratios achieved; (2) improve the performance of the classical
index via algorithm engineering; (3) improve and implementthe secondary memory index, which is right
now a theoretical proposal. In this latter line, we are working on an index that would change the termH0n
to Hkn and achieve2m accesses to disk for counting.
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