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Abstract. A software contract specifies the behavior of an operation,
focusing on its effect on the system state, and can be used as a basis to
design a realization of such behavior. In object-oriented software devel-
opment, software contracts are often used during analysis for specifying
system level operations. Also in this context, object interactions are used
to represent the behavioral design. Software contracts suggest a set of
system responsibilities, which in turn are assigned to objects during the
design. This step in the development process is currently performed man-
ually, requiring some extent of creativity. Although general guidelines for
assigning responsibilities exist, no systematic approach to extract a de-
sign from software contracts has been proposed. In this work we explore
the elaboration of such an approach. To this end, we propose techniques
based on model transformations and other Model Driven Engineering
concepts for automatically extracting object interactions, expressed in
terms of communication diagrams, out of software contracts. Addition-
ally, a toolset supporting these techniques was developed and we show
their applicability to a well known case study.

1 Introduction

A development process organizes software development into a series of activities,
each of them accepting input artifacts and producing output artifacts. A concrete
processes proposes methods and techniques, which prescribe, with varying levels
of detail, how to perform many of those activities. Currently, there exist a number
of tools which assist or even automate the realization of some activities. However,
many of them are still carried out manually by developers.

Model Driven Engineering (MDE) promotes an approach where artifacts are
considered as models and the activities which manipulate them as transforma-
tions. Such an approach requires the formalization of models and the system-
atization of activities. In object-oriented development, a number of activities
are already in this category. For example, in implementation activities, partial
source code generation from class diagrams is widely supported by CASE tools.
Also, design class diagrams can be automatically generated from a set of object
interactions and a domain model [19]. Tools typically automate activities which
involve translation and where artifacts are well understood. Examples of such



activities are those comprised in design, implementation and even testing. Activ-
ities involving creativity, particularly at early stages of development, usually lack
tool support. An example is the transition from analysis to design, most notably,
the activity of extracting a design out of a system level behavioral specification.

In this work we explore the elaboration of such an approach in the context of
the Rational Unified Process [9] and the refinement proposed by C. Larman [10]
for the specification of system behavior. There, system behavior is specified by
means of Software Contracts, and the key aspects of design are object interac-
tions which realize such specifications, expressed as communication diagrams.
In these terms, the problem addressed is the elaboration of an approach for ex-
tracting object interactions out of software contracts of system level operations.

This activity is comprised in the Analysis and Design discipline and is cur-
rently considered as mainly creative. In practice, the activity is carried out man-
ually. Methodological approaches do not provide concrete guidance in how to
design object interactions from software contracts, thus no tool assistance is
available. This activity involves two main steps: to identify fine grained respon-
sibilities from system level responsibilities expressed in the software contracts,
and to assign such fine grained responsibilities to objects. The first step is realized
by a thorough analysis of software contracts, and usually, based on the develop-
ers’ understanding of the system responsibilities. Specifying complete software
contracts is not trivial; underspecified contracts provide little information for
responsibility identification. Since in many practical situations they currently
are not cost effective, their specification is usually omitted. Expertise of object-
oriented developers lead to techniques, such as CRC [2] and GRASP [10], which
provides criteria for responsibility assignment and metrics for structure design.
However, these techniques provide no support to fine grained responsibility iden-
tification and little assistance on the steps to be followed for using such criteria.
The assignment of fine grained responsibilities is usually performed ad-hoc and
not documented explicitly. Interaction design is related to programming. Deriv-
ing interaction design from a set of responsibilities is therefore related to program
derivation. The general case for program derivation seems unfeasible, or at least
hard to tackle. Existing approaches from the formal methods area [8] focus on
algorithms like searching or sorting, but there are none tackling program deriva-
tion for large object-oriented systems. This work is not intended to cope with
the general case, and neither to be applied to all large systems. It is restricted to
object-oriented systems whose state is based on information models, and where
system operations manipulate such state.

The approach we propose tackles the two main steps mentioned above sep-
arately. The first step is based on the existing resemblance between a software
contract for a system level operation and a relational model transformation which
exhibits the same behavior of such system level operation. If we understand soft-
ware contracts as equivalent to relational model transformations, then an engine
which is capable of executing such transformation on a given input system state
could be extended to additionally deliver the set of actions on that input state
which are necessary to produce the output system state. Such actions conform
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Fig. 1. Domain Model for the POS system.

the set of fine grained responsibilities. We use QVT [12] for specifying software
contracts and build a QVT Engine for processing the corresponding relational
transformation that produces these responsibilities as its output. The second step
consists of a mechanical transformation which generates an object interaction,
based on the information model, the set of responsibilities and a set of design
decisions in terms of GRASP. For this purpose, we built a Kermeta weaver that
takes the execution trace generated by the QVT Engine and the design deci-
sions, and builds the communication diagrams that realize the original software
contracts.

The rest of this paper is organized as follows. Section 2 introduces background
information on software contracts, object-oriented design, relational model trans-
formations, and the driving case study used to illustrate our approach. In Section
3 the key aspects of the approach are presented, and the tools developed for val-
idating its feasibility are discussed. Section 4 details the complete application of
our approach to a system operation within the case study, and demonstrates the
operation of the toolset. Section 5 concludes.

2 Background

2.1 POS

The case study we work on along this paper is the NextGen point-of-sale (POS)
system introduced by C. Larman in [10], where it is used to explain the applica-
tion of the Rational Unified Process. It deals with different kinds of requirements
such as functionality, fault-tolerance, client-server communication, flexibility and
customization. In this work we exclusively focus on functional requirements.

A POS system is a computerized application used to record sales and handle
payments in a retail store, which is deployed on each register. Figure 1 presents
the Domain Model for the application. This model is variant of that presented
in [10] intended to simplify the exposition of our proposal. In the POS domain
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Fig. 2. System Sequence Diagram for the main success scenario of the Process Sale use
case.

there is a single register which has a product catalog containing product specifi-
cations. In addition, the register logs all completed sales and may be working on
a current sale at a particular point in time. Each sale preserves the list of items
sold. The main use case for this application is the Process Sale, in which the
cashier processes a new sale. Figure 2 presents the System Sequence Diagram
for the main success scenario. In this scenario, the cashier asks the system to
make a new sale. Each product being purchased is recorded by the system. When
no more products are left, the cashier finishes the sale and the system presents
the sale total. Finally, the cashier indicates the amount payed by the customer
and the system presents the balance.

2.2 Software Contracts

Software contracts have their roots in work on formal specification and verifi-
cation of software programs, and mainly on Hoare logic [7]. B. Meyer ported
the notion of program specification to the object-oriented paradigm, present-
ing in [11] a object-oriented design methodology based on software contracts.
There, class level operations are axiomatically specified by means of pre- and
postconditions.

In the Rational Unified Process, and particularly in Larman [10], software
contracts are applied in an alternative scenario. Here, software contracts are
Analysis artifacts which describe the semantics of a system level operation. In
this scenario, the whole system is understood as an object, instance of a fictitious
class System. The Domain Model of the system specifies the internal structure or
state of such object, while the System Sequence Diagrams specify the operations
that must be provided by the class System. Software contracts express the seman-
tics of these operations by describing their effect on the system state. Different



Operation: enterItem(id:Integer, qty:Integer)

Preconditions: · There is a current Sale in the Register.
· There exists a ProductSpecification with itemID equals to id in the
ProductCatalog of the Register.
· The value of qty is greater than 0.

Postconditions: · The current Sale has a new SalesLineItem.
· This line item has quantity equals to qty and corresponds to the
ProductSpecification which itemID is id.

Fig. 3. Software contract for enterItem() in natural language.
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Fig. 4. Snapshots exemplifying the effect of enterItem().

techniques and languages may be used for expressing a software contract. Figure
3 presents the software contract for the enterItem() system level operation in
natural language. Snapshots illustrating the system state before and after the
execution of this operation are shown in Figure 4. A formal version of this con-
tract expressed in OCL is presented in Figure 7. Informal contracts are easier to
define than formal contracts, however, the formal ones are more unambiguous
the informal versions.

Software contracts are usually specified in terms of conditions (predicates)
on states. System designers must extract fine grained responsibilities out from
contracts and then design a solution that realizes them. In [10], software contracts
are not expressed in terms of conditions, rather they directly list the actions that
need to be performed. Figure 5 shows a software contract of this style. This kind
of contracts go a step further into design than those based on conditions. This
work is based on this latter kind of contracts as they focus on specification rather
than on realization.

2.3 Object-Oriented Design

Object-oriented design involves the development of a Design Model which fully
realizes all system responsibilities. From a dynamic perspective, this model is
formed by a net of interacting objects that, altogether, fulfils the system’s goal.
This perspective is stated by means of communication diagrams. From a static
point of view, the model is conformed by a set of related classes that determine
the system internal structure which provide support for the object interactions.



Operation: enterItem(id:Integer, qty:Integer)

Cross References: Use Case Process Sale

Preconditions: · There is a sale underway.

Postconditions: · A SalesLineItem instance sli was created (instance creation).
· sli was associated with the current Sale (association formed).
· sli.quantity became qty (attribute modification).
· sli was associated with a ProductSpecification, based on id match
(association formed).

Fig. 5. Software contract for enterItem() proposed by C. Larman in [10].

Based on the specification of the system responsibilities of each system level
operation, developers create an object interaction to realize it. To this end, the
system responsibility is distributed among the objects; this approach is known
as responsibility-driven design [10]. This activity is currently performed manu-
ally, requiring some extent of creativity. Although general guidelines exists, no
systematic approach to extract a design from the specification of system respon-
sibilities has been proposed. The General Responsibility Assignment Software
Principles (GRASP) provide guidelines for achieving this goal. GRASP defines
basic object-oriented principles or building blocks in design [10]. They aid devel-
opers in structuring the object interactions in order to obtain quality designs.
No general methodology for applying these building blocks is available. Based on
the fine grained responsibilities for a system level operation, developers decide
which criteria to follow.

At system design, for each system level operation developers build a commu-
nication diagram describing the object interaction. This interaction assumes the
preconditions of the operation because reaching such system state is responsibil-
ity of the operation caller. However, object interactions are in charge of fulfilling
the postconditions. To this end, GRASP are applied, although seldom docu-
mented. Figure 6 presents the communication diagram for the enterItem() sys-
tem level operation. Then, a class diagram is derived from the communication
diagrams. It sums up the internal static structure of the system. This activ-
ity can be developed systematically, and also automatic approaches have been
proposed [19]. Both communication and class diagrams provide a graphical rep-
resentation of the Design Model.

2.4 Relational Model Transformations

Model Driven Engineering is a general approach based on domain specific lan-
guages and model transformations for aiding software development. Model trans-
formations translate between source and target models. As indicated in [5], dif-
ferent techniques provide such functionality: direct model manipulation, graph-
based, structure-driven, and relational.

In this work, direct model manipulation and relational approaches are used.
In the first technique, models are instance of an object-oriented meta-model and
transformations directly operate on source and target models by means of an
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API. An engine for such technique directly executes the code of the transfor-
mation; Kermeta is an example of such engine. In the relational technique, a
transformation between candidate models is specified as a set of relations that
must hold on the models for the transformation to be successful. QVT Rela-
tions is a relational transformation language, part of the QVT [12] specification.
Relations in such language can be checked or enforced; an engine capable of
executing these relational transformations can then modify the target model so
as to satisfy the relationships.

3 Solution

For achieving our goal, we propose an approach based on four key ideas that
strongly rely on Model Driven Engineering techniques: domain specific languages
and model transformations. We also provide tool support for fully automating
these techniques.

3.1 Approach

Extracting the system behavioral design out from software contracts of the sys-
tem level operations is a hard task to accomplish in one single step. Several
artifacts at different levels of abstraction are involved, and their semantics is
not easily mapped. So building a transformation for such a task requires some
sophistication. Several input models are weaved into a resulting model making
use of some user assistance. This last issue prevents from achieving full automa-
tion; however, full automation can be obtained by early specifying some design
decisions. There are four ideas that are key to our approach: divide and con-
quer, software contracts are model transformations, an extended transformation
engine, and explicitly specified design decisions.



A software contract for system level operation specifies the behavioral effect
of an operation on the system state. It states the system level responsibilities
that must be carried out by any implementation for the corresponding opera-
tion. In object-oriented design, these responsibilities are distributed among the
interacting objects in the system. We propose to divide this gap in two separate
stages. The first stage consists of extracting the set of system level responsibil-
ities out from software contracts. These responsibilities are expressed in terms
of state modification primitives like create, set, link and unlink, as suggested
by [13, 18]. Once this is done, the second stage is to assign them to the interact-
ing objects that conform the system state, so as to obtain such interactions in
terms of communication diagrams.

System level operations can be either system state queries or updates. Soft-
ware contracts are of major interest when used for specifying the latter case.
Here, a system level operation alters the system state, modifying the initial
state s1 to get a final state s2. Then, a system level operation can be seen as a
function or transformation from state to state. A model of the system state can
be expressed in terms of a UML object diagram as the one in Figure 4. Let σ1

and σ2 be the models of the system states s1 and s2. A system level operation
that takes the system from s1 to s2 can be seen as a model transformation of σ1

into σ2. The software contract specifies the effect that the operation has on the
system state, and accordingly the transformation to be performed on the source
instance model in order to obtain the target instance model.

Given that a system level operation is a function, two consecutive states of
a system can be related by means of the operation that generates one from the
other. The semantics of the modeling/programming language generally defines
such relation. Another way of relating two consecutive states is by means of
the software contract of the operation. Then, the initial state must satisfy the
preconditions, the final state must satisfy the postconditions, and only what is
specified can change. If two consecutive states satisfy such a relation, then there
exist a program realizing the contract that transforms the initial state into the
final state.

Our key idea is that a software contract can be itself a model transformation.
There are several kinds of model transformations. Relational model transforma-
tions state a relationship between the source and target models, and thus they
are quite similar to the specification of software contracts. Hence, to specify
a software contract is equivalent to defining a relational model transformation
from a model of the initial state into a model of the final state. This interpreta-
tion of software contracts as relational model transformations is aligned to some
ideas explored in [4]. Also, following the classification of model transformation
approaches proposed in [5], a software contract can be cataloged as a model
transformation that in the Source-Target Relationship dimension corresponds
to Existing Target, as the input system state is duplicated and considered as
the initial output state. As this copy of the state is modified it is an Update
transformation, which in particular is Destructive as certain elements can be
possibly eliminated (e.g. links).



context System::enterItem(id:Integer, qty:Integer)

pre: not self.register.curSale.oclIsUndefined()
pre: self.register.prodCat.prodSpec→exists(itemID = id)
pre: qty > 0

post: self.register.curSale.lineItem→one(x | x.oclIsNew())
post: let ps = self.register.prodCat.prodSpec→any(itemID = id);

s = self.register.curSale;
sli = s.lineItem→any(x:SalesLineItem | x.oclIsNew())

in
sli.prodSpec = ps and sli.quantity = qty

Fig. 7. Software contract for enterItem() in OCL.

To illustrate this idea, Figure 7 presents a formal version of the software
contract for the enterItem() operation in OCL. In turn, Figure 8 presents the
software contract as a relational transformation in QVT. Figures 7 and 8 present
different versions of the same software contract: one in terms of OCL and other
in terms of QVT. Given that a QVT relational transformation establishes the
predicates that must hold in the source and target model, the transformation
establishes what must be done and not how it must be done. An engine tool able
to execute such kind of transformations should manage to make these predicates
hold.

A relational transformation engine must be able to identify the set of actions
that must be performed on the initial target model in order to obtain the final
target model that satisfies the relations. For example in Figure 4, which shows
the transformation from a initial target model σ1 into a final target model σ2

for the relational transformation of Figure 8, the engine must decide that a new
SalesLineItem has to be created, that it must be linked to the current Sale and to
the corresponding ProductSpecification, and that its attribute must be set. These
actions correspond to the fine grained responsibilities that can be extracted from
the software contract; these responsibilities are listed as a postcondition in the
C. Larman’s version of this contract in Figure 5.

For identifying fine grained responsibilities, given a software contract in terms
of a relational transformation, we are more interested in the set of actions that
needs to be performed than the resulting target model itself. Current implemen-
tations of QVT engines have still limited functionality, such as [15] and [16].
However, even a fully-compliant QVT engine would not produce as output a key
element to our approach, that is, the set of performed actions. Our approach
requires an extended engine for executing relational transformations. Such ex-
tension makes the engine to record information about the initial state of the
models and also log the set of actions that needs to be performed in order to
obtain the final model. This information is the execution trace of an operation.
As noticed in [1], the output of the execution of a model transformation can
be of different kinds: the resulting model itself, a list of atomic changes, or a
special model reflecting the difference between the initial and the final model.



1 transformation enterItem(in : POS, out : POS)
2 {
3 key Register(name);
4 key ProductSpecification(itemID);
5 key Sale(date, time);
6

7 input parameter id : Integer;
8 input parameter qty : Integer;
9

10 top relation SysOp
11 {
12 vname : String;
13 vdate : Date;
14 vtime : Time;
15

16 checkonly domain in r : Register
17 {
18 name = vname;
19 curSale = s : Sale {date = vdate, time = vtime},
20 prodCat = pc : ProductCatalog
21 {
22 prodSpec = spec : ProductSpecification {itemID = id}
23 }
24 };
25 enforce domain out r’ : Register
26 {
27 name = vname,
28 curSale = s’ : Sale
29 {
30 date = vdate,
31 time = vtime,
32 lineItem = sl’ : SalesLineItem
33 {
34 quantity = qty,
35 prodSpec = spec’ : ProductSpecification {itemID = id}
36 }
37 }
38 };
39 when { qty > 0 }
40 }
41 }

Fig. 8. Relational transformation for enterItem() in QVT.

The second kind of output, named the execution trace in this work, is what is
expected from the QVT engine.

Continuing with the example for the enterItem() system level operation, the
execution trace obtained from the contract in Figure 8 is presented in Figure
9. The execution trace of Figure 9 is formed by three parts: the assumptions
on lines 3 to 17, the actions on lines 19 to 24, and the design decisions on lines
26 to 28. Assumptions and actions can be actually extracted from the software
contract while design decisions could only be suggested.

The second stage of our approach consists of assigning the fine grained re-
sponsibilities to system objects, generating the communication diagrams. To this
end, the design decisions that need to be made must be specified so as to gener-
ate the desired artifact. GRASP provide a well-understood and broadly-accepted
vocabulary for referring to responsibility assignment in object-oriented design.



1 xtrace enterItem
2 {
3 domain model POS;
4

5 input parameter qty : Integer;
6 input parameter id : Integer;
7

8 search key id of ProductSpecification;
9

10 object r : Register;
11 object s : Sale;
12 object pc : ProductCatalog;
13 object spec : ProductSpecification;
14

15 areLinked r, s, capturedOn;
16 areLinked r, pc, usedBy;
17 areLinked pc, spec, contains;
18

19 createAction sl : SalesLineItem
20 {
21 linkAction s, sl, containedIn;
22 setAction sl, quantity, qty;
23 linkAction sl, spec, describedBy;
24 }
25

26 creator Register of Sale;
27 creator Sale of SalesLineItem;
28 controller r;
29 }

Fig. 9. Resulting xTrace for enterItem().

Our approach relies on the specification of which GRASP must be applied dur-
ing design. Some basic GRASP as Creator, Expert and Controller might be
extracted from the software contract and the Domain Model. However, tieing
design decision to the system specification may be inappropriate in the general
case. By separately specifying these decisions they get explicitly documented
and the approach is more flexible as the generated artifacts can accommodate to
different scenarios. To this end, we extend the execution trace resulting from the
previous stage in order to include these decisions. They are expressed in terms
of the application of GRASP. For example, Figure 9 shows these decisions in
lines 26 to 28. The extended execution trace states that the Register class is the
creator of Sale class (line 26) which in turn is the creator of SalesLineItem (line
27). In addition, line 28 states that the Register instance r is the controller of the
system operation.

Overall structure of the solution Figure 10 presents the overall structure of
the solution to the problem being address.

In the context of object-oriented development processes, requirement gath-
ering is approached by building a Domain Model and writing down use-cases
for functional requirements, which in turn are used for identifying system level
operations. Each use-case scenario is analyzed and, as a result, a System Se-
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quence Diagram is build for each of them. For the POS System, the Domain
Model is presented in Figure 1 and the System Sequence Diagram for its single
use-case is shown in Figure 2. For each system level operation a software con-
tract is built. Different strategies and languages can be used to this end. Our
approach is based on specifying them as QVT relational transformations. Fig-
ure 8 presents the corresponding software contract for the enterItem() system
level operation. Software contracts can be accompanied by snapshots in order
to depict the effect of the operation (see Figure 4). Our approach requires the
elaboration of an input snapshot satisfying the preconditions.

Once this artifacts are built, the extended QVT engine is used to process
them and generate the expected results. This tool executes the QVT relational
transformation as indicated by the software contract taking into account the
system Domain Model. The execution takes as input the snapshot for the initial
state of the system and the values for the transformation input parameters. The
execution produces an updated system state, the values for the transformation
output parameters, and the execution trace followed for manipulating the system
state. The top part of Figure 10 depicts this stage. In our example, the outputted
snapshot is shown in Figure 4 and the execution trace is presented in Figure
9. The execution trace lists the assumptions on the system state and the fine
grained responsibilities of the system level operation.

The following step is to generate a communication diagram that carries out
these responsibilities, and by this means, realizes the software contract. To this
end, the obtained execution trace is extended with the design decisions in terms
of GRASP. Then, Model Driven Engineering techniques are again applied. A
model transformation processes the extended execution trace and produces the
communication diagram. Accordingly to [3], this second stage is actually not a



transformation but a model weaving because there are two input models and
there is no complete automation. We here provide a particular solution to the
problem of integrating user guidance: the chosen design decisions are appended
to the execution trace, as shown in Figure 9. In our example, the outputted
diagram is shown in Figure 6. The produced diagram is not necessarily the best
design that can be achieved, but it is a behavioral design that correctly and
completely realizes the software contract of the operation and that follows the
specified design decisions. This step requires an additional artifact not outputted
by the previous step. By early specifying design decisions in a separate artifact,
fully automation can be achieved. However, developers may prefer to try different
design decisions. The proposed approach accommodates to both automatic and
interactive toolset scenarios.

3.2 Companion Toolset

The proposed approach could be followed manually. However, to get the best out
of the approach, a set of companion tools was developed so as to aid in the pro-
cess. Two tools compose the toolset: a QVT Engine for executing software con-
tracts expressed as QVT relational transformations, and a xTrace2CD model
transformation to produce the communication diagrams. Both tools are illus-
trated in Figure 10. In the Figure, squared entities correspond to input artifacts
created by the developer team and rounded entries represent artifacts gener-
ated by applying the approach and its companion toolset. The two tools com-
posing the toolset are also depicted in the Figure: the QVT Engine and the
xTrace2CD transformation. In what follows, we explain the overall architec-
ture of these tools.

QVT Engine. The first step of the approach relies on the execution of QVT
relational transformations. Our approach requires a nonstandard engine as ad-
ditional output is expected from it. As a consequence, we developed a tool called
QVT Engine which executes QVT relational transformations and outputs the
expected artifacts. This tool is not a fully-complaint QVT engine; rather, it in-
cludes the additional capability while coping only with those constructs of QVT
that were mandatory for implementing the case study. The QVT Engine is im-
plemented in Prolog [17]. The Prolog execution model, based on unification
and backtracking, favors the processing of relational transformations. This as-
sessment is shared with [5], where the logic programming paradigm is suggested
as the best fit for implementing relational model transformations.

Inputs and outputs of the tool are Prolog terms. Parsers and pretty-printers
are planned for future work but they are not implemented yet. The QVT En-

gine receives several arguments for its execution. A relational transformation
must be provided. QVT relational transformations were extended as we need to
handle input and output parameters for the transformations; in other words, we
developed a domain specific language, inspired in QVT Relations, for expressing
software contracts of system level operations. Figure 8 is an example of usage



of such language. Additionally, a domain model must be provided; it consists
of a Prolog term indicating the set of classes and their properties. Associa-
tions are not first class citizens in our models as we follow the same approach
as Kermeta where associations are defined as related pairs of properties in the
associated classes. Also, the input consists of an initial state listing all existing
objects and the values of their properties. Each object has a unique object identi-
fier which is used for object referencing. The state preserves the next free object
identifier which is used and updated when new objects are incorporated to the
state. Finally, the values for the input parameters of the relational transforma-
tion must be provided. These input artifacts are the representation in Prolog of
those shown in Figure 10.

The execution of the tool proceeds in the following way. The initial state
is duplicated so as to consider this copy as the first version of the final state.
This final state is updated during the tool execution. Variables are allocated as
soon as they are declared, and their value is set as soon as available. First, the
QVT Engine processes the check condition identifying which combination of
objects satisfy it. For each combination the enforce condition is processed; this
procedure forces the condition to hold. To this end, the engine creates objects,
sets their properties, and links and unlinks pairs of objects as required. Which
action must be taken depends on the conditions in the enforce clause and the
system state. After this condition is enforced, the when condition is processed to
check whether it holds for the combination of objects identified in the execution
of the check and enforce conditions. Whether the combination is unsuccessful, the
engine backtracks so as to try with the subsequent combination. Later, the where

condition is enforced, which generally sets the values for the output parameters.
After finishing the execution, the final state, the values of the output parameters
and the execution trace are outputted.

The architecture of the QVT Engine tool is based on two kinds of modules.
On one hand, abstract data types were defined for each manipulated artifact
and the execution state. Prolog predicates were implemented to abstract away
the inner structure of the Prolog terms that represent the domain model,
transformation, system state, execution trace and variable values. On the other
hand, particular Prolog modules were developed to process transformations
and the involved conditions, and to evaluate OCL expressions. The condition
processor consists of four predicates, each for processing conditions in the context
of each kind of clause, namely check, enforce, when and where. Once a new kind
of condition needs to be used, only these predicates need to be updated so as
to handle it. The OCL expression evaluator was developed analogously. The
implementation of all these predicates is based only on the predicates defined
for the abstract data types modules.

Several challenges were confronted in the development of this tool, and two of
them deserve further comment. A methodological challenge we faced up was the
identification of which actions on the state must be performed so as to enforce
a given condition. A general predicate expressed as an OCL boolean expression
may be difficult to tackle. In the context of QVT, however, conditions are struc-



tured and each kind of them can be analyzed separately. Enforceable conditions
as OCL boolean expression can only be present in the where clause, and this
usage is strongly restricted in the current implementation. For each kind of con-
dition, we analyze all possible system states, and based on this information, we
decide which actions must be performed to get the condition to hold. A techno-
logical challenge we confronted was the backtracking nature of Prolog. Several
combinations of objects may apply to the transformation, and the backtrack-
ing mechanism explore them all. However, when a successful branch is reached,
the state must be preserved so as to process the following branches. This was
achieve be means of the backtracking-independent global variable assignment of
Prolog.

XTrace2CD. The second step of our approach relies on the execution of a
model transformation or weaving named xTrace2CD. Such transformation was
implemented in Kermeta [6] and is responsible of producing a communication
diagram from an extended trace. In this section we provide an overview of the
transformation, a detailed example of its operation is presented in Section 4.2.

Concrete inputs for xTrace2CD are the Domain Model and the extended
trace. The extended trace includes the execution trace produced by QVT En-

gine and the design decisions in terms of GRASP as illustrated in Figure 10.
Models manipulated by this transformation are expressed in XMI and are in-
stances of ECore metamodels: ClassDiagrams and XTrace metamodels for source
models, and CommunicationDiagrams metamodel for the target model.

xTrace2CD operates as follows. The target model can be understood as a
directed multigraph of objects, where a particular edge, called the entry point of
the diagram, represents the message which starts the interaction. Such message
corresponds to the system operation, and by convention it has no source object
and it is handled by the operation controller. The first stage of the transforma-
tion consists of generating the entry point. In the second stage, the sequence
of actions included in the extended trace is iteratively processed in order. For
every single action a set of messages is produced for resolving the corresponding
sub-interaction. It involves a number of messages for the action itself, and since
the controller is ultimately the source of every action in the interaction, a path
of messages from the object performing the action back to the controller. Argu-
ments required for performing the action, such as input parameters or objects,
are collected along such path.

Control is centralized in a class representing the transformation, which is also
responsible of generating the entry point. Once the main loop is entered, action
processing is delegated to specific classes specialized in processing each kind of
action. We keep track of the system state by updating an internal structure as
an action is processed. This state reflects the evolution of the interaction as it
occurs, and is used to enforce action’s preconditions. For example, an object
cannot be linked to another before it was created. The initial configuration of
such state satisfied the precondition of the system operation, and is taken from
the execution trace.



Among the main challenges faced in the development of the transformation,
two of them stand out. Given that the path of messages from the controller
to the object that performs an action is constructed backward, the numeration
of messages is not trivial. This is because other paths may have already been
generated in the target model and that when a message is created its invocation
context has not been decided yet. Second, the naming of the generated messages
was not straightforward in many cases. In the complete case study four com-
munication diagrams were generated, totalizing nineteen messages. Except for
the message that asks for the subtotal of a sale line item when the sale total
is calculated, names for the remaining eighteen messages were properly derived
from the context, resulting similar to those chosen in the original case study
in [10].

4 Case Study

The proposed approach and its companion toolset were validated on the case
study introduced in Section 2.1. Currently, following this approach and applying
the toolset, all system operations were successfully processed and all communi-
cation diagrams obtained. In order to illustrate the applicability of the approach
and the way the toolset operates, in this section we show step by step how
the resulting artifacts are generated. We circumscribe the presentation to the
enterItem() system level operation of the case study.

First, we show how the QVT Engine extracts the fine grained responsibil-
ities out of the software contract for the operation, also querying the Domain
Model of the system shown in Figure 1. These responsibilities are expressed in
terms of an execution trace. Second, this trace is extended so as to include the
design decisions in terms of GRASP; this extended trace is shown in Figure 9.
Thus, we show how the xTrace2CD transformation generates the correspond-
ing communication diagram, presented in Figure 6.

4.1 Execution Trace Generation

In this section we explain how the QVT Engine proceeds in order to achieve
the expected output by processing the input artifacts. Although both inputs
and outputs must be expressed as Prolog terms, we develop the explanation
in terms of the textual and graphical artifacts.

Four artifacts are the inputs for the QVT Engine: the Domain Model of
POS system, the software contract expressed as a QVT relational model trans-
formation shown in Figure 8, the initial state of the system expressed in terms of
an snapshot as σ1 in Figure 4, and a value for each transformation parameters.
The outputs consist of the resulting system state σ2 shown in Figure 4 and the
execution trace presented in Figure 9. As the QVT Engine does not support in-
place transformation, the initial state σ1 is provided twice to the transformation:
one received as in and the other as out in the transformation. The tool applies



the transformation updating the out system state, which initially corresponds to
σ1 and conforms the final state σ2 when the tool finishes the execution.

The QVT Engine takes the QVT transformation from the input and pro-
cesses it construct by construct. Let us follow the transformation line by line,
analyzing the actions performed by the tool for executing them.

1 transformation enterItem(in : POS, out : POS)

This line declares the transformation’s name and the participant models. The
tool records this information in the execution state. Also, it records that in and
out are attached to the corresponding copy of the input value σ1. Although in
the general case the input and output instances may differ in the model, our
application of QVT transformation always relies on a model common to both
instances. The execution trace is initialized as shown in lines 1 and 3 in Figure 9.

3 key Register(name);
4 key ProductSpecification(itemID);
5 key Sale(date, time);

From these lines the tool records which attributes are used for identifying in-
stances of a given class. For example, line 3 states that Register instances are
identified by its name attribute. This information is used later when we need to
look for a particular instance in the model.

7 input parameter id : Integer;
8 input parameter qty : Integer;

These declarations imply the allocation of id and qty as constants attaching them
to the values from the input. Output parameters may also be declared; this is
the case of the endSale() operation. Output parameters are allocated as vari-
ables and their value is initialized to null. Also, parameters are recorded in the
execution trace; see lines 5 and 6 in Figure 9.

10 top relation SystemOperation

Then, the single relation is processed. Such relation consists of variable declara-
tions and check, enforce, when and where conditions. The execution of the relation
proceeds as follows.

12 vname : String;
13 vdate : Date;
14 vtime : Time;

A variable is allocated for each declaration and its values is initialized as null.
The actual variables’ values are obtained when the check condition is processed.

16 checkonly domain in r : Register

The check condition declaration indicates on which model instance it operates
on (in) and which kind of objects is going to be checked (Register). All instances
of Register are attached to the variable r, one at a time, and the execution of the
relation proceeds for each of them. As in σ1 there is only one Register instance,
the relation is processed for this instance only. Line 10 is recorded in the exe-
cution trace; see Figure 9. The check clause also states the condition that must
hold for r, processed as follows.



18 name = vname;

This condition is checked on the name attribute of the object attached to r. As
vname is an uninitialized variable, the tool assigns the property’s value to it.

19 curSale = s : Sale {date = vdate, time = vtime},
curSale is the opposite association end of the capturedOn association between
Register and Sale. The right-hand side of this condition is an object template
construct which indicates that there must be a Sale instance as the value of the
curSale that must satisfy the inner conditions. The tool checks whether there
exists such an instance and allocates and initializes the variable s. Also, lines 11
and 15 are recorded in the execution trace. The inner conditions are checked by
comparing an object property with an uninitialized variable which makes the
variables’ values to be updated.

20 prodCat = pc : ProductCatalog
21 {
22 prodSpec = spec : ProductSpecification {itemID = id}
23 }

Analogously, an instance for pc is located, recorded in the execution trace (lines
12 and 16), and the inner condition checked. The prodSpec property is a set
of objects of class ProductSpecification. In this case, the object template condi-
tion behaves differently. The collection of objects is traversed and each object is
checked with the inner condition. The objects that satisfy it are used, one at a
time, in the remaining execution of the relation. Provided that there is a unique
instance whose itemID matches the value of the input parameter id, just one ob-
ject is to be considered. Variable spec is allocated and initialized, and lines 13
and 17 are recorded in Figure 9). Also, it is recorded that id is used as a search
key for ProductSpecification instances; see line 8.

25 enforce domain out r’ : Register
26 {
27 name = vname,

Analogous to the check clause, the enforce condition declares the model instance
to work with (out), the class of objects to check (Register), and the variable to
which each of these objects is allocated to (r’). Declared variables in the check

and enforce conditions must be different. Their values reside on different model
instances; a Register instance attached to r cannot be the same as the one at-
tached to r’. Provided that the name attribute of class Register is declared as key

(see line 3), the tool looks up a Register instance that matches this key condition.
As the variable vname was initialized with the name of r, the object found is a
Register instance in out whose name coincides with the name of r. Such object is
allocated to r’. Both r and r’ correspond to the very same object, r in the initial
state and r’ in the final state. Provided this relation between the initial and the
final state, objects and links are not appended to the execution trace while pro-
cessing the enforce condition. The actions performed to update the system state
are expressed in terms of the related objects in the initial state, already declared
while processing the check condition. The next condition must be enforced for r’

as follows.



28 curSale = s’ : Sale
29 {
30 date = vdate,
31 time = vtime,

The curSale property of r’ is already attached to a Sale instance. The condition
requires that this property must be attached to a Sale instance that satisfies the
inner conditions. As date and time are keys of the class Sale (see line 5), that
actually attached instance is checked to satisfy this key condition. If it holds,
no action is taken. If it does not, the unique Sale instance that satisfies this
condition would be looked up for and linked. If no such instance exists, a new
one would be created and linked. We find this scenario later. Thus, keys are
used to identify whether the already present objects are the ones expected and
also, to look them up in the set of all instances of a given class. As the first case
holds, s’ is allocated and initialized and the inner condition is enforced as follows.

32 lineItem = sl’ : SalesLineItem
33 {
34 quantity = qty,

s’ may have zero or more SalesLineItem instances in its collections of lineItems; in
our case no instance is present. No key is indicated for this class and then there
is no mechanism to compare its instances. So, a new instance of SalesLineItem is
created (as it cannot be looked up elsewhere) and appended to the collection of
line items of s’. Variable sl’ is allocated and initialized with this new instance.
Additionally, a createAction is registered in the execution trace. Given that the
inner conditions apply to the newly created instance, the resulting actions of
their processing are declared as inner actions of the createAction in the execution
trace. A linkAction is also registered in the execution trace indicating that s’ and
sl’ have to be linked. To enforce the first inner condition, the quantity attribute
of sl’ is set to the value of the input parameter qty. The tool updates the final
state out and records this fact in line 22 in Figure 9.

35 prodSpec = spec’ : ProductSpecification {itemID = id}
As prodSpec has multiplicity at most 1, this condition requires to attach the
corresponding instance of ProductSpecification by looking it up in the set of all
instances of this class. Then, the link is created and recorded in the execution
trace (line 23).

39 when { qty > 0 }
The when condition consisting of an OCL boolean expression is evaluated. As no
where condition was specified and no other instances satisfy the check condition,
the execution finishes.

Let us comment on a final remark. The when clause states a property that
must hold on both instances of the input and output model instances. The usage
of variables reduces the need of when conditions, which is used only for checking
general preconditions on input parameters. The where clause is mainly used for
stating the expected value of output parameters. This clause is used in the
endSale() and makePayment() system level operations for indicating how the total

and balance are obtained. The supported construct for this kind of clause is the



comparison of a uninitialized variable to an OCL expression. The expression is
evaluated as assigned to the variable. Additionally, an assignAction is registered
in the execution trace indicating the structure of the OCL expression.

4.2 Communication Diagram Generation

In this section we illustrate the operation of xTrace2CD transformation by
reviewing how the inputs are handled for the enterItem() system level operation
in order to produce the output.

The primary input for xTrace2CD is the extended trace shown in its tex-
tual form in Figure 9, which includes both the execution trace as generated by
QVT Engine and the design decisions. The transformation also accepts the
Domain Model depicted in Figure 1. The output of the transformation is the
communication diagram shown in figure Figure 6.

The transformation executes as follows. First, it loads its input models. Then
it initializes the state of the object interaction and creates an empty communi-
cation diagram. Finally, the entry point is created and the actions are processed.
In what follows we detail these activities.

3 domain model POS;

This part of the extended trace contains information about the domain model
that needs to be loaded, and is the first entry to be processed.

10 object r : Register;
11 object s : Sale;
12 object pc : ProductCatalog;
13 object spec : ProductSpecification;
14

15 areLinked r, s, capturedOn;
16 areLinked r, pc, usedBy;
17 areLinked pc, spec, contains;

Lines 10 through 17 are used for initializing the state of the object interaction.
It consists of a graph where the nodes correspond to the declared objects and
the edges to the links declared by areLinked. Note that object sl does not exist at
the beginning of the object interaction and thus it is not present in the initial
state.

1 xtrace enterItem;

The entry point of the communication diagram is a message. Its name is gener-
ated using the name of the trace itself, in this case enterItem.

5 input parameter qty : Integer;
6 input parameter id : Integer;

Arguments of the entry point are generated from the input parameters. If an
output parameter was specified, then it would have been used to generate the
return value of the message.

28 controller r;

By convention, the entry point has no source and its destination is the controller



that was selected for the operation. In this way, the entry point is fully gener-
ated. The remainder of the transformation consists of processing the sequence
of actions included in the extended trace.

19 createAction sl : SalesLineItem
20 {
21 linkAction s, sl, containedIn;
22 setAction sl, quantity, qty;
23 linkAction sl, spec, describedBy;
24 }

In this example a single action is specified; the creation of object sl. As a partic-
ular case, a create action may have nested subactions. In [14] the creation of an
object is considered in one single step, however for clarity, a separation of such
action into object allocation and object initialization is proposed. In this work
we follow the former approach, and therefore we allow nested actions within a
single create action. These nested actions correspond to the initialization of the
new object.

Line 19 causes the generation of an object named sl of class SalesLineItem in
the communication diagram, and the update of the state. Also, a message named
create is generated and such object is set as its destination. The source of the
message is determined by knowing the creator of instances of class SalesLineItem.
Line 27 of the extended trace indicates that such class is class Sale. Since as
part of sl’s initialization it must be linked to the object s in line 21, which is
an instance of the creator class, the transformation concludes that s should be
the source of the create message. Additionally, the Domain Model expresses that
a Sale is composed of many line items. This motivates that such record needs
to be reflected in the diagram. This causes the generation of a multiobject of
class SalesLineItem representing the recorded line items. A message from s to such
collection carrying sl as an argument next to the create message achieves this
effect. The case of the action in line 23 is treated differently. The Domain Model
indicates that a line item is to be connected to a single ProductSpecification.
Therefore, no collection is needed and for sl to receive spec as an argument
suffices.

The rest of the nested actions in lines 22 and 23 are used to generate the
arguments of the create message, that is variable qty and object spec. Both ele-
ments must be accessible by s in order to be passed as arguments to sl. On the
one hand, qty is an input parameter and therefore it is not directly accessible by
s; on the other hand, a path from s to spec cannot be found in the stored state.
For these reasons, both elements must be received as arguments by s before it
sends the create message. In this way, message number 2 in Figure 6 is gener-
ated. Since it is an explicit order for object s for creating the line item, the name
of such message is makeSalesLineItem. The source of that message is taken as the
next to s in the shortest path from sl to r, which is the controller. In this case,
such element is r itself. The process described above is repeated; the transforma-
tion checks if the arguments are accessible to r. Since qty is an input parameter,
it is in fact accessible from r. Additionally, in the stored state there exists a path
from r to spec, via the ProductCatalog pc. In that way, before the order to create



the line item is sent, spec must be reached. To that end, r retrieves spec from
pc using id as a key by virtue of line 8, and the message findProductSpecification

is generated. Finally, since a ProductCatalog has many specifications, in order to
return spec, pc sends a find message to a collection of specifications, again using
id as a key. This search needs to be performed by r before the order for creat-
ing sl is issued. For this reason, the sequence number in the search has 1 as a
prefix, while the creation has number 2. This completes the generation of the
communication diagram shown in Figure 6.

5 Conclusion

In this work we proposed an approach that aims at systematizing the activity
of producing an object interaction from a software contract. The approach is
supported by a toolset and was applied to a complete case study, showing the
feasibility of the ideas presented here. Software contracts can be regarded as a
valuable artifact, since important information can be extracted from them, and
also such information can be used for producing other artifacts. This provides a
compelling reason to specify software contracts formally.

This proposal is a practical application of several aspects of MDE. First,
software contracts are now considered as models. Second, a non traditional ap-
plication of relational model transformations is used for producing the execution
trace; it is not the outcome of the transformation what is most important, and
the transformation specification can be understood as an input for generating
the trace. Third, a domain specific language was developed for expressing the
extended execution trace, which in turn is considered itself as a model. Fourth,
an imperative model transformation was defined for producing the expected
communication diagrams.

The approach also provides a direct mechanism for testing software contracts.
When a relational transformation T is executed on a given system state model
σ1 for producing the execution trace, a resulting model σ2 is residually gener-
ated. Such model can be examined to check if the transformation produced the
expected result, and therefore, in conjunction with σ1, can be used to validate
the software contract associated to T.

Software contracts expressed as QVT relational transformations can be con-
sidered as executable specifications. Although the QVT Engine tool currently
works on object models, it can be extended to manipulate the system state re-
siding outside the engine, e.g. as a persistent database. Such an approach allows
developers to obtain a running system straight from its specification, bypassing
design and implementation. This is useful for early validation and verification,
and also, in certain development scenarios, such running system can be treated
as the final system.

Both the proposed approach and the toolset present limitations. Although
the POS System case study was completely and accurately solved, we identified
particular scenarios which cannot be tackled yet by the current solution.



The proposed approach is strongly dependent on particular system states
as input in order to obtain the resulting artifacts. Although this can be seen
as a lack of generality, this is not the case. The generated design is only based
on one generic initial state but several may be required. In other words, in
the general case, it is not possible to define a system state (a snapshot) which
satisfies a generic predicate of the form A ∨ B if A and B do not hold at the
same time. This kind of scenarios leads to branching in the design, which is
not currently covered. To overcome this limitation, several initial states can
be processed for each system level operation, obtaining for each of them one
communication diagram that solves each particular case. A merging mechanism
must be defined so as to unify all these cases. To accomplish this idea and to
study its automation is suggested as future work.

From the toolset perspective, the current implementation faces several lim-
itations. The QVT Engine tool has partial support for primitive types, OCL
expressions and relation conditions. Also, only create, set, link and unlink state
modification primitives are considered, not considering object deletion. Nowa-
days deletion in object-oriented systems is not explicit; usually a companion
garbage collector is in charge of freeing unneeded (unreachable) objects. How-
ever, the decision of deleting an object may be extracted out of software contracts
in an analogous way as the other primitives. To explore this possibility, together
with the development of a garbage collector, is also suggested as future work.
Finally, as we are considering only one relation by relational transformation, we
cannot define a contract which operates over two sets of objects; the check clause
works on the set of instances of a given class and only objects accessed from them
can be manipulated. To incorporate this feature is simple as it just implies an ad-
ditional level of the backtracking tree: to try all relations. The xTrace2CD has
limited support of GRASP. Currently, commonly used criteria as Pure Fabri-
cation and the introduction of derived attributes and new associations is not
covered, techniques which generally improve the design. To incorporate them is
suggested as further work. As we mentioned above, we have no extensive appli-
cations of the proposed toolset so as to obtain significant data of design metrics
like coupling and cohesion. By solving more case studies we would be able to
collect this information, which in turn, provides feedback to improve the current
implementation. It is important to notice that, in some way, the resulting design
also depends on the design decisions specified by the developer in the extended
execution trace. As a final limitation, neither tool considers the generalization
relationship between classes. The impact of including this feature mainly falls on
the xTrace2CD tool as decisions about overriding must be taken into account.
Two possible ways to overcome this issue are to compare how each class in the
hierarchy react to the same message so as to check if it can be generalized, and
to incorporate this information as additional design decisions to be taken into
account by the transformation.
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