
Semantics of SPARQL

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez

Abstract. This paper presents a formal semantics of SPARQL based
on [1]. Extensions to [1] are discussed, including support for blank nodes
in graph patterns, and bag/multisets semantics for solutions. The moti-
vation for this paper is to make the definitions of [1] closer to the last
official SPARQL release (4th October 2006), and to serve as feedback to
the RDF Data Access Working Group.

1 Preliminary Notions

Definition 1.1 (RDF Terms, Triples, and Variables) Assume there are
pairwise disjoint infinite sets I, B, and L (IRIs, Blank nodes, and literals). A
tuple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L) is called an RDF triple. In this tuple, s
is the subject, p the predicate and o the object. We denote the union I ∪B ∪L
by T (RDF terms). Assume additionally the existence of an infinite set V of
variables disjoint from the above sets.

Definition 1.2 (RDF Graph) An RDF graph is a set of RDF triples. If G
is an RDF graph, term(G) is the set of elements of T appearing in the triples
of G, and blank(G) is the set of blank nodes appearing in G, i.e. blank(G) =
term(G) ∩ B.

Definition 1.3 (RDF Dataset) An RDF dataset [2] is a set

D = {G0, 〈u1, G1〉, . . . , 〈un, Gn〉}

where G0, . . . , Gn are RDF graphs, u1, . . . , un are IRIs, and n ≥ 0. In the
dataset, G0 is the default graph, and the pairs 〈ui, Gi〉 are named graphs, with
ui the name of Gi. Every dataset D is equipped with a function dD such that
dD(u) = G if 〈u,G〉 ∈ D and dD(u) = ∅ otherwise. Additionally, name(D) stands
for the set of IRIs that are names of graphs in D, and term(D) and blank(D)
stand for the set of terms and blank nodes appearing in the graphs of D, respec-
tively. For the sake of simplicity, we assume that the graphs in a dataset have
disjoint sets of blank nodes, i.e. for i 6= j, blank(Gi) ∩ blank(Gj) = ∅.

Definition 1.4 (Mapping) A mapping µ from V to T is a partial function
µ : V → T . The domain of µ, dom(µ), is the subset of V where µ is defined.
The empty mapping µ∅ is a mapping such that dom(µ∅) = ∅ (i.e. µ∅ = ∅).



2 Syntax and Semantics of Basic Graph Patterns

Definition 2.1 (Triple and Basic Graph Pattern) A tuple t ∈ (I∪L∪V )×
(I ∪V )× (I ∪L∪V ) is a triple pattern. A Basic Graph Pattern is a finite set of
triple patterns. Given a triple pattern t, var(t) is the set of variables occurring
in t. Similarly, given a basic graph pattern P , var(P ) =

⋃

t∈P var(t), i.e. var(P )
is the set of variables occurring in P .

Note 2.2 In our definitions, triple and basic graph patterns do not contain blank
nodes. See Section 5.1 for extensions in this respect.

Definition 2.3 (Basic Graph Patterns and Mappings) Given a triple pat-
tern t and a mapping µ such that var(t) ⊆ dom(µ), µ(t) is the triple obtained by
replacing the variables in t according to µ. Given a basic graph pattern P and a
mapping µ such that var(P ) ⊆ dom(µ), we have that µ(P ) =

⋃

t∈P {µ(t)}, i.e.
µ(P ) is the set of triples obtained by replacing the variables in the triples of P
according to µ.

Definition 2.4 (Subgraph Matching) Let G be an RDF graph over T , and
P a basic graph pattern. The evaluation of P over G, denoted by [[P ]]G is defined
as the set of mappings

[[P ]]G = {µ : V → T | dom(µ) = var(P ) and µ(P ) ⊆ G}.

If µ ∈ [[P ]]G, we say that µ is a solution for P in G.

Note 2.5 For every RDF graph G, [[ ∅ ]]G = {µ∅}, i.e. the evaluation of an empty
basic graph pattern against any graph always results in the set containing only
the empty mapping. For every basic graph pattern P 6= ∅, [[P ]]∅ = ∅.

3 Syntax and Semantics of General Graph Patterns

3.1 Syntax

Definition 3.1 (Value Constraint) A SPARQL value constraint is defined
recursively as follows:

(1) If ?X, ?Y ∈ V and u ∈ I∪L, then ?X = u, ?X =?Y , bound(?X), isIRI(?X),
isLiteral(?X), and isBlank(?X) are atomic value constraints.1

(2) If R1 and R2 are value constraints then ¬R1, R1∧R2, and R1∨R2 are value
constraints.

Note 3.2 In our definitions, value constraints do not contain blank nodes.

Definition 3.3 A SPARQL graph pattern is defined recursively as follows:

(1) A basic graph pattern is a graph pattern.

1 For a complete list of atomic value constraints see [2].



(2) If P1 and P2 are graph patterns then (P1 AND P2), (P1 UNION P2), and
(P1 OPT P2) are graph patterns.

(3) If P is a graph pattern and X ∈ I ∪ V then (X GRAPH P ) is a graph
pattern.

(4) If P is a graph pattern and R is a value constraint, then (P FILTER R) is
a graph pattern.

3.2 Semantics

Definition 3.4 Given a mapping µ and a value constraint R, we define a notion
of satisfaction of R by µ, denoted by µ |= R, from a notion of evaluation in
a three valued logic with values {true, false, error}. For every atomic value
constraint R, excluding bound( · ), if var(R) 6⊆ dom(µ) the evaluation of R results
in error; else, the evaluation results in true if:

– R is ?X = c and µ(?X) = c,

– R is ?X =?Y and µ(?X) = µ(?Y ),

– R is isIRI(?X) and µ(?X) ∈ I,

– R is isLiteral(?X) and µ(?X) ∈ L,

– R is isBlank(?X) and µ(?X) ∈ B,

and results in false otherwise. For the case of bound(?X), the evaluation results
in true iff ?X ∈ dom(µ), else it results in false. For non-atomic constraints,
the evaluation is defined as usual in a three valued logic:

R1 R2 R1 ∧ R2 R1 ∨ R2

true true true true

true error error true

true false false true

error true error true

error error error error

error false false error

false true false true

false error false error

false false false false

R1 ¬R1

true false

error error

false true

.

Finally, µ |= R iff the evaluation of R against µ results in true.

Definition 3.5 (Compatible Mappings) Two mappings µ1 : V → T and
µ2 : V → T are compatibles if for every ?X ∈ dom(µ1) ∩ dom(µ2) it is the case
that µ1(?X) = µ2(?X), i.e. when µ1 ∪ µ2 is also a mapping.

Note 3.6 Two mappings with disjoint domains are always compatible, and the
empty mapping µ∅ is compatible with any other mapping. Intuitively, µ1 and
µ2 are compatibles if µ1 can be extended with µ2 to obtain a new mapping, and
vice versa.



Definition 3.7 (Set of Mappings and Operations) Let Ω1 and Ω2 be sets
of mappings. We define the join of, the union of, and the difference between Ω1

and Ω2 as:

Ω1 ⋊⋉ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings},

Ω1 ∪ Ω2 = {µ | µ ∈ Ω1 or µ ∈ Ω2},

Ω1 r Ω2 = {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ′ are not compatible}.

Based on the previous operators, we define the left outer-join as:

Ω1 Ω2 = (Ω1 ⋊⋉ Ω2) ∪ (Ω1 r Ω2).

Note 3.8 Intuitively, Ω1 ⋊⋉ Ω2 is the set of mappings that result from extending
mappings in Ω1 with their compatible mappings in Ω2, and Ω1 rΩ2 is the set of
mappings in Ω1 that cannot be extended with any mapping in Ω2. The operation
Ω1 ∪Ω2 is the usual set theoretical union. A mapping µ is in Ω1 Ω2 if it is the
extension of a mapping of Ω1 with a compatible mapping of Ω2, or if it belongs
to Ω1 and cannot be extended with any mapping of Ω2.

Definition 3.9 Let D be an RDF dataset and G an RDF graph in D. The
evaluation of a graph pattern over G in the dataset D, denoted by [[ · ]]DG, is
defined recursively as follows:

(1) If P is a basic graph pattern, then [[P ]]DG = [[P ]]G.

(2) – [[(P1 AND P2)]]
D
G = [[P1]]

D
G ⋊⋉ [[P2]]

D
G,

– [[(P1 UNION P2)]]
D
G = [[P1]]

D
G ∪ [[P2]]

D
G,

– [[(P1 OPT P2)]]
D
G = [[P1]]

D
G [[P2]]

D
G.

(3) – If u ∈ I, then [[(u GRAPH P )]]DG = [[P ]]D
dD(u),

– if ?X ∈ V , then

[[(?X GRAPH P )]]DG =
⋃

v∈name(D)

(

[[P ]]DdD(v) ⋊⋉ {µ?X→v}

)

,

where µ?X→v is a mapping such that dom(µ) = {?X} and µ(?X) = v.

(4) [[(P FILTER R)]]DG = {µ ∈ [[P ]]DG | µ |= R}.

Moreover, the evaluation of a graph pattern P over the RDF dataset D, denoted
by [[P ]]D, is simply [[P ]]DG0

where G0 is the default graph in D.

Note 3.10 The GRAPH operator in [2] transforms the dataset into a new one
with a different default graph, and the queries are always evaluated using the
default graph. In our definition, the dataset is a parameter of the evaluation
as well as the graph that is being used. These two alternative definitions are
equivalent, that is, the same set of solutions is obtained by using these two
alternative semantics.

Notice that since the graphs in a dataset do note share blank nodes (see
Definition 1.3), the mappings that result from distinct graphs in the evaluation
of (?X GRAPH P ) cannot share blank nodes.



Note 3.11 The semantics of SPARQL in [2] is defined in terms of solutions for
graph patterns rather than operations among sets of mappings. In our definitions,
the solutions for a pattern P in a dataset D are all the mappings in [[P ]]D. See
Definition 6.2 for a comparison.

Note 3.12 Several algebraic properties of graph patterns are proved in [1], most
notably that AND and UNION are associative and commutative. This permits
us to avoid parenthesis when writing sequences of AND operators or UNION
operators. This is consistent with the definitions of Group Graph Pattern and
Union Graph Pattern in [2] as being just sets of graph patterns.

Proposition 3.13 Let {t1, t2, . . . , tn} be a basic graph pattern, where n ≥ 1 and
every ti is a triple pattern (1 ≤ i ≤ n). Then for every dataset D:

[[{t1, t2, . . . , tn}]]
D = [[({t1} AND {t2} AND · · · AND {tn})]]

D.

Note 3.14 The above proposition implies that it is equivalent to consider basic
graph patterns or triple patterns as the base case when defining SPARQL general
graph patterns. Indeed triple patterns are used in [1] as the base case. When
blank nodes are considered, basic graph patterns must be used as the base case,
because the scope of blank nodes are basic graph patterns according to [2]. See
Section 5.1 for details.

4 Semantics of Query Result Forms

4.1 SELECT Result Form

Definition 4.1 Given a mapping µ : V → T and a set of variables W ⊆ V ,
the restriction of µ to W , denoted by µ|W , is a mapping such that dom(µ|W ) =
dom(µ) ∩ W and µ|W (?X) = µ(?X) for every ?X ∈ dom(µ) ∩ W .

Definition 4.2 A SELECT query is a tuple (W,P ), where W ⊆ V is a finite
set of variables and P is a graph pattern. The answer of (W,P ) in a dataset D
is the set of mappings:

{µ|W | µ ∈ [[P ]]D}.

4.2 CONSTRUCT Result Form

Definition 4.3 (Templates) A template is a finite subset of (T ∪ V ) × (I ∪
V ) × (T ∪ V ). Given a mapping µ and a template H, we have that µ(H) is
the result of replacing in H every variable ?X ∈ dom(µ) by µ(?X), and leaving
unchanged the remaining variables.

Moreover, blank(H) is defined to be the set of blank nodes appearing in H.

Note 4.4 The definition of template is similar to basic graph patterns, with the
addition that templates can have blank nodes in their triples. Furthermore, for
a template H we do not impose the restriction var(H) ⊆ dom(µ) in order to
define µ(H), as we did for basic graph patterns in Definition 2.3.



Definition 4.5 (Renaming Function) Let H be a template, P a graph pat-
tern, and D a dataset. Then we say that a set of functions:

{fµ | µ ∈ [[P ]]D},

is a set of renaming functions for H and [[P ]]D if: (1) the domain of every
function fµ is blank(H) and its range is a subset of (B \ blank(D)), that is, it
does not include any blank from blank(D), (2) every function fµ is one-to-one,
and (3) for every pair of distinct mappings µ, ν ∈ [[P ]]D, fµ and fν have disjoint
ranges (codomains).

Moreover, we denote by fµ(H) the template resulting from replacing the blank
nodes in H according to fµ.

Definition 4.6 A CONSTRUCT query is a tuple q = (H,P ) where H is a
template and P is a graph pattern. Let D be a dataset and consider a fixed set of
renaming functions F = {fµ | µ ∈ [[P ]]D}. Then the answer of q in the dataset
D (with renaming functions in F ) is the RDF graph:

⋃

µ∈[[P ]]D

(

µ(fµ(H)) ∩ ((I ∪ B) × I × (I ∪ L ∪ B))

)

.

Note 4.7 The answer of q in a dataset D is defined as the union over µ ∈ [[P ]]D

of the set of triples µ(fµ(H)) intersected with the set of well-formed RDF triples,
to ensure that the resulting set is a valid RDF graph.

The introduction of the renaming functions fµ, for every µ ∈ [[P ]]D, is to
ensure that there are fresh blank nodes in the template before the application
of each µ.

5 Extensions to the Subgraph Matching Approach

5.1 Graph Patterns with Blank Nodes

Definition 5.1 We extend the definitions of triple patterns to be tuples in the
set (T ∪ V ) × (I ∪ V ) × (T ∪ V ). The difference with Definition 2.1 is that now
triple patterns are allowed to have blank nodes as components. Equivalently, we
extend the definition of basic graph patterns. Also for a triple pattern t and a
basic graph pattern P , we define blank(t) and blank(P ) as the sets of blank nodes
appearing in t and P , respectively.

Definition 5.2 Let G be an RDF graph, and P a basic graph pattern with blank
nodes. We say that a mapping µ is a solution for P in G if:

– dom(µ) = var(P )
– there exists a substitution θ : blank(P ) → term(G) such that µ(θ(P )) ⊆ G,

where θ(P ) is the basic graph pattern that results from replacing the blank nodes
of P according to θ. Now, the evaluation of P over G, denoted by [[P ]]G, is
defined as the set of all solutions for P in G.



Note 5.3 This definition extends the definition of the semantics of graph pattern
expressions without blanks nodes, as by using the substitution θ : ∅ → term(G),
we obtain the same set of solutions as in Definition 2.4 for a graph pattern
expression P without blank nodes (since θ(P ) = P ).

Definition 5.4 Given a dataset D and a general graph pattern P constructed
from basic graph patterns possibly with blank nodes, we define the evaluation of
P in D, denoted by [[P ]]D, by applying Definition 3.9 with the base case as in
Definition 5.2.

5.2 Bag/Multisets Semantics and Cardinality

Definition 5.5 (Bags of Mappings and Operations) A bag of mappings is
a set of mappings in which every mapping is annotated with a positive integer
that represents the cardinality of that mapping in the bag. We will denote the
cardinality of the mapping µ in the bag M by cardM (µ) (or simply card(µ) when
M is understood from the context). If µ /∈ M then cardM (µ) = 0.

In Definition 3.7, we consider operations between set of mappings. Those
operations can be extended to bags, roughly speaking, making the operations not
to discard duplicates. Formally, if Ω1, Ω2 are bags of mappings, then

for µ ∈ Ω1 ⋊⋉ Ω2, cardΩ1⋊⋉Ω2
(µ) =

∑

µ=µ1∪µ2

cardΩ1
(µ1) · cardΩ2

(µ2),

for µ ∈ Ω1 ∪ Ω2, cardΩ1∪Ω2
(µ) = cardΩ1

(µ) + cardΩ2
(µ),

for µ ∈ Ω1 r Ω2, cardΩ1rΩ2
(µ) = cardΩ1

(µ).

Definition 5.6 (Cardinality of Basic Graph Pattern Solutions) Con-
sider a basic graph pattern P (possibly with blank nodes) and an RDF graph G.
The cardinality of the mapping µ ∈ [[P ]]G is defined as the number of distinct
substitutions θ : blank(P ) → term(G) such that µ(θ(P )) ⊆ G, i.e.

card[[P ]]G(µ) = |{θ : blank(P ) → term(G) | µ(θ(P )) ⊆ G}|.

Note 5.7 For a basic graph pattern P without blank nodes, every solution µ ∈
[[P ]]G has cardinality 1, as in this case the only possible substitution is θ : ∅ →
term(G). Notice that this is consistent with the fact that an RDF graph is a set
(without duplicates).

Definition 5.8 Given a dataset D and a general graph pattern P composed from
basic graph patterns possibly with blank nodes, we define the evaluation of P in
D using a bag/multiset semantics, simply as in Definition 3.9 but applying bag
operators (as in Definition 5.5) and with the base case as in Definition 5.6.

Proposition 5.9 Let P be a graph pattern without blank nodes and composed
only by AND, FILTER and OPT operators, and let D be an RDF dataset. Then
every solution µ ∈ [[P ]]D has cardinality 1.



Note 5.10 The above proposition implies that in absence of blank nodes in graph
patterns, duplicated solutions could be generated only by the use of UNION and
GRAPH operators.

Definition 5.11 (Cardinality in SELECT Result Form) Informally, for
bag/multiset semantics, in a SELECT query q = (W,P ) we simply take the
projection of the solutions for P over variables W without discarding duplicates.
Formally, given a SELECT query q = (W,P ) and a mapping µ in the answer of
q in dataset D, we define the cardinality of µ as

∑

ν|W
=µ

card[[P ]]D(ν).

Note 5.12 For a CONSTRUCT query (H,P ), every possible duplicate generated
in the evaluation of P is discarded when taking the (set) union of the mappings
applied to H. Indeed, CONSTRUCT generates an RDF graph which by defini-
tion is a set.

6 Final Remarks

Remark 6.1 (Solutions versus Set of Mappings and Operators) The semantics of
SPARQL is defined in [2] in terms of solutions for graph patterns rather than
operations among sets of mappings. Note that there is a close correspondence
between the notions of mappings and solutions as follows: a mapping µ is a
solution for graph pattern P in an RDF graph G of a dataset D iff µ ∈ [[P ]]DG.

Definition 6.2 The following are alternative (informal) definitions of the se-
mantics of graph patterns in term of solutions. We concentrate here in the alge-
bra.

(2) – µ is a solution for (P1 AND P2) if µ = µ1 ∪ µ2, where µ1 is a solution
for P1 and µ2 is a solution for P2.

– µ is a solution for (P1 UNION P2) if µ is a solution for P1 or µ is a
solution for P2.

– µ is a solution for (P1 OPT P2) if either (i) µ = µ1 ∪ µ2, where µ1 is a
solution for P1 and µ2 is a solution for P2, or (ii) µ is a solution for P1

and there is no mapping µ′ that is a solution for P2 and is compatible
with µ.

(3) – µ is a solution for (u GRAPH P ) (in the dataset D) if µ is a solution
for P in the graph with name u (in the dataset D).

– µ is a solution for (?X GRAPH P ) (in the dataset D) if µ = µ′∪{?X →
v}, where µ′ is a solution for P in the graph with name v (in the dataset
D).

(4) µ is a solution for (P FILTER R) if µ is a solution for P that satisfies R.



Remark 6.3 (General Framework versus Subgraph Matching) In [2], in defining
the semantics of SPARQL a notion of entailment is introduced with the idea
of making the definition generic enough to support notions more general than
simple entailment (e.g. RDFS entailment, OWL entailment, etc.). Current devel-
opments of the Data Access Working Group not settled yet this issue. What is
clear consensus is that in the case of simple RDF any definition should coincide
with subgraph matching, which is the approach followed in this paper as well as
in [1]. It is important to notice that a final decision on this point may affect only
the definition of the semantics of basic graph pattern expressions; the remaining
definitions (for the algebra) will not be affected.

Remark 6.4 (Query Languages and Entailment) We would like to add a small
methodological remark on the issue of incorporating a notion of entailment (at
least the notions present in RDF) into a query language. It can be proved that
it necessarily brings strong compromises in terms of computational complexity,
as the following result shows:

Proposition [Franconi–Gutierrez]: Let KB a knowledge base, and let ≡ be the
notion of logical equivalence among elements in KB. Assume further that the
query language has the following two natural properties: for every pair of knowl-
edge bases D and D′ and for every query q, (1) If D ≡ D′ then q(D) = q(D′),
and (2) The language contains the identity query. Then, the cost of evaluating
a query (worst case) has at least the complexity of evaluating ≡.

Condition (2) is an almost unavoidable requirement in any reasonable query
language. Condition (1) is what strongly differentiates a Database approach to
query languages from a KB-approach. In databases one only need the weaker con-
dition: (1’) If D = D′ then q(D) = q(D′). Note that current version of SPARQL
treats simple RDF graphs as databases (following the subgraph matching ap-
proach), indeed the semantics does not satisfy (1), but satisfies (1’) and (2). In
fact, given graphs G1 = {(a, c, d), (a, c,B)} and G2 = {(a, c, d)}, clearly equiva-
lent under simple RDF, the query q = (a, c, ?X) gives two different answers. The
approach in this paper is also a database oriented approach to the semantics of
SPARQL in the simple RDF case.

References

1. J. Pérez, M. Arenas, C. Gutierrez. Semantics and Complexity of SPARQL. 5th
International Semantic Web Conference (ISWC-06), November 2006.

2. E. Prud’hommeaux, A. Seaborne. SPARQL Query Language for RDF. W3C WD
4 October 2006. http://www.w3.org/TR/2006/WD-rdf-sparql-query-20061004/.



A Proofs

Proof of Proposition 3.13 The proof is by induction on n. The base case
n = 1 trivially holds. Now, by definition and using the induction hypothesis we
have

[[({t1} AND · · · AND {tn+1})]]
D = [[{t1, . . . , tn}]]

D
⋊⋉ [[{tn+1}]]

D

and then we must prove that

[[{t1, . . . , tn+1}]]G0
= [[{t1, . . . , tn}]]G0

⋊⋉ [[{tn+1}]]G0

with G0 the default graph of D. We first show that

[[{t1, . . . , tn+1}]]G0
⊆ [[{t1, . . . , tn}]]G0

⋊⋉ [[{tn+1}]]G0
.

Let µ be a mapping in [[{t1, . . . , tn+1}]]G0
then µ({t1, . . . , tn+1}) ⊆ G0. Let µ1

be the restriction of µ to domain var({t1, . . . , tn}), and µ2 be the restriction
of µ to domain var(tn+1). We have that µ({t1, . . . , tn} ∪ {tn+1}) ⊆ G0 then
µ1({t1, . . . , tn}) ⊆ G0 and µ2({tn+1}) ⊆ G0, and then µ1 ∈ [[{t1, . . . , tn}]]G0

and µ2 ∈ [[{tn+1}]]G0
. Note also that µ1 and µ2 are compatibles and then µ ∈

[[{t1, . . . , tn}]]G0
⋊⋉ [[{tn+1}]]G0

because µ = µ1 ∪ µ2. Now we show that

[[{t1, . . . , tn}]]G0
⋊⋉ [[{tn+1}]]G0

⊆ [[{t1, . . . , tn+1}]]G0
.

Let µ ∈ [[{t1, . . . , tn}]]G0
⋊⋉ [[{tn+1}]]G0

then µ = µ1 ∪ µ2 for two compatibles
mappings µ1 ∈ [[{t1, . . . , tn}]]G0

and µ2 ∈ [[{tn+1}]]G0
. Note first that dom(µ) =

var({t1, . . . , tn+1}). Now consider µ({t1, . . . , tn+1}) by definition we have

µ({t1, . . . , tn+1}) =
n+1
⋃

i=1

{µ(ti)}

then

µ({t1, . . . , tn+1}) =

n
⋃

i=1

{µ1(ti)} ∪ {µ2(tn+1)} = µ1({t1, . . . , tn})∪µ2({tn+1}) ⊆ G0

and then µ ∈ [[{t1, . . . , tn}]]G0
.

Proof of Proposition 5.9 In the extended version of [1] in Lemma 2 of
Appendix A, the following property is proved: If P is composed only by AND,
OPT, and FILTER, then for every pair of mappings µ1, µ2 ∈ [[P ]]G if µ1 and µ2

are compatibles then µ1 = µ2. We will use Lemma 2 in this proof.
Let D be a dataset with G0 as default graph. The proof follows by induction

in the construction of P . If P is a basic graph pattern then by definition, every
µ ∈ [[P ]]D = [[P ]]G0

has cardinality 1. Suppose first that P = (P ′ FILTER (R))
and µ ∈ [[P ]]D, then µ ∈ [[P ′]]D because [[P ]]D ⊆ [[P ′]]D and then applying
the induction hypothesis we have that µ has cardinality 1. Suppose now that



P = (P1 AND P2) and µ ∈ [[P ]]D, then µ = µ1 ∪ µ2 for µ1 ∈ [[P1]]
D and

µ2 ∈ [[P2]]
D. By the induction hypothesis the cardinality of µ1 and of µ2 is 1,

and if µ = µ′
1 ∪ µ′

2 with µ′
1 ∈ [[P1]]

D, µ′
2 ∈ [[P2]]

D we have that µ1 and µ′
1

are compatibles and then (by Lemma 2) µ1 = µ′
1, similarly µ2 = µ′

2, and then
the cardinality of µ is 1. Suppose now that P = (P1 OPT P2) and µ ∈ [[P ]]D,
then by definition µ ∈ [[(P1 AND P2)]]

D or µ ∈ [[P1]]
D

r [[P2]]
D, but µ is not

simultaneously in both sets. If µ ∈ [[(P1 AND P2)]]
D we already showed that the

cardinality of µ is 1. If µ ∈ [[P1]]
D

r [[P2]]
D then by definition the cardinality of

µ with respect to [[P ]]D is the same as the cardinality of µ in [[P1]]
D which is 1

by the induction hypothesis.


