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Abstract

The need to run different kinds of algorithms over large Web graphs motivates the research
for compressed graph representations that permit accessing without decompressing them. At
this point there exist a few such compression proposals, some of them very effective in practice.
In this paper we introduce a novel approach to graph compression, based on regarding the graph
as a text and using existing techniques for text compression/indexing. This permits accessing
the graph efficiently without decompressing it, and in addition brings in new functionalities over
the compressed graph. Our experimental results show that our technique has the potential of
being competitive with the best alternative techniques.

1 Introduction and Related Work

Compression techniques aim at reducing the space requirement to store data. A recent exciting
research area is that of compressed data structures. A compressed data structure uses little space,
yet it can carry out the same operations of its classical (uncompressed) counterpart without the need
to uncompress it. Compressed data structures have been proposed to handle sets and sequences
[Jac89, Mun96, Cla96, Pag99, RRR02], trees [MR97, GRRR04], planar graphs [Jac89, MR97],
permutations [MRRR03], texts [Sad03, Nav04, FM05, GV06, MN05, FMMN06], and others.

Compressed data structures are usually slower than their uncompressed counterpart, yet they
have the attractive of permitting manipulation in main memory of large objects, which would need
secondary memory storage if represented in uncompressed form. Secondary memory is so slow in
comparison to primary memory that a significantly slower compressed data structure may pay off
in comparison to a disk access.

In this scenario, graphs are in the curious position of being among the structures receiving
most attention from the algorithmic community, and at the same time not much attention from the
compression point of view, especially regarding compressed data structures for graphs. Even the
existing definitions of graph entropy are relatively naive and do not account for the most interesting
types of regularities that appear, for example, in Web graphs.

Compressed data structures for graphs have suddenly gained interest in recent years, because a
graph is a natural model of the Web structure. Several algorithms used by the main search engines
to rank pages, discover communities, and so on, are run over those Web graphs. Needless to say,
relevant Web graphs are huge and maintaining them in main memory is a challenge, especially if
we wish to permit efficient access to their compressed form.

∗This work has been funded by a grant from Yahoo! Research Latin America.
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The existing work on Web graph compression mainly focuses on several heuristic observations
over those graphs, such as their skewed indegree and outdegree distributions, repetitiveness in the
sets of outgoing links, locality in the references, and so on. Probably the best result in practice is
that of Boldi and Vigna [BV03], where they achieve about 6 bits/link and permit access to incoming
and outgoing links of any node within the microsecond per delivered link.

In this paper we propose to regard the graph as a collection of texts, so as to use the wealth of
existing machinery for compressed text self-indexing. A self-index is a data structure that provides
indexed access to a text and at the same time can reproduce any substring of it, thereby replacing
the text. We show how some existing compressed text indexes can be adapted to compress graphs
and how the graph operations can be mapped to operations on the induced text collection. A
nice feature of using self-indexes is that outgoing links are retrieved by an operation similar to the
text extraction functionality, whereas incoming links are retrieved by a search operation over the
self-index. Thus, self-indexes give in a single data structure the forward and reverse link retrieval
functionality, which in several alternative schemes must be implemented by indexing the original
and the transposed graph.

Finally, we give experimental results for one of the best indexing alternatives. We compare
against the best practical result we are aware of [BV03] and show that our technique is competitive.
Both techniques achieve a space/time tradeoff. We show that, although our technique cannot reach
space occupancies as low as that of Boldi and Vigna (as we can hardly take less than 7 bits/link),
it can be equally fast on some operations when slightly more space (8–10 bits/link) is given to
both. This shows that our approach, besides being an interesting line of attack and fun by itself,
is promising in practice.

2 Related Work

Let us consider graphs G = (V,E), where V is the set of vertices and E is the set of edges. We call
n = |V | and e = |E| in this paper. Standard graph representations such as the incidence matrix
and the adjacency list require n(n− 1)/2 and 2e log n bits, respectively, for undirected graphs. For
directed graphs the numbers are n2 and e log n, respectively1. We call neighbors of a node v ∈ V
those u ∈ V such that (v, u) ∈ E, and reverse neighbors those where (u, v) ∈ E (both definitions
coincide on undirected graphs).

The incidence matrix permits determining in constant time whether two nodes are neighbors or
not, but listing the neighbors or reverse neighbors of a node requires O(n) time. The adjacency list
requires O(n) time to determine neighborhood, but each neighbor of a node can be generated in
constant time (other e log n bits are required to achieve the same for reverse neighbors). Adjacency
lists can achieve constant time to determine neighborhood by replacing the lists with perfect hash
tables, within O(e log n) bits of space.

The oldest work on graph compression focuses on undirected unlabeled graphs. The first result
we know of [Tur84] shows that planar graphs can be compressed into O(n) bits. The constant
factor was later improved [KW95], and finally a technique yielding the optimal constant factor
was devised [HKL00]. Results on planar graphs can be generalized to graphs with constant genus
[Lu02]. More generally, a graph with genus g can be compressed into O(n) bits [DL98]. The same

1In this paper logarithms are in base 2.
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holds for a graph with g pages. A page is a subgraph whose nodes can be written in a linear
layout so that its edges do not cross. Hence edges of a page form a nested structure that can be
represented as a balanced sequence of parentheses.

Some classes of planar graphs have also received special attention, for example trees, triangu-
lated meshes, triconnected planar graphs, and others [IR82, KW95, HKL99, Ros99]. For dense
graphs, it is shown that little can be done to improve the space required by the adjacency matrix
[Nao90].

The above techniques consider just the compression of the graph, not its access in compressed
form. The first compressed data structure for graphs we know of [Jac89] requires O(gn) bits of
space for a g-page graph. The neighbors of a node can be retrieved in O(log n) time each (plus an
extra O(g) complexity for the whole query). The main idea is again to represent the nested edges
using parentheses, and the operations are supported using succinct data structures that permit
navigating a sequence of balanced parentheses. The retrieval was later improved to constant time
by using improved parentheses representations [MR97], and also the constant term of the space
complexity was improved [CGH+98]. The representation also permits finding the degree (number
of neighbors) of a node, as well as testing whether two nodes are connected or not, in O(g) time.

All those techniques based on number of pages are unlikely to scale well to more general graphs,
in particular the Web graph. A more powerful concept that applies to this type of graph is that
of graph separators. Although the separator concept has been used a few times [DL98, HKL00,
CPMF04] (yet not suporting access to the compressed graph), the most striking results are achieved
in recent work [BBK03, Bla06]. Their idea is to find graph components that can be disconnected
from the rest by removing a small number of edges. Then, the nodes within each component can be
renumbered to achieve smaller node identifiers, and only a few external edges must be represented.

They [Bla06] apply the separator technique to design a compressed data structure that gives
constant access time per delivered neighbor. Reverse neighbors must be handled by using another
index on the reversed edges. They carefully implement their techniques and experiment on several
graphs. In particular, on a graph of 1 million (1M) nodes and 5M links from the Google program-
ming contest2, their less space-demanding data structure (built for both normal and reverse edges)
requires 13.39 bits per edge (bpe), and it is about 5 times slower than a plain uncompressed rep-
resentation using arrays for the adjacency lists. The authors favor a slightly larger representation
requiring 16.04 bpe, which is 4 times slower than the plain representation. It is not clear how these
results would scale to larger graphs, as much of their improvement relies on smart caching, and
this effect could vanish with real Web graphs.

There is also some work specifically aimed at compression of Web graphs [BKM+00, AM01,
SY01, BV03]. In this graph the (labeled) nodes are Web pages and the (directed) edges are
the hyperlinks. Several properties of Web graphs have been identified and exploited to achieve
compression:

Skewed distribution: The indegrees and outdegrees of the nodes distribute according to a power
law, that is, the probability that a page has i links is 1/iθ for some parameter θ > 1. Several
experiments give reasonably consistent values of θ = 2.1 for incoming links and θ = 2.72 for
outgoing links [ACL00, BKM+00].

2www.google.com/programming-contest
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Locality of reference: Most of the links from a site point within the site. This motivates in
[BBH+98] the use of lexicographical URL order to list the pages, so that outgoing links go to
nodes whose position is close to that of the current node. Gap encoding techniques are then
used to encode the differences among consecutive target node positions.

Similarity of adjacency lists: Nodes close in URL lexicographical order share many outgoing
links [KRRT99, BV03]. This permits compressing them by a reference to the similar list plus
a list of edits. Moreover, this translates into source nodes pointing to a given target node
forming long intervals of consecutive numbers, which again permits easy compression.

In [SY01] they partition the adjacency lists considering popularity of the nodes, and use different
codings method for each partition. A more hierarchical view of the nodes is exploited in [RGM03].
In [AM01, RSWW01] they take explicit advantage of the similarity property. A page with similar
outgoing links is identified with some heuristic, and then the current page is expressed as a reference
to the similar page plus some edit information to list the deletions and insertions neede to obtain
the current page from the referenced one. Finally, probably the best current result is from [BV03],
who build on previous work [AM01, RSWW01] and further engineer the compression to exploit the
properties above.

Experimental figures are not always easy to compare, but they give a reasonable idea of the
practical performance. Over a graph with 115M nodes and 1.47 billion (1.47G) edges from the
Internet Archive, [SY01] require 13.92 bpe (plus around 50 bits per node), yet they cannot retrieve
reverse neighbors. In [RSWW01], over a graph of 61M nodes and 1G edges, they achieve 5.07 bpe
for the graph and 5.63 for its transpose (so they require both, 10.7 bpe, to access neighbors and
reverse neighbors). In [AM01] they achieve 8.3 bpe (no information on bpn (bits per node)) over
TREC-8 Web track graphs (WT2g set), yet they cannot access the graph in compressed form (and
thus do not need to care for reverse neighbors, in particular). In [BKM+00] they require 80 bits
per node plus 27.2 bpe (and can answer reverse neighbor queries as well).

By far the best figures are from [BV03]. For example, they achieve space close to 3 bpe to
compress a graph of 118M nodes and 1G link from WebBase3. This space, however, is not sufficient
to access the graph in compressed form. An experiment where the required extra information on
the graph and its transpose is stored is carried out on a graph of 18.5M nodes and 292M links,
where they need 6.89 bpe to achieve access times below the microsecond. Those access times are
of the same order of magnitude of other representations [SY01, RGM03, RSWW01]. For example,
the latter reports times around 300 nanosecods per delivered edge.

3 Compressed Text Indexing

Let us now consider a text T = t1 . . . tn, which is a sequence of n symbols over an alphabet Σ
of size |Σ| = σ. Compressed data structures for text have been intensively studied in this decade
[Sad03, Nav04, FM05, GV06, MN05, FMMN06]. The research has evolved into the concept of self-
indexing. A compressed full-text self-index is a data structure over a text T providing the following
functionality:

3www-diglib.stanford.edu/∼testbed/doc2/WebBase/

4



1. Given a pattern P = p1 . . . pm over Σ, count the number of occurrences of P in T , that is,
tell how many times does P occur in T .

2. Given P , locate the occurrences of P in T , that is, find the positions where P occurs in T .

3. Given a pair of positions l, r in T , display the content of Tl,r = tl . . . tr.

The latter operation permits us to access any substring of T (including the whole T itself), thus
making it unnecessary to store T . Thus a self-index replaces the text and at the same time provides
some search operations on it. In addition, a compressed self-index requires space proportional to
the size of the compressed text.

We review now one of those compressed self-indexes, the Compressed Suffix Array (CSA) of
Sadakane [Sad03], which we use as the basis for our compressed graph representation. As seen
later, our graph representation will induce a large alphabet, and the CSA is especially well suited
to large alphabets.

The suffix array [MM93] of T is a permutation A of [1, n] such that TA[i],n is lexicographically
smaller than TA[i+1],n for all 1 ≤ i < n. For those comparisons to be well defined let us assume that
T finishes with a special character tn = $ ∈ Σ, lexicographically smaller than any other character
in Σ and not appearing elsewhere in T . Those strings of the form Ti,n are called suffixes of T , and
A points to all the suffixes of T in lexicographical order. As every substring of T is the prefix of
some suffix, it follows that all the occurrences of P in T are pointed from a contiguous range in
A, as the suffixes prefixed by P form a lexicographic interval. This range, A[sp, ep] can be binary
searched by comparing P against strings TA[i],A[i]+m−1, in overall time O(m log n).

The CSA replaces A by several more compact structures. The most important is Ψ, a per-
mutation of [1, n] defined so that A[Ψ(i)] = A[i] + 1. To replace A we also need C, an array
over Σ so that C[a] is the number of occurrences of characters smaller than a in T . Although
we cannot recover A from Ψ and C, we can simulate the binary search in C. More precisely, we
are able to extract the substrings TA[i],A[i]+m−1 required by the binary search, as follows. As the
first characters of the suffixes pointed from A are ordered, TA[i] must be the character a such that
C[a] < i ≤ C[a + 1]. This is easily discovered by a binary search. To obtain the next character of
the suffix, TA[i]+1, we should know where is that text position pointed to from A, that is, for which
i′ it holds A[i′] = A[i] + 1, so as to repeat the argument above with i′. This is where Ψ comes into
play, as i′ = Ψ(i). Therefore, with C and Ψ we are able to find sp and ep.

To avoid the binary searches in C we can replace it with a bit vector D[1, n], so that D[1+C[a]] =
1 for a ∈ Σ and 0 elsewhere; and a string S of length at most σ containing the different characters
that appear in T in lexicographic order. Then the character corresponding to TA[i] is S[rank(D, i)],
where rank(D, i) is the number of bits set in D[1, i]. This rank query can be solved in constant
time by storing o(n) bits in addition to D [Jac89, Mun96, Cla96], and even within σ log n+o(n) bits
of space without explicitly storing D, as D has at most σ bits set [RRR02]. The complementary
query, used later in the paper, is select(D, j), which gives the position of the j-th bit set in D. It
can also be solved in constant time within the same space bounds [Mun96, Cla96, RRR02].

Thus, assuming we have constant-time access to Ψ, we can solve a counting query (returning
ep − sp + 1) in time O(m log n) by storing Ψ, D, and S. Yet, in principle Ψ is a permutation that
requires as much space as A. However, Ψ is compressible to a size that depends on the empirical
entropy of T [Sad03, MN05]. Some known properties of Ψ are: (1) Ψ is increasing within the
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suffixes that start with the same character; (2) if we represent those differences between consecutive
increasing values using δ-coding [Eli75], the total number of bits required is nH0(T )+O(n log log σ);
(3) if we call a run in Ψ a maximal area Ψ(x, y) where Ψ(i + 1) = Ψ(i) + 1 for all x ≤ i < y, then
Ψ can be covered with at most nHk(T ) + σk runs, for any k, and thus it can be represented
using this number of entries. Informally, frequently repeated substrings in T translates into long
runs in Ψ. Sadakane takes advantage of property (2) so as to achieve nH0 + O(n log log σ) bits to
represent the whole index. This compressed representation can still be accessed in constant time
using Four-Russians techniques and some additional tables, see [Sad03] for details.

For locating the occurrences, it is necessary to store some samples of A. T is sampled at regular
intervals d and the values i such that Tj,n is pointed from A[i] = j are stored. More precisely, we
store the pairs (j,A−1[j]) = (A[i], i) for all j = A[i] multiple of d. In order to locate the occurrence
A[i] for some sp ≤ i ≤ ep (recall that we are not storing A), we first check whether i has been
sampled. If it is sampled, that is, (A[i], i) is stored, we deliver the value A[i]. Otherwise we try
with i′ = Ψ(i), i′′ = Ψ(Ψ(i)), and so on, until we find a sampled value (A[i∗], i∗) after s steps. Since
A[Ψ(i)] = A[i] + 1, it follows that our original value was A[i] = A[i∗] − s. Moreover, the number
of steps will be at most the sample size because we are virtually traversing T in forward direction
until finding a sampled text position. To know in constant time whether a position i is sampled, we
can use a bit array Smp[1, n] so that Smp[i] = 1 iff i is sampled, plus an array Pos containing the
values A[i], that is, Pos[rank(Smp, i)] = A[i]. Thus the process takes worst-case time proportional
to the sample size d. If this is O(log n), we have O(log n) time to locate each occurrence and O(n)
extra bits to store the samples.

Finally, to display a text substring Tl,r, we already know how to obtain the consecutive char-
acters of TA[i],n, so we only need to find i = A−1[l]. The sampling used for locating is useful again.
Assumed APos stores the values i we have sampled in Smp, stored by increasing text positions
j = A[i]. Then the text sample preceding l is p = ⌊l/d⌋, and it is pointed from i = APos[p] in A.
Thus we find consecutive characters starting at TA[i] until surpassing r. Overall the process takes
time O(r − l + d).

4 A Compressed Graph Representation

Our essential idea is to regard the graph G = (V,E) as a collection of texts and use a self-index
to manage it. If we just used a compressed sequence representation for this collection [SG06,
GN06, FMMN06] we would be able of retrieving the neighbors of any node (as this is equivalent to
extracting its list of nodes as a substring of the text collection). Yet, by using a compressed self-
index, we will be able to retrieve, in addition, the reverse neighbors, by using the search capabilities
of the text index.

Definition (graph text) Given a labeled directed graph G = (V,E), let N(v) = {u ∈ V, (v, u) ∈
E} the set of neighbors of node v ∈ V . Let T (v) be the sequence formed by the nodes in N(v) in
decreasing indegree order. Let v1, v2, . . . vn be the set V listed in an decreasing indegree order.
Then, the text of graph G is the string T (G) = T (v1)T (v2) . . . T (vn) over the alphabet V .

Note that the number of occurrences of vi in T (G) is precisely its indegree, and |T (G)| = |E| = e.
Our compressed graph representation is essentially a CSA built over T = T (G)$, yet we need some
specialized structures. More precisely, our data structures are as follows:
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• Ψ: is the usual Ψ function described in the previous section. The only difference is that, if ti
is the last character of T (vj), then Ψ(i) is defined as |T | + j.

• H: is a pointer to the first (header) node of each list in the suffix array A of T (A is not
represented explicitly). That is, H[i] = j iff tA[j] is the first character of T (vi). H has n = |V |
entries.

• D: is the usual D array (equipped for rank queries) described in the previous section. Note
that we do not have array S.

As explained, obtaining the neighbors of a node is equivalent to retrieving a substring of T ,
whereas obtaining the reverse neighbors is similar to a search query. More precisely, the processes
are as follows:

To obtain the neighbors of vi: We get the entry j = H[i] in A that points to the first character
in T (vi). The first element of T (vi) is thus vrank(D,j), just as in the previous section. Note that we
do not need S because the nodes are sorted by decreasing indegree, that is, by decreasing number
of occurrences. Therefore, all those nodes with zero occurrences are at the end, and thus the t-th
bit set in D directly corresponds to vt. Once we obtain the first character of T (vi), we move on to
obtain its next character from j′ = Ψ(j), and so on. The process finishes when j > e + 1, as this
signals the end of the list. This method retrieves each neighbor in constant time, yet it cannot tell
the outdegree of vi (that is, |T (vi)|) without actually generating the whole list. It can, on the other
hand, generate only a prefix of the list in time proportional to the length of the prefix generated.
The neighbors are actually output from most to least popular (higher to lower indegree).

To obtain the reverse neighbors of vi: Those are the nodes j in whose lists T (vj) does vi

appear. Their number corresponds to a counting query for the pattern P = vi. This is a length-1
pattern, which is easily counted as ep − sp + 1, where ep = select(D, i + 1) and sp = select(D, i)
(because all the occurrences of vi are contiguous in A). Thus we can compute the indegree of a node
in constant time. In order to find out the reverse neighbors, we must locate all those occurrences
sp ≤ i ≤ ep. For each such A[i], more than its position in T (as a usual locating query) we want
to know the list T (vj) to which A[i] belongs. For this sake we apply Ψ consecutively over i (thus
virtually advancing forward in T (vj)), until we reach the end of the list. This is recognized because
we reach at i > e + 1, and moreover j = e + 1 − i (see our modified Ψ definition). The time to
output each reverse neighbor is in this case proportional to its outdegree. This can be reduced by
using a sampling technique similar to that of the previous section for the basic CSA.

The overall space usage of our index is n⌈log(e+1)⌉ bits for H, e+o(e) bits for D, and the space
for Ψ. This can easily be made eH0(G) + O(e log log n) by using the same technique of Sadakane
(see previous section). By compressing the runs we can achieve space of the form O(eHk(T ) log n),
proportional to the k-th order entropy of T (G). Note that, by regarding the graph as a text, we can
give some space bound in terms of the k-th order entropy of that text representation, and moreover,
the property of similarity in neighbor lists successfully translates into k-th order text compression.
Note also that we are not wasting any space in order to support reverse neighbors.
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5 Preliminary Experimental Results

We implemented our compressed graph data structure (see Appendix A for some details) and
applied over different graphs obtained from public sources such as WebBase4 and WebGraph5. In
this section we compare our structure against the best alternative, that is, the structure of Boldi
and Vigna [BV03]. To display comparable results, we indexed the same .uk crawl mentioned in
their paper (n = 18.5M, e = 292M).

Our machine is an Intel Pentium 4 at 3GHz with 4GB RAM, running Linux. Our code is
written in C and compiled with gcc using full optimization.

Figure 1 compares the performance of both schemes. In our case we have varied the sampling
step q from 8 to 256, obtaining different space/time tradeoffs. In addition, reverse neighbor counting
takes slightly less than 1 microsecond independently of the sampling step. The times for the other
scheme are obtained from their paper [BV03]. Those times are not fully comparable because
different machines and programming languages are used, but still one can see that the times are of
about the same order of magnitude for the forward neighbors, where both schemes behave similary
when using 8–10 bits per edge. For reverse neighbors, we are still far behind.
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Figure 1: Space/time tradeoffs for normal (left) and reverse (right) neighbor search of our scheme
and that of Boldi and Vigna.

6 Conclusions

The main contribution of this paper is to open a new line of attack to the graph compression
problem, more precisely to implement a compressed graph data structure that can be manipulated
without uncompressing it. Our idea has two key ingredients. The first is that a graph can be re-
garded as a text, where there exist a large number of theoretical and practical tools for compression
and indexing. The second is that, using a self-index, we can retrieve the forward and the reverse
neighbors using a single data structure: While retrieving forward neighbors is similar to recovering

4http://www-diglib.stanford.edu/∼testbed/doc2/WebBase.
5http://webgraph.dsi.unimi.it.
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a passage of the compressed text, retrieving reverse neighbors is achieved via searching the text.
Thus the concepts of compression and indexing are mixed to obtain a succinct data structures for
graphs with extended functionality. While alternative approaches need two separate structures for
the graph and its transpose, we have a single indivisible structure that simulates both.

We have shown that our technique, even implemented as a first prototype, is at times competitive
with the highly-optimized and carefully engineered implementation of Boldi and Vigna, by far the
best existing competitor. This shows that our idea has the potential of becoming a fully competitive
choice for this problem. Moreover, we have demonstrated that the connection with text compression
makes it possible to define a concept of graph entropy that captures some of the key features that
permit compression of Web graphs, and which are absent in the much weaker traditional definitions
of graph entropy.

As explained, we regard this paper as foundational, not terminal. The ideas we have proposed
here admit many other realizations. For example, we can obtain a different text from the graph by
listing the edges (u, v) instead of the lists of adjacencies. This makes a longer text which, however,
promises to be much faster to answer queries6. We can also use a different self-index to handle the
text, such as [MN05, Nav04]. We are currently pursuing all those combinations. It is also open to
explore which other operations can be efficiently answered with these compressed data structures.
Finally, as usual, we will have sooner or later to face the challenges of construction in little space,
dynamism, and secondary memory friendliness. Definitely, there is a lot of fun ahead.
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A Practical Implementation

To implement our scheme, some practical decisions have to be made. We describe the most impor-
tant ones in this section.

Node ordering: Sorting the nodes by decreasing indegree has several advantages. The most
obvious one is that we do not need to store string S, as explained (note that S would be significantly
long in our application). Another is that it is likely to produce longer repeated substrings in T ,
and thus enlarge the runs in Ψ. The rationale is to avoid that infrequent nodes interrupt similar
sequences produced by similar sets of frequent nodes in the neighbor lists.

Compression of Ψ. The number of cases where Ψ(i + 1) = Ψ(i) + 1 amounts to a large part of
the array (close to 75% in our tests). Thus it is good idea to give some special treatment to the
runs (we also verified this experimentally). What we do is that we represent consecutive differences
(gaps) Ψ(i + 1) − Ψ(i), and when this difference is 1 we assume the start of a run of 1’s, so the
number that follows is the run length (even if this length is 1). To encode the differences we tried
δ-encoding and some relatives but the results were not very good. We opted for an optimal scheme
such as Huffman encoding (even if this implies storing its table). By using canonical Huffman
encoding we have to store little more than the permutation of values in increasing frequency order.

A problem is that the distribution of values has a very heavy tail, that is, there is a very large
number of different gap values that occur only once. Thus we truncated the Huffman coding at some
number of symbols. An escape code (whose frequency adds up all the non-represented symbols)
indicates that a non-represented symbol follows. This symbol is encoded next to the escape code,
in absolute form (rather than difference form) using a fixed number of bits. We use 512K symbols
for this Huffman coding and still the escape symbol was always the most frequent one, followed by
the gap 1. Run lengths are encoded using another Huffman encoder, where all the possible lengths
are represented in the code.

To permit fast access to Ψ we use a technique similar to the practical implementation of
Sadakane [Sad03]. At regular intervals q in Ψ we insert absolute samples in its compressed repre-
sentation, using a fixed number of bits. An array Pos indexed by sample number stores a pointer to
the bit position in the compressed representation of Ψ where the corresponding absolute sample is
written. In order to obtain Ψ(i) we find p = ⌊i/q⌋ and start decompressing Ψ from position Pos[p],
skipping entries until reaching position i from pq. Note that a run lets us advance many positions
in one shot. In this traversal we accumulate the differences over the original absolute sample, unless
we find other absolute values (next to escape codes in the compressed representation). Note also
that, if an absolute sample coincides with an escape code, we represent the absolute value only once,
without the escape code. The most relevant space/time tradeoff given by the index representation
is given by parameter q.

12



Reducing H. Header array H poses a considerable space overhead, of about 2–3 bits per edge
(as each pointer requires about 30 bits in sufficiently large graphs, and the ratio e/n is about
10–15). This can be reduced by considering that in many graphs only a few nodes have positive
outdegree (nonempty T (vi) list). For this sake, we set up a bit vector isH[1, n], where isH[i] = 1
iff |T (vi)| > 0, and store H only for the nodes with positive outdegree: if isH[i] = 1, the original
value H[i] is stored at H[rank(isH, i)]. For this to be a bad idea it is necessary that about 29/30
of the nodes have outgoing edges, which is hardly the case in Web graphs.

Rank and select. We need to do rank over isH and D, and select over D. We use the optimized
implementation of [GGMN05], which poses 37% space overhead over the bit array. It answers rank
in true constant time, whereas select is solved in logarithmic time by a layered binary search over
the rank data structures.

Locate by groups. Locating the occurrences of [sp, ep] one by one is a waste of work, as already
noted by Sadakane [Sad03]. We reimplement his idea for our case. Note that, when we locate
occurrence sp + 1, we have to access Ψ(sp + 1), which is next to Ψ(sp). We most probably have
to start from the same sampled position and decompress again the same bits, to reach one code
further. It would be much faster to decompress Ψ(sp, ep) in one single pass. Moreover, as runs
in Ψ are common, it is usual that positions Ψ(sp) . . . Ψ(ep) contain a few long runs of consecutive
values, so that we can apply again the same idea over a few runs instead of splitting the process into
many individual tracings. We avoid the recursion by starting with an array containing sp . . . ep,
then detecting its runs (only one run initially), and then applying Ψ over each run separately (one
pass of sampling plus decompression per run). The process is now repeated (finding the new runs
again, etc.) until all the values exceed e + 1. This technique yielded a 10-fold improvement in the
time cost of reverse neighbor queries. Actually, with the performance achieved, adding samples to
shorten the paths looks as a bad idea, as now many paths are traversed for free, and we would need
a rather dense (and thus space-expensive) sampling to achieve a noticeable improvement. Still,
reverse queries are 10 times slower than normal neighbor queries.
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