
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE

Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02]

Parallel object monitors

Denis Caromel1, Luis Mateu2, Éric Tanter∗2

1 oasis project, Université de Nice – CNRS – INRIA
2004, Rt. des Lucioles, Sophia Antipolis, France
denis.caromel@sophia.inria.fr
2University of Chile, Computer Science Dept.
Avenida Blanco Encalada 2120, Santiago, Chile
{lmateu,etanter}@dcc.uchile.cl

SUMMARY

Coordination of parallel activities on a shared memory machine is a crucial issue for
modern software, even more with the advent of multi-core processors. Unfortunately,
traditional concurrency abstractions force programmers to tangle the application logic
with the synchronization concern, thereby compromising understandability and reuse,
and fall short when fine-grained and expressive strategies are needed. This paper
presents a new concurrency abstraction called POM, Parallel Object Monitor, supporting
expressive means for coordination of parallel activities over one or more objects,
while allowing a clean separation of the coordination concern from application code.
Expressive and reusable strategies for concurrency control can be designed, thanks to
a full access to the queue of pending requests, parallel execution of dispatched requests
together with after actions, and complete control over reentrancy. A small domain-
specific aspect language is provided to adequately configure pre-packaged, off-the-shelf
synchronizations.

key words: Synchronization, Concurrent Activities, Parallel Execution, Scheduler

∗Correspondence to: University of Chile, Computer Science Dept.
Avenida Blanco Encalada 2120, Santiago, Chile
Contract/grant sponsor: This work is partially funded by the Conicyt-INRIA project OSCAR, and the
CoreGRID EU Network of Excellence.
É. Tanter is partially funded by the Millennium Nucleus Center for Web Research, Grant P04-067-F of
Mideplan, Chile.

Copyright c© 2000 John Wiley & Sons, Ltd.

2 D. CAROMEL – L. MATEU – É. TANTER

1. Introduction

Synchronization of parallel activities in a concurrent system is a fundamental challenge.

There are several dimensions to this challenge. To avoid data races while still allowing shared

data, one may need to ensure mutual exclusion when accessing the shared structure (e.g. a

bounded buffer). To enhance parallelism, it is often desirable to let multiple threads access

simultaneously a shared data structure whenever data races are known not to occur (e.g. readers

and writers). Furthermore, one may need to coordinate parallel activities in a more complex

manner: for instance to achieve temporal ordering properties of requests executed over a set of

application objects, depending on application-specific constraints (e.g. dining philosophers).

Using traditional concurrency abstractions like locks and monitors for expressing elaborate

parallel coordination is cumbersome, and requires intrusive changes in the application code;

in particular if coordination constraints over several objects have to be expressed. Actually,

coordination of parallel activities is a specific concern that should ideally be implemented

separately from the application code. Specifying coordination in a clearly modularized manner

is important in order to foster understandability, maintainability and reuse: objects are

independent of how they are coordinated, and multi-object coordination patterns can be

abstracted and reused over different groups of objects [18, 24].

This paper introduces a new concurrency abstraction called Parallel Object Monitors for

coordination of parallel activities over single objects and groups of objects in shared memory

systems. A POM is said to be parallel because it is used to control the parallel execution

of threads, is said to be object as it provides an object-oriented view of concurrent calls

via reified requests and request queues, and is said to be a monitor because it provides a

centralized place for specifying concurrency control in a thread-safe manner. We show that

POMs are (i) expressive because a POM has full control over the queue of pending requests

on coordinated objects and can implement custom reentrancy policies, (ii) easier to write

and understand than existing techniques because concurrency control is expressed concisely

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 3

in a single place, (iii) efficient enough because the overhead of POMs in execution time

is reasonable, and in some cases they are faster than legacy monitors. We provide POM

as a library implemented over Reflex, a versatile kernel for multi-language aspect-oriented

programming [29, 31], and configured with a small domain-specific aspect language. Therefore

off-the-shelf POM schedulers can be reused and applied to components at the sole cost of

proper configuration, while achieving reasonable performance.

Section 2 discusses related work and establishes the main motivation of our proposal.

Section 3 presents POM, through its main principles and API, while Section 4 illustrates POM

through some canonical examples. Section 5 exposes how high-level concurrency abstractions

such as Sequential Object Monitors [10], chords [3], and synchronizers [18], can be expressed in

POM. Section 6 presents the implementation of POM over Reflex, and benchmarks validating

our proposal. Section 7 discusses some issues and Section 8 concludes with future work.

2. Related Work and Motivation

2.1. Synchronization Mechanisms for Mutual Exclusion

A great number of mechanisms have been proposed in order to address the mutual exclusion

issue, starting with monitors as invented by Brinch Hansen [6] and Hoare [20]. A more

elaborate kind of synchronization for mutual exclusion, called conditional synchronization, is

made possible for instance by guards and guarded commands [13, 21]: a boolean expression is

associated to an operation in order to indicate when it may be executed. Another mechanism

for concurrency control, that originated in Simula-67 [4] and the Dragoon language [2], is

the concept of schedulers [7], related to the actor [1] and active object [9] models. In such

approaches, a separate entity called a scheduler is responsible for determining which and when

concurrent requests to a shared object are performed. Schedulers enable separation of concerns,

because the scheduler is defined apart from the application logic. However, like monitors and

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

4 D. CAROMEL – L. MATEU – É. TANTER

guards, schedulers are commonly used to ensure mutual exclusion on the scheduled object.

The recently proposed sequential object monitors (SOM) [10] also fall into this category.

Modern programming languages like Java and C] have adopted a flavor of monitors that

is recognized to have a number of drawbacks [10]: these monitors are a low-level, error-

prone abstraction that implies tangling functional code with synchronization code, breaking

modularization. Also, Java monitors perform poorly in situations with high lock contention

due to the notifyAll primitive, which may entail a lot of useless context switches.

The new concurrency utilities coming with Java 5 standardize medium-level constructions,

such as semaphores and futures, and add a few native lower-level constructions, such as locks

and conditions, which can be used to create fast new abstractions. The idea here is that people

can use the appropriate abstractions for a given problem, and hence no particular concurrent

paradigm is promoted. Such basic synchronization facilities are Hoare’s style monitors. Still, the

lowest-level Java 5 lock can be more fragile than before, because programmers are responsible

for explicitly asking and releasing monitors, while with synchronized blocks the releasing of

monitors is implicitly triggered at the end of such blocks. In fact, these new utilities favor

flexibility and efficiency at the expense of increased verbosity, with a risk of fragility. Actually,

programmers are rather expected to use higher-level abstractions whenever possible.

2.2. Parallel Coordination with Mutual Exclusion Mechanisms

Although the above mechanisms especially target the mutual exclusion problem, they can

be used for coordination of parallel activities, such as in the classical readers and writers or

dining philosopher problems. These solutions introduce a controller object where coordination

is defined. The methods called on the controller are executed under mutual exclusion, ensuring

that coordination constraints are not violated. The problem of these approaches is that

clients have to be modified to explicitly communicate with the controller. For instance in

the reader and writers problem, clients need to first ask for read or write access to a

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 5

controller (e.g. enterRead, enterWrite) before proceeding on the shared, unsynchronized

structure. Furthermore, they need to notify the controller when they exit the shared structure

(e.g. exitRead, exitWrite).

Therefore, from a software engineering viewpoint, mechanisms for mutual exclusion do not

make it possible to achieve a clean separation of the synchronization concern when parallel

coordination is needed. Even scheduler-based approaches like SOM [10], which do achieve

separation of concern for mutual exclusion scenarios, fall short when dealing with coordination

of parallel activities.

2.3. Synchronization Mechanisms for Parallel Coordination

Coordination of parallel activities refers to the synchronization of methods potentially

executing simultaneously (e.g. read methods in the reader-writers problem). We name such a

case parallel coordination, and review below two frameworks allowing its expression.

2.3.1. Synchronizers.

The synchronizers of Frølund and Agha [18] are the proposal that is most related to ours

as it aims at separate specification and high-level expression of multi-object coordination.

Coordination patterns are expressed in the form of constraints that restrict invocation of a

group of objects. Invocation constraints enforce properties, such as temporal ordering and

atomicity, that hold when invoking objects in a group. Synchronizers generalize the ideas of

per-object coordination by means of synchronization constraints [27, 17] to the case of object

groups. Furthermore, synchronizers not only involve the state of coordinated objects, but as

well the invocation history of these objects. Although the declarativeness of synchronizers is

appealing, a number of limitations still exist: fairness cannot be specified at the application

level, but rather rely on implementation fairness; history-based strategies must be manually

constructed; reentrancy cannot be customized; and finally, although synchronizers encapsulate

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

6 D. CAROMEL – L. MATEU – É. TANTER

coordination, their usage has to be explicit in the application, requiring intrusive changes to

existing code. Furthermore, the proposed implementation compiles away synchronizers, making

them different from normal objects: other objects cannot interact with them via message

passing. We will come back on synchronizers to show how they can be expressed with POM

(Sect. 5).

2.3.2. Chords.

Chords were first introduced in Polyphonic C], an extension of the C] language. Chords are

join patterns inspired by the join calculus [15]. Within Polyphonic C], a chord consists of a

header and a body. The header is a set of method declarations, which may include at most one

synchronous method name. All other method declarations are asynchronous events. Invocations

of asynchronous methods is non-blocking, while an invocation of a synchronous method blocks

until the chord is enabled. A chord is enabled (and its body consequently executed) once all

the methods in its header have been called. Method calls are implicitly queued until they

are matched up. Chords enable coordination of parallel activities because multiple enabled

chords are triggered simultaneously. However, although chords make it possible to concisely and

elegantly express several concurrent programming problems, there are some classical problems

which are difficult to solve with chords, such as implementing a buffer which ensures servicing

of requests in order of arrival. Also, the use of chords over a group of objects has not been

considered. Finally, chords as a language extension are not meant to achieve separation of

the synchronization concern: a class definition with chords is a mixture of functional and

synchronization code.

2.4. Motivation

This paper proposes an abstraction for concurrent programming that aims at solving the

problems mentioned above: supporting expressive means for coordination of parallel activities

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 7

over one or more objects, while allowing a clean separation of the coordination concern from

application code.

3. Parallel Object Monitors

Parallel Object Monitors, POMs, are a high-level abstraction for controlling synchronization

of parallel threads. POM is inspired by the scheduler approach, in particular SOM and the

synchronizers of Frølund and Agha. POM retains from SOM the notion of explicit access

to the queue of pending requests and expressive means to specify scheduling strategies. But

conversely to SOM, POM does not ensure mutual exclusion of requests themselves: a POM

can dispatch several requests in parallel. Still, concurrency control is specified in a single place

–a scheduler– and executed sequentially, in mutual exclusion.

3.1. Main Ideas

A parallel object monitor, POM, is a low-cost, thread-less, scheduler controlling parallel

invocations on one or more standard, unsynchronized, objects. A POM is therefore a passive

object. A POM controls the synchronization aspect of objects in which functional code is not

tangled with the synchronization concern. A POM is a monitor defining a scheduling method

responsible for specifying how concurrent requests should be scheduled, possibly in parallel. A

POM also defines a leaving method which is executed by each thread once it has executed its

request. Such methods are essential to the proposed abstraction as it makes it possible to reuse

functional code as it is, adding necessary synchronization actions externally. A POM system

makes it possible to define schedulers in plain Java, and to configure the binding of schedulers

to application objects either in plain Java or using a convenient lightweight domain-specific

aspect language.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

8 D. CAROMEL – L. MATEU – É. TANTER

leave()

after executionexecute(req)

(2)

schedule()

(3)

(5)

executing
threads

(6)

(7)

POM
thread

request (thread blocked)

thread executing a request

base object

method call

(1)

(4)

Figure 1. Operational sketch of a Parallel Object Monitor.

Fig. 1 illustrates the working of a POM. When a thread invokes a method on a object

controlled by a POM (1), the thread is blocked and the invocation is reified and turned into

a request object (2). Requests are then queued in a pending queue (3) until the scheduling

method (4) grants them permission to execute (5). The scheduling method can trigger the

execution of several requests. All selected requests are then free to execute in parallel, run by

the thread that originated the call (6). Note that, if allowed by the scheduler, new requests

can be dispatched before a first batch of selected request has completed. Parallel execution

of selected requests in POM is in sharp contrast with SOM, where scheduled requests are

executed in mutual exclusion with other scheduled requests [10]. Finally, when a thread has

finished the execution of its associated request, it has to run the leaving method before leaving

the POM (7). To run the leaving method, a thread may have to wait for the scheduler monitor

to be free (a POM is a monitor), since invocations of the scheduling method and the leaving

method are always safely executed, in mutual exclusion. Before leaving the monitor, a thread

may have to execute the scheduling method again. The fact that a thread spends some time

scheduling requests for other threads (recall that the scheduler is a passive object) implies that

programmers should preferably write simple scheduling methods.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 9

T1 T2

b()

schedule()
leave()

schedule()

schedule()

a()

schedule()

leave()

(1)

(2)

(3)

(4)

(5)

Figure 2. Two threads coordinated by a POM (underlined method calls are performed in mutual
exclusion within the scheduler monitor).

Fig. 2 shows a thread diagram of two threads T1 and T2 coordinated by a POM. A thread

diagram pictures the execution of threads according to time by picturing the call stack, and

showing when a thread is active (plain line) or blocked waiting (dash line). Let us consider

that the POM ensures the following coordination constraint: two operations a and b must

be dispatched in pair. T1 and T2 are two threads invoking a and b, respectively. First, let us

consider that the POM is free when T1 calls a. T1 directly executes the scheduling method, but

its associated request is not granted permission to execute (1). While T1 is blocked, T2 calls

b on an object controlled by the POM. It executes schedule: this execution of the scheduling

method results in both requests being selected (2). Hence T1 and T2 execute their respective

request in parallel (3). When T1 completes the execution of its associated request, it executes

the leaving method and the scheduling method. These executions are performed within the

scheduler monitor, hence in mutual exclusion with other invocations of the scheduling and

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

10 D. CAROMEL – L. MATEU – É. TANTER

scheduling method:
if no writer executing then
execute all readers, older than oldest writer
if no reader executing then execute oldest writer

Figure 3. Pseudo-code of a fair scheduling strategy for readers and writers.

leaving methods: when T2 finishes, it is blocked until T1 releases the monitor (4), before

effectively executing in turn the leaving and scheduling methods (5).

Defining a POM consists in specifying when requests should be granted permission to execute

in the scheduling method, and optionally, specifying code that must be executed each time

a request is completed, in the leaving method. Fig. 3 is an example, in pseudo-code, of a

scheduling method specifying a fair strategy for the readers and writers problem. The leaving

method is not shown, as it is just used to update the state of the scheduler (the complete POM

implementation is however shown later, in Fig. 8).

A POM is a parallel monitor because it allows several threads to execute concurrently.

Also, an executing request may not be run-to-completion: a POM is by default non-reentrant†,

therefore a thread already executing a request may be blocked if it calls a method controlled

by the same POM. Fig. 4 summarizes the main principles and guarantees of POM.

3.2. Main Entities and API

We now present the main elements and API of a POM library (Fig. 5), in order to go through

concrete examples afterwards.

†Rather, control is given over custom reentrancy policies, as discussed later in Sect. 4.4.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 11

POM Principles

1. Any method invocation on an object controlled by a POM is reified as a request and
delayed in a pending queue until scheduled.

2. The scheduling method is guaranteed to be executed if a request may be scheduled.
3. All scheduled requests are executed by their calling thread, in parallel.
4. A POM is by default not reentrant: reentering calls are blocked and subject to scheduling.

Reentrancy can be control on a per-case basis.
5. The scheduling and leaving methods are executed in a thread-safe manner within the

scheduler monitor, but in parallel with executing requests.

POM Guarantees

1. Given that the scheduling method can schedule several requests at a time:

• As soon as a request is given permission to execute, it starts execution in parallel
with already-executing requests. If the thread owning such a request is the actual
thread executing the scheduling method, then the request starts execution as soon as
the thread exits from the scheduling method.

• If a new request arrives, the scheduling method is called, even if all scheduled requests
did not complete execution.

2. There is no unbounded busy execution of the scheduling method.
3. When a request ends execution, the leaving method is executed by its calling thread.
4. The scheduling method is executed by one of the caller threads, in mutual exclusion with

the leaving method. The caller thread executing this method is unspecified.
5. After a caller thread has executed its request, it is guaranteed to return after one execution

of the leaving method and at most one execution of the scheduling method.
6. Whenever a POM is idle, if a request arrives and is granted permission to execute by the

scheduling method, the request is executed without any context switch.

Figure 4. Main POM principles and guarantees.

3.2.1. Defining a POM.

A POM is defined in a class extending from the base abstract class POMScheduler. A POM

must define the no-arg schedule method, in which the scheduling strategy is specified. The

basic idea is that a scheduler can grant permission to execute to one or more pending requests,

stored in a pending queue. Requests are represented as Request objects (Fig. 5). The scheduling

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

12 D. CAROMEL – L. MATEU – É. TANTER

*: the parameter can be a string (request name), a request filter, or a category.

RequestPOMScheduler

<<interface>>
RequestFilter

accept(Request): boolean

execute(Request): void
executeAll(*): int
executeOldest(): boolean
executeOldest(*): boolean
executeYoungest(): boolean
executeYoungest(*): boolean
executeOlderThan(*,*): boolean
executeAllOlderThan(*,*): int
executeYoungerThan(*,*): boolean
executeAllYoungerThan(*,*): int

execution

executeAllReentering(): int
reentrancy

schedule(): void
leave(Request): void

behavior getName(): String
getParameter(int): Object
getThread(): Thread
is(Category): boolean

introspection

iterator(): RequestIterator
hasRequest(): boolean
requestCount(): int
remove(Request): void

queue management reentering(): boolean
getParent(): Request

reentrancy

Figure 5. Main entities provided by a POM framework.

decision may be based on requests characteristics as well as the state of the scheduler itself,

or any other external criteria. A scheduler can obtain an iterator on the pending queue using

the iterator() method, and can then examine request objects in order to decide which ones

should be granted permission to execute. A request object offers a protocol for introspection,

which gives access to, e.g., the actual parameters of the invocation and its calling thread. Once

a request is selected for execution, it is removed from the pending queue.

3.2.2. Specifying After Behavior.

In some cases, the scheduler may maintain a state for determining which requests shall be

granted permission to execute; such a state may have to be updated when requests finish

executing. In POM, this is done in the leaving method, leave, which is executed by caller

threads each time they complete the execution of their associated request. This method receives

as parameter the request that has been executed. Since this method is defined in the scheduler

and is typically used to update its state, it is executed within the monitor of the scheduler, in

mutual exclusion with other invocations of the leaving and scheduling methods.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 13

3.2.3. Defining a Scheduling Strategy.

A set of methods is available to grant permissions to execute pending requests. The most

basic, execute, triggers the execution of the request given as parameter, by waking up its

associated thread. More expressive methods are also provided. Some methods may result in

a single request being executed, like executeOldest(), which triggers the execution of the

oldest request in the pending queue. These methods return a boolean that indicates whether

a request was effectively given permission to execute or not. For instance, executeOldest()

returns false if the queue is empty. Other methods may grant permission to several requests

at a time: they return the number of requests that have been effectively granted permission

to execute. An example is executeAllOlderThan, which takes as parameters two criteria for

selecting requests, and grants permission to all requests in the pending queue that meet the

first criterion and that are older than the first pending request meeting the second criterion.

3.2.4. Selecting a Request.

There are basically three means to specify a criterion for selecting a request. First, one can

pass the name of the requested method as a string. Second, a request filter can be given. A

request filter implements the RequestFilter interface (Fig. 5), which declares the accept

method. For instance, executeAll(rf) triggers the execution of all requests in the queue that

are accepted by the rf filter.

Finally, one can specify a method category. Method categories are used to partition the set

of methods in a given class into meaningful subsets, in order to enhance the potential of reuse

and robustness with regards to change of off-the-shelf POM schedulers. We illustrate method

categories in Section 4.2.

The protocols of POMScheduler and Request dealing with reentrancy (Fig. 5) are discussed

in Section 4.4.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

14 D. CAROMEL – L. MATEU – É. TANTER

SCHED_DECL := "schedule:" APP_CLASS
["on:" METHOD_LIST]? "with:" SCHEDULER_CLASS
[CAT_DECL]* ["bygroup:" GROUP_CLASS] ";"

CAT_DECL := "category:" CAT_ID "is:" METHOD_LIST
METHOD_LIST := METHOD_ID | METHOD_ID "," METHOD_LIST

Figure 6. BNF syntax of the POM configuration language.

3.2.5. Configuring POM.

POM is implemented on top of Reflex, a versatile kernel for multi-language AOP (Section 6.1).

Similarly to SOM, we designed a small language to configure POM. The syntax of this language

is overviewed on Fig. 6. We illustrate its use along the various examples in the paper.

POM can also be configured via a Java API exposed by the POM class. However, for clarity,

we adopt the POM-specific language in the examples.

4. Canonical Examples

This section illustrates POM via a number of small cases: ensuring mutual exclusion, managing

parallel dispatch, performing group synchronization, and controlling reentrancy. We refer to

a simple Dictionary data type, with operations query, define, size and delete – in which

concurrency is not dealt with.

4.1. Mutual Exclusion

We show how POM can easily be used to ensure a simple synchronization concern: the mutual

exclusion of threads executing the dictionary methods (Fig. 7).

The state of the MutualExclusionSched consists of a boolean variable (working) that is

true if and only if there is one thread executing a dictionary method. The scheduling method

only grants permission to execute a request when working is false. Such a permission is

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 15

public class MutualExclusionSched extends POMScheduler {

private boolean working = false;

public void schedule(){

if(!working) working = executeOldest(); (*)

}

public void leave(Request req){ working = false; }

}

Figure 7. Ensuring mutual exclusion with POM.

granted by calling executeOldest (Fig. 7(*)): if the pending queue is not empty, the oldest

pending request is executed; otherwise, nothing happens. The method executeOldest returns

a boolean value indicating whether a request actually received permission to execute. This

boolean value is used to update the state of the scheduler. The leave method updates the value

of working to false in order to state that no request is in execution. There is no need to deal

with granting permissions to execute in the leaving method because the scheduling method is

called immediately after the leaving method returns. The following POM declaration using the

language of Fig. 6 associates a MutualExclusionSched instance per instance of Dictionary:

schedule: Dictionary with: MutualExclusionSched;

The MutualExclusionSched suffers from an important issue: reentrant method invocations

result in a deadlock. For instance, if define invokes query for checking if a key is already

defined, the scheduling method is called twice: once for define and once for query. The first

execution of schedule grants permission for execution, but not the second one. Because define

has not finished execution, schedule finds the monitor in a working state, and hence both

requests are suspended forever. We address reentrancy in Section 4.4.

4.2. Parallel Dispatch

Considering a usage pattern of dictionaries where queries are performed much more frequently

than definitions, and both operations are time consuming, it becomes interesting to dispatch

all queries in parallel. This scenario is known as the readers and writers problem. Readers are

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

16 D. CAROMEL – L. MATEU – É. TANTER

public class RWScheduler extends POMScheduler {

public static Category READER = category();

public static Category WRITER = category();

private int readers = 0;

private boolean writing = false;

public void schedule(){

if(!writing) {

readers += executeAllOlderThan(READER, WRITER); (*)

if(readers == 0) writing = executeOldest(WRITER);

} }

public void leave(Request req){

if(req.is(READER)) readers--;

else if(req.is(WRITER)) writing = false;

} }

Figure 8. Safely dispatching readers in parallel with POM.

invocations of observer methods (e.g. query). Executing them in parallel is possible because

they do not produce data races. Writers are invocations of mutator methods (e.g. define).

They may produce data races when executed in parallel, so they must be executed in mutual

exclusion with other readers and other writers.

The POM scheduler safely dispatches readers in parallel while ensuring mutual exclusion

when a writer executes (Fig. 8). The implemented strategy is fair: only readers that are older

than the first writer in the pending queue are granted permission to execute (*). This ensures

that writers never starve.

As mentioned earlier, method categories make it possible to enhance reuse of synchronization

policies. For instance, the RWScheduler of (Fig. 8) is a generic off-the-shelf scheduler that can

be reused to deal with any class having multiple observer and mutator methods. It is not

restricted to a dictionary class, because it does not rely on particular method names. Rather,

the scheduler relies on two method categories, a READER category for observer methods and

a WRITER category for mutator ones. Categories in a scheduler are simply defined as static

variables of type Category, and can then be used to select requests.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 17

The binding between categories in a scheduler and actual methods in base classes can be

done declaratively using the POM configuration language introduced in Fig. 6. Note that a

scheduler can also explicitly specify the methods that belong to a given category, but then

reuse is lost‡. For instance, configuring the off-the-shelf RWScheduler to coordinate parallel

activities over instances of Dictionary is done as follows:

schedule: Dictionary with: RWScheduler

category: READER is: query, size

category: WRITER is: define, delete ;

Like the scheduler of Fig. 7, RWScheduler is not reentrant and hence deadlocks on reentrant

calls. A full version is presented in Section 4.4.

4.3. Group Synchronization

A typical example of parallel coordination among several objects is the dining philosophers

problem. The dining philosophers problem consists of five philosophers sitting around a table,

with five available sticks to eat Chinese food. Philosophers are active objects that spend their

time looping over thinking and then eating. The philosopher at seat i needs the two sticks

around him to eat (i and (i + 1)%5). A typical implementation of the Philosopher class is

given in Fig. 9.

The synchronization constraints of this problem are that two philosophers cannot eat with

the same stick at the same time, philosophers must not deadlock and must not starve. Using

classical monitors, if we do not want to manually handle low-level synchronization in the eat

method itself, the solution to this problem relies on the introduction of a controller object to

which philosophers explicitly request and release their sticks. This is similar to the readers and

‡The use of annotations in base code, such as @Reader, is an easily-implementable and interesting alternative
(Reflex supports annotations).

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

18 D. CAROMEL – L. MATEU – É. TANTER

public class Philosopher extends Thread {

int seat; Table table;

public Philosopher(Table t){

table = t; seat = table.getSeat(); start(); }

public void run(){

for(;;){ eat(); think(); } }

// eat, think, getSeat, getTable, ...

}

Figure 9. A non-intrusive implementation of philosophers with POM.

writers problem discussed previously. Therefore, without POM, the code of the for loop of

Fig. 9 has to be rewritten as follows:

int id1 = seat; int id2 = (seat+1)%5;

for(;;){ controller.pick(id1, id2); eat();

controller.drop(id1, id2); think(); }

Although the eat method is not rewritten and the synchronization logic is encapsulated

in the controller, such an intrusive approach is problematic: existing client code has to

be manually updated to add synchronization code. Conversely, with POM, the code of

philosophers is left untouched without any extra code.

PhiloSched (Fig. 10) implements a fair solution to the philosophers problem: a request is

granted execution if both requested sticks are free and none have been previously requested

by another philosopher. In the scheduling method, the local variable array reserved, created

every time an iteration over the request queue begins, is used for ensuring that sticks are

granted in the desired order. When a stick is requested and cannot be granted because it is

still busy, it is tagged as “reserved”. A request including a previously-reserved stick is not

granted permission even though the stick may be free, because the stick must first be granted

to the philosopher that first requested it. This is to ensure fairness, otherwise starvation may

occur. POM allows fairness to be expressed at the application level, according to application-

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 19

public class PhiloSched extends POMScheduler {

boolean[] busy = new boolean[5]; // false

public void schedule(){

boolean reserved[] = new boolean[5]; // false

RequestIterator it = iterator();

while(it.hasNext()){

Request req = it.next();

Philosopher p = (Philosopher) req.getReceiver();

int id1 = p.getSeat(); int id2 = (id1+1)%5;

if(!busy[id1] && !busy[id2] && !reserved[id1] && !reserved[id2]){

busy[id1] = busy[id2] = true; execute(req); // granted

}

else { // not granted but reserved

reserved[id1] = reserved[id2] = true;

} } }

public void leave(Request req){

Philosopher p = (Philosopher) req.getReceiver();

int id1 = p.getSeat(); int id2 = (id1+1)%5;

busy[id1] = busy[id2] = false;

} }

Figure 10. Scheduler for the philosophers.

specific policies. Not that a more efficient solution can be devised if the constraint on stick

reservation is relaxed.

To have a single scheduler controlling the concurrent activities of a group of philosophers,

POM uses the grouping facility provided by Reflex. Basically, a group can be defined

intentionally by an association function:

public class TableGroup implements GroupDefinition {

public Object getGroup(Object obj){

return ((Philosopher) p).getTable();

} }

The getGroup method returns an object whose identity corresponds to the group to which the

object passed as parameter belongs. In the case of philosophers, a group corresponds to a table.

Reflex associates one instance of scheduler per group, making it possible for different groups

of philosophers to be controlled by their own specific POM instance. As a matter of fact, only

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

20 D. CAROMEL – L. MATEU – É. TANTER

requests for eat in Philosopher must be subject to scheduling. In the small configuration

language of POM (Fig. 6), the whole setting is expressed as follows:

schedule: Philosopher on: eat with: PhiloSched bygroup: TableGroup;

This code states that eat requests on Philosophers are scheduled by a PhiloSched instance

attached to each group as defined by TableGroup. It uses two extensions to the POM

configuration language: on:, to restrict control by the scheduler to some method(s); and

bygroup:, to specify that the association between a base object and a scheduler is neither

per instance nor per class, but rather defined by a group.

4.4. Reentrancy Control

As mentioned earlier, a POM is not intrinsically reentrant. Rather, the programmer can have

explicit control over reentrancy. When custom reentrancy policies are needed, POM exposes

an API via Request objects. It is possible to determine if a request is reentrant by calling its

reentering method. A convenience method executeAllReentering automatically triggers

the execution of all reentering requests currently in the pending queue. Also, POM maintains

the complete nesting structure of reentering requests on a per-thread basis: a reentering request

has a reference to its parent request (accessed with getParent).

The control given over reentrancy makes it possible to express various reentrancy policies.

Reentrancy can depend on both the name of the requested method and the identity of the

calling thread, e.g. to allow only recursive method calls to reenter, or on some parameter of

the requested method. Using both thread identifier and invocation parameters to determine

reentrancy can be useful when considering a resource allocation system: when a resource r

is asked for by calling grant(r), then if a thread owning a resource asks again for the same

resource, this last request should be reentrant and not block the thread. Conversely, asking for

another resource may block.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 21

public class ReentrantRWSched extends RWScheduler {

public void schedule(){

RequestIterator it = iterator();

while(it.hasNext()){

Request req = it.next();

if(req.reentering()){ (1)

checkNoWriteAfterRead(req); (2)

execute(req); (3)

} }

super.schedule(); (4)

}

public void leave(Request req){

if(!req.reentering()) super.leave(req); (5)

}

void checkNoWriteAfterRead(Request req){

if(req.is(WRITER) && req.getParent().is(READER)){

remove(req);

throw new RuntimeException("reader cannot invoke writer!");

} }

Figure 11. A reentrant scheduler for readers and writers.

In the case of readers and writers, requests should be reentrant, except in one forbidden

case: a reader should never invoke a writer, as this would break the data race free property.

ReentrantRWScheduler (Fig. 11) is a reentrant extension of RWScheduler (Fig. 8). If a request

is reentering (1), it is executed (3). When all pending reentering requests have been granted

execution, the scheduling method of the superclass is invoked (4). The leaving method does

nothing for reentrant requests, and reuses the original leaving method for non-reentrant ones

(5). Instead of relying on the assumption that a reader never calls a writer, ReentrantRWSched

actually checks that this constraint is not violated (2). The checkNoWriteAfterRead method

throws an exception when the anomaly is detected: the parent of a reentrant writer cannot be

a reader§. Being able to eagerly detect incorrect reentrancy patterns is particularly interesting

to avoid mysterious deadlocks and data races, which are always hard to debug.

§It would even be possible to program a specific policy to handle this case: waiting for all other current reader
requests to complete, and then execute the writer at hand. In the current version, we choose to throw a runtime
exception, hence it has to be handled by callers.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

22 D. CAROMEL – L. MATEU – É. TANTER

public abstract class SOMScheduler extends POMScheduler {

private boolean working = false; (1)

private RequestQueue readyQueue = new RequestQueue(); (2)

public final void schedule(){

if(working) executeAllReentering(); (3)

else {

working = true;

if(readyQueue.isEmpty()) somSchedule(); (4)

working = !readyQueue.isEmpty(); // queue may have changed

if(working) execute(readyQueue.remove(0)); (5)

}

public abstract void somSchedule(); // defined by SOM user

public final void leave(Request r){

if(!r.reentering()) working = false; (6)

}

protected final void schedule(Request r){ (7)

remove(r); readyQueue.add(r);

} }

Figure 12. Implementation of the SOM scheduler in POM.

Finally, when a scheduler needs to be completely reentrant, it is enough to define it as a

subclass of ReentrantPOMScheduler, a subclass of POMScheduler.

5. Concurrency Abstractions in POM

We now discuss the implementation of three high-level concurrency abstractions with POM:

sequential object monitors [10], chords [3], and synchronizers [18].

5.1. Sequential Object Monitors

Sequential Object Monitors (SOM) [10] are a high-level abstraction offering fully sequential

monitors: the SOM programmer gets away from any code interleaving, because requests are

always executed in mutual exclusion and run to completion. The latter means that when

a request starts executing, other requests cannot start executing until it completes. SOM

offers an API similar to that of POM: a scheduler implements a scheduling method where

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 23

the scheduling strategy is defined. But instead of granting requests the permission to start

executing in parallel with others (with execute), the scheduling method of a SOM is used to

mark requests (with schedule) that should be executed, in their scheduling order, in mutual

exclusion with other requests and the scheduling method.

Because POM is more general, lower level, than SOM, it is feasible to express SOM

with POM. Fig. 12 shows the POM implementation of the base scheduler class of SOM,

SOMScheduler. This exercise highlights the very difference between both approaches,

summarized by the following equation:

SOM = POM + mutual exclusion + reentrancy

• To ensure mutual exclusion, a scheme like that of Fig. 7 is used: a boolean working

variable indicates whether the monitor is busy or not (1). Because the scheduling method

of SOM, renamed somSchedule for clarity, can schedule several methods at a time,

a queue of scheduled requests is maintained; it is called the ready queue (2). In the

scheduling method of SOM, a request is scheduled via calls to schedule(Request) (7).

This method moves the given request from the pending queue (common to POM and

SOM) to the ready queue (specific to SOM). The somSchedule method is invoked only

when all previously-scheduled requests have been executed, that is to say, when the ready

queue is empty (4). Otherwise, scheduled methods are executed in their scheduling order

(5).

• To ensure reentrancy, when the monitor is busy, reentering requests are immediately

executed (3) and do not free the monitor when leaving (6). Reentrancy is compulsory

to achieve run-to-completion of scheduled requests.

The very concise implementation of SOM in POM illustrates well the fact that SOM is a

higher-level abstraction than POM. This makes SOM easier to use and understand, while

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

24 D. CAROMEL – L. MATEU – É. TANTER

POM is a more versatile abstraction, where the programmer has explicit control over the form

and degree of mutual exclusion and reentrancy that are required in a particular situation.

5.2. POM Chords

POM makes it possible to formulate an elegant variation of the chords of Polyphonic C] [3].

First of all, in POM Chords, chord-related logic is defined in the scheduler, leaving the base

code intact (for instance, a dictionary class), as opposed to the language extension approach

of Polyphonic C]. In POM Chords, events can be triggered before and after invocations of

methods on an object controlled by a chord scheduler. Before events correspond to requests

before execution, and are synchronous because they may block; conversely, after events

are asynchronous. Before and after events can be conveniently defined to correspond to

method categories (Section 4.2). In addition, the chord scheduler can manage internal events,

which are used to encode the internal state of the scheduler. Internal events are necessarily

asynchronous because otherwise the scheduler is bound to deadlock. A chord is defined similarly

to Polyphonic C], that is, by defining a body whose execution is conditioned to the occurrence

of a given set of events. In POM Chords however, a chord body can only contain logic to

trigger asynchronous events.

The solution to the readers and writers problem with POM Chords is given in Fig. 13.

Similarly to Fig. 8, this scheduler relies on two method categories, READER for reader methods

(1) and WRITER for writer methods (2). The events shared and exclusive are defined as

before events of these categories (3,4), while releaseShared and releaseExclusive are

after events (5,6). Finally, the state of the scheduler is encoded with the use of two internal

asynchronous events, sharedRead and idle (7,8).

Chords themselves are defined in the defineChords method. The five chords of

the Polyphonic C] implementation [3] in POM Chords are shown. The mapping from

Polyphonic C] syntax to POM Chords is straightforward. Defining a chord consists in:

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 25

public class RWChordScheduler extends ChordScheduler {

static Category READER, WRITER = category(); (1)(2)

Event shared = before(READER); (3)

Event exclusive = before(WRITER); (4)

Event releaseShared = after(READER); (5)

Event releaseExclusive = after(WRITER); (6)

Event sharedRead, idle = event(); (7)(8)

void defineChords() {

chord(shared).and(idle).body(new Body(){ void exec(){ (9)

sharedRead.trigger(1);}}); (10)

chord(shared).and(sharedRead).body(new Body(){ void exec(){

int n = sharedRead.getIntParam(); (11)

sharedRead.trigger(n+1);}});

chord(releaseShared).and(sharedRead).body(new Body(){ void exec(){

int n = sharedRead.getIntParam();

if (n == 1) idle.trigger();

else sharedRead.trigger(n-1);}});

chord(exclusive).and(idle);

chord(releaseExclusive).and(idle).body(new Body(){ void exec(){

idle.trigger();}});

} }

Figure 13. Scheduler for the readers and writers problem with POM Chords.

• creating a new chord object by calling chord, specifying the first event of the chord, and

aggregating other events in the chord via the and method (e.g. (9));

• setting the chord body with body(b), where b is an object implementing the Body

interface. This interface declares a single exec method in which the chord body is

specified. In the body, events are triggered by invoking trigger on them, possibly

specifying parameters (e.g. (10)). Furthermore, the body can access the parameters

of the event occurrences that enabled the chord (e.g. (11)).

A sketch of the implementation of the chord scheduler in POM is given in Fig. 14: we

only show the scheduling and leaving methods. A chord scheduler maintains a mapping of

categories to associated events (if any), which is filled by the before and after methods

(recall Fig. 13(3-6)).

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

26 D. CAROMEL – L. MATEU – É. TANTER

public abstract class ChordScheduler extends POMScheduler {

...

public void schedule() {

Request req;

while((req = getOldest()) != null){

BeforeEvent e = getBeforeEvent(req); (1)

if (e == null) execute(req); (2)

else {

e.triggerWith(req); (3)

remove(req); (4)

} }

while(!candidateChords.isEmpty()){ (5)

for(Chord c : candidateChords){

if(isEnabled(c)) c.play(); (6)

candidateChords.remove(c); (7)

} } }

public void leave(Request req) {

Event e = getAfterEvent(req); (8)

if (e != null) e.trigger(req.getParams()); (9)

} }

Figure 14. Sketch of the chord scheduler in POM.

The scheduling method proceeds in two phases: first, all requests that have no associated

before event (1) are directly executed (2); otherwise, the before event is triggered (3), passing

the request as parameter, and the request is removed from the pending queue (4). Triggering

an event consists in publishing a token that can be consumed by chords, and updating the

set of potentially-enabled chords, candidateChords, i.e. chords for which at least one token

of each event is available. Second, the scheduler repeatedly iterates over this set until it is

empty (5). If a chord is enabled, it is “played” (6): the associated event tokens are effectively

consumed, and the chord body is executed. A chord present in this set may not be enabled

because another chord may have just consumed some tokens needed by this chord. Then, the

chord is removed (7). The chord scheduler uses bit masks to efficiently determine if a chord is

enabled, as explained in [3]. The leaving method is trivial: if a request completing execution

has an associated after event (8), this event is triggered, with the parameters of the request

(9).

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 27

This exercise shows the expressiveness of POM: a chord-like abstraction is concisely

expressed with POM. The variation of chords we have exposed differs from the chords of

Benton et al. by the fact that a chord may be made up of different synchronous events.

This is made possible because the synchronization strategy is expressed outside the functional

code, hence there is no issue about which return value to take into account. Actually, the

chords of Polyphonic C] and POM Chords are two different, though similar, abstractions,

with potentially different application scenarios. Finally, it has to be noted that our approach

does not rely on an extended base language with its own extended compiler. Therefore, a

number of guarantees cannot be provided at the compiler level; for instance, compilation cannot

ensure that the asynchronous methods have a void return type. In our implementation, we can

ensure such guarantees at runtime, via dynamic checks (e.g. relying on the Java reflection

API): whenever a binding between a base object and POM is done, checks are performed and

runtime warnings/errors generated in case of violations.

5.3. Synchronizers

The synchronizers of Frølund and Agha offer a declarative interface to specify multi-object

coordination [18]. We now explain how the features of synchronizers are supported by POM.

The synchronizers definition language supports three operators of interest to us here: updates

to update the state of the synchronizer, disables to disallow execution of certain methods (in

a guard-like manner), and atomic to trigger several methods in parallel in an atomic manner.

The updates operator is trivially supported by POM because a POM is an object, and is

always accessed in mutual exclusion. This also ensures that guard-like conditions associated

to the disables operator are evaluated in mutual exclusion. In case where history-based

coordination is required, the state of the synchronizer must be manually updated; this is

similar in POM, but POM goes further by providing access to the queue of pending requests:

therefore one can also base coordination on the state of the pending queue and the relative order

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

28 D. CAROMEL – L. MATEU – É. TANTER

of request arrival. This is not feasible with synchronizers. Expressing guard-like conditions for

the disables operator is expressed in POM as request filters operating on the pending queue,

as in [10].

Finally, the atomic operator is but one pattern of coordination that can be expressed with

POM. Given a batch of requests to be executed atomically (none or all at once), a POM

proceeds as follows: all requests from the atomic batch are blocked (i.e. not granted permission

to execution) until the batch is complete; when this occurs, the POM switches to a blocking

state in which all new incoming requests are blocked; all requests from the batch are granted

permission to execute, and the POM monitors the end of their execution in the leaving method;

once all requests in the atomic batch finish execution, the POM goes back to its original state.

This shows that synchronizers are easily expressible in POM. Concrete syntax for declarative

specification can be provided via the multi-language support of Reflex. We only focused here

on the core semantics of synchronizers in POM.

6. Implementation

6.1. POM as a Reflex Plugin

The POM implementation for Java is based on Reflex, a versatile kernel for multi-language

AOP [29, 31]. Reflex is designed to be a powerful back-end to implement possibly domain-

specific aspect languages. It is based on a reflective model that makes it possible to define

customized metaobject protocols, with expressive selection means to precisely configure where

and when reification occurs [32].

A POM scheduler is a metaobject that takes control before and after a method is invoked.

The base class POMScheduler implements the POM metaobject protocol and exposes the

interface of the POM system to subclasses defined by users, as presented in this paper.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 29

The POM configuration language provides concrete syntax for the declarative deployment of

off-the-shelf POM schedulers, making it possible to specify the binding between base objects

and schedulers, the methods that should be controlled, and the association strategy (per

instance, per group, etc.).

Reflex supports multiple (domain-specific) aspect languages via a simple plugin architecture.

A major interest of Reflex for this purpose is that it automatically detects and reports

on interactions between aspects defined in different languages during weaving, and provides

expressive means for specifying aspect composition. SOM [10] is also implemented as a Reflex

plugin. As a consequence, unexpected interactions between SOM and POM, such as a class

that should be both a sequential object monitor and an object controlled by a POM, can be

detected and forbidden. Finally, Reflex is a reasonably efficient bytecode transformer based on

Javassist [11]. It can operate either offline, as a compile-time utility, or online, as a load-time

transformer.

6.2. Micro-Benchmarks
We now report on several micro-benchmarks comparing the cost of POM and other

synchronization tools. In the two first benchmarks, we use a bounded buffer scenario with

producers and consumers. The implementation of the POM scheduler for a bounded buffer is

shown in Fig. 15. The scheduler makes use of method categories, PUT and GET, which are defined

when configuring POM. Also, this scheduler uses the possibility to perform set operations on

categories: the category NOTPUT is defined as comprising any method that does not belong to

the PUT category (*). Introducing these categories makes it possible to express the scheduling

in a very concise manner.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

30 D. CAROMEL – L. MATEU – É. TANTER

public class BufferSched extends POMScheduler {

static final Category PUT, GET = category();

static final Category NOTPUT = PUT.not(); (*)

static final Category NOTGET = GET.not();

private int maxsize; // init in constructor

private int size = 0;

private boolean working = false;

public void schedule() {

if(!working) {

if(size == 0) working = executeOldest(NOTGET);

else if(size == maxsize) working = executeOldest(NOTPUT);

else working = executeOldest();

}}

public void leave(Request req) {

if (req.is(PUT)) size++;

else if (req.is(GET)) size--;

working = false;

}}

Figure 15. POM scheduler for a bounded buffer.

Table I. 1 producer/1 consumer on a dual processor (in ms).

buffer Fair Java
size C.V. C.V. mon. SOM POM

10000 187 2052 1568 1448 1750
1000 166 2016 1562 1724 1776
100 156 2046 1578 1802 1776
10 219 2052 1578 1818 1854
1 2114 2073 1698 1807 1807

6.2.1. Producer and consumer on a dual processor.

This micro-benchmark aims at comparing the overhead of POM for synchronization. In this

scenario there is one producer sending 100,000 integer objects to a buffer while in parallel a

consumer sums up the numbers taken from the buffer. The test machine is a dual Xeon 2.8 GHz

with hyperthreading disabled, running Windows XP.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 31

Table II. 1 producer/multiple consumers, buffer size 1, on a dual processor (in ms).

number of Java
consumers C.V. mon. SOM POM

1 2156 1708 1818 1849
2 2156 3286 1822 1880
4 2166 3614 1849 1932
8 2213 7104 1849 1880

16 2187 14807 1854 1916
32 2187 29890 1849 2000
64 2260 62510 1833 2093

128 2426 136406 1921 2359

Results are shown in Table I. The first column shows the maximal size of the buffer, while

other columns show the execution time for these implementations:

• C.V. (for Condition Variables): a smart buffer using the reentrant locks and condition

variables introduced in Java 5 (from JSR 166), as described in [23].

• Fair C.V.: the same buffer than C.V. but enforcing a fair allocation of locks.

• Java mon.: a buffer using legacy Java monitors, as advised in the Sun Java tutorial.

• SOM: the buffer synchronized with SOM, as described in [10].

• POM: the buffer synchronized with POM, as shown in Fig. 15.

To analyze these results it is important to consider that the scenario is a worst-case scenario

for synchronization tools because the time to effectively produce and consume items is marginal

compared to the time to synchronize access to the buffer: hence in such a situation, two

processors work slower than a single one; moreover a single thread executing both producer

and consumer is a lot faster than two threads. This scenario is just targeted at measuring the

overhead of synchronization in presence of high contention for the different monitors.

The first implementation is by far the most efficient. The other four implementations

are much slower because they are victim of processor oscillation phenomena, which the

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

32 D. CAROMEL – L. MATEU – É. TANTER

first implementation avoids due to its unfair allocation policy. To better understand this

phenomena, consider a processor executing the producer, owning the monitor, while the second

processor executes the consumer and is waiting to get the monitor. When the first processor

releases the monitor, it quickly produces another item and asks again for the monitor, before

the second processor wakes up.

With the unfair allocation policy of the Java 5 locks, the first processor wins the monitor

immediately and continues without pauses: it can work continuously until completely filling the

buffer. Then the second processor gets the processor and works continuously until the buffer

is empty. Conversely, with a fair allocation policy, when the first processor asks again for the

monitor, it does not get it and has to wait until the second processor wakes up and executes

its own operation. This situation is reproduced for the production and consumption of each

and every item. All this sleeping and waking up of processors greatly degrades performance:

actually, having a buffer of more than one slot is useless in this case. The unfair locks of Java 5

only face this processor oscillation phenomena when the buffer is of size 1, as clearly reported

in Table I.

6.2.2. Producer and multiple consumers on a dual processor.

This benchmark aims at measuring the overhead of synchronization in situations with

extremely high contention on a monitor. One thread produces 100,000 integer objects and

puts them in a buffer of a single slot. A varying number of consumer threads compete to get

items from the buffer and sum them up. Since the time for producing an item is as short as

that for consuming, consumers are almost always waiting to get an item from the buffer. Since

the buffer is of size 1, the producer is constrained to give up the processor each time it puts

an item (dually for a consumer). As a consequence, in this setting there are thread context

switches for each put and each get operation.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 33

We excluded the fair locks of Java 5 because the timings in this scenario are identical to the

unfair ones. The results (Table II) show that both SOM and POM are slightly more efficient

than the Java 5 solution. Moreover, legacy Java monitors become severely inefficient for high

numbers of consumers (two orders of magnitude for one hundred consumers). This is due to

the semantics of the notifyAll operation: when the producer puts an item, it calls notifyAll

and awakes all waiting consumers. Consumers awake and take one by one the monitor. The

first one succeeds in getting an item, but others then find the buffer empty and hence go back

to wait. Therefore lots of expensive and useless thread context switches occur. In all cases,

the overall time increases with the number of threads due to thread overhead. Having a dual

processor is useless in this scenario because of the high contention of the monitor.

6.2.3. Readers and writers on a dual processor.

We now compare POM with other synchronization tools when parallel execution of threads is

required, with different degrees of monitor contention. For this purpose we consider a readers

and writers problem: a dictionary that allows queries (implemented as linear search) to proceed

in parallel. We consider three implementations:

• RWLock: using the read/write lock of Java 5 (ReadWriteReentrantLock).

• Monitor: a read and write lock implemented with legacy Java monitors.

• POM: a POM scheduler implementing readers and writers synchronization as explained

in Section 4.2.

During the experiments, we progressively increase the size of the dictionary, so that the work

done per read request gets higher. For each dictionary size and implementation, we measure

the performance with a single thread that makes one million unsuccessful queries, and with

two threads making each half a million queries. In the latter case, the two processors of the

machine are exploited, but there should be some contention to access the monitor: indeed,

even if both threads can make queries in parallel, they still need to access the internal data of

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

34 D. CAROMEL – L. MATEU – É. TANTER

Table III. Benchmark results of readers and writers on a dual processor (time in ms).

dict. RWLock Monitor POM
size 1 thrd 2 thrds speedup 1 thrd 2 thrds speedup 1 thrd 2 thrds speedup

1 130 416 (0.31) 468 15442 (0.03) 1802 3838 (0.47)
2 141 437 (0.32) 463 15234 (0.03) 1781 3421 (0.52)
4 187 442 (0.42) 526 15677 (0.03) 1854 3718 (0.50)
8 239 328 (0.72) 583 15104 (0.04) 1921 4083 (0.47)

16 349 245 (1.42) 687 15125 (0.05) 2021 4521 (0.45)
32 562 338 (1.66) 890 15176 (0.06) 2224 4937 (0.45)
64 1000 557 (1.80) 1333 14885 (0.09) 2661 4240 (0.62)

128 1859 984 (1.89) 2203 15025 (0.15) 3583 4495 (0.80)
256 3646 1875 (1.94) 3974 14114 (0.28) 5536 3578 (1.55)
512 7838 3969 (1.97) 8078 5354 (1.50) 10041 6125 (1.64)
1024 16390 8250 (1.99) 16370 8792 (1.86) 18208 9885 (1.84)
2048 32271 16267 (1.98) 32250 17734 (1.81) 33578 17942 (1.87)
4096 65297 32759 (1.99) 64140 36416 (1.76) 67432 35135 (1.92)

the monitors in mutual exclusion. We do not expect any performance improvement in having

two threads for small dictionaries, because of the high monitor contention. On the other hand,

for big dictionaries, we expect a speedup approaching 2x when using two threads compared to

only one. Also, overall timing should increase while increasing the dictionary size.

Table III shows the results of this experiment. For each case, we give the execution time

for one thread, two threads, and the calculated speedup (dividing the time for one thread

by the time for two threads). The measurements basically confirm our expectations: having

two threads for small dictionaries degrades performance. This is dramatically true for the

solution based on legacy Java monitors. For the Java 5 locks solution, having two threads

becomes beneficial for a dictionary of size 16, while for legacy monitors the breaking point

is for a size of 512. POM performs much better with two threads than the solution with

legacy Java monitors, and profits from two threads starting at a dictionary of size 256. For

big dictionaries, the three implementations perform similarly, because the predominant work

is the linear search.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 35

With a very small dictionary and only one thread, POM is one order of magnitude slower

than the Java 5 read-write locks. With two threads, the worst case is for legacy monitors,

where the mean cost of a query is 15 microseconds (µs). Hence, a parallel solution starts to be

beneficial with the Java 5 read-write locks if the job done by a query is around 0.3 µs (for a

Xeon 2.8 GHz), while the threshold is around 6 µs for POM, and around 8 µs for legacy Java

monitors.

6.2.4. Evaluation.

As a result of these benchmarks, we applaud the performance of the new locks coming with

Java 5. We actually used them to implement POM, and reimplement SOM. The new version

of SOM is much more efficient than the one presented in [10], which relied on legacy Java

monitors. The benchmarks show that POM (and SOM) globally perform better than legacy

Java monitors, in particular in cases with true parallelism and cases with high contention. Also,

POM exhibits a reasonable overhead compared to the very efficient locks of Java 5. We believe

that this overhead is acceptable when considering the gains in expressiveness, simplicity, and

modularity brought by our approach. Furthermore, considering a VM-based implementation

(rather than bytecode transformation-based) would further reduce the overhead of POM in

terms of interception and reification of method calls, hence making the approach even more

competitive while preserving the software engineering benefits.

7. Discussion

Generality vs. Specificity. POM makes it possible to tune the generality of a given

scheduler. A scheduler can be highly generic and reusable (like the scheduler of Fig. 8, which

relies on method categories), or it can be very application-specific (like the scheduler for

philosophers in Fig. 10). In addition to allowing this fine-tuning, POM allows for modular

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

36 D. CAROMEL – L. MATEU – É. TANTER

definition of synchronization. A POM scheduler encapsulates the synchronization logic, while

the POM configuration language is used to specify the binding of a scheduler to base code.

Not that since Reflex is based on the MetaBorg approach and tools for embedding and

assimilation of domain-specific languages [5], and although we have not elaborated on this

aspect in the paper, the specifications are not necessarily defined in external files.

Inheritance Anomaly. The interaction of inheritance and concurrency control is well-known

to be difficult and raise a number of inheritance anomalies [8, 25]. It has been shown

that AOP approaches to concurrency control are more adequate than standard concurrent

object-oriented languages to handle anomalies, although not all equally [26]. By allowing

separate specification of synchronizations and giving access to the queue of pending requests,

POM helps addressing anomalies related to history sensitiveness and partitioning of states.

Finally, the capacity to program reentrancy is also an asset for fighting reuse difficulties

without changing base code, as strategies can be changed by switching to different schedulers.

Still, an in-depth analysis of inheritance anomalies in POM should be addressed in future work.

Transactional Memory. Lately, the research community is putting a lot of attention on

software transactional memory (STM) [28]. Adapting the well-known concept of database

transactions to concurrent programming, with STM the programmer signals the start of a

transaction (instead of asking a lock), performs some data accesses and finally commits the

operation (instead of releasing a lock). The STM system detects any data race when threads

access shared data and aborts inconsistent transactions. The main advantage of STM is that

deadlocks or priority inversion problems cannot occur. In contrast, in lock-based systems

avoiding those problems is the responsibility of programmers and is generally difficult. Some

implementations of STM also avoid livelocks but with extra overhead.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 37

Software transactional memory is more light-weight than data base transactions because in

the former case only memory accesses are concerned while the latter implicates disk operations.

On the other hand, for general concurrent programming, STM is more expensive than locks

in terms of processor and/or memory usage, although STM performance is approaching the

perfomance of locks-based systems [28] and sometimes exceeding them [19]. One problem

associated to the STM is that the programmer must access data through a special STM

API [16, 28], hence requiring extensive changes to software. A Java language extension has

been proposed to alleviate this issue, relying on an extended compiler[19], but is still intrusive.

An interesting research perspective is to combine POM and STM into a system that,

like POM, uses schedulers to specify the synchronization concern, and runs methods into

transactions, as in STM. However, the implementation of such a system will be harder than

POM, because it will require complex bytecode changes, as explained in[19].

Relation to AOP. The approach we use is indeed aspect oriented [14]: the aspect of

coordination of parallel activities is separated from the base code through a mechanism

similar to other AOP approaches. In this regard, our implementation of POM consists of a

framework for defining the coordination semantics (the scheduler) as well as a small language

for the binding between base entities and schedulers. The gain with respect to directly using

a general-purpose AOP approach is twofold: first, the configuration language only exposes the

joinpoints that do make sense in the context of POM, at a higher-level of abstraction; second,

the framework for defining schedulers hides the low-level logic needed to actually realize

synchronization appropriately. This said, it is completely feasible to devise an implementation

of POM using a general-purpose aspect language like AspectJ [22], although some features

may be more cumbersome to provide. We have chosen to include POM in our more general

research artefact for multi-language AOP, in order to be able to study related issues such as

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

38 D. CAROMEL – L. MATEU – É. TANTER

aspect interactions across languages [31, 30].

Limitations. Our approach to concurrency control fosters expressiveness. This is why

schedulers are defined imperatively, in plain Java. As a consequence, this makes it very difficult,

if not impossible, to develop analysis and optimizations of the scheduling code. As mentioned

before, we focused on core semantics in this work. This however does not preclude the provide

of a restricted expressiveness on top of POM using a domain-specific language, which would

then be amenable to analysis and optimizations. A first direction would be to extend the POM

configuration language so that the scheduler is expressed directly in this extended language,

rather than just using the language for specifying the binding between Java schedulers and

base entities.

Another limitation of our approach is that there is no parallel execution of the scheduler

itself. This means that threads may have to wait for executing the scheduling and leaving

methods. However, it has to be highlighted that threads are only blocked during the execution

of scheduling and leaving methods (not during execution of other requests), and that these

methods are meant to be short-running. For instance, in the philosophers example, the

scheduling method is only called to determine if a philosopher can eat; while the philosopher

is eating, the scheduler monitor is not blocked, so other executions of the scheduling or leaving

methods can proceed. Similarly, calls to the leaving methods are only used to update the state

of the scheduler. As a matter of fact, the performance issue with POM does not come from

blocking threads during the execution of the scheduling and leaving methods, because the

probability of contention there is marginal. The true issue is the fact of having to ask a lock

for this. So a very promising approach would actually be to use transactional memory for the

POM schedulers, in order to avoid requesting locks for scheduler execution.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 39

8. Conclusion and Future Work

We have presented Parallel Object Monitors as a new abstraction for synchronizing parallel

activities. The main contribution of POM is to combine the power of the multi-object

coordination of Frølund and Agha [18], with the expressiveness provided by an explicit access to

the request queue, as in scheduler approaches [9, 10]. In addition, POM gives complete control

over reentrancy strategies. Furthermore, following an aspect-oriented approach, POM promotes

separation of concerns by untangling the synchronization concern from the application code.

Based on the Reflex AOP kernel, the Java implementation of POM supports reuse of off-

the-shelf synchronization policies thanks to method categories. A lightweight domain-specific

aspect language is provided for configuration of existing schedulers. We have illustrated the

expressiveness of POM through several examples, in particular through the implementation

of high-level abstractions like sequential object monitors [10] and chords [3], as well as the

synchronizers of [18]. Finally, several benchmarks validate the applicability of the proposal.

As future work, several trends shall be pursued. First, the aspect language for POM can

be made more expressive, both in terms of configuration control and scheduling specification.

Second, the POM Chords abstraction presented here represents a powerful starting point

for several alternatives of join patterns, such as n-way rendez-vous. Third, the relation with

software transactional memory should be further explored. STM has several advantages over

lock-based approaches, but is still an intrusive approach to concurrency specification. It is

therefore particularly interesting to try to reconcile the transparency and fine-grained control

of our approach with the efficiency of STM. Finally, composability of SOMs and POMs should

be studied, taking advantage of the aspect composition facilities of Reflex, including both

detection and resolution of interactions [31].

ACKNOWLEDGEMENTS

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

40 D. CAROMEL – L. MATEU – É. TANTER

We thank Oscar Nierstrasz and Sébastien Vaucouleur for their comments on a draft of this paper.

REFERENCES

1. G. Agha. ACTORS: a model of concurrent computation in distributed systems. The MIT Press:

Cambridge, MA, 1986.

2. C. Atkinson, A. D. Maio, and R. Bayan. Dragoon: An object-oriented notation supporting the reuse and

distribution of Ada software. In Proceedings of the 4th International Workshop on Real-Time Ada Issues,

pages 50–59, Pitlochry, Perthshir, Scotland, 1990.

3. N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C]. ACM Transactions on

Programming Languages and Systems, 26(5):769–804, Sept. 2004.

4. G. M. Birtwistle, O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Petrocelli Charter, 1973.

5. M. Bravenboer and E. Visser. Concrete syntax for objects. In Proceedings of the 19th ACM SIGPLAN

Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA 2004),

Vancouver, British Columbia, Canada, Oct. 2004. ACM Press. ACM SIGPLAN Notices, 39(11).

6. P. Brinch Hansen. A programming methodology for operating system design. In Proceedings of the IFIP

Congress 74, pages 394–397, Amsterdam, Holland, Aug. 1974. North-Holland.

7. J.-P. Briot, R. Guerraoui, and K.-P. Löhr. Concurrency and distribution in object-oriented programming.

ACM Computing Surveys, 30(3):291–329, Sept. 1998.

8. J.-P. Briot and A. Yonezawa. Inheritance and synchronization in concurrent oop. In Proceedings of the

1st European Conference on Object-Oriented Programming (ECOOP 87), volume 276 of Lecture Notes in

Computer Science, pages 32–40. Springer-Verlag, 1987.

9. D. Caromel. Towards a method of object-oriented concurrent programming. Communications of the

ACM, 36(9):90–102, 1993.

10. D. Caromel, L. Mateu, and É. Tanter. Sequential object monitors. In M. Odersky, editor, Proceedings of

the 18th European Conference on Object-Oriented Programming (ECOOP 2004), number 3086 in Lecture

Notes in Computer Science, pages 316–340, Oslo, Norway, June 2004. Springer-Verlag.

11. S. Chiba and M. Nishizawa. An easy-to-use toolkit for efficient Java bytecode translators. In

F. Pfenning and Y. Smaragdakis, editors, Proceedings of the 2nd ACM SIGPLAN/SIGSOFT Conference

on Generative Programming and Component Engineering (GPCE 2003), volume 2830 of Lecture Notes

in Computer Science, pages 364–376, Erfurt, Germany, Sept. 2003. Springer-Verlag.

12. R. Crocker and G. L. Steele, Jr., editors. Proceedings of the 18th ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages and Applications (OOPSLA 2003), Anaheim, CA, USA, Oct.

2003. ACM Press. ACM SIGPLAN Notices, 38(11).

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

PARALLEL OBJECT MONITORS 41

13. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs. Communications

of the ACM, 18(8):453–457, August 1975.

14. T. Elrad, R. E. Filman, and A. Bader. Aspect-oriented programming. Communications of the ACM,

44(10), Oct. 2001.

15. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the join-calculus. In Proceedings

of POPL’96, pages 372–385. ACM, Jan. 1996.

16. K. Fraser. Practical Lock-Freedom. PhD thesis, King’s College, University of Cambridge, Sept. 2003.

17. S. Frølund. Inheritance and synchronization constraints in concurrent object-oriented programming

languages. In O. Lehrmann Madsen, editor, Proceedings of the 6th European Conference on Object-

Oriented Programming (ECOOP 92), volume 615 of Lecture Notes in Computer Science, pages 185–196,

Utrecht, The Netherlands, July 1992. Springer-Verlag.

18. S. Frølund and G. Agha. A language framework for multi-object coordination. In O. Nierstrasz, editor,

Proceedings of the 7th European Conference on Object-Oriented Programming (ECOOP 93), volume 707 of

Lecture Notes in Computer Science, pages 346–360, Kaiserslautern, Germany, July 1993. Springer-Verlag.

19. T. Harris and K. Fraser. Language support for lightweight transactions. In Crocker and Steele, Jr. [12].

ACM SIGPLAN Notices, 38(11).

20. C. A. R. Hoare. Monitors: An operating system structuring concept. Communications of the ACM,

17(10):549–577, October 1974.

21. C. A. R. Hoare. Communicating sequential processes. Communications of the ACM, 21(8):666–677,

August 1978.

22. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold. An overview of AspectJ.

In J. L. Knudsen, editor, Proceedings of the 15th European Conference on Object-Oriented Programming

(ECOOP 2001), number 2072 in Lecture Notes in Computer Science, pages 327–353, Budapest, Hungary,

June 2001. Springer-Verlag.

23. D. Lea. Concurrent Programming in Java. The Java Series. Addison Wesley, second edition, 1999.

24. S. Matsuoka, T. Watanabe, and A. Yonezawa. Hybrid group reflective architecture for object-oriented

concurrent reflective programming. In P. America, editor, Proceedings of the 5th European Conference

on Object-Oriented Programming (ECOOP 91), volume 512 of Lecture Notes in Computer Science, pages

231–250, Geneva, Switzerland, July 1991. Springer-Verlag.

25. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented concurrent

programming languages. In G. Agha, P. Wegner, and A. Yonezawa, editors, Research Directions in

Concurrent Object-Oriented Programming, pages 107–150. MIT Press, 1993.

26. G. Milicia and V. Sassone. The inheritance anomaly: ten years after. In Proceedings of the 2004 ACM

Symposium on Applied Computing (SAC’04), pages 1267–1274, New York, NY, USA, 2004. ACM Press.

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

42 D. CAROMEL – L. MATEU – É. TANTER

27. O. Nierstrasz. Active objects in Hybrid. In N. Meyrowitz, editor, Proceedings of the 2nd International

Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA 87), pages

243–253, Orlando, Florida, USA, Oct. 1987. ACM Press. ACM SIGPLAN Notices, 22(12).

28. N. Shavit and D. Touitou. Software transactional memory. In Proceedings of PODC’95, pages 204–213,

Ottawa, Ontario, Canada, Aug. 1995.

29. É. Tanter. From Metaobject Protocols to Versatile Kernels for Aspect-Oriented Programming. PhD thesis,

University of Nantes and University of Chile, Nov. 2004.

30. É. Tanter. Aspects of composition in the Reflex AOP kernel. In Proceedings of the 5th International

Symposium on Software Composition (SC 2006), volume 4089 of Lecture Notes in Computer Science,

Vienna, Austria, Mar. 2006. Springer-Verlag.

31. É. Tanter and J. Noyé. A versatile kernel for multi-language AOP. In R. Glück and M. Lowry,

editors, Proceedings of the 4th ACM SIGPLAN/SIGSOFT Conference on Generative Programming and

Component Engineering (GPCE 2005), volume 3676 of Lecture Notes in Computer Science, pages 173–

188, Tallinn, Estonia, Sept./Oct. 2005. Springer-Verlag.

32. É. Tanter, J. Noyé, D. Caromel, and P. Cointe. Partial behavioral reflection: Spatial and temporal selection

of reification. In Crocker and Steele, Jr. [12], pages 27–46. ACM SIGPLAN Notices, 38(11).

Copyright c© 2000 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2000; 00:1–7

Prepared using cpeauth.cls

